1
|
Kingwara L, Karanja M, Ngugi C, Kangogo G, Bera K, Kimani M, Bowen N, Abuya D, Oramisi V, Mukui I. From Sequence Data to Patient Result: A Solution for HIV Drug Resistance Genotyping With Exatype, End to End Software for Pol-HIV-1 Sanger Based Sequence Analysis and Patient HIV Drug Resistance Result Generation. J Int Assoc Provid AIDS Care 2021; 19:2325958220962687. [PMID: 32990139 PMCID: PMC7536479 DOI: 10.1177/2325958220962687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Introduction: With the rapid scale-up of antiretroviral therapy (ART) to treat HIV
infection, there are ongoing concerns regarding probable emergence and
transmission of HIV drug resistance (HIVDR) mutations. This scale-up has to
lead to an increased need for routine HIVDR testing to inform the clinical
decision on a regimen switch. Although the majority of wet laboratory
processes are standardized, slow, labor-intensive data transfer and
subjective manual sequence interpretation steps are still required to
finalize and release patient results. We thus set out to validate the
applicability of a software package to generate HIVDR patient results from
raw sequence data independently. Methods: We assessed the performance characteristics of Hyrax Bioscience’s Exatype (a
sequence data to patient result, fully automated sequence analysis software,
which consolidates RECall, MEGA X and the Stanford HIV database) against the
standard method (RECall and Stanford database). Exatype is a web-based HIV
Drug resistance bioinformatic pipeline available at sanger.exatype.com. To validate the exatype, we used a test set of
135 remnant HIV viral load samples at the National HIV Reference Laboratory
(NHRL). Result: We analyzed, and successfully generated results of 126 sequences out of 135
specimens by both Standard and Exatype software. Result production using
Exatype required minimal hands-on time in comparison to the Standard (6
computation-hours using the standard method versus 1.5 Exatype
computation-hours). Concordance between the 2 systems was 99.8% for 311,227
bases compared. 99.7% of the 0.2% discordant bases, were attributed to
nucleotide mixtures as a result of the sequence editing in Recall. Both
methods identified similar (99.1%) critical antiretroviral
resistance-associated mutations resulting in a 99.2% concordance of
resistance susceptibility interpretations. The Base-calling comparison
between the 2 methods had Cohen’s kappa (0.97 to 0.99), implying an almost
perfect agreement with minimal base calling variation. On a predefined
dataset, RECall editing displayed the highest probability to score mixtures
accurately 1 vs. 0.71 and the lowest chance to inaccurately assign mixtures
to pure nucleotides (0.002–0.0008). This advantage is attributable to the
manual sequence editing in RECall. Conclusion: The reduction in hands-on time needed is a benefit when using the Exatype HIV
DR sequence analysis platform and result generation tool. There is a minimal
difference in base calling between Exatype and standard methods. Although
the discrepancy has minimal impact on drug resistance interpretation,
allowance of sequence editing in Exatype as RECall can significantly improve
its performance.
Collapse
Affiliation(s)
- Leonard Kingwara
- National Public Health Laboratory (NPHL), Nairobi, Kenya.,National AIDS and STI Control Program (NASCOP), Nairobi, Kenya
| | - Muthoni Karanja
- National AIDS and STI Control Program (NASCOP), Nairobi, Kenya
| | - Catherine Ngugi
- National AIDS and STI Control Program (NASCOP), Nairobi, Kenya
| | - Geoffrey Kangogo
- National Public Health Laboratory (NPHL), Nairobi, Kenya.,National AIDS and STI Control Program (NASCOP), Nairobi, Kenya
| | - Kipkerich Bera
- National Public Health Laboratory (NPHL), Nairobi, Kenya
| | - Maureen Kimani
- National AIDS and STI Control Program (NASCOP), Nairobi, Kenya
| | - Nancy Bowen
- National Public Health Laboratory (NPHL), Nairobi, Kenya
| | - Dorcus Abuya
- National Public Health Laboratory (NPHL), Nairobi, Kenya.,National AIDS and STI Control Program (NASCOP), Nairobi, Kenya
| | - Violet Oramisi
- National AIDS and STI Control Program (NASCOP), Nairobi, Kenya
| | - Irene Mukui
- National AIDS and STI Control Program (NASCOP), Nairobi, Kenya
| |
Collapse
|
2
|
Weber J, Volkova I, Sahoo MK, Tzou PL, Shafer RW, Pinsky BA. Prospective Evaluation of the Vela Diagnostics Next-Generation Sequencing Platform for HIV-1 Genotypic Resistance Testing. J Mol Diagn 2019; 21:961-970. [PMID: 31382033 PMCID: PMC7152740 DOI: 10.1016/j.jmoldx.2019.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/16/2019] [Accepted: 06/05/2019] [Indexed: 11/30/2022] Open
Abstract
Genotypic antiretroviral drug resistance testing is a critical component of the global efforts to control the HIV-1 epidemic. This study investigates the semiautomated, next-generation sequencing (NGS)-based Vela Diagnostics Sentosa SQ HIV-1 Genotyping Assay in a prospective cohort of HIV-1-infected patients. Two-hundred sixty-nine samples were successfully sequenced by both NGS and Sanger sequencing. Among the 261 protease/reverse transcriptase (PR/RT) sequences, a mean of 0.37 drug resistance mutations were identified by both Sanger and NGS, 0.08 by NGS alone, and 0.03 by Sanger alone. Among the 50 integrase sequences, a mean of 0.3 drug resistance mutations were detected by both Sanger and NGS, and 0.08 by NGS alone. NGS estimated higher levels of drug resistance to one or more antiretroviral drugs for 6.5% of PR/RT sequences and 4.0% of integrase sequences, whereas Sanger estimated higher levels of drug resistance for 3.8% of PR/RT sequences. Although the samples successfully sequenced by the Sentosa SQ HIV Genotyping Assay demonstrated similar predicted resistance compared with Sanger, 44% of Sentosa runs failed quality control requiring 17 additional runs. This semi-automated NGS-based assay may aid in HIV-1 genotypic drug resistance testing, though numerous quality control issues were observed when this platform was used in a clinical laboratory setting. With additional refinement, the Sentosa SQ HIV-1 Genotyping Assay may contribute to the global efforts to control HIV-1.
Collapse
Affiliation(s)
- Jenna Weber
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Ilona Volkova
- Clinical Virology Laboratory, Stanford Health Care, Stanford, California
| | - Malaya K Sahoo
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Philip L Tzou
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Robert W Shafer
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Benjamin A Pinsky
- Department of Pathology, Stanford University School of Medicine, Stanford, California; Clinical Virology Laboratory, Stanford Health Care, Stanford, California; Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
3
|
Comparison of an In Vitro Diagnostic Next-Generation Sequencing Assay with Sanger Sequencing for HIV-1 Genotypic Resistance Testing. J Clin Microbiol 2018; 56:JCM.00105-18. [PMID: 29618499 DOI: 10.1128/jcm.00105-18] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/20/2018] [Indexed: 11/20/2022] Open
Abstract
The ability of next-generation sequencing (NGS) technologies to detect low frequency HIV-1 drug resistance mutations (DRMs) not detected by dideoxynucleotide Sanger sequencing has potential advantages for improved patient outcomes. We compared the performance of an in vitro diagnostic (IVD) NGS assay, the Sentosa SQ HIV genotyping assay for HIV-1 genotypic resistance testing, with Sanger sequencing on 138 protease/reverse transcriptase (RT) and 39 integrase sequences. The NGS assay used a 5% threshold for reporting low-frequency variants. The level of complete plus partial nucleotide sequence concordance between Sanger sequencing and NGS was 99.9%. Among the 138 protease/RT sequences, a mean of 6.4 DRMs was identified by both Sanger and NGS, a mean of 0.5 DRM was detected by NGS alone, and a mean of 0.1 DRM was detected by Sanger sequencing alone. Among the 39 integrase sequences, a mean of 1.6 DRMs was detected by both Sanger sequencing and NGS and a mean of 0.15 DRM was detected by NGS alone. Compared with Sanger sequencing, NGS estimated higher levels of resistance to one or more antiretroviral drugs for 18.2% of protease/RT sequences and 5.1% of integrase sequences. There was little evidence for technical artifacts in the NGS sequences, but the G-to-A hypermutation was detected in three samples. In conclusion, the IVD NGS assay evaluated in this study was highly concordant with Sanger sequencing. At the 5% threshold for reporting minority variants, NGS appeared to attain a modestly increased sensitivity for detecting low-frequency DRMs without compromising sequence accuracy.
Collapse
|
4
|
Tarasova O, Poroikov V. HIV Resistance Prediction to Reverse Transcriptase Inhibitors: Focus on Open Data. Molecules 2018; 23:E956. [PMID: 29671808 PMCID: PMC6017644 DOI: 10.3390/molecules23040956] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 12/16/2022] Open
Abstract
Research and development of new antiretroviral agents are in great demand due to issues with safety and efficacy of the antiretroviral drugs. HIV reverse transcriptase (RT) is an important target for HIV treatment. RT inhibitors targeting early stages of the virus-host interaction are of great interest for researchers. There are a lot of clinical and biochemical data on relationships between the occurring of the single point mutations and their combinations in the pol gene of HIV and resistance of the particular variants of HIV to nucleoside and non-nucleoside reverse transcriptase inhibitors. The experimental data stored in the databases of HIV sequences can be used for development of methods that are able to predict HIV resistance based on amino acid or nucleotide sequences. The data on HIV sequences resistance can be further used for (1) development of new antiretroviral agents with high potential for HIV inhibition and elimination and (2) optimization of antiretroviral therapy. In our communication, we focus on the data on the RT sequences and HIV resistance, which are available on the Internet. The experimental methods, which are applied to produce the data on HIV-1 resistance, the known data on their concordance, are also discussed.
Collapse
Affiliation(s)
- Olga Tarasova
- Institute of Biomedical Chemistry, 10 building 8, Pogodinskaya st., Moscow 119121, Russia.
| | - Vladimir Poroikov
- Institute of Biomedical Chemistry, 10 building 8, Pogodinskaya st., Moscow 119121, Russia.
| |
Collapse
|
5
|
Trabaud MA, Icard V, Ramière C, Tardy JC, Scholtes C, André P. Comparison of HIV-1 drug-resistance genotyping by ultra-deep sequencing and sanger sequencing using clinical samples. J Med Virol 2017; 89:1912-1919. [PMID: 28590068 DOI: 10.1002/jmv.24872] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 05/24/2017] [Indexed: 11/06/2022]
Abstract
Sanger population sequencing (SPS) is the reference technique to monitor HIV-1-infected patients' therapy. Ultra-deep sequencing (UDS), which allows quantitative detection of drug resistance mutations, may be an alternative method. The study aimed to compare reproducibility and predictions of UDS versus SPS in a routine setting. A control containing low-abundance variants was repeatedly tested and clinical plasma samples from 100 patients were prospectively assayed by SPS and UDS using the Roche 454 system. Complete analysis by UDS was available for 88% of samples with various viral loads and subtypes. Comparison of detection thresholds found that SPS sensitivity was variable. Variations found by UDS between 5% to >20% were detected by SPS in 25% to more than 80% of samples. At the 5% cut-off, disagreements were rare and in most cases UDS detected an additional protease secondary mutation, suggesting a possible resistance to a protease inhibitor according to the 2015 ANRS algorithm. Mutations found on reverse transcriptase by only UDS were often explained by previous therapy. UDS with a variant detection threshold at 5% might allow therapy management with minimal differences compared to population sequencing while providing additional information for further determination of pertinent cutoff values for specific resistance mutations.
