1
|
Kim YH, Lee DH, Seo HS, Eun SH, Lee DS, Choi YK, Lee SH, Kim TY. Genome-based taxonomic identification and safety assessment of an Enterococcus strain isolated from a homemade dairy product. Int Microbiol 2024; 27:1513-1525. [PMID: 38466360 DOI: 10.1007/s10123-024-00496-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/24/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
The aim of this study was to explore the taxonomic identification and evaluate the safety of a bacterium, Enterococcus lactis IDCC 2105, isolated from homemade cheese in Korea, using whole genome sequence (WGS) analysis. It sought to identify the species level of this Enterococcus spp., assess its antibiotic resistance, and evaluate its virulence potential. WGS analysis confirmed the bacterial strain IDCC 2105 as E. lactis and identified genes responsible for resistance to erythromycin and clindamycin, specifically msrC, and eatAv, which are chromosomally located, indicating a minimal risk for horizontal gene transfer. The absence of plasmids in E. lactis IDCC 2105 further diminishes the likelihood of resistance gene dissemination. Additionally, our investigation into seven virulence factors, including hemolysis, platelet aggregation, biofilm formation, hyaluronidase, gelatinase, ammonia production, and β-glucuronidase activity, revealed no detectable virulence traits. Although bioinformatic analysis suggested the presence of collagen adhesion genes acm and scm, these were not corroborated by phenotypic virulence assays. Based on these findings, E. lactis IDCC 2105 presents as a safe strain for potential applications, contributing valuable information on its taxonomy, antibiotic resistance profile, and lack of virulence factors, supporting its use in food products.
Collapse
Affiliation(s)
- Young-Hoo Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, South Korea
| | | | - Han Sol Seo
- Yunovia Co., Ltd, Hwaseong, 18449, South Korea
| | | | - Do Sup Lee
- Yunovia Co., Ltd, Hwaseong, 18449, South Korea
| | | | - Sang Hyun Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, South Korea
| | - Tae-Yoon Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, 13488, Republic of Korea.
| |
Collapse
|
2
|
Gorski DB, Vlainić J, Škrlec I, Novak S, Novosel Ž, Biloglav Z, Plečko V, Kosalec I. Virulence Factors and Susceptibility to Ciprofloxacin, Vancomycin, Triclosan, and Chlorhexidine among Enterococci from Clinical Specimens, Food, and Wastewater. Microorganisms 2024; 12:1808. [PMID: 39338482 PMCID: PMC11434535 DOI: 10.3390/microorganisms12091808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Enterococcus faecalis and E. faecium are opportunistic pathogens commonly found in the microbiota of humans and other animals as well as in the environment. This article presents the results of antimicrobial susceptibility testing using phenotypic methods (broth microdilution and standardized disk diffusion) on selected clinical, food, and wastewater isolates of E. faecalis and E. faecium. The isolates were divided into subgroups based on their sensitivity to the following antibiotics: vancomycin (VAN) and ciprofloxacin (CIP), and biocides triclosan (TCL) and chlorhexidine (CHX). The study also investigated in vitro virulence factors, including biofilm formation ability, cell surface hydrophobicity (CSH) and β-hemolysis, to explore aspects of pathogenesis. In our study, regardless of the isolation source, VAN-resistant (VAN-R) and CIP-resistant (CIP-R) E. faecalis and E. faecium were detected. The highest proportion of CIP-R strains was found among clinical isolates of E. faecalis and E. faecium, with clinical E. faecium also showing the highest proportion of VAN-R strains. But the highest proportion of VAN-R E. faecalis strains was found in wastewater samples. The highest TCL MIC90 values for E. faecalis were found in wastewater isolates, while for E. faecium, the highest TCL MIC90 values were observed in food isolates. The highest CHX MIC90 values for both E. faecalis and E. faecium were identified in clinical specimens. The results obtained for E. faecalis did not indicate differences in TCL MIC and CHX MIC values with respect to sensitivity to VAN and CIP. Higher CHX MIC50 and CHX MIC90 values were obtained for CIP-R and VAN-R E. faecium. Among the tested isolates, 97.75% of the E. faecalis isolates produced biofilm, while 72.22% of the E. faecium isolates did so as well. In biofilm-forming strength categories III and IV, statistically significantly higher proportions of CIP-susceptible (CIP-S) and VAN-susceptible (VAN-S) E. faecalis were determined. In category III, there is no statistically significant difference in E. faecium CIP sensitivity. In category IV, we had a significantly higher proportion of CIP-R strains. On the other hand, the association between the moderate or strong category of biofilm formation and E. faecium VAN susceptibility was not significant. E. faecalis isolated from wastewater had a CSH index (HI) ≥ 50%, categorizing them as "moderate", while all the other strains were categorized as "low" based on the CSH index. Among the E. faecalis isolates, cell surface hydrophobicity indices differed significantly across isolation sources. In contrast, E. faecium isolates showed similar hydrophobicity indices across isolation sources, with no significant difference found. Moreover, no correlation was found between the enterococcal cell surface hydrophobicity and biofilm formation in vitro. After anaerobic incubation, β-hemolytic activity was confirmed in 19.10% of the E. faecalis and 3.33% of the E. faecium strains.
Collapse
Affiliation(s)
- Diana Brlek Gorski
- Croatian Institute of Public Health, Rockefeller Str. 7, HR-10000 Zagreb, Croatia
| | - Josipa Vlainić
- Division of Molecular Medicine, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia
| | - Silvia Novak
- Department for Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, HR-10000 Zagreb, Croatia
| | - Željka Novosel
- Department for Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, HR-10000 Zagreb, Croatia
| | - Zrinka Biloglav
- Department of Medical Statistics, Epidemiology and Medical Informatics, School of Public Health Andrija Štampar, HR-10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, HR-10000 Zagreb, Croatia
| | | | - Ivan Kosalec
- Department for Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, HR-10000 Zagreb, Croatia
| |
Collapse
|
3
|
Fujimoto K, Hayashi T, Yamamoto M, Sato N, Shimohigoshi M, Miyaoka D, Yokota C, Watanabe M, Hisaki Y, Kamei Y, Yokoyama Y, Yabuno T, Hirose A, Nakamae M, Nakamae H, Uematsu M, Sato S, Yamaguchi K, Furukawa Y, Akeda Y, Hino M, Imoto S, Uematsu S. An enterococcal phage-derived enzyme suppresses graft-versus-host disease. Nature 2024; 632:174-181. [PMID: 38987594 PMCID: PMC11291292 DOI: 10.1038/s41586-024-07667-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 06/04/2024] [Indexed: 07/12/2024]
Abstract
Changes in the gut microbiome have pivotal roles in the pathogenesis of acute graft-versus-host disease (aGVHD) after allogenic haematopoietic cell transplantation (allo-HCT)1-6. However, effective methods for safely resolving gut dysbiosis have not yet been established. An expansion of the pathogen Enterococcus faecalis in the intestine, associated with dysbiosis, has been shown to be a risk factor for aGVHD7-10. Here we analyse the intestinal microbiome of patients with allo-HCT, and find that E. faecalis escapes elimination and proliferates in the intestine by forming biofilms, rather than by acquiring drug-resistance genes. We isolated cytolysin-positive highly pathogenic E. faecalis from faecal samples and identified an anti-E. faecalis enzyme derived from E. faecalis-specific bacteriophages by analysing bacterial whole-genome sequencing data. The antibacterial enzyme had lytic activity against the biofilm of E. faecalis in vitro and in vivo. Furthermore, in aGVHD-induced gnotobiotic mice that were colonized with E. faecalis or with patient faecal samples characterized by the domination of Enterococcus, levels of intestinal cytolysin-positive E. faecalis were decreased and survival was significantly increased in the group that was treated with the E. faecalis-specific enzyme, compared with controls. Thus, administration of a phage-derived antibacterial enzyme that is specific to biofilm-forming pathogenic E. faecalis-which is difficult to eliminate with existing antibiotics-might provide an approach to protect against aGVHD.