Collapse
Affiliation(s)
- Mary-Anne Trabaud
- Laboratoire de Virologie, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, F-69004, France
| | - Vinca Icard
- Laboratoire de Virologie, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, F-69004, France
| | - Christophe Ramière
- Laboratoire de Virologie, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, F-69004, France.,Centre International de Recherche en Infectiologie (CIRI) (Inserm U1111, CNRS UMR 5308), Lyon, F-69007, France.,Ecole Normale Supérieure de Lyon, Lyon, F-69007, France.,Université Claude Bernard Lyon 1, Villeurbanne, F-69100, France
| | - Jean-Claude Tardy
- Laboratoire de Virologie, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, F-69004, France
| | - Caroline Scholtes
- Laboratoire de Virologie, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, F-69004, France.,Centre International de Recherche en Infectiologie (CIRI) (Inserm U1111, CNRS UMR 5308), Lyon, F-69007, France.,Ecole Normale Supérieure de Lyon, Lyon, F-69007, France.,Université Claude Bernard Lyon 1, Villeurbanne, F-69100, France
| | - Patrice André
- Laboratoire de Virologie, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, F-69004, France.,Centre International de Recherche en Infectiologie (CIRI) (Inserm U1111, CNRS UMR 5308), Lyon, F-69007, France.,Ecole Normale Supérieure de Lyon, Lyon, F-69007, France.,Université Claude Bernard Lyon 1, Villeurbanne, F-69100, France
| |
Collapse
|
6
|
Spackman E, Suarez DL. Use of a Novel Virus Inactivation Method for a Multicenter Avian Influenza Real-Time Reverse Transcriptase—Polymerase Chain Reaction Proficiency Study. J Vet Diagn Invest 2016; 17:76-80. [PMID: 15690958 DOI: 10.1177/104063870501700117] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Proficiency assessments are important elements in quality control for diagnostic laboratories. Traditionally, proficiency testing for polymerase chain reaction (PCR)–based assays has involved the use of clinical samples, samples “spiked” with live agents or DNA plasmids. Because of government regulations and biosecurity concerns, distribution of live high-consequence pathogens of livestock and poultry, such as avian influenza, is not possible, and DNA plasmids are not technically suitable for evaluating RNA virus detection. Therefore, a proficiency testing panel using whole avian influenza in a diluent containing a phenolic disinfectant that inactivates the virus while preserving the RNA for at least 8 weeks at −70 C was developed and used in a multicenter proficiency assessment for a type A influenza real-time reverse transcriptase (RT)–PCR test. The test, which was highly standardized, except for variation in the real-time RT-PCR equipment used, was shown to be highly reproducible by proficiency testing in 12 laboratories in the United States, Canada, and Hong Kong. Variation in cycle threshold values among 35 data sets and 490 samples was minimal (CV = 5.19%), and sample identifications were highly accurate (96.7% correct identifications) regardless of real-time PCR instrumentation.
Collapse
Affiliation(s)
- Erica Spackman
- Southeast Poultry Research Laboratory, USDA-ARS, Athens, GA 30605, USA
| | | |
Collapse
|
7
|
Feder AF, Rhee SY, Holmes SP, Shafer RW, Petrov DA, Pennings PS. More effective drugs lead to harder selective sweeps in the evolution of drug resistance in HIV-1. eLife 2016; 5. [PMID: 26882502 PMCID: PMC4764592 DOI: 10.7554/elife.10670] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 01/18/2016] [Indexed: 01/28/2023] Open
Abstract
In the early days of HIV treatment, drug resistance occurred rapidly and predictably in all patients, but under modern treatments, resistance arises slowly, if at all. The probability of resistance should be controlled by the rate of generation of resistance mutations. If many adaptive mutations arise simultaneously, then adaptation proceeds by soft selective sweeps in which multiple adaptive mutations spread concomitantly, but if adaptive mutations occur rarely in the population, then a single adaptive mutation should spread alone in a hard selective sweep. Here, we use 6717 HIV-1 consensus sequences from patients treated with first-line therapies between 1989 and 2013 to confirm that the transition from fast to slow evolution of drug resistance was indeed accompanied with the expected transition from soft to hard selective sweeps. This suggests more generally that evolution proceeds via hard sweeps if resistance is unlikely and via soft sweeps if it is likely. DOI:http://dx.doi.org/10.7554/eLife.10670.001 In the early days of HIV therapy, the strains of the virus that infected patients frequently evolved drug resistance and the therapies would often eventually fail. These treatments generally involved using a single anti-viral drug. Nowadays, better therapies involving combinations of several anti-viral drugs are available and drug resistance in HIV is a much rarer occurrence. This means that now a particular therapy may be an effective treatment for an HIV-infected individual over much longer periods of time. A theory of population genetics predicts that when it is easy for a population to acquire a beneficial genetic mutation – like one that provides drug resistance – multiple versions of that mutation may spread in the population at the same time. This is called a soft selective sweep. However, when beneficial mutations occur only rarely, it is expected that only one version of that mutation will take over in a population, which is known as a hard selective sweep. Here, Feder et al. test this theory using data from 6717 patients with HIV who were treated between 1989 and 2013 using a variety of different drug therapies. The experiments aimed to find out whether the transition from the older drug therapies –where the virus frequently acquired resistance – to the newer, more effective drugs was associated with a transition from soft to hard sweeps. Feder et al. find that HIV more often evolved drug resistance via soft sweeps in patients treated with the less effective drug combinations (like those given in the early days of HIV treatment), while hard sweeps were more common with the more effective drug combinations. This suggests that good drug combinations may allow fewer drug resistance mutations to occur in the HIV population within a patient. This may be because there are fewer virus particles in these patients, or because the specific combinations of mutations that provide resistance occur less often. Feder et al.’s findings are a step towards understanding why modern HIV treatments work so well, which will ultimately help us find better treatments for other infectious diseases. DOI:http://dx.doi.org/10.7554/eLife.10670.002
Collapse
Affiliation(s)
- Alison F Feder
- Department of Biology, Stanford University, Stanford, United States
| | - Soo-Yon Rhee
- Department of Medicine, Stanford University, Stanford, United States
| | - Susan P Holmes
- Department of Statistics, Stanford University, Stanford, United States
| | - Robert W Shafer
- Department of Medicine, Stanford University, Stanford, United States
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, United States
| | - Pleuni S Pennings
- Department of Biology, Stanford University, Stanford, United States.,Department of Biology, San Francisco State University, San Francisco, United States
| |
Collapse
|
8
|
Practices of Sequencing Quality Assurance. Mol Microbiol 2016. [DOI: 10.1128/9781555819071.ch53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Cousins MM, Konikoff J, Sabin D, Khaki L, Longosz AF, Laeyendecker O, Celum C, Buchbinder SP, Seage GR, Kirk GD, Moore RD, Mehta SH, Margolick JB, Brown J, Mayer KH, Kobin BA, Wheeler D, Justman JE, Hodder SL, Quinn TC, Brookmeyer R, Eshleman SH. A comparison of two measures of HIV diversity in multi-assay algorithms for HIV incidence estimation. PLoS One 2014; 9:e101043. [PMID: 24968135 PMCID: PMC4072769 DOI: 10.1371/journal.pone.0101043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 06/03/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Multi-assay algorithms (MAAs) can be used to estimate HIV incidence in cross-sectional surveys. We compared the performance of two MAAs that use HIV diversity as one of four biomarkers for analysis of HIV incidence. METHODS Both MAAs included two serologic assays (LAg-Avidity assay and BioRad-Avidity assay), HIV viral load, and an HIV diversity assay. HIV diversity was quantified using either a high resolution melting (HRM) diversity assay that does not require HIV sequencing (HRM score for a 239 base pair env region) or sequence ambiguity (the percentage of ambiguous bases in a 1,302 base pair pol region). Samples were classified as MAA positive (likely from individuals with recent HIV infection) if they met the criteria for all of the assays in the MAA. The following performance characteristics were assessed: (1) the proportion of samples classified as MAA positive as a function of duration of infection, (2) the mean window period, (3) the shadow (the time period before sample collection that is being assessed by the MAA), and (4) the accuracy of cross-sectional incidence estimates for three cohort studies. RESULTS The proportion of samples classified as MAA positive as a function of duration of infection was nearly identical for the two MAAs. The mean window period was 141 days for the HRM-based MAA and 131 days for the sequence ambiguity-based MAA. The shadows for both MAAs were <1 year. Both MAAs provided cross-sectional HIV incidence estimates that were very similar to longitudinal incidence estimates based on HIV seroconversion. CONCLUSIONS MAAs that include the LAg-Avidity assay, the BioRad-Avidity assay, HIV viral load, and HIV diversity can provide accurate HIV incidence estimates. Sequence ambiguity measures obtained using a commercially-available HIV genotyping system can be used as an alternative to HRM scores in MAAs for cross-sectional HIV incidence estimation.
Collapse
Affiliation(s)
- Matthew M. Cousins
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jacob Konikoff
- Department of Biostatistics, School of Public Health, University of California Los Angeles, Los Angeles, California, United States of America
| | - Devin Sabin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Leila Khaki
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Andrew F. Longosz
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Oliver Laeyendecker
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Connie Celum
- Departments of Global Health and Medicine, University of Washington, Seattle, Washington, United States of America
| | - Susan P. Buchbinder
- Bridge HIV, San Francisco Department of Health, San Francisco, California, United States of America
- Departments of Epidemiology and Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - George R. Seage
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Gregory D. Kirk
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Richard D. Moore
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Shruti H. Mehta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Joseph B. Margolick
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Joelle Brown
- Department of Epidemiology, School of Public Health, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
| | - Kenneth H. Mayer
- The Fenway Institute/Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, United States of America
| | - Beryl A. Kobin
- Laboratory of Infectious Disease Prevention, New York Blood Center, New York, New York, United States of America
| | - Darrell Wheeler
- Graduate School of Social Work, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Jessica E. Justman
- Departments of Epidemiology and Medicine, Columbia University, New York, New York, United States of America
| | - Sally L. Hodder
- Department of Medicine, Division of Infectious Diseases, New Jersey Medical School, Newark, New Jersey, United States of America
| | - Thomas C. Quinn
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ron Brookmeyer
- Department of Biostatistics, School of Public Health, University of California Los Angeles, Los Angeles, California, United States of America
| | - Susan H. Eshleman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
10
|
Chaturbhuj DN, Nirmalkar AP, Paranjape RS, Tripathy SP. Evaluation of a cost effective in-house method for HIV-1 drug resistance genotyping using plasma samples. PLoS One 2014; 9:e87441. [PMID: 24533056 PMCID: PMC3922725 DOI: 10.1371/journal.pone.0087441] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 12/25/2013] [Indexed: 11/18/2022] Open
Abstract
Objectives Validation of a cost effective in-house method for HIV-1 drug resistance genotyping using plasma samples. Design The validation includes the establishment of analytical performance characteristics such as accuracy, reproducibility, precision and sensitivity. Methods The accuracy was assessed by comparing 26 paired Virological Quality Assessment (VQA) proficiency testing panel sequences generated by in-house and ViroSeq Genotyping System 2.0 (Celera Diagnostics, US) as a gold standard. The reproducibility and precision were carried out on five samples with five replicates representing multiple HIV-1 subtypes (A, B, C) and resistance patterns. The amplification sensitivity was evaluated on HIV-1 positive plasma samples (n = 88) with known viral loads ranges from 1000–1.8 million RNA copies/ml. Results Comparison of the nucleotide sequences generated by ViroSeq and in-house method showed 99.41±0.46 and 99.68±0.35% mean nucleotide and amino acid identity respectively. Out of 135 Stanford HIVdb listed HIV-1 drug resistance mutations, partial discordance was observed at 15 positions and complete discordance was absent. The reproducibility and precision study showed high nucleotide sequence identities i.e. 99.88±0.10 and 99.82±0.20 respectively. The in-house method showed 100% analytical sensitivity on the samples with HIV-1 viral load >1000 RNA copies/ml. The cost of running the in-house method is only 50% of that for ViroSeq method (112$ vs 300$), thus making it cost effective. Conclusions The validated cost effective in-house method may be used to collect surveillance data on the emergence and transmission of HIV-1 drug resistance in resource limited countries. Moreover, the wide applications of a cost effective and validated in-house method for HIV-1 drug resistance testing will facilitate the decision making for the appropriate management of HIV infected patients.
Collapse
Affiliation(s)
- Devidas N. Chaturbhuj
- Drug Resistance Lab, National AIDS Research Institute, Indian Council of Medical Research, Bhosari, Pune, India
| | - Amit P. Nirmalkar
- Department of Epidemiology & Biostatistics, National AIDS Research Institute, Indian Council of Medical Research, Bhosari, Pune, India
| | - Ramesh S. Paranjape
- National AIDS Research Institute, Indian Council of Medical Research, Bhosari, Pune, India
| | - Srikanth P. Tripathy
- National JALMA Institute Of Leprosy And Other Mycobacterial Diseases, Indian Council of Medical Research, Bhosari, Agra, India
- * E-mail:
| |
Collapse
|
11
|
Ebbert MTW, Mallory MA, Wilson AR, Dooley SK, Hillyard DR. Application of a new informatics tool for contamination screening in the HIV sequencing laboratory. J Clin Virol 2013; 57:249-53. [PMID: 23583427 DOI: 10.1016/j.jcv.2013.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/14/2013] [Accepted: 03/16/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND Current HIV-1 sequencing-based methods for detecting drug resistance-associated mutations are open and susceptible to contamination. Informatic identification of clinical sequences that are nearly identical to one another may indicate specimen-to-specimen contamination or another laboratory-associated issue. OBJECTIVES To design an informatic tool to rapidly identify potential contamination in the clinical laboratory using sequence analysis and to establish reference ranges for sequence variation in the HIV-1 protease and reverse transcriptase regions among a U.S. patient population. STUDY DESIGN We developed an open-source tool named HIV Contamination Detection (HIVCD). HIVCD was utilized to make pairwise comparisons of nearly 8000 partial HIV-1 pol gene sequences from patients across the United States and to calculate percent identities (PIDs) for each pair. ROC analysis and standard deviations of PID data were used to determine reference ranges for between-patient and within-patient comparisons and to guide selection of a threshold for identifying abnormally high PID between two unrelated sequences. RESULTS The PID reference range for between-patient comparisons ranged from 83.8 to 95.7% while within-patient comparisons ranged from 96 to 100%. Interestingly, 48% of between-patient sequence pairs with a PID>96.5 were geographically related. The selected threshold for abnormally high PIDs was 96 (AUC=0.993, sensitivity=0.980, specificity=0.999). During routine use, HIVCD identified a specimen mix-up and the source of contamination of a negative control. CONCLUSIONS In our experience, HIVCD is easily incorporated into laboratory workflow, useful for identifying potential laboratory errors, and contributes to quality testing. This type of analysis should be incorporated into routine laboratory practice.
Collapse
Affiliation(s)
- Mark T W Ebbert
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, 500 Chipeta Way, Salt Lake City, UT 84108, USA.
| | | | | | | | | |
Collapse
|
12
|
Foulkes-Murzycki JE, Rosi C, Kurt Yilmaz N, Shafer RW, Schiffer CA. Cooperative effects of drug-resistance mutations in the flap region of HIV-1 protease. ACS Chem Biol 2013; 8:513-8. [PMID: 23252515 DOI: 10.1021/cb3006193] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Understanding the interdependence of multiple mutations in conferring drug resistance is crucial to the development of novel and robust inhibitors. As HIV-1 protease continues to adapt and evade inhibitors while still maintaining the ability to specifically recognize and efficiently cleave its substrates, the problem of drug resistance has become more complicated. Under the selective pressure of therapy, correlated mutations accumulate throughout the enzyme to compromise inhibitor binding, but characterizing their energetic interdependency is not straightforward. A particular drug resistant variant (L10I/G48V/I54V/V82A) displays extreme entropy-enthalpy compensation relative to wild-type enzyme but a similar variant (L10I/G48V/I54A/V82A) does not. Individual mutations of sites in the flaps (residues 48 and 54) of the enzyme reveal that the thermodynamic effects are not additive. Rather, the thermodynamic profile of the variants is interdependent on the cooperative effects exerted by a particular combination of mutations simultaneously present.
Collapse
Affiliation(s)
- Jennifer E. Foulkes-Murzycki
- Department of Biochemistry and
Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts
01605, United States
| | - Christina Rosi
- Department of Biochemistry and
Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts
01605, United States
| | - Nese Kurt Yilmaz
- Department of Biochemistry and
Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts
01605, United States
| | - Robert W. Shafer
- Division
of Infectious Diseases,
Department of Medicine, Stanford University, Stanford, California 94305, United States
| | - Celia A. Schiffer
- Department of Biochemistry and
Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts
01605, United States
| |
Collapse
|
13
|
Antiviral resistance and correlates of virologic failure in the first cohort of HIV-infected children gaining access to structured antiretroviral therapy in Lima, Peru: a cross-sectional analysis. BMC Infect Dis 2013; 13:1. [PMID: 23280237 PMCID: PMC3782360 DOI: 10.1186/1471-2334-13-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 12/21/2012] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The impact of extended use of ART in developing countries has been enormous. A thorough understanding of all factors contributing to the success of antiretroviral therapy is required. The current study aims to investigate the value of cross-sectional drug resistance monitoring using DNA and RNA oligonucleotide ligation assays (OLA) in treatment cohorts in low-resource settings. The study was conducted in the first cohort of children gaining access to structured ART in Peru. METHODS Between 2002-5, 46 eligible children started the standard regimen of AZT, 3TC and NFV Patients had a median age of 5.6 years (range: 0.7-14y), a median viral load of 1.7·105 RNA/ml (range: 2.1·10(3) - 1.2·10(6)), and a median CD4-count of 232 cells/μL (range: 1-1591). Of these, 20 patients were classified as CDC clinical category C and 31/46 as CDC immune category 3. At the time of cross-sectional analysis in 2005, adherence questionnaires were administered. DNA OLAs and RNA OLAs were performed from frozen PBMC and plasma, RNA genotyping from dried blood spots. RESULTS During the first year of ART, 44% of children experienced virologic failure, with an additional 9% failing by the end of the second year. Virologic failure was significantly associated with the number of resistance mutations detected by DNA-OLA (p < 0.001) during cross-sectional analysis, but also with low immunologic CDC-scores at baseline (p < 0.001). Children who had been exposed to unsupervised short-term antiretrovirals before starting structured ART showed significantly higher numbers of resistance mutations by DNA-OLA (p = 0.01). Detection of M184V (3TC resistance) by RNA-OLA and DNA-OLA demonstrated a sensitivity of 0.93 and 0.86 and specificity of 0.67 and 0.7, respectively, for the identification of virologic failure. The RT mutations N88D and L90M (NFV resistance) detected by DNA-OLA correlated with virologic failure, whereas mutations at RT position 215 (AZT resistance) were not associated with virologic failure. CONCLUSIONS Advanced immunosuppression at baseline and previous exposures to unsupervised brief cycles of ART significantly impaired treatment outcomes at a time when structured ART was finally introduced in his cohort. Brief maternal exposures to with AZT +/- NVP for the prevention of mother-to-child transmission did not affect treatment outcomes in this group of children. DNA-OLA from frozen PBMC provided a highly specific tool to detect archived drug resistance. RNA consensus genotyping from dried blood spots and RNA-OLA from plasma consistently detected drug resistance mutations, but merely in association with virologic failure.
Collapse
|
14
|
Persistence versus reversion of 3TC resistance in HIV-1 determine the rate of emergence of NVP resistance. Viruses 2012; 4:1212-34. [PMID: 23012621 PMCID: PMC3446758 DOI: 10.3390/v4081212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/03/2012] [Accepted: 08/06/2012] [Indexed: 11/17/2022] Open
Abstract
When HIV-1 is exposed to lamivudine (3TC) at inhibitory concentrations, resistant variants carrying the reverse transcriptase (RT) substitution M184V emerge rapidly. This substitution confers high-level 3TC resistance and increased RT fidelity. We established a novel in vitro system to study the effect of starting nevirapine (NVP) in 3TC-resistant/NNRTI-naïve clinical isolates, and the impact of maintaining versus dropping 3TC pressure in this setting. Because M184V mutant HIV-1 seems hypersusceptible to adefovir (ADV), we also tested the effect of ADV pressure on the same isolates. We draw four conclusions from our experiments simulating combination therapy in vitro. (1) The presence of low-dose (1 μM) 3TC prevented reversal to wild-type from an M184V mutant background. (2) Adding low-dose 3TC in the presence of NVP delayed the selection of NVP-associated mutations. (3) The presence of ADV, in addition to NVP, led to more rapid reversal to wild-type at position 184 than NVP alone. (4) ADV plus NVP selected for greater numbers of mutations than NVP alone. Inference about the "selection of mutation" is based on two statistical models, one at the viral level, more telling, and the other at the level of predominance of mutation within a population. Multidrug pressure experiments lend understanding to mechanisms of HIV resistance as they bear upon new treatment strategies.
Collapse
|
15
|
Automating HIV drug resistance genotyping with RECall, a freely accessible sequence analysis tool. J Clin Microbiol 2012; 50:1936-42. [PMID: 22403431 DOI: 10.1128/jcm.06689-11] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genotypic HIV drug resistance testing is routinely used to guide clinical decisions. While genotyping methods can be standardized, a slow, labor-intensive, and subjective manual sequence interpretation step is required. We therefore performed external validation of our custom software RECall, a fully automated sequence analysis pipeline. HIV-1 drug resistance genotyping was performed on 981 clinical samples at the Stanford Diagnostic Virology Laboratory. Sequencing trace files were first interpreted manually by a laboratory technician and subsequently reanalyzed by RECall, without intervention. The relative performances of the two methods were assessed by determination of the concordance of nucleotide base calls, identification of key resistance-associated substitutions, and HIV drug resistance susceptibility scoring by the Stanford Sierra algorithm. RECall is freely available at http://pssm.cfenet.ubc.ca. In total, 875 of 981 sequences were analyzed by both human and RECall interpretation. RECall analysis required minimal hands-on time and resulted in a 25-fold improvement in processing speed (∼150 technician-hours versus ∼6 computation-hours). Excellent concordance was obtained between human and automated RECall interpretation (99.7% agreement for >1,000,000 bases compared). Nearly all discordances (99.4%) were due to nucleotide mixtures being called by one method but not the other. Similarly, 98.6% of key antiretroviral resistance-associated mutations observed were identified by both methods, resulting in 98.5% concordance of resistance susceptibility interpretations. This automated sequence analysis tool provides both standardization of analysis and a significant improvement in data workflow. The time-consuming, error-prone, and dreadfully boring manual sequence analysis step is replaced with a fully automated system without compromising the accuracy of reported HIV drug resistance data.