Collapse
Affiliation(s)
- Kosuke Fujimoto
- Department of Immunology and Genomics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Division of Metagenome Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Tetsuya Hayashi
- Department of Immunology and Genomics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Department of Hematology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Mako Yamamoto
- Division of Health Medical Intelligence, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Noriaki Sato
- Division of Health Medical Intelligence, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Masaki Shimohigoshi
- Department of Immunology and Genomics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Daichi Miyaoka
- Department of Immunology and Genomics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Chieko Yokota
- Department of Immunology and Genomics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Miki Watanabe
- Department of Immunology and Genomics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yuki Hisaki
- Department of Immunology and Genomics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yukari Kamei
- Department of Immunology and Genomics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yuki Yokoyama
- Department of Immunology and Genomics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Takato Yabuno
- Department of Immunology and Genomics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Asao Hirose
- Department of Hematology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Mika Nakamae
- Department of Hematology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Department of Laboratory Medicine and Medical Informatics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Hirohisa Nakamae
- Department of Hematology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Miho Uematsu
- Department of Immunology and Genomics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Shintaro Sato
- Department of Immunology and Genomics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Department of Microbiology and Immunology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayuki Hino
- Department of Hematology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Department of Laboratory Medicine and Medical Informatics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
- Collaborative Research Institute for Innovative Microbiology, University of Tokyo, Tokyo, Japan.
| | - Satoshi Uematsu
- Department of Immunology and Genomics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan.
- Division of Metagenome Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
- Collaborative Research Institute for Innovative Microbiology, University of Tokyo, Tokyo, Japan.
- Reseach Institute for Drug Discovery Science, Osaka Metropolitan University, Osaka, Japan.
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, Japan.
| |
Collapse
|
4
|
Lima JMS, Carneiro KO, Pinto UM, Todorov SD. Bacteriocinogenic anti-listerial properties and safety assessment of Enterococcus faecium and Lactococcus garvieae strains isolated from Brazilian artisanal cheesemaking environment. J Appl Microbiol 2024; 135:lxae159. [PMID: 38925659 DOI: 10.1093/jambio/lxae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/17/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
AIMS This study aimed to prospect and isolate lactic acid bacteria (LAB) from an artisanal cheese production environment, to assess their safety, and to explore their bacteriocinogenic potential against Listeria monocytogenes. METHODS AND RESULTS Samples were collected from surfaces of an artisanal-cheese production facility and after rep-PCR and 16S rRNA sequencing analysis, selected strains were identified as to be belonging to Lactococcus garvieae (1 strain) and Enterococcus faecium (14 isolates, grouped into three clusters) associated with different environments (worktables, cheese mold, ripening wooden shelves). All of them presented bacteriocinogenic potential against L. monocytogenes ATCC 7644 and were confirmed as safe (γ-hemolytic, not presenting antibiotic resistance, no mucus degradation properties, and no proteolytic or gelatinase enzyme activity). Additionally, cell growth, acidification and bacteriocins production kinetics, bacteriocin stability in relation to different temperatures, pH, and chemicals were evaluated. According to performed PCR analysis all studied strains generated positive evidence for the presence of entA and entP genes (for production of enterocins A and enterocins P, respectively). However, pediocin PA-1 associated gene was recorded only in DNA obtained from E. faecium ST02JL and Lc. garvieae ST04JL. CONCLUSIONS It is worth considering the application of these safe LAB or their bacteriocins in situ as an alternative means of controlling L. monocytogenes in cheese production environments, either alone or in combination with other antimicrobials.
Collapse
Affiliation(s)
- João Marcos Scafuro Lima
- ProBacLab, Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, 05508-000, SP, Brazil
- Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, 05508-000, SP, Brazil
| | - Kayque Ordonho Carneiro
- ProBacLab, Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, 05508-000, SP, Brazil
- Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, 05508-000, SP, Brazil
| | - Uelinton Manoel Pinto
- Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, 05508-000, SP, Brazil
| | - Svetoslav Dimitrov Todorov
- ProBacLab, Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, 05508-000, SP, Brazil
- Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, 05508-000, SP, Brazil
| |
Collapse
|
5
|
Brunson DN, Lemos JA. Heme utilization by the enterococci. FEMS MICROBES 2024; 5:xtae019. [PMID: 39070772 PMCID: PMC11282960 DOI: 10.1093/femsmc/xtae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/02/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Heme consists of a tetrapyrrole ring ligating an iron ion and has important roles in biological systems. While well-known as the oxygen-binding molecule within hemoglobin of mammals, heme is also cofactor for several enzymes and a major iron source for bacteria within the host. The enterococci are a diverse group of Gram-positive bacteria that exist primarily within the gastrointestinal tract of animals. However, some species within this genus can transform into formidable opportunistic pathogens, largely owing to their extraordinary adaptability to hostile environments. Although enterococci cannot synthesize heme nor depend on heme to grow, several species within the genus encode proteins that utilize heme as a cofactor, which appears to increase their fitness and ability to thrive in challenging environments. This includes more efficient energy generation via aerobic respiration and protection from reactive oxygen species. Here, we review the significance of heme to enterococci, primarily the major human pathogen Enterococcus faecalis, use bioinformatics to assess the prevalence of hemoproteins throughout the genus, and highlight recent studies that underscore the central role of the heme-E. faecalis relationship in host-pathogen dynamics and interspecies bacterial interactions.
Collapse
Affiliation(s)
- Debra N Brunson
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL 32610, United States
| | - José A Lemos
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL 32610, United States
| |
Collapse
|
6
|
Jatoth BS, Rahman Z, Dandekar MP, Venkataraman R, Shivalingegowda RK, Manuel GG. Safety Assessment of Streptococcus salivarius UBSS-01 in Rats and Double-Blind Placebo-Controlled Study in Healthy Individuals. Int J Toxicol 2024; 43:387-406. [PMID: 38676502 DOI: 10.1177/10915818241247527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
Streptococcus salivarius is a common, harmless, and prevalent member of the oral microbiota in humans. In the present study, the safety of S. salivarius UBSS-01 was evaluated using in silico methods and preclinical and clinical studies. In an acute toxicity study, rats were administered with 5 g/kg (500 × 109 CFU) S. salivarius UBSS-01. The changes in phenotypic behaviors and hematological, biochemical, electrolytes, and urine analyses were monitored. No toxicity was observed at 14 days post-treatment. The no observable effects limit (NOEL) of S. salivarius UBSS-01 was >5 g/kg in rats. In a 28-day repeat dose toxicity study, rats were administered S. salivarius UBSS-01 once daily at doses of 0.1, 0.5, and 1 g/kg (10, 50, and 100 billion CFU/kg, respectively) body weight. S. salivarius UBSS-01 did not influence any of the hematology parameters and clinical chemistry parameters in plasma and serum samples after 28-day repeated administration. No structural abnormality was observed in the histological examination of organs. Whole genome analysis revealed the absence of virulence factors or genes that may transmit antibiotic resistance. In the double-blind study with 60 human participants (aged 18-60 years), consumption of S. salivarius UBSS-01 for 30 days was found to be safe and results were comparable with placebo treatment These findings indicate that S. salivarius UBSS-01 may be safe for human consumption.