Collapse
|
16
|
Delwart E, Slikas E, Stramer SL, Kamel H, Kessler D, Krysztof D, Tobler LH, Carrick DM, Steele W, Todd D, Wright DJ, Kleinman SH, Busch MP. Genetic diversity of recently acquired and prevalent HIV, hepatitis B virus, and hepatitis C virus infections in US blood donors. J Infect Dis 2012; 205:875-85. [PMID: 22293432 DOI: 10.1093/infdis/jir862] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Genetic variations of human immunodeficiency virus (HIV), hepatitis C virus (HCV), and hepatitis B virus (HBV) can affect diagnostic assays and therapeutic interventions. Recent changes in prevalence of subtypes/genotypes and drug/immune-escape variants were characterized by comparing recently infected vs more remotely infected blood donors. METHODS Infected donors were identified among approximately 34 million US blood donations, 2006-2009; incident infections were defined as having no or low antiviral antibody titers. Viral genomes were partially sequenced. RESULTS Of 321 HIV strains (50% incident), 2.5% were non-B HIV subtypes. Protease and reverse transcriptase (RT) inhibitor resistance mutations were found in 2% and 11% of infected donors, respectively. Subtypes in 278 HCV strains (31% incident) yielded 1a>1b>3a>2b>2a>4a>6d, 6e: higher frequencies of 3a in incident cases vs higher frequencies of 1b in prevalent cases were found (P = .04). Twenty subgenotypes among 193 HBV strains (26% incident) yielded higher frequencies of A2 in incident cases and higher frequencies of A1, B2, and B4 in prevalent cases (P = .007). No HBV drug resistance mutations were detected. Six percent of incident vs 26% of prevalent HBV contained antibody neutralization escape mutations (P = .01). CONCLUSIONS Viral genetic variant distribution in blood donors was similar to that seen in high-risk US populations. Blood-borne viruses detected through large-scale routine screening of blood donors can complement molecular surveillance studies of highly exposed populations.
Collapse
Affiliation(s)
- Eric Delwart
- Blood Systems Research Institute, San Francisco, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhou Z, Wagar N, DeVos JR, Rottinghaus E, Diallo K, Nguyen DB, Bassey O, Ugbena R, Wadonda-Kabondo N, McConnell MS, Zulu I, Chilima B, Nkengasong J, Yang C. Optimization of a low cost and broadly sensitive genotyping assay for HIV-1 drug resistance surveillance and monitoring in resource-limited settings. PLoS One 2011; 6:e28184. [PMID: 22132237 PMCID: PMC3223235 DOI: 10.1371/journal.pone.0028184] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/02/2011] [Indexed: 11/29/2022] Open
Abstract
Commercially available HIV-1 drug resistance (HIVDR) genotyping assays are expensive and have limitations in detecting non-B subtypes and circulating recombinant forms that are co-circulating in resource-limited settings (RLS). This study aimed to optimize a low cost and broadly sensitive in-house assay in detecting HIVDR mutations in the protease (PR) and reverse transcriptase (RT) regions of pol gene. The overall plasma genotyping sensitivity was 95.8% (N = 96). Compared to the original in-house assay and two commercially available genotyping systems, TRUGENE® and ViroSeq®, the optimized in-house assay showed a nucleotide sequence concordance of 99.3%, 99.6% and 99.1%, respectively. The optimized in-house assay was more sensitive in detecting mixture bases than the original in-house (N = 87, P<0.001) and TRUGENE® and ViroSeq® assays. When the optimized in-house assay was applied to genotype samples collected for HIVDR surveys (N = 230), all 72 (100%) plasma and 69 (95.8%) of the matched dried blood spots (DBS) in the Vietnam transmitted HIVDR survey were genotyped and nucleotide sequence concordance was 98.8%; Testing of treatment-experienced patient plasmas with viral load (VL) ≥ and <3 log10 copies/ml from the Nigeria and Malawi surveys yielded 100% (N = 46) and 78.6% (N = 14) genotyping rates, respectively. Furthermore, all 18 matched DBS stored at room temperature from the Nigeria survey were genotyped. Phylogenetic analysis of the 236 sequences revealed that 43.6% were CRF01_AE, 25.9% subtype C, 13.1% CRF02_AG, 5.1% subtype G, 4.2% subtype B, 2.5% subtype A, 2.1% each subtype F and unclassifiable, 0.4% each CRF06_CPX, CRF07_BC and CRF09_CPX.
Collapse
Affiliation(s)
- Zhiyong Zhou
- Division of Global HIV/AIDS, Center for Global Health, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, United States of America
| | - Nick Wagar
- Division of Global HIV/AIDS, Center for Global Health, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, United States of America
| | - Joshua R. DeVos
- Division of Global HIV/AIDS, Center for Global Health, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, United States of America
| | - Erin Rottinghaus
- Division of Global HIV/AIDS, Center for Global Health, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, United States of America
| | - Karidia Diallo
- Division of Global HIV/AIDS, Center for Global Health, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, United States of America
| | - Duc B. Nguyen
- Department of Health and Human Services/US CDC, Hanoi, Vietnam
| | | | | | | | - Michelle S. McConnell
- Division of Global HIV/AIDS, Center for Global Health, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, United States of America
- Thailand Ministry of Public Health/US CDC Collaboration, Nonthaburi, Thailand
| | - Isaac Zulu
- Global AIDS Program CDC-Zambia, Lusaka, Zambia
| | - Benson Chilima
- Community Health Sciences Unit, Malawi Ministry of Health, Lilongwe, Malawi
| | - John Nkengasong
- Division of Global HIV/AIDS, Center for Global Health, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, United States of America
| | - Chunfu Yang
- Division of Global HIV/AIDS, Center for Global Health, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
18
|
Souza DC, Sucupira MCA, Brindeiro RM, Fernandez JCC, Sabino EC, Inocencio LA, Diaz RS. The Brazilian network for HIV-1 genotyping external quality control assurance programme. J Int AIDS Soc 2011; 14:45. [PMID: 21936945 PMCID: PMC3192700 DOI: 10.1186/1758-2652-14-45] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 09/21/2011] [Indexed: 11/10/2022] Open
Abstract
The Brazilian network for genotyping is composed of 21 laboratories that perform and analyze genotyping tests for all HIV-infected patients within the public system, performing approximately 25,000 tests per year. We assessed the interlaboratory and intralaboratory reproducibility of genotyping systems by creating and implementing a local external quality control evaluation. Plasma samples from HIV-1-infected individuals (with low and intermediate viral loads) or RNA viral constructs with specific mutations were used. This evaluation included analyses of sensitivity and specificity of the tests based on qualitative and quantitative criteria, which scored laboratory performance on a 100-point system. Five evaluations were performed from 2003 to 2008, with 64% of laboratories scoring over 80 points in 2003, 81% doing so in 2005, 56% in 2006, 91% in 2007, and 90% in 2008 (Kruskal-Wallis, p = 0.003). Increased performance was aided by retraining laboratories that had specific deficiencies. The results emphasize the importance of investing in laboratory training and interpretation of DNA sequencing results, especially in developing countries where public (or scarce) resources are used to manage the AIDS epidemic.
Collapse
|
19
|
Varghese V, Wang E, Babrzadeh F, Bachmann MH, Shahriar R, Liu T, Mappala SJM, Gharizadeh B, Fessel WJ, Katzenstein D, Kassaye S, Shafer RW. Nucleic acid template and the risk of a PCR-Induced HIV-1 drug resistance mutation. PLoS One 2010; 5:e10992. [PMID: 20539818 PMCID: PMC2881873 DOI: 10.1371/journal.pone.0010992] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Accepted: 05/12/2010] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The HIV-1 nucleoside RT inhibitor (NRTI)-resistance mutation, K65R confers intermediate to high-level resistance to the NRTIs abacavir, didanosine, emtricitabine, lamivudine, and tenofovir; and low-level resistance to stavudine. Several lines of evidence suggest that K65R is more common in HIV-1 subtype C than subtype B viruses. METHODS AND FINDINGS We performed ultra-deep pyrosequencing (UDPS) and clonal dideoxynucleotide sequencing of plasma virus samples to assess the prevalence of minority K65R variants in subtype B and C viruses from untreated individuals. Although UDPS of plasma samples from 18 subtype C and 27 subtype B viruses showed that a higher proportion of subtype C viruses contain K65R (1.04% vs. 0.25%; p<0.001), limiting dilution clonal sequencing failed to corroborate its presence in two of the samples in which K65R was present in >1.5% of UDPS reads. We therefore performed UDPS on clones and site-directed mutants containing subtype B- and C-specific patterns of silent mutations in the conserved KKK motif encompassing RT codons 64 to 66 and found that subtype-specific nucleotide differences were responsible for increased PCR-induced K65R mutation in subtype C viruses. CONCLUSIONS This study shows that the RT KKK nucleotide template in subtype C viruses can lead to the spurious detection of K65R by highly sensitive PCR-dependent sequencing techniques. However, the study is also consistent with the subtype C nucleotide template being inherently responsible for increased polymerization-induced K65R mutations in vivo.
Collapse
Affiliation(s)
- Vici Varghese
- Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Resistance testing has become an important component of the recommended care for treatment-naive and treatment-experienced HIV-infected patients in the developed world, and their use has been shown to improve clinical outcomes. Despite the widespread use of resistance testing, the clinician faces a number of challenges in optimally applying these technologies to antiretroviral management. RECENT FINDINGS Even with the aid of a genotypic interpretation system, the interpretation of a genotype is complex and benefits from expert input. Phenotypic resistance testing is limited by cost and availability for many patients. Standard resistance testing (both genotypes and phenotypes) is unable to detect minority species. The presence of resistant minority populations has been associated with virologic failure. However, the current techniques available to detect their presence are cumbersome and not soon likely to become part of routine clinical care. The development of the chemokine (C-C motif) receptor 5 antagonists has provided new challenges in quantifying antiretroviral resistance. SUMMARY Resistance testing plays a central role in the management of treatment-experienced patients. Further progress in the interpretation of resistance testing, especially as new agents are developed, will continue to add value to the care of HIV-infected patients.
Collapse
|
21
|
Varghese V, Shahriar R, Rhee SY, Liu T, Simen BB, Egholm M, Hanczaruk B, Blake LA, Gharizadeh B, Babrzadeh F, Bachmann MH, Fessel WJ, Shafer RW. Minority variants associated with transmitted and acquired HIV-1 nonnucleoside reverse transcriptase inhibitor resistance: implications for the use of second-generation nonnucleoside reverse transcriptase inhibitors. J Acquir Immune Defic Syndr 2009; 52:309-15. [PMID: 19734799 PMCID: PMC2809083 DOI: 10.1097/qai.0b013e3181bca669] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES K103N, the most common nonnucleoside reverse transcriptase inhibitor (NNRTI)-resistant mutation in patients with transmitted resistance and in patients receiving a failing NNRTI-containing regimen, is fully susceptible to the new NNRTI, etravirine. Therefore, we sought to determine how often NNRTI-resistant mutations other than K103N occur as minority variants in plasma samples for which standard genotypic resistance testing detects K103N alone. METHODS We performed ultradeep pyrosequencing (UDPS; 454 Life Sciences a Roche Company, Branford, CT) of plasma virus samples from 13 treatment-naive and 20 NNRTI-experienced patients in whom standard genotypic resistance testing revealed K103N but no other major NNRTI-resistance mutations. RESULTS Samples from 0 of 13 treatment-naive patients vs. 7 of 20 patients failing an NNRTI-containing regimen had minority variants with major etravirine-associated NNRTI-resistant mutations (P = 0.03, Fisher exact test): Y181C (7.0%), Y181C (3.6%) + G190A (3.2%), L100I (14%), L100I (32%) + 190A (5.4%), K101E (3.8%) + G190A (4.9%), K101E (4.0%) + G190S (4.8%), and G190S (3.1%). CONCLUSIONS In treatment-naive patients, UDPS did not detect additional major NNRTI-resistant mutations suggesting that etravirine may be effective in patients with transmitted K103N. In NNRTI-experienced patients, UDPS often detected additional major NNRTI-resistant mutations suggesting that etravirine may not be fully active in patients with acquired K103N.
Collapse
Affiliation(s)
- Vici Varghese
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Increased detection of HIV-1 drug resistance at time of diagnosis by testing viral DNA with a sensitive assay. J Acquir Immune Defic Syndr 2009; 51:283-9. [PMID: 19398922 DOI: 10.1097/qai.0b013e3181a9972c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE HIV-1 drug resistance has been detected in 8%-24% of recently infected North Americans when assessed by consensus sequencing of plasma. We hypothesized that rates were likely higher but not detected because drug-resistant mutants are transmitted or regressed to levels below the limit of detection by consensus sequencing of HIV-1 RNA. METHODS Specimens from antiretroviral-naive individuals recently diagnosed with HIV-1 infection were compared at 15 codons to determine if testing of DNA using a sensitive oligonucleotide ligation assay (OLA) would detect drug resistance mutants not evident by consensus sequencing of serum. RESULTS HIV-1 drug resistance at 15 major resistance codons was greater by OLA compared with consensus sequencing: 18 of 104 vs. 12 of 104 individuals (P < or = 0.008) and 33 vs. 18 total mutations (P < or = 0.001); increasing the rate of detection at these 15 codons by 83%. Additional mutations were detected by consensus sequencing at L33, M46, D67, V108, and K219 that were not assessed by OLA. CONCLUSIONS The increased detection of drug-resistant HIV-1 by testing peripheral blood cells with a sensitive assay implies that both low and high levels of drug-resistant mutants are transmitted or persist in antiretroviral-naive individuals, suggesting that the clinical relevance of mutants persisting at both levels should be evaluated.
Collapse
|
23
|
Land S, Cunningham P, Zhou J, Frost K, Katzenstein D, Kantor R, Chen YMA, Oka S, DeLong A, Sayer D, Smith J, Dax EM, Law M. TREAT Asia Quality Assessment Scheme (TAQAS) to standardize the outcome of HIV genotypic resistance testing in a group of Asian laboratories. J Virol Methods 2009; 159:185-93. [PMID: 19490972 DOI: 10.1016/j.jviromet.2009.03.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 03/11/2009] [Accepted: 03/16/2009] [Indexed: 11/19/2022]
Abstract
The TREAT Asia (Therapeutics, Research, Education, and AIDS Training in Asia) Network is building capacity for Human Immunodeficiency Virus Type-1 (HIV-1) drug resistance testing in the region. The objective of the TREAT Asia Quality Assessment Scheme - designated TAQAS - is to standardize HIV-1 genotypic resistance testing (HIV genotyping) among laboratories to permit rigorous comparison of results from different clinics and testing centres. TAQAS has evaluated three panels of HIV-1-positive plasma from clinical material or low-passage, culture supernatant for up to 10 Asian laboratories. Laboratory participants used their standard protocols to perform HIV genotyping. Assessment was in comparison to a target genotype derived from all participants and the reference laboratory's result. Agreement between most participants at the edited nucleotide sequence level was high (>98%). Most participants performed to the reference laboratory standard in detection of drug resistance mutations (DRMs). However, there was variation in the detection of nucleotide mixtures (0-83%) and a significant correlation with the detection of DRMs (p<0.01). Interpretation of antiretroviral resistance showed approximately 70% agreement among participants when different interpretation systems were used but >90% agreement with a common interpretation system, within the Stanford University Drug Resistance Database. Using the principles of external quality assessment and a reference laboratory, TAQAS has demonstrated high quality HIV genotyping results from Asian laboratories.
Collapse
Affiliation(s)
- Sally Land
- National Serology Reference Laboratory, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Minority human immunodeficiency virus type 1 variants in antiretroviral-naive persons with reverse transcriptase codon 215 revertant mutations. J Virol 2008; 82:10747-55. [PMID: 18715933 DOI: 10.1128/jvi.01827-07] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
T215 revertant mutations such as T215C/D/E/S that evolve from the nucleoside reverse transcriptase (RT) inhibitor mutations T215Y/F have been found in about 3% of human immunodeficiency virus type 1 (HIV-1) isolates from newly diagnosed HIV-1-infected persons. We used a newly developed sequencing method-ultradeep pyrosequencing (UDPS; 454 Life Sciences)--to determine the frequency with which T215Y/F or other RT inhibitor resistance mutations could be detected as minority variants in samples from untreated persons that contain T215 revertants ("revertant" samples) compared with samples from untreated persons that lack such revertants ("control" samples). Among the 22 revertant and 29 control samples, UDPS detected a mean of 3.8 and 4.8 additional RT amino acid mutations, respectively. In 6 of 22 (27%) revertant samples and in 4 of 29 control samples (14%; P = 0.4), UDPS detected one or more RT inhibitor resistance mutations. T215Y or T215F was not detected in any of the revertant or control samples; however, 4 of 22 revertant samples had one or more T215 revertants that were detected by UDPS but not by direct PCR sequencing. The failure to detect viruses with T215Y/F in the 22 revertant samples in this study may result from the overwhelming replacement of transmitted T215Y variants by the more fit T215 revertants or from the primary transmission of a T215 revertant in a subset of persons with T215 revertants.
Collapse
|
25
|
Consensus Drug Resistance Mutations for Epidemiological Surveillance: Basic Principles and Potential Controversies. Antivir Ther 2008. [DOI: 10.1177/135965350801302s13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Programmes that monitor local, national and regional levels of transmitted HIV-1 drug resistance inform treatment guidelines and provide feedback on the success of HIV-1 treatment and prevention programmes. The World Health Organization (WHO) has established a global programme for genotypic surveillance of HIV-1 drug resistance and has recommended the adoption of a consensus definition of genotypic drug resistance. Such a definition is necessary to accurately compare transmitted drug resistance rates across geographical regions and time periods. HIV-1 diversity and the large number of mutations associated with antiretroviral drug resistance complicate the development of a consensus definition for genotypic drug resistance. This paper reviews the data that must be considered to determine which of the many HIV-1 drug resistance mutations are likely to be both sensitive and specific indicators of transmitted drug resistance. The process used to create a previously published list of drug resistance mutations for HIV-1 surveillance is reviewed and alternative approaches to this process are discussed.
Collapse
|
26
|
Shafer RW, Rhee SY, Bennett DE. Consensus drug resistance mutations for epidemiological surveillance: basic principles and potential controversies. Antivir Ther 2008; 13 Suppl 2:59-68. [PMID: 18575192 PMCID: PMC4388302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Programmes that monitor local, national and regional levels of transmitted HIV-1 drug resistance inform treatment guidelines and provide feedback on the success of HIV-1 treatment and prevention programmes. The World Health Organization (WHO) has established a global programme for genotypic surveillance of HIV-1 drug resistance and has recommended the adoption of a consensus definition of genotypic drug resistance. Such a definition is necessary to accurately compare transmitted drug resistance rates across geographical regions and time periods. HIV-1 diversity and the large number of mutations associated with antiretroviral drug resistance complicate the development of a consensus definition for genotypic drug resistance. This paper reviews the data that must be considered to determine which of the many HIV-1 drug resistance mutations are likely to be both sensitive and specific indicators of transmitted drug resistance. The process used to create a previously published list of drug resistance mutations for HIV-1 surveillance is reviewed and alternative approaches to this process are discussed.
Collapse
Affiliation(s)
- Robert W Shafer
- Division of Infectious Diseases, Stanford University, Stanford, CA, USA.
| | | | | |
Collapse
|
27
|
Poon AFY, Kosakovsky Pond SL, Richman DD, Frost SDW. Mapping protease inhibitor resistance to human immunodeficiency virus type 1 sequence polymorphisms within patients. J Virol 2007; 81:13598-607. [PMID: 17913806 PMCID: PMC2168824 DOI: 10.1128/jvi.01570-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Resistance genotyping provides an important resource for the clinical management of patients infected with human immunodeficiency virus type 1 (HIV-1). However, resistance to protease (PR) inhibitors (PIs) is a complex phenotype shaped by interactions among nearly half of the residues in HIV-1 PR. Previous studies of the genetic basis of PI resistance focused on fixed substitutions among populations of HIV-1, i.e., host-specific adaptations. Consequently, they are susceptible to a high false discovery rate due to founder effects. Here, we employ sequencing "mixtures" (i.e., ambiguous base calls) as a site-specific marker of genetic variation within patients that is independent of the phylogeny. We demonstrate that the transient response to selection by PIs is manifested as an excess of nonsynonymous mixtures. Using a sample of 5,651 PR sequences isolated from both PI-naive and -treated patients, we analyze the joint distribution of mixtures and eight PIs as a Bayesian network, which distinguishes residue-residue interactions from direct associations with PIs. We find that selection for resistance is associated with the emergence of nonsynonymous mixtures in two distinct groups of codon sites clustered along the substrate cleft and distal regions of PR, respectively. Within-patient evolution at several positions is independent of PIs, including those formerly postulated to be involved in resistance. These positions are under strong positive selection in the PI-naive patient population, implying that other factors can produce spurious associations with resistance, e.g., mutational escape from the immune response.
Collapse
Affiliation(s)
- Art F Y Poon
- Department of Pathology, University of California, San Diego, La Jolla, California, USA.
| | | | | | | |
Collapse
|
28
|
Bertagnolio S, Soto-Ramirez L, Pilon R, Rodriguez R, Viveros M, Fuentes L, Harrigan PR, Mo T, Sutherland D, Sandstrom P. HIV-1 drug resistance surveillance using dried whole blood spots. Antivir Ther 2007. [DOI: 10.1177/135965350701200114] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Field-friendly methods for HIV drug resistance (HIVDR) surveillance in resource-limited regions are urgently needed. Despite evidence that dried blood spots (DBS) are suitable for HIV serology, viral load and CD4+ T-cell enumeration, no study has evaluated DBS for HIVDR genotyping. We assessed the feasibility of genotyping HIV-1 from field-collected DBS stored under challenging environmental conditions. Methods We prospectively collected specimens from newly diagnosed, treatment-naive HIV-positive subjects in Mexico. Whole blood was spotted onto filter cards, air dried at ambient temperature and stored with desiccant at 37°C and 85% humidity for 3 months. Genotypes obtained from DBS-extracted nucleic acids using an in-house nested reverse transcription-PCR method were compared to genotypes derived from matched plasma. Results Genotypes from 103 phylogenetically matched plasma and DBS were compared. In total, 90.1% of all DBS specimens could be amplified in either the region of HIV protease or the region of reverse transcriptase. Failure to amplify from DBS did not correlate with low plasma viral loads. Between paired specimens, the median nucleotide similarity was 99.95%. In the nine specimens with drug resistance mutations, all differences between pairs were partial discordances. Mutations identified in plasma were found in the majority of replicate DBS amplifications. Conclusion The results suggest that genotypes obtained from DBS are equivalent to those from plasma. DBS are a promising public health tool for HIVDR surveillance of treatment-naive subjects, especially in regions where specimens might be exposed to severe environmental conditions and where logistical difficulties could prevent timely specimen processing. More studies are needed to validate DBS for patient monitoring.