Collapse
Affiliation(s)
- Bindhu S Jatoth
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ziaur Rahman
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Manoj P Dandekar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rajesh Venkataraman
- Department of Pharmacy Practice, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B. G. Nagara, India
| | - Ravi K Shivalingegowda
- Department of Otorhinolaryngology and Head & Neck Surgery, Adichunchanagiri Institute of Medical Sciences, B. G. Nagara, India
| | - Gloriya G Manuel
- Department of Pharmacy Practice, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B. G. Nagara, India
| |
Collapse
|
7
|
Mullally CA, Fahriani M, Mowlaboccus S, Coombs GW. Non- faecium non- faecalis enterococci: a review of clinical manifestations, virulence factors, and antimicrobial resistance. Clin Microbiol Rev 2024; 37:e0012123. [PMID: 38466110 PMCID: PMC11237509 DOI: 10.1128/cmr.00121-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
SUMMARYEnterococci are a diverse group of Gram-positive bacteria that are typically found as commensals in humans, animals, and the environment. Occasionally, they may cause clinically relevant diseases such as endocarditis, septicemia, urinary tract infections, and wound infections. The majority of clinical infections in humans are caused by two species: Enterococcus faecium and Enterococcus faecalis. However, there is an increasing number of clinical infections caused by non-faecium non-faecalis (NFF) enterococci. Although NFF enterococcal species are often overlooked, studies have shown that they may harbor antimicrobial resistance (AMR) genes and virulence factors that are found in E. faecium and E. faecalis. In this review, we present an overview of the NFF enterococci with a particular focus on human clinical manifestations, epidemiology, virulence genes, and AMR genes.
Collapse
Affiliation(s)
- Christopher A Mullally
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Marhami Fahriani
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
| | - Shakeel Mowlaboccus
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- PathWest Laboratory Medicine-WA, Department of Microbiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Geoffrey W Coombs
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- PathWest Laboratory Medicine-WA, Department of Microbiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| |
Collapse
|
8
|
Thammasitboon K, Teanpaisan R, Pahumunto N. Prevalence and virulence factors of haemolytic Enterococcus faecalis isolated from root filled teeth associated with periradicular lesions: A laboratory investigation in Thailand. Int Endod J 2024; 57:769-783. [PMID: 38483342 DOI: 10.1111/iej.14059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/26/2023] [Accepted: 02/21/2024] [Indexed: 05/07/2024]
Abstract
AIM Previous endodontic research has provided limited understanding of the prevalence and roles of haemolytic and non-haemolytic Enterococcus faecalis strains in root filled teeth. This study aimed to determine the prevalence of these strains in root filled teeth with periradicular lesions and investigate their associated virulence factors. METHODOLOGY A total of 36 root canal samples were collected from 36 subjects. The prevalence of E. faecalis was determined using culture and PCR methods. Antibiotic susceptibility of haemolytic and non-haemolytic E. faecalis strains was assessed using the broth dilution assay. The cytokine stimulation in periodontal ligament (PDL) cells and neutrophil migration were evaluated using real-time PCR and migration assay, respectively. Cell invasion ability of the strains was assessed using a cell culture model. Additionally, the virulence gene expression of the haemolytic and non-haemolytic strains was investigated using real-time PCR. The Mann-Whitney U and Spearman's ρ tests were used to examine the significant difference between the two strains and to analyse the correlation between phenotype and gene expression, respectively. RESULTS Enterococcus faecalis was detected in 33.3% and 88.9% of samples by culture and real-time PCR, respectively. Haemolytic strains were found in 36.4% of subjects. Non-haemolytic strains exhibited susceptibility to erythromycin and varying susceptibility to tetracycline, while all haemolytic strains were resistant to both antibiotics. Haemolytic strains significantly upregulated the expression of IL-8, OPG and RANKL in PDL cells (p < .05). Notably, the fold increases in these genes were higher: IL-8 (556.1 ± 82.9 vs. 249.6 ± 81.8), OPG (2.2 ± 0.5 vs. 1.3 ± 0.2) and RANKL (1.8 ± 0.3 vs. 1.2 ± 0.1). Furthermore, haemolytic strains had a greater effect on neutrophil migration (68.7 ± 15.2% vs. 46.9 ± 11.4%) and demonstrated a higher level of internalization into oral keratinocyte cells (68.6 ± 0.4% vs. 33.8 ± 0.5%) (p < .05). They also showed enhanced expression of virulence genes associated with haemolysin, surface proteins, collagen-binding and aggregation substances. Gelatinase activity was only detectable in non-haemolytic strains. CONCLUSIONS This study revealed that haemolytic strains E. faecalis possessed enhanced abilities in host invasion and a higher abundance of virulence factors, suggesting their potential contribution to more severe disease manifestations.
Collapse
Affiliation(s)
- Kewalin Thammasitboon
- Department of Conservative Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Thailand
- Research Center of Excellence for Oral Health, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Thailand
| | - Rawee Teanpaisan
- Research Center of Excellence for Oral Health, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Thailand
| | - Nuntiya Pahumunto
- Research Center of Excellence for Oral Health, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Thailand
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
9
|
Liu J, Liang Z, Zhongla M, Wang H, Sun X, Zheng J, Ding X, Yang F. Prevalence and Molecular Characteristics of Enterococci Isolated from Clinical Bovine Mastitis Cases in Ningxia. Infect Drug Resist 2024; 17:2121-2129. [PMID: 38828370 PMCID: PMC11141574 DOI: 10.2147/idr.s461587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/25/2024] [Indexed: 06/05/2024] Open
Abstract
Purpose This study aimed to investigate the prevalence and genetic characterization of enterococcal isolates (Enterococcus faecalis, Enterococcus faecium and Enterococcus hirae) isolated from clinical bovine mastitis cases in Ningxia, China. Patients and Methods The enterococci were identified by 16S rRNA amplification and sequencing. Antimicrobial resistance was determined by disc diffusion method. Virulence and antimicrobial resistance genes were detected by PCR assays. Results Overall, 198 enterococcal isolates were identified from 2897 mastitis samples, including 137 (4.7%) E. faecalis, 50 (1.7%) E. faecium and 11 (0.4%) E. hirae. E. faecalis, E. faecium and E. hirae isolates showed high resistance to tetracycline (92.7%, 68.0%, 90.9%), followed by erythromycin (86.9%, 76.0%, 72.7%). The multidrug-resistant strains of E. faecalis and E. faecium were 29 (21.2%) and 13 (26.0%), respectively. The resistance of E. faecalis, E. faecium and E. hirae isolates to tetracycline is mainly attributed to the presence of tetL (alone or combined with tetM and/or tetK), the erythromycin resistance to ermB (alone or combined with ermC and/or ermA). Moreover, cpd (94.2%), gelE (77.4%), efaAfs (93.4%), and esp (79.6%) were the most common virulence genes in E. faecalis. In E. faecium, except for the gene efaAfs (82.0%), other virulence genes are rarely found. Only two strains of E. hirae carrying asa1 gene were detected. Conclusion The results of this study can provide a reference for the prevention and treatment of bovine mastitis caused by enterococci.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, People’s Republic of China
| | - Zeyi Liang
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, People’s Republic of China
| | - Maocao Zhongla
- Gannan Animal Disease Prevention and Control Center, Hezuo, People’s Republic of China
| | - Hongsheng Wang
- Xiangyang Vocational and Technical College, Xiangyang, People’s Republic of China
| | - Xu Sun
- College of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou, People’s Republic of China
| | - Juanshan Zheng
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, People’s Republic of China
| | - Xuezhi Ding
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, People’s Republic of China
| | - Feng Yang
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, People’s Republic of China
| |
Collapse
|
10
|
Sangiorgio G, Calvo M, Migliorisi G, Campanile F, Stefani S. The Impact of Enterococcus spp. in the Immunocompromised Host: A Comprehensive Review. Pathogens 2024; 13:409. [PMID: 38787261 PMCID: PMC11124283 DOI: 10.3390/pathogens13050409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
The immunocompromised host is usually vulnerable to infectious diseases due to broad-spectrum treatments and immunological dysregulation. The Enterococcus genus consists of normal gut commensals, which acquire a leading role in infective processes among individuals with compromised immune systems. These microorganisms may express a potential virulence and resistance spectrum, enabling their function as severe pathogens. The Enterococcus spp. infections in immunocompromised hosts appear to be difficult to resolve due to the immunological response impairment and the possibility of facing antimicrobial-resistant strains. As regards the related risk factors, several data demonstrated that prior antibiotic exposure, medical device insertion, prolonged hospitalization and surgical interventions may lead to Enterococcus overgrowth, antibiotic resistance and spread among critical healthcare settings. Herein, we present a comprehensive review of Enterococcus spp. in the immunocompromised host, summarizing the available knowledge about virulence factors, antimicrobial-resistance mechanisms and host-pathogen interaction. The review ultimately yearns for more substantial support to further investigations about enterococcal infections and immunocompromised host response.
Collapse
Affiliation(s)
- Giuseppe Sangiorgio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (F.C.); (S.S.)
| | - Maddalena Calvo
- U.O.C. Laboratory Analysis Unit, University Hospital Policlinico-San Marco, Via Santa Sofia 78, 95123 Catania, Italy; (M.C.); (G.M.)
| | - Giuseppe Migliorisi
- U.O.C. Laboratory Analysis Unit, University Hospital Policlinico-San Marco, Via Santa Sofia 78, 95123 Catania, Italy; (M.C.); (G.M.)
| | - Floriana Campanile
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (F.C.); (S.S.)
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (F.C.); (S.S.)
- U.O.C. Laboratory Analysis Unit, University Hospital Policlinico-San Marco, Via Santa Sofia 78, 95123 Catania, Italy; (M.C.); (G.M.)
| |
Collapse
|
11
|
Azevedo I, Barbosa J, Albano H, Nogueira T, Teixeira P. Lactic Acid Bacteria isolated from traditional and innovative alheiras as potential biocontrol agents. Food Microbiol 2024; 119:104450. [PMID: 38225051 DOI: 10.1016/j.fm.2023.104450] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 01/17/2024]
Abstract
From a selection of seven traditional and 14 innovative alheiras, 491 lactic acid bacteria (LAB) were isolated and tested for their antimicrobial activity against several food-borne pathogens. Among these, six strains revealed antimicrobial activity through potential bacteriocin production against 14 Listeria monocytogenes strains, Enterococcus faecalis ATCC 29212, Clostridium sporogenes ESB050, and Clostridium perfringens ESB054. Through whole genome sequencing (WGS), these strains were identified as Lactiplantibacillus plantarum (2), Leuconostoc mesenteroides (1), and Pediococcus acidilactici (3). Furthermore, several orthologues of class II bacteriocins genes were identified, including Plantaricin E, Plantaricin F, Pediocin PA, Enterocin X, Leucocin A, and Coagulin A. No virulence or antibiotic resistance genes' orthologues were detected by WGS analysis. However, the selected LAB strains showed variable phenotypic patterns related to virulence genes and antibiotic resistance when assessed through classical methodologies. None of these strains demonstrated the production of biogenic amines, gelatinase or DNase. Additionally, no hemolytic activity or lipase enzyme production was observed. However, only Lpb. plantarum 9A3 was sensitive to all tested antibiotics and was thus chosen for further examination. The bacteriocins produced by Lpb. plantarum (9A3) exhibited stability across a broad range of conditions, including temperatures from 4 to 100 °C, pH values ranging from 2 to 8, exposure to surfactants and detergents (Tween 20 and 80, SDS, EDTA 0.1, 2 and 5 mM, urea and sodium deoxycholate), and enzymes (papain and catalase). Their maximum activity (AU/mL = 12,800) against four L. monocytogenes strains was observed between 21 and 36 h of growth of Lbp. plantarum 9A3, indicating a bacteriostatic mode of action. Therefore, this strain appears to be a robust candidate for potential application as a protective strain to be used in the food industry. Not only is it safe, but it also produces stable bacteriocins (harbouring genes encoding for the production of three) effectively inhibiting significant pathogens such as L. monocytogenes and C. perfringens.
Collapse
Affiliation(s)
- Inês Azevedo
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Joana Barbosa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal.
| | - Helena Albano
- Escola Superior de Enfermagem de Coimbra, Portugal; Instituto Politécnico de Viana do Castelo, Escola Superior Agrária, Refóios, 4990-706 Ponte de Lima, Portugal
| | - Teresa Nogueira
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., 2780-157, Oeiras, 4485-655, Vairão, Portugal; CE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Paula Teixeira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| |
Collapse
|
12
|
Peng ZR, Zhang JG, Zhang JB, Lin XQ, Chen W, Yang YJ, Liu ZZ. Identification and biological characteristics of Enterococcus casseliflavus TN-47 isolated from Monochamus alternatus. Int J Syst Evol Microbiol 2024; 74. [PMID: 38602465 DOI: 10.1099/ijsem.0.006305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024] Open
Abstract
With the widespread use of antibiotics, the incidence of antibiotic resistance in microorganisms has increased. Monochamus alternatus is a trunk borer of pine trees. This study aimed to investigate the in vitro antimicrobial and biological characteristics of Enterococcus casseliflavus TN-47 (PP411196), isolated from the gastrointestinal tract of M. alternatus in Jilin Province, PR China. Among 13 isolates obtained from the insects, five were preliminarily screened for antimicrobial activity. E. casseliflavus TN-47, which exhibited the strongest antimicrobial activity, was identified. E. casseliflavus TN-47 possessed antimicrobial activity against Staphylococcus aureus USA300 and Salmonella enterica serovar Pullorum ATCC 19945. Furthermore, E. casseliflavus TN-47 was sensitive to tetracyclines, penicillins (ampicillin, carbenicillin, and piperacillin), quinolones and nitrofuran antibiotics, and resistant to certain beta-lactam antibiotics (oxacillin, cefradine and cephalexin), macrolide antibiotics, sulfonamides and aminoglycosides. E. casseliflavus TN-47 could tolerate low pH and pepsin-rich conditions in the stomach and grow in the presence of bile acids. E. casseliflavus TN-47 retained its strong auto-aggregating ability and hydrophobicity. This strain did not exhibit any haemolytic activity. These results indicate that E. casseliflavus TN-47 has potential as a probiotic. This study provides a theoretical foundation for the future applications of E. casseliflavus TN-47 and its secondary metabolites in animal nutrition and feed.