Collapse
Affiliation(s)
| | - Luis Soto-Ramirez
- Instituto Nacional de Ciencias Medicas y Nutricion, Salvador Zubiran, Molecular Virology Laboratory, Department of Infectious Diseases, Mexico City, Mexico
| | - Richard Pilon
- Centre for Infectious Disease Prevention and Control, Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - Roberto Rodriguez
- Instituto Nacional de Ciencias Medicas y Nutricion, Salvador Zubiran, Molecular Virology Laboratory, Department of Infectious Diseases, Mexico City, Mexico
| | - Monica Viveros
- Instituto Nacional de Ciencias Medicas y Nutricion, Salvador Zubiran, Molecular Virology Laboratory, Department of Infectious Diseases, Mexico City, Mexico
| | - Luis Fuentes
- Instituto Nacional de Ciencias Medicas y Nutricion, Salvador Zubiran, Molecular Virology Laboratory, Department of Infectious Diseases, Mexico City, Mexico
| | - P Richard Harrigan
- BC Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Theresa Mo
- BC Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Don Sutherland
- World Health Organization, HIV Department, Geneva, Switzerland
| | - Paul Sandstrom
- Centre for Infectious Disease Prevention and Control, Public Health Agency of Canada, Ottawa, Ontario, Canada
| |
Collapse
|
29
|
Mitsuya Y, Winters MA, Fessel WJ, Rhee SY, Hurley L, Horberg M, Schiffer CA, Zolopa AR, Shafer RW. N88D facilitates the co-occurrence of D30N and L90M and the development of multidrug resistance in HIV type 1 protease following nelfinavir treatment failure. AIDS Res Hum Retroviruses 2006; 22:1300-5. [PMID: 17209774 PMCID: PMC2573402 DOI: 10.1089/aid.2006.22.1300] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nelfinavir was once one of the most commonly used protease inhibitors (PIs). To investigate the genetic mechanisms of multidrug resistance in protease isolates with the primary nelfinavir resistance mutation D30N, we analyzed patterns of protease mutations in 582 viruses with D30N from 460 persons undergoing HIV-1 genotypic resistance testing at Stanford University Hospital from 1997 to 2005. Three patterns of mutational associations were identified. First, D30N was positively associated with N88D but negatively associated with N88S. Second, D30N and L90M were negatively associated except in the presence of N88D, which facilitated the co-occurrence of D30N and L90M. Third, D30N+N88D+L90M formed a stable genetic backbone for the accumulation of additional protease inhibitor (PI) resistance mutations. In 16 patients having isolates with more than one combination of mutations at positions 30, 88, and 90, all exhibited one of the steps in the following progression: D30N-->D30N+N88D-->D30N+N88D+L90M-->D30N+N88D+L90M+(L33F+/-I84V or M46I/L+/-I54V). Although nelfinavir is now used less frequently than other PIs, the well-delineated mutational pathway we describe is likely to influence patterns of cross-resistance in viruses from persons who experience virologic failure while receiving this PI.
Collapse
Affiliation(s)
- Yumi Mitsuya
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Mitsuya Y, Winters MA, Fessel WJ, Rhee SY, Slome S, Flamm J, Horberg M, Hurley L, Klein D, Shafer RW. HIV-1 drug resistance genotype results in patients with plasma samples with HIV-1 RNA levels less than 75 copies/mL. J Acquir Immune Defic Syndr 2006; 43:56-9. [PMID: 16885777 PMCID: PMC2547468 DOI: 10.1097/01.qai.0000232609.99705.a2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HIV-1 genotypic resistance test results were obtained on clinical samples from 116 patients with plasma HIV-1 RNA levels of less than 75 copies/mL. Genotype validity was confirmed in 49 of 50 patients with a previous or follow-up genotype. The belief that genotypic resistance testing is unreliable in samples with low-level viremia should be reassessed.
Collapse
Affiliation(s)
- Yumi Mitsuya
- From the Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA
| | - Mark A. Winters
- From the Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA
| | - W. Jeffrey Fessel
- From the Kaiser-Permanente Medical Care Program—Northern California, Oakland, CA
| | - Soo-Yon Rhee
- From the Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA
| | - Sally Slome
- From the Kaiser-Permanente Medical Care Program—Northern California, Oakland, CA
| | - Jason Flamm
- From the Kaiser-Permanente Medical Care Program—Northern California, Oakland, CA
| | - Michael Horberg
- From the Kaiser-Permanente Medical Care Program—Northern California, Oakland, CA
| | - Leo Hurley
- From the Kaiser-Permanente Medical Care Program—Northern California, Oakland, CA
| | - Daniel Klein
- From the Kaiser-Permanente Medical Care Program—Northern California, Oakland, CA
| | - Robert W. Shafer
- From the Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA
| |
Collapse
|
31
|
Rhee SY, Kantor R, Katzenstein DA, Camacho R, Morris L, Sirivichayakul S, Jorgensen L, Brigido LF, Schapiro JM, Shafer RW. HIV-1 pol mutation frequency by subtype and treatment experience: extension of the HIVseq program to seven non-B subtypes. AIDS 2006; 20:643-51. [PMID: 16514293 PMCID: PMC2551321 DOI: 10.1097/01.aids.0000216363.36786.2b] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE HIVseq was developed in 2000 to make published data on the frequency of HIV-1 group M protease and reverse transcriptase (RT) mutations available in real time to laboratories and researchers sequencing these genes. Because most published protease and RT sequences belonged to subtype B, the initial version of HIVseq was based on this subtype. As additional non-B sequences from persons with well-characterized antiretroviral treatment histories have become available, the program has been extended to subtypes A, C, D, F, G, CRF01, and CRF02. METHODS The latest frequency of each protease and RT mutation according to subtype and drug-class exposure was calculated using published sequences in the Stanford HIV RT and Protease Sequence Database. Each mutation was hyperlinked to published reports of viruses containing the mutation. RESULTS As of September 2005, the mean number of protease sequences per non-B subtype was 534 from protease inhibitor-naive persons and 133 from protease inhibitor-treated persons, representing 13.2% and 2.3%, respectively, of the data available for subtype B. The mean number of RT sequences per non-B subtype was 373 from RT inhibitor-naive persons and 288 from RT inhibitor-treated persons, representing 17.9% and 3.8%, respectively, of the data available for subtype B. CONCLUSIONS HIVseq allows users to examine protease and RT mutations within the context of previously published sequences of these genes. The publication of additional non-B protease and RT sequences from persons with well-characterized treatment histories, however, will be required to perform the same types of analysis possible with the much larger number of subtype B sequences.
Collapse
Affiliation(s)
- Soo-Yon Rhee
- Division of Infectious Disease, Stanford University, Stanford, California, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Beh AL, Fleet GH, Prakitchaiwattana C, Heard GM. Evaluation of molecular methods for the analysis of yeasts in foods and beverages. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 571:69-106. [PMID: 16408594 DOI: 10.1007/0-387-28391-9_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Affiliation(s)
- Ai Lin Beh
- Food Science and Technology, School of Chemical Engineering and Industrial Chemistry, University of New South Wales, Sydney, Australia
| | | | | | | |
Collapse
|
33
|
Nissley DV, Halvas EK, Hoppman NL, Garfinkel DJ, Mellors JW, Strathern JN. Sensitive phenotypic detection of minor drug-resistant human immunodeficiency virus type 1 reverse transcriptase variants. J Clin Microbiol 2005; 43:5696-704. [PMID: 16272507 PMCID: PMC1287775 DOI: 10.1128/jcm.43.11.5696-5704.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Detection of drug-resistant variants is important for the clinical management of human immunodeficiency virus type 1 (HIV-1) infection and for studies on the evolution of drug resistance. Here we show that hybrid elements composed of the Saccharomyces cerevisiae retrotransposon Ty1 and the reverse transcriptase (RT) of HIV-1 are useful tools for detecting, monitoring, and isolating drug-resistant reverse transcriptases. This sensitive phenotypic assay is able to detect nonnucleoside reverse transcriptase inhibitor-resistant RT domains derived from mixtures of infectious molecular clones of HIV-1 in plasma and from clinical samples when the variants comprise as little as 0.3 to 1% of the virus population. Our assay can characterize the activities and drug susceptibilities of both known and novel reverse transcriptase variants and should prove useful in studies of the evolution and clinical significance of minor drug-resistant viral variants.
Collapse
Affiliation(s)
- Dwight V Nissley
- Basic Research Program, SAIC-Frederick, NCI Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Huang DD, Bremer JW, Brambilla DJ, Palumbo PE, Aldrovandi G, Eshleman S, Brown C, Fiscus S, Frenkel L, Hamdan H, Hart S, Kovacs A, Krogstad P, LaRussa P, Sullivan J, Weinberg A, Zhao YQ. Model for assessment of proficiency of human immunodeficiency virus type 1 sequencing-based genotypic antiretroviral assays. J Clin Microbiol 2005; 43:3963-70. [PMID: 16081937 PMCID: PMC1233968 DOI: 10.1128/jcm.43.8.3963-3970.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Use of sequencing-based genotyping as a diagnostic assay for human immunodeficiency virus (HIV) antiretroviral resistance is increasing. Periodic evaluation of the proficiency of laboratories performing this assay should be established. It is important to identify components of the assay that influence the generation of reliable sequencing data and that should and can be monitored. A model was developed to determine what parameters were reasonable and feasible for assessing the performance of genotyping assays. Ten laboratories using the genotyping platform, HIV-1 Genotyping System (HGS) v. 1 and software versions 1.1 or 2.0, participated in two rounds of testing. For each round, each group was sent a panel consisting of three clinical samples to sequence in real time. Six months later, seven laboratories using the TRUGENE HIV-1 Genotyping Kit participated in a separate round, working with both panels at the same time. Analysis of the data showed that one main indicator of genotyping proficiency was achievement of > or =98% sequence homology of a sample tested to a group consensus sequence for that sample. A second was concordant identification of codons at sites identified with resistance mutations in the sample, although scoring of these criteria is still undetermined from this study. These criteria are applicable to all sequence-based genotyping platforms and have been used as a baseline for assessing the performance of genotyping for the determination of antiretroviral resistance in our ongoing proficiency program.
Collapse
Affiliation(s)
- Diana D Huang
- Department of Immunology/Microbiology, Rush Medical College, 1653 W. Congress Parkway, Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Rhee SY, Fessel WJ, Zolopa AR, Hurley L, Liu T, Taylor J, Nguyen DP, Slome S, Klein D, Horberg M, Flamm J, Follansbee S, Schapiro JM, Shafer RW. HIV-1 Protease and reverse-transcriptase mutations: correlations with antiretroviral therapy in subtype B isolates and implications for drug-resistance surveillance. J Infect Dis 2005; 192:456-65. [PMID: 15995959 PMCID: PMC2597526 DOI: 10.1086/431601] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Accepted: 03/04/2005] [Indexed: 11/03/2022] Open
Abstract
Background. It is important, for drug-resistance surveillance, to identify human immunodeficiency virus type 1 (HIV-1) strains that have undergone antiretroviral drug selection.Methods. We compared the prevalence of protease and reverse-transcriptase (RT) mutations in HIV-1 sequences from persons with and without previous treatment with protease inhibitors (PIs), nucleoside RT inhibitors (NRTIs), and nonnucleoside RT inhibitors (NNRTIs). Treatment-associated mutations in protease isolates from 5867 persons and RT isolates from 6247 persons were categorized by whether they were polymorphic (prevalence, >0.5%) in untreated individuals and whether they were established drug-resistance mutations. New methods were introduced to minimize misclassification from transmitted resistance, population stratification, sequencing artifacts, and multiple hypothesis testing.Results. Some 36 established and 24 additional nonpolymorphic protease mutations at 34 positions were related to PI treatment, 21 established and 22 additional nonpolymorphic RT mutations at 24 positions with NRTI treatment, and 15 established and 11 additional nonpolymorphic RT mutations at 15 positions with NNRTI treatment. In addition, 11 PI-associated and 1 NRTI-associated established mutations were polymorphic in viruses from untreated persons.Conclusions. Established drug-resistance mutations encompass only a subset of treatment-associated mutations; some of these are polymorphic in untreated persons. In contrast, nonpolymorphic treatment-associated mutations may be more sensitive and specific markers of transmitted HIV-1 drug resistance.
Collapse
Affiliation(s)
- Soo-Yon Rhee
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford
| | | | - Andrew R. Zolopa
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford
| | - Leo Hurley
- Kaiser-Permanente Medical Care Program Northern California, Oakland
| | - Tommy Liu
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford
| | - Jonathan Taylor
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford
| | | | - Sally Slome
- Kaiser-Permanente Medical Care Program Northern California, Oakland
| | - Daniel Klein
- Kaiser-Permanente Medical Care Program Northern California, Oakland
| | - Michael Horberg
- Kaiser-Permanente Medical Care Program Northern California, Oakland
| | - Jason Flamm
- Kaiser-Permanente Medical Care Program Northern California, Oakland
| | | | - Jonathan M. Schapiro
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford
| | - Robert W. Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford
| |
Collapse
|
36
|
Martinez-Picado J, Morales-Lopetegi K, Villena C, Gutiérrez C, Izquierdo N, Marfil S, Clotet B, Ruiz L. Evidence for preferential genotyping of a minority human immunodeficiency virus population due to primer-template mismatching during PCR-based amplification. J Clin Microbiol 2005; 43:436-8. [PMID: 15635008 PMCID: PMC540107 DOI: 10.1128/jcm.43.1.436-438.2005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) genotyping assays have come to be widely used for monitoring antiretroviral drug resistance. We report a case in which primer-template mismatches during nested PCR-based amplification biased the composition of the original viral population in the sample, magnifying a distinct minority HIV-1 population. This observation might help to explain some unexpected HIV-1 genotypes.