Collapse
Affiliation(s)
- Zi-Ran Peng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130000, PR China
| | - Jian-Gang Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130000, PR China
| | - Jia-Bao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130000, PR China
| | - Xiao-Qi Lin
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130000, PR China
| | - Wei Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130000, PR China
| | - Yong-Jun Yang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130000, PR China
| | - Zhen-Zhen Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130000, PR China
| |
Collapse
|
13
|
Jovanović M, Velebit B, Tošić T, Maki G, Pavić S, Jovanović S, Stošović R, Zervos MJ. Comparative study of virulence factor genes, β-hemolysis and biofilm production in invasive and colonizing enterococci. EUR J INFLAMM 2023. [DOI: 10.1177/1721727x231156333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
Objectives: In humans, enterococci are among the most important opportunistic pathogens. This study aims to compare invasive isolates obtained from blood cultures of patients with sepsis and endocarditis with colonizing isolates obtained from healthy donors’ stool samples. Methods: A case-by-case assessment was conducted on invasive infection cases to determine whether enterococci were involved in their pathogenesis. They were tested for the presence of virulence factor genes, β-hemolysis on agars supplemented with human and sheep blood, and biofilm forming capacity. Results: Three species of enterococci were identified among invasive isolates: Enterococcus faecalis, Enterococcus faecium, and Enterococcus durans. All endocarditis isolates were biofilm producers. Genes esp, gelE, asa1, ace, hyl, cylB, and cylA were present in 7 (41.2%), 11 (64.7%), 11 (64.7%), 13 (76.5%), 0, 3 (17.6%), and 1 (5.9%) invasive isolate, but none of them could be linked to a particular infection (sepsis or endocarditis). Colonizing isolates proved to have had more virulence factor genes, but the differences were not statistically significant. Members of that group produced a greater amount of biofilm when the ace gene was absent ( p = 0.047). The production of β-hemolysis by noninvasive strains was detected more frequently when agar was supplemented with human blood ( p = 0.021). In general, the presence of either cyl gene on that specific agar was in direct connection with the production of β-hemolysis: cylA ( p = 0.047) or cylB ( p = 0.020). Conclusion: We have been unable to establish any correlation between invasive isolates and any virulence gene carriage and biofilm formation. β-hemolysis was produced significantly more often by colonizing strains when agar had been supplemented with human blood.
Collapse
Affiliation(s)
- Milica Jovanović
- Department of Microbiology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Branko Velebit
- Institute of Meat Hygiene and Technology, Belgrade, Serbia
| | - Tanja Tošić
- Department of Microbiology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Gina Maki
- Henry Ford Health System, Detroit, Michigan, USA
| | - Sladjana Pavić
- Department of Infectious Diseases, General Hospital Užice, Užice, Serbia
| | - Snežana Jovanović
- Department of Microbiology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Rajica Stošović
- University of Belgrade Faculty of Medicine, Belgrade, Serbia
- Clinic for Allergology and Immunology, University Clinical Center of Serbia, Belgrade, Serbia
| | | |
Collapse
|
14
|
Selmi H, Rocchetti MT, Capozzi V, Semedo-Lemsaddek T, Fiocco D, Spano G, Abidi F. Lactiplantibacillus plantarum from Unexplored Tunisian Ecological Niches: Antimicrobial Potential, Probiotic and Food Applications. Microorganisms 2023; 11:2679. [PMID: 38004691 PMCID: PMC10673251 DOI: 10.3390/microorganisms11112679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
The continued exploration of the diversity of lactic acid bacteria in little-studied ecological niches represents a fundamental activity to understand the diffusion and biotechnological significance of this heterogeneous class of prokaryotes. In this study, Lactiplantibacillus plantarum (Lpb. plantarum) strains were isolated from Tunisian vegetable sources, including fermented olive and fermented pepper, and from dead locust intestines, which were subsequently evaluated for their antimicrobial activity against foodborne pathogenic bacteria, including Escherichia coli O157:H7 CECT 4267 and Listeria monocytogenes CECT 4031, as well as against some fungi, including Penicillium expansum, Aspergilus niger, and Botrytis cinerea. In addition, their resistance to oro-gastro-intestinal transit, aggregation capabilities, biofilm production capacity, adhesion to human enterocyte-like cells, and cytotoxicity to colorectal adenocarcinoma cell line were determined. Further, adhesion to tomatoes and the biocontrol potential of this model food matrix were analyzed. It was found that all the strains were able to inhibit the indicator growth, mostly through organic acid production. Furthermore, these strains showed promising probiotic traits, including in vitro tolerance to oro-gastrointestinal conditions, and adhesion to abiotic surfaces and Caco-2 cells. Moreover, all tested Lpb. plantarum strains were able to adhere to tomatoes with similar rates (4.0-6.0 LogCFU/g tomato). The co-culture of LAB strains with pathogens on tomatoes showed that Lpb. plantarum could be a good candidate to control pathogen growth. Nonetheless, further studies are needed to guarantee their use as probiotic strains for biocontrol on food matrices.
Collapse
Affiliation(s)
- Hiba Selmi
- Faculty of Sciences of Bizerte, University of Carthage, Zarzouna, Bizerte 7021, Tunisia
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology, University of Carthage, Carthage 1054, Tunisia;
| | - Maria Teresa Rocchetti
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.T.R.); (D.F.)
| | - Vittorio Capozzi
- Institute of Sciences of Food Production, National Research Council (CNR) of Italy, c/o CS-DAT, Via Michele Protano, 71122 Foggia, Italy;
| | - Teresa Semedo-Lemsaddek
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.T.R.); (D.F.)
| | - Giuseppe Spano
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy
| | - Ferid Abidi
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology, University of Carthage, Carthage 1054, Tunisia;
| |
Collapse
|
15
|
Dey TK, Lindahl JF, Lundkvist Å, Grace D, Deka RP, Shome R, Bandyopadhyay S, Goyal NK, Sharma G, Shome BR. Analyses of Extended-Spectrum-β-Lactamase, Metallo-β-Lactamase, and AmpC-β-Lactamase Producing Enterobacteriaceae from the Dairy Value Chain in India. Antibiotics (Basel) 2023; 12:1449. [PMID: 37760745 PMCID: PMC10650101 DOI: 10.3390/antibiotics12091449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/03/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The consumption of milk contaminated with antibiotic-resistant bacteria poses a significant health threat to humans. This study aimed to investigate the prevalence of Enterobacteriaceae producing β-lactamases (ESBL, MBL, and AmpC) in cow and buffalo milk samples from two Indian states, Haryana and Assam. A total of 401 milk samples were collected from dairy farmers and vendors in the specified districts. Microbiological assays, antibiotic susceptibility testing, and PCR-based genotyping were employed to analyze 421 Gram-negative bacterial isolates. The overall prevalence of β-lactamase genes was 10% (confidence interval (CI) (7-13)), with higher rates in Haryana (13%, CI (9-19)) compared to Assam (7%, CI (4-11)). The identified β-lactamase genes in isolates were blaCMY, blaMOX, blaFOX, blaEBC, and blaDHA, associated with AmpC production. Additionally, blaCTX-M1, blaSHV, and blaTEM were detected as ESBL producers, while blaVIM, blaIMP, blaSPM, blaSIM, and blaGIM were identified as MBL producers. Notably, Shigella spp. were the dominant β-lactamase producers among identified Enterobacteriaceae. This study highlights the presence of various prevalent β-lactamase genes in milk isolates, indicating the potential risk of antimicrobial-resistant bacteria in dairy products. The presence of β-lactam resistance raises concern as this could restrict antibiotic options for treatment. The discordance between genotypic and phenotypic methods emphasizes the necessity for comprehensive approaches that integrate both techniques to accurately assess antibiotic resistance. Urgent collaborative action incorporating rational and regulated use of antibiotics across the dairy value chain is required to address the global challenge of β-lactam resistance.
Collapse
Affiliation(s)
- Tushar Kumar Dey
- Department of Biosciences, International Livestock Research Institute, Nairobi 00100, Kenya
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru 560064, India
| | - Johanna Frida Lindahl
- Department of Biosciences, International Livestock Research Institute, Nairobi 00100, Kenya
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden
| | - Delia Grace
- Department of Biosciences, International Livestock Research Institute, Nairobi 00100, Kenya
- Food and Markets Department, Natural Resources Institute, Chatham Maritime ME4 4TB, UK
| | - Ram Pratim Deka
- International Livestock Research Institute, Regional Office for South Asia, New Delhi 110012, India
| | - Rajeswari Shome
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru 560064, India
| | - Samiran Bandyopadhyay
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, Kolkata 700037, India
| | - Naresh Kumar Goyal
- Dairy Microbiology Division, National Dairy Research Institute, Karnal 132001, India
| | - Garima Sharma
- Department of Biosciences, International Livestock Research Institute, Nairobi 00100, Kenya
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden
| | - Bibek Ranjan Shome
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru 560064, India
| |
Collapse
|
16
|
Ribeiro M, Maciel C, Cruz P, Darmancier H, Nogueira T, Costa M, Laranjeira J, Morais RMSC, Teixeira P. Exploiting Potential Probiotic Lactic Acid Bacteria Isolated from Chlorella vulgaris Photobioreactors as Promising Vitamin B12 Producers. Foods 2023; 12:3277. [PMID: 37685210 PMCID: PMC10486965 DOI: 10.3390/foods12173277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Lactic acid bacteria (LAB) have been documented as potential vitamin B12 producers and may constitute an exogenous source of cobalamin for the microalga Chlorella vulgaris, which has been described as being able to perform vitamin uptake. Hence, there is an interest in discovering novel B12-producing probiotic LAB. Therefore, the purpose of the current work was to perform a phenotype-genotype analysis of the vitamin B12 biosynthesis capacity of LAB isolated from C. vulgaris bioreactors, and investigate their probiotic potential. Among the selected strains, Lactococcus lactis E32, Levilactobacillus brevis G31, and Pediococcus pentosaceus L51 demonstrated vitamin B12 biosynthesis capacity, with the latter producing the highest (28.19 ± 2.27 pg mL-1). The genomic analysis confirmed the presence of pivotal genes involved in different steps of the biosynthetic pathway (hemL, cbiT, cobC, and cobD). Notably, P. pentosaceus L51 was the only strain harboring cobA, pduU, and pduV genes, which may provide evidence for the presence of the cobalamin operon. All strains demonstrated the capability to withstand harsh gastrointestinal conditions, although P. pentosaceus L51 was more resilient. The potential for de novo cobalamin biosynthesis and remarkable probiotic features highlighted that P. pentosaceus L51 may be considered the most promising candidate strain for developing high-content vitamin B12 formulations.
Collapse
Affiliation(s)
- Mónica Ribeiro
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal (R.M.S.C.M.)
| | - Cláudia Maciel
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal (R.M.S.C.M.)
| | - Pedro Cruz
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal (R.M.S.C.M.)
| | - Helena Darmancier
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, I.P., 2780-159 Oeiras, Portugal
| | - Teresa Nogueira
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, I.P., 2780-159 Oeiras, Portugal
- cE3c—Center for Ecology, Evolution and Environmental Changes & CHANGE—Global Change and Sustainability Institute, 1749-016 Lisbon, Portugal
| | - Margarida Costa
- ALLMICROALGAE Natural Products S.A., R&D Department, Rua 25 de Abril s/n, 2445-413 Pataias, Portugal
| | - Joana Laranjeira
- ALLMICROALGAE Natural Products S.A., R&D Department, Rua 25 de Abril s/n, 2445-413 Pataias, Portugal
| | - Rui M. S. C. Morais
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal (R.M.S.C.M.)
| | - Paula Teixeira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal (R.M.S.C.M.)
| |
Collapse
|
17
|
Aswal M, Singhal N, Kumar M. Comprehensive genomic analysis of hypocholesterolemic probiotic Enterococcus faecium LR13 reveals unique proteins involved in cholesterol-assimilation. Front Nutr 2023; 10:1082566. [PMID: 37081914 PMCID: PMC10110904 DOI: 10.3389/fnut.2023.1082566] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/14/2023] [Indexed: 04/07/2023] Open
Abstract
Hypercholesterolemia is a major risk factor for cardiovascular diseases (CVDs). Chemotherapeutic agents for CVDs exhibit several side effects. Specific probiotics with hypocholesterolemic effects can be safe and effective alternatives to chemotherapeutics. Here, we have analyzed and compared the genome of a novel rhizospheric Enterococcus faecium LR13 cholesterol-assimilating probiotic with other probiotic/pathogenic E. faecium strains to discern genetic factors underlying probiotic efficacy and cholesterol-assimilation. Genomic analyses of E. faecium probiotic strains revealed that LR13 and WEFA23 (cholesterol-assimilating probiotics) harbored 21 unique proteins absent in non-cholesterol-assimilating probiotics. Of these, 14 proteins could directly help in cholesterol-assimilation by producing short chain fatty acids, lipid (sterol) transport and membrane stabilization, and bile salt hydrolase activity. This suggests that cholesterol-assimilation is an intrinsic, strain-specific trait exhibited by probiotics with a specific genetic constitution. Moreover, the unique proteins identified in this study can serve as biomarkers for discerning/characterizing cholesterol-assimilating probiotics as novel biotherapeutics against CVDs.