Collapse
Affiliation(s)
- Javier Martinez-Picado
- IrsiCaixa Foundation, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Nikolenko GN, Palmer S, Maldarelli F, Mellors JW, Coffin JM, Pathak VK. Mechanism for nucleoside analog-mediated abrogation of HIV-1 replication: balance between RNase H activity and nucleotide excision. Proc Natl Acad Sci U S A 2005; 102:2093-8. [PMID: 15684061 PMCID: PMC548555 DOI: 10.1073/pnas.0409823102] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the mechanisms of HIV-1 drug resistance is critical for developing more effective antiretroviral agents and therapies. Based on our previously described dynamic copy-choice mechanism for retroviral recombination and our observations that nucleoside reverse transcriptase inhibitors (NRTIs) increase the frequency of reverse transcriptase template switching, we propose that an equilibrium exists between (i) NRTI incorporation, NRTI excision, and resumption of DNA synthesis and (ii) degradation of the RNA template by RNase H activity, leading to dissociation of the template-primer and abrogation of HIV-1 replication. As predicted by this model, mutations in the RNase H domain that reduced the rate of RNA degradation conferred high-level resistance to 3'-azido-3'-deoxythymidine and 2,3-didehydro-2,3-dideoxythymidine by as much as 180- and 10-fold, respectively, by increasing the time available for excision of incorporated NRTIs from terminated primers. These results provide insights into the mechanism by which NRTIs inhibit HIV-1 replication and imply that mutations in RNase H could significantly contribute to drug resistance either alone or in combination with NRTI-resistance mutations in reverse transcriptase.
Collapse
Affiliation(s)
- Galina N Nikolenko
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA
| | | | | | | | | | | |
Collapse
|
38
|
Matthew R, Banjevic M, Chan AS, Myers L, Wolkowicz R, Haberer J, Singer J. Use of the l1 norm for selection of sparse parameter sets that accurately predict drug response phenotype from viral genetic sequences. AMIA ... ANNUAL SYMPOSIUM PROCEEDINGS. AMIA SYMPOSIUM 2005; 2005:505-9. [PMID: 16779091 PMCID: PMC1560612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We describe the use of the l1 norm for selection of a sparse set of model parameters that are used in the prediction of viral drug response, based on genetic sequence data of the Human Immunodeficiency Virus (HIV) reverse-transcriptase enzyme. We discuss the use of the l1 norm in the Least Absolute Selection and Shrinkage Operator (LASSO) regression model and the Support Vector Machine model. When tested by cross-validation with laboratory measurements, these models predict viral phenotype, or resistance, in response to Reverse-Transcriptase Inhibitors (RTIs) more accurately than other known models. The l1 norm is the most selective convex function, which sets a large proportion of the parameters to zero and also assures that a single optimal solution will be found, given a particular model formulation and training data set. A statistical model that reliably predicts viral drug response is an important tool in the selection of Anti-Retroviral Therapy. These techniques have general application to modeling phenotype from complex genetic data.
Collapse
|
39
|
Kantor R, Shafer RW, Follansbee S, Taylor J, Shilane D, Hurley L, Nguyen DP, Katzenstein D, Fessel WJ. Evolution of resistance to drugs in HIV-1-infected patients failing antiretroviral therapy. AIDS 2004; 18:1503-11. [PMID: 15238768 PMCID: PMC2547474 DOI: 10.1097/01.aids.0000131358.29586.6b] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND OBJECTIVE The optimal time for changing failing antiretroviral therapy (ART) is not known. It involves balancing the risk of exhausting future treatment options against the risk of developing increased drug resistance. The frequency with which new drug-resistance mutations (DRM) developed and their potential consequences in patients continuing unchanged treatment despite persistent viremia were assessed. DESIGN A retrospective study of consecutive sequence samples from 106 patients at one institution with viral load (VL) of more than 400 copies/ml, with no change in ART for more than 2 months despite virologic failure. METHODS Two consecutive pol sequences, CD4 cell counts and VL were analyzed to quantify the development of new DRM and to identify changes in immunologic and virologic parameters. Genotypic susceptibility scores (GSS) and viral drug susceptibilities were calculated by a computer program (HIVDB). Poisson log-linear regression models were used to predict the expected number of mutations at the second time point. RESULTS : After a median of 14 months of continued ART, 75% (80 of 106) of patients acquired new DRM and were assigned a significantly lower GSS, potentially limiting the success of future ART. The development of new DRM was proportional to the time between the two sequences and inversely proportional to the number of DRM in the first sequence. However, the development of DRM was not associated with significant changes in CD4 or VL counts. CONCLUSIONS Despite stable levels of CD4 and VL over time, maintaining a failing therapeutic regimen increases drug resistance and may limit future treatment options.
Collapse
Affiliation(s)
- Rami Kantor
- Division of Infectious Diseases, Center for AIDS Research, Stanford University, Stanford, California, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kapoor A, Jones M, Shafer RW, Rhee SY, Kazanjian P, Delwart EL. Sequencing-based detection of low-frequency human immunodeficiency virus type 1 drug-resistant mutants by an RNA/DNA heteroduplex generator-tracking assay. J Virol 2004; 78:7112-23. [PMID: 15194787 PMCID: PMC421662 DOI: 10.1128/jvi.78.13.7112-7123.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Drug-resistant viruses may be present as minority variants during early treatment failures or following discontinuation of failed antiretroviral regimens. A limitation of the traditional direct PCR population sequencing method is its inability to detect human immunodeficiency virus type 1 (HIV-1) variants present at frequencies lower than 20%. A drug resistance genotyping assay based on the isolation and DNA sequencing of minority HIV protease variants is presented here. A multiple-codon-specific heteroduplex generator probe was constructed to improve the separation of HIV protease genes varying in sequence at 12 codons associated with resistance to protease inhibitors. Using an RNA molecule as probe allowed the simple sequencing of protease variants isolated as RNA/DNA heteroduplexes with different electrophoretic mobilities. The protease gene RNA heteroduplex generator-tracking assay (RNA-HTA) was tested on plasma quasispecies from 21 HIV-1-infected persons in whom one or more protease resistance mutations emerged during therapy or following initiation of salvage regimens. In 11 of 21 cases, RNA-HTA testing of virus from the first episode of virologic failure identified protease resistance mutations not seen by population-based PCR sequencing. In 8 of these 11 cases, all of the low-frequency drug resistance mutations detected exclusively by RNA-HTA during the first episode became detectable by population-based PCR sequencing at the later time point. Distinct sets of protease mutations could be linked on different genomes in patients with high-frequency protease gene lineages. The enhanced detection of minority drug resistance variants using a sequencing-based assay may improve the efficacy of genotype-assisted salvage therapies.
Collapse
Affiliation(s)
- Amit Kapoor
- Department of Medicine, University of California, San Francisco, 94118, USA
| | | | | | | | | | | |
Collapse
|
41
|
Nicastri E. Brief summary of the legal proceeding. ACTA ACUST UNITED AC 2004; 106:105-7. [PMID: 15000598 DOI: 10.1080/03008870310009849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The panel, held in Rome in April 2002 with the participation of more than 100 Italian directors of infectious diseases wards, followed a systematic approach to reviewing the evidence of any specific use of the genotypic assays to detect antiretroviral resistance. The single recommendations have been developed using a rating scheme based on consideration of the evidence and, when direct evidence was lacking, on expert opinion. Another emerging issue approached during this meeting is represented by the reproducibility of HIV-1 reverse transcriptase and protease sequencing in clinical settings. The degree of concordance of genotypic assays among 12 experienced laboratories is also reported.
Collapse
|
42
|
Isaguliants MG, Zuber B, Boberg A, Sjöstrand D, Belikov SV, Rollman E, Zuber AK, Rechinsky VO, Rytting AS, Källander CFR, Hinkula J, Kochetkov SN, Liu M, Wahren B. Reverse transcriptase-based DNA vaccines against drug-resistant HIV-1 tested in a mouse model. Vaccine 2004; 22:1810-9. [PMID: 15068865 DOI: 10.1016/j.vaccine.2003.10.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Drug resistance is becoming a problem in the treatment of the human immunodeficiency virus type one (HIV-1). To obtain therapeutic DNA vaccines that would target multiple drug-resistance (DR) mutations, we cloned genes for DR HIV-1 reverse transcriptase (RT) and codon-optimized synthetic genes encoding clusters of human CTL epitopes located at the sites of DR-mutations (RT minigenes) and antibody and CTL-epitope tags. Expression of RT genes/minigenes in eukaryotic cells was confirmed by Western blotting and immunofluoresence staining with RT- or tag-specific antibodies. Immunization of mice with DR-RT gene induced no RT-specific antibodies. Immunization of HLA-A(*)0201-transgenic mice with RT minigenes induced RT-specific cellular responses detected by interferon-gamma secretion. This documents first steps in creating therapeutic vaccine against drug-resistant HIV strains.
Collapse
Affiliation(s)
- Maria G Isaguliants
- Department of Virology, Swedish Institute for Infectious Disease Control, SE-171 82 Solna, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Isaguliants MG, Belikov SV, Starodubova ES, Gizatullin RZ, Rollman E, Zuber B, Zuber AK, Grishchenko OIA, Rytting AS, Källander CFR, Kochetkov SN, Karpov VL, Wahren B. Mutations conferring drug resistance affect eukaryotic expression of HIV type 1 reverse transcriptase. AIDS Res Hum Retroviruses 2004; 20:191-201. [PMID: 15018707 DOI: 10.1089/088922204773004914] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in reverse transcriptase (RT) confer high levels of HIV resistance to drugs. However, while conferring drug resistance, they can lower viral replication capacity (fitness). The molecular mechanisms behind remain largely unknown. The aim of the study was to characterize the effect of drug-resistance mutations on HIV RT expression. Genes encoding AZT-resistant RTs with single or combined mutations D67N, K70R, T215F, and K219Q, and RTs derived from drug-resistant HIV-1 strains were designed and expressed in a variety of eukaryotic cells. Expression in transiently transfected cells was assessed by Western blotting and immunofluorescent staining with RT-specific antibodies. To compare the levels of expression, mutated RT genes were microinjected into the nucleus of the oocytes of Xenopus laevis. Expression of RT was quantified by sandwich ELISA. Relative stability of RTs was assessed by pulse-chase experiments. Xenopus oocytes microinjected with the genes expressed 2-50 pg of RT mutants per cell. The level of RT expression decreased with accumulation of drug-resistance mutations. Pulse-chase experiments demonstrated that poor expression of DR-RTs was due to proteolytic instability. Instability could be attributed to additional cleavage sites predicted to appear in the vicinity of resistance mutations. Accumulation of drug-resistance mutations appears to affect the level of eukaryotic expression of HIV-1 RT by inducing proteolytic instability. Low RT levels might be one of the determinants of impaired replication fitness of drug-resistant HIV-1 strains.