Collapse
|
18
|
Gajewska J, Chajęcka-Wierzchowska W, Byczkowska-Rostkowska Z, Saki M. Biofilm Formation Capacity and Presence of Virulence Determinants among Enterococcus Species from Milk and Raw Milk Cheeses. Life (Basel) 2023; 13:life13020495. [PMID: 36836852 PMCID: PMC9962698 DOI: 10.3390/life13020495] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Bacterial biofilm is one of the major hazards facing the food industry. Biofilm-forming ability is one of the most important virulence properties of enterococci. The genus Enterococcus includes pathogenic, spoilage, and pro-technological bacteria. The presence of enterococci in milk and dairy products is usually associated with inadequate hygiene practices. The study examined the isolates' capacity for biofilm formation and identification of the genetic determinants of its formation among 85 Enterococcus strains isolated from raw milk (n = 49) and soft-ripened cheeses made from unpasteurized milk (n = 36). E. faecalis and E. faecium were the dominant species. The obtained results showed that 41.4% isolates from milk and 50.0% isolates from cheeses were able to form biofilm. All of the isolates analyzed had at least one of the studied genes. As regards the isolates from raw milk, the most prevalent gene was the gelE (85.6%), followed by the asa1 (66.7%). None of the isolates from cheeses showed the presence of cylA and sprE. The most prevalent gene among the strains from this source was the epbC (94.4%), followed by the gelE (88.9%). In isolates from both sources, the presence of proteins from the Fsr group was noted the least frequently. Nevertheless, results showed that were no significant differences between the biofilm-producing Enterococcus spp. and non-biofilm-producing isolates in term of occurrences of tested virulence genes. The ability to produce a biofilm by enterococci isolated from raw milk or ready-to-eat products emphasizes the need for continuous monitoring of the mechanisms of microbial adhesion.
Collapse
Affiliation(s)
- Joanna Gajewska
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726 Olsztyn, Poland
- Correspondence:
| | - Wioleta Chajęcka-Wierzchowska
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726 Olsztyn, Poland
| | - Zuzanna Byczkowska-Rostkowska
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726 Olsztyn, Poland
| | - Morteza Saki
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
19
|
Pham H, Tran TDT, Yang Y, Ahn JH, Hur HG, Kim YH. Analysis of phylogenetic markers for classification of a hydrogen peroxide producing Streptococcus oralis isolated from saliva by a newly devised differential medium. J Microbiol 2022; 60:795-805. [DOI: 10.1007/s12275-022-2261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022]
|
20
|
Lauková A, Tomáška M, Fraqueza MJ, Szabóová R, Bino E, Ščerbová J, Pogány Simonová M, Dvorožňáková E. Bacteriocin-Producing Strain Lactiplantibacillus plantarum LP17L/1 Isolated from Traditional Stored Ewe’s Milk Cheese and Its Beneficial Potential. Foods 2022; 11:foods11070959. [PMID: 35407045 PMCID: PMC8997471 DOI: 10.3390/foods11070959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/01/2022] Open
Abstract
Stored ewe’s milk lump cheese is a local product that can be a source of autochthonous beneficial microbiota, especially lactic acid bacteria. The aim of this study was to show the antimicrobial potential of Lactiplantibacillus plantarum LP17L/1 isolated from stored ewe’s milk lump cheese. Lpb. plantarum LP17L/1 is a non-hemolytic, non-biofilm-forming strain, susceptible to antibiotics. It contains genes for 10 bacteriocins—plantaricins and exerted active bacteriocin with in vitro anti-staphylococcal and anti-listerial effect. It does not produce damaging enzymes, but it produces β-galactosidase. It also sufficiently survives in Balb/c mice without side effects which indicate its safety. Moreover, a reduction in coliforms in mice jejunum was noted. LP17L/1 is supposed to be a promising additive for Slovak local dairy products.
Collapse
Affiliation(s)
- Andrea Lauková
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Šoltésovej 4–6, 040 01 Košice, Slovakia; (R.S.); (E.B.); (J.Š.); (M.P.S.)
- Correspondence:
| | - Martin Tomáška
- Dairy Research Institute, a.s., Dlhá 95, 010 01 Žilina, Slovakia;
| | - Maria Joao Fraqueza
- Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Tecnica, 1300-477 Lisbon, Portugal;
| | - Renáta Szabóová
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Šoltésovej 4–6, 040 01 Košice, Slovakia; (R.S.); (E.B.); (J.Š.); (M.P.S.)
| | - Eva Bino
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Šoltésovej 4–6, 040 01 Košice, Slovakia; (R.S.); (E.B.); (J.Š.); (M.P.S.)
| | - Jana Ščerbová
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Šoltésovej 4–6, 040 01 Košice, Slovakia; (R.S.); (E.B.); (J.Š.); (M.P.S.)
| | - Monika Pogány Simonová
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Šoltésovej 4–6, 040 01 Košice, Slovakia; (R.S.); (E.B.); (J.Š.); (M.P.S.)
| | - Emília Dvorožňáková
- Parasitological Institute of the Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovakia;
| |
Collapse
|
21
|
Kouhi F, Mirzaei H, Nami Y, Khandaghi J, Javadi A. Potential probiotic and safety characterisation of enterococcus bacteria isolated from indigenous fermented motal cheese. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Noroozi N, Momtaz H, Tajbakhsh E. Molecular characterization and antimicrobial resistance of
Enterococcus faecalis
isolated from seafood samples. Vet Med Sci 2022; 8:1104-1112. [PMID: 35152566 PMCID: PMC9122428 DOI: 10.1002/vms3.761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background Enterococcus faecalis is considered an opportunistic foodborne pathogen. The present study aimed to assess the prevalence, antimicrobial resistance, virulence characters, and molecular typing of E. faecalis strains isolated from seafood samples. Methods Two hundred and seventy‐six seafood samples were collected. E. faecalis was isolated from samples using bacterial culture. Furthermore, the disk diffusion assessed their antimicrobial resistance. Also, the distribution of virulence factors was determined using polymerase chain reaction (PCR) assay. Random amplified polymorphic DNA (RAPD) method was used for their molecular typing. Results Fifty‐six of 276 (20.2%) seafood samples were contaminated with E. faecalis. Fish harboured the highest contamination rate (30.0%). Isolates harboured the highest resistance rate towards oxacillin (100%), tetracycline (100%), erythromycin (100%), cefoxitin (89.2%), cefazolin (87.5%), trimethoprim‐sulfamethoxazole (85.7%), rifampin (69.6%), clindamycin (69.6%), and gentamicin (64.2%) antimicrobials. Efa (100%), ebpA (89.2%), ebpB (58.9%), ebpC (53.5%), and esp (51.7%) were the most commonly detected virulence factors among E. faecalis isolates. RAPD–PCR analysis showed 11 different molecular clusters considering the closeness of more than 80%. Conclusion Seafood samples were considered reservoirs of virulence and resistant E. faecalis strains. Different molecular clusters of isolates may reflect their diverse sources of contamination.