Collapse
|
44
|
Gonzales MJ, Delwart E, Rhee SY, Tsui R, Zolopa AR, Taylor J, Shafer RW. Lack of detectable human immunodeficiency virus type 1 superinfection during 1072 person-years of observation. J Infect Dis 2003; 188:397-405. [PMID: 12870121 PMCID: PMC2547470 DOI: 10.1086/376534] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2002] [Accepted: 03/10/2003] [Indexed: 11/03/2022] Open
Abstract
We examined consecutive protease (PR) and reverse transcriptase (RT) sequences from human immunodeficiency virus (HIV) type 1-infected individuals, to distinguish changes resulting from sequence evolution due to possible superinfection. Between July 1997 and December 2001, >/=2 PR and RT samples from 718 persons were sequenced at Stanford University Hospital. Thirty-seven persons had highly divergent sequence pairs characterized by a nucleotide distance of >4.5% in PR or >3.0% in RT. In 16 of 37 sequence pairs, divergence resulted from the loss of mutations during a treatment interruption or from the gain of mutations with reinstitution of treatment. tat and/or gag sequencing of HIV-1 from cryopreserved plasma samples could be performed on 15 of the 21 divergent isolate pairs from persons without a treatment interruption. The sequences of these genes, unaffected by selective drug pressure, were monophyletic. Although HIV-1 PR and RT genes from treated persons may become highly divergent, these changes usually are the result of sequence evolution, rather than superinfection.
Collapse
Affiliation(s)
- Matthew J. Gonzales
- Departments of Medicine/Division of Infectious Diseases, Stanford University, Stanford
| | - Eric Delwart
- Departments of Medicine, University of California, San Francisco
| | - Soo-Yon Rhee
- Departments of Medicine/Division of Infectious Diseases, Stanford University, Stanford
| | - Rose Tsui
- Departments of Medicine, University of California, San Francisco
| | - Andrew R. Zolopa
- Departments of Medicine/Division of Infectious Diseases, Stanford University, Stanford
| | | | - Robert W. Shafer
- Departments of Medicine/Division of Infectious Diseases, Stanford University, Stanford
| |
Collapse
|
45
|
Galli RA, Sattha B, Wynhoven B, O'Shaughnessy MV, Harrigan PR. Sources and magnitude of intralaboratory variability in a sequence-based genotypic assay for human immunodeficiency virus type 1 drug resistance. J Clin Microbiol 2003; 41:2900-7. [PMID: 12843019 PMCID: PMC165338 DOI: 10.1128/jcm.41.7.2900-2907.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We assessed the intralaboratory reproducibility of a system for sequencing human immunodeficiency virus type 1 (HIV-1) protease (PR) and reverse transcriptase (RT) by using replicate subanalyses of 46 plasma samples collected from HIV-1-infected, antiretroviral-experienced patients in order to determine the relative contributions of the different procedural steps to final sequence variability. Complete sequence concordance between duplicates of each sample was 99.4%. Complete and partial mismatches occurred scattered throughout the PR-RT genome segment at >300 positions. Approximately 75% of the discordances involved mixtures, some of which appeared at key resistance sites. Most differences were the result of the first-round RT-PCR procedure. Inter-rater concordance for sequence analysis and assembly was >99.9%. There was no observed correlation between the number or frequency of mismatches and plasma viral loads. A separate longitudinal analysis of a single routine control sample sequenced 103 times over 9 months consistently gave highly reproducible sequences (median percentage of nucleotide discordances, 0.04%; range, 0 to 0.2%). Finally, sequence data from 168 sequential samples collected from 22 patients with long-term, predominantly wild type HIV showed that intrapatient nucleotide concordance with individual index sequences ranged from 96.5 to 100%. Together, these results confirm that sequence-based genotyping can be a precise and reliable tool for monitoring HIV drug resistance, and they suggest that efforts to reduce variability should focus on the first RT-PCR step. Consequently, the data suggest that the composition of external quality assessment panels should be based on clinical HIV isolates rather than DNA clones.
Collapse
Affiliation(s)
- R A Galli
- BC Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada V6Z 1Y6
| | | | | | | | | |
Collapse
|
46
|
Ravela J, Betts BJ, Brun-Vézinet F, Vandamme AM, Descamps D, Van Laethem K, Smith K, Schapiro JM, Winslow DL, Reid C, Shafer RW. HIV-1 protease and reverse transcriptase mutation patterns responsible for discordances between genotypic drug resistance interpretation algorithms. J Acquir Immune Defic Syndr 2003; 33:8-14. [PMID: 12792349 PMCID: PMC2547475 DOI: 10.1097/00126334-200305010-00002] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Several rules-based algorithms have been developed to interpret results of HIV-1 genotypic resistance tests. To assess the concordance of these algorithms and to identify sequences causing interalgorithm discordances, we applied four publicly available algorithms to the sequences of isolates from 2,045 individuals in northern California. Drug resistance interpretations were classified as S for susceptible, I for intermediate, and R for resistant. Of 30,675 interpretations (2,045 sequences x 15 drugs), 4.4% were completely discordant, with at least one algorithm assigning an S and another an R; 29.2% were partially discordant, with at least one algorithm assigning an S and another an I, or at least one algorithm assigning an I and another an R; and 66.4% displayed complete concordance, with all four algorithms assigning the same interpretation. Discordances between nucleoside reverse transcriptase inhibitor interpretations usually resulted from several simple, frequently occurring mutational patterns. Discordances between protease inhibitor interpretations resulted from a larger number of more complex mutation patterns. Discordances between nonnucleoside reverse transcriptase inhibitor interpretations were uncommon and resulted from a small number of individual drug resistance mutations. Determining the clinical significance of these mutation patterns responsible for interalgorithm discordances will improve interalgorithm concordance and the accuracy of genotypic resistance interpretation.
Collapse
Affiliation(s)
- Jaideep Ravela
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, U.S.A
| | - Bradley J. Betts
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, U.S.A
| | | | - Anne-Mieke Vandamme
- Rega Institute for Medical Research, Katholieke Universiteit, Leuven, Belgium
| | - Diane Descamps
- Laboratory of Virology, Bichat-Claude Bernard Hospital, Paris, France
| | - Kristel Van Laethem
- Rega Institute for Medical Research, Katholieke Universiteit, Leuven, Belgium
| | - Kate Smith
- Visible Genetics, Inc., Toronto, Ontario, Canada
| | - Jonathan M. Schapiro
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, U.S.A
| | | | | | - Robert W. Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, U.S.A
| |
Collapse
|
47
|
Affiliation(s)
- Benedikt Weissbrich
- Institute for Virology and Immunobiology, Julius Maximilians University, 97078 Würzburg, Germany
| | | | | |
Collapse
|
48
|
Sayer DC, Land S, Gizzarelli L, French M, Hales G, Emery S, Christiansen FT, Dax EM. Quality assessment program for genotypic antiretroviral testing improves detection of drug resistance mutations. J Clin Microbiol 2003; 41:227-36. [PMID: 12517853 PMCID: PMC149552 DOI: 10.1128/jcm.41.1.227-236.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genotypic antiretroviral testing is now widely used for the management of patients who are undergoing antiretroviral therapy for human immunodeficiency virus infection. The assays are complex, and there is considerable potential for variation between laboratories. Informative and ongoing quality assessment programs (QAPs) which address all aspects of testing are required. The panel distribution of clinical material is a critical component of QAPs. We report on the results and data from a recent panel. Four cryopreserved plasma samples from treated donors were distributed to nine laboratories. Three laboratories performed testing by commercial assays, and six laboratories used in-house assays, with one laboratory reporting results from two in-house assays. There was complete concordance between results for 95.9% of the nucleotide sequence and 94.5% of the amino acid sequence. Despite this overall high level of concordance, the degree of concordance at drug resistance mutation (DRM) sites when DRMs were present was considerably less (38% of DRM sites). Consequently, only 3 of the 10 methods reported 100% of DRMs as present. This elevated discrepancy rate is almost certainly a result of variability in the identification of mixtures of nucleotides (mixtures) at any site within the sequence. In addition, laboratories differed in the number of codons in the reverse transcriptase gene that were sequenced and their ability to amplify all samples. This panel distribution demonstrated a requirement for laboratory participation in ongoing QAPs and the optimization of assays with standards that contain mixtures.
Collapse
Affiliation(s)
- D C Sayer
- Department of Clinical Immunology and Biochemical Genetics, Royal Perth Hospital, Perth 6000, Western Australia, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Palmer S, Vuitton D, Gonzales MJ, Bassignot A, Shafer RW. Reverse transcriptase and protease sequence evolution in two HIV-1-infected couples. J Acquir Immune Defic Syndr 2002; 31:285-90. [PMID: 12439203 PMCID: PMC2628486 DOI: 10.1097/00126334-200211010-00003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We analyzed the reverse transcriptase (RT) and protease sequences of HIV-1 isolates obtained over 7 years from two couples with known transmission histories. Phylogenetic trees constructed from the sequence data reflected the known transmission histories, despite the fact that the drug resistance mutations were most consistent with the drug treatment histories. However, the RT sequences from one couple diverged by 2.9% even before therapy was begun, and three (0.9%) of 339 unrelated individuals had viruses that shared a common ancestor with sequences from the recipient member of the couple but not with sequences from the transmitter. The divergence between the first two isolates from this couple is consistent with a pretransmission interval during which the transmitter developed a heterogeneous virus population. The closeness between the three controls and the recipient's first RT sequence may indicate slower evolution on the branches of the control sequences. Although the RT and protease genes contain phylogenetic information, they are suboptimal for reconstructing transmission history because the genetic distance between RT and protease isolates from unrelated individuals may occasionally approximate the distance between RT and protease isolates from related individuals.
Collapse
Affiliation(s)
- Sarah Palmer
- HIV Drug Resistance Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702-1201, USA.
| | | | | | | | | |
Collapse
|
50
|
Kantor R, Fessel WJ, Zolopa AR, Israelski D, Shulman N, Montoya JG, Harbour M, Schapiro JM, Shafer RW. Evolution of primary protease inhibitor resistance mutations during protease inhibitor salvage therapy. Antimicrob Agents Chemother 2002; 46:1086-92. [PMID: 11897594 PMCID: PMC127108 DOI: 10.1128/aac.46.4.1086-1092.2002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In order to track the evolution of primary protease inhibitor (PI) resistance mutations in human immunodeficiency virus type 1 (HIV-1) isolates, baseline and follow-up protease sequences were obtained from patients undergoing salvage PI therapy who presented initially with isolates containing a single primary PI resistance mutation. Among 78 patients meeting study selection criteria, baseline primary PI resistance mutations included L90M (42% of patients), V82A/F/T (27%), D30N (21%), G48V (6%), and I84V (4%). Despite the switching of treatment to a new PI, primary PI resistance mutations present at the baseline persisted in 66 of 78 (85%) patients. D30N persisted less frequently than L90M (50% versus 100%, respectively; P < 0.001) and V82A/F/T (50% versus 81%, respectively; P = 0.05). HIV-1 isolates from 38 (49%) patients failing PI salvage therapy developed new primary PI resistance mutations including L90M, I84V, V82A, and G48V. Common combinations of primary and secondary PI resistance mutations after salvage therapy included mutations at amino acid positions 10, 82, and 46 and/or 54 in 16 patients; 10, 90, and 71 and/or 73 in 14 patients; 10, 73, 84, 90, and 46 and/or 54 in 5 patients; 10, 48, and 82 in 5 patients; and 30, 88 and 90 in 5 patients. In summary, during salvage PI therapy, most HIV-1 isolates with a single primary PI resistance mutation maintained their original mutations, and 49% developed additional primary PI resistance mutations. The persistence of L90M, V82A/F/T, G48V, and I84V during salvage therapy suggests that these mutations play a role in clinical resistance to multiple PIs.
Collapse
Affiliation(s)
- Rami Kantor
- Division of Infectious Diseases and AIDS Research, Stanford University, Stanford, California 94301, USA
| | | | | | | | | | | | | | | | | |
Collapse
|