Collapse
Affiliation(s)
- Neda Noroozi
- Department of Microbiology Shahrekord Branch Islamic Azad University Shahrekord Iran
| | - Hassan Momtaz
- Department of Microbiology Shahrekord Branch Islamic Azad University Shahrekord Iran
| | - Elahe Tajbakhsh
- Department of Microbiology Shahrekord Branch Islamic Azad University Shahrekord Iran
| |
Collapse
|
23
|
Sosa FM, Parada RB, Marguet ER, Vallejo M. Utilization of Agro-Industrial Byproducts for Bacteriocin Production Using Enterococcus spp. Strains Isolated from Patagonian Marine Invertebrates. Curr Microbiol 2021; 79:16. [PMID: 34905107 DOI: 10.1007/s00284-021-02712-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
This work's objective was to determine the antagonist activity of 11 Enterococcus spp. using industrial food wastes as a culture medium. The strains were isolated from invertebrates collected on the Argentinian Patagonia coast and selected by their high antibacterial activity. Phenotypic and genotypic techniques allowed identifying five E. hirae strains, five E. faecium strains, and one E. mundtii strain. The cell-free supernatants displayed inhibitory activity against most of the Gram-positive bacteria tested and Vibrio anguilarum. PCR amplification techniques detected the encoding genes of enterocin P in ten strains, mundtiicin KS in seven strains, enterocin B in six strains, hiracin JM79 in five strains, and enterocin A in three strains. The strains did not show gelatinase or hemolytic activities and were sensitive to gentamicin, kanamycin, streptomycin, tylosine, tetracycline, chloramphenicol and vancomycin. Cheese whey and hot trub derived from beer brewing were used alone or in combination to assay enterocin production. In all cases, the highest inhibitory activities were achieved when mixtures of both byproducts were used as growth medium. The results suggest that the selected strains can produce high levels of enterocins in a low-cost media composed of a mix of cheese whey and hot trub without additional supplementation with carbon or nitrogen sources.
Collapse
Affiliation(s)
- Franco M Sosa
- Laboratorio de Biotecnología Bacteriana, Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Trelew, Chubut, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Romina B Parada
- Laboratorio de Biotecnología Bacteriana, Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Trelew, Chubut, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Emilio R Marguet
- Laboratorio de Biotecnología Bacteriana, Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Trelew, Chubut, Argentina
| | - Marisol Vallejo
- Laboratorio de Biotecnología Bacteriana, Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Trelew, Chubut, Argentina.
| |
Collapse
|
24
|
Slovak Local Ewe's Milk Lump Cheese, a Source of Beneficial Enterococcus durans Strain. Foods 2021; 10:foods10123091. [PMID: 34945639 PMCID: PMC8701886 DOI: 10.3390/foods10123091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022] Open
Abstract
Slovak ewe's milk lump cheese is produced from unpasteurized ewe's milk without any added culture. Because of the traditional processing and shaping by hand into a lump, this cheese was given the traditional specialty guaranteed (TSG) label. Up till now, there have existed only limited detailed studies of individual microbiota and their benefits in ewe's milk lump cheese. Therefore, this study has been focused on the beneficial properties and safety of Enterococcus durans strains with the aim to contribute to basic dairy microbiology but also for further application potential and strategy. The total enterococcal count in cheeses reached 3.93 CFU/g (log 10) ± 1.98 on average. Based on a MALDI-TOF mass spectrometry evaluation, the strains were allotted to the species E. durans (score, 1.781-2.245). The strains were gelatinase and hemolysis-negative (γ-hemolysis) and were mostly susceptible to commercial antibiotics. Among the strains, E. durans ED26E/7 produced the highest value of lactase enzyme β-galactosidase (10 nmoL). ED26E/7 was absent of virulence factor genes such as Hyl (hyaluronidase), IS 16 element and gelatinase (GelE). To test safety, ED26E/7 did not cause mortality in Balb/c mice. Its partially purified bacteriocin substance showed the highest inhibition activity/bioactivity against Gram-positive indicator bacteria: the principal indicator Enterococcus avium EA5 (102,400 AU/mL), Staphylococcus aureus SA5 and listeriae (25,600 AU/mL). Moreover, 16 staphylococci (out of 22) were inhibited (100 AU/mL), and the growth of 36 (out of 51) enterococcal indicators was as well. After further technological tests, E. durans ED26E/7, with its bacteriocin substance, can be supposed as a promising additive to dairy products.
Collapse
|
25
|
Saingam P, Di DYW, Yan T. Diversity and health risk potentials of the Enterococcus population in tropical coastal water impacted by Hurricane Lane. JOURNAL OF WATER AND HEALTH 2021; 19:990-1001. [PMID: 34874905 DOI: 10.2166/wh.2021.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hurricane-caused stormwater runoffs transport diverse terrestrial pollutants, adversely impact microbiological water quality, and introduce fecal and other pathogens to coastal water environments. This study investigated the genotypic diversity, phylogenetic composition, antibiotic resistance patterns, and virulence gene repertoire of the Enterococcus population in the Hilo Bay coastal water after the immediate impact of Hurricane Lane. DNA fingerprinting of Enterococcus isolates exhibited large genotypic diversity, while 16S rRNA gene sequencing identified four major species, including E. faecalis (34.7%), E. faecium (22.4%), E. hirae (22.4%), and E. durans (18.4%). Four common enterococcal virulence genes (cylA, esp, asa1, and gelE) were detected in the Enterococcus population, with significant portions of E. durans (33.3%), E. faecalis (41.2%), E. faecium (36.4%), and E. hirae (27.3%) isolates possessing two or more virulence genes. Considerable antibiotic resistance to rifampin, erythromycin, tetracycline, and nitrofurantoin was detected in the Enterococcus population, with one E. durans isolate showing vancomycin resistance. The results indicate considerable health implications associated with Enterococcus spp. in the hurricane-impacted tropical coastal water, illustrating the needs for more comprehensive understanding of the microbiological risks associated with storm-impacted coastal water.
Collapse
Affiliation(s)
- Prakit Saingam
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA E-mail:
| | - Doris Y W Di
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA E-mail:
| | - Tao Yan
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA E-mail:
| |
Collapse
|
26
|
Medeiros JC, Leandro EDS, Maldonade IR, Alencar ER, Ribeiro CSDC, Ragassi CF. Characterization of the probiotic potential of lactic acid bacteria isolated from spontaneous fermentation of jalapeno peppers (
Capsicum annuum
L.). J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Júlia Carvalho Medeiros
- Department of Nutrition College of Health Sciences University of Brasília, Campus Darcy Ribeiro Brasilia Brazil
| | - Eliana dos Santos Leandro
- Department of Nutrition College of Health Sciences University of Brasília, Campus Darcy Ribeiro Brasilia Brazil
| | | | | | | | | |
Collapse
|
27
|
Ferchichi M, Sebei K, Boukerb AM, Karray-Bouraoui N, Chevalier S, Feuilloley MGJ, Connil N, Zommiti M. Enterococcus spp.: Is It a Bad Choice for a Good Use-A Conundrum to Solve? Microorganisms 2021; 9:2222. [PMID: 34835352 PMCID: PMC8622268 DOI: 10.3390/microorganisms9112222] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Since antiquity, the ubiquitous lactic acid bacteria (LAB) Enterococci, which are just as predominant in both human and animal intestinal commensal flora, have been used (and still are) as probiotics in food and feed production. Their qualities encounter several hurdles, particularly in terms of the array of virulence determinants, reflecting a notorious reputation that nearly prevents their use as probiotics. Additionally, representatives of the Enterococcus spp. genus showed intrinsic resistance to several antimicrobial agents, and flexibility to acquire resistance determinants encoded on a broad array of conjugative plasmids, transposons, and bacteriophages. The presence of such pathogenic aspects among some species represents a critical barrier compromising their use as probiotics in food. Thus, the genus neither has Generally Recognized as Safe (GRAS) status nor has it been included in the Qualified Presumption of Safety (QPS) list implying drastic legislation towards these microorganisms. To date, the knowledge of the virulence factors and the genetic structure of foodborne enterococcal strains is rather limited. Although enterococcal infections originating from food have never been reported, the consumption of food carrying virulence enterococci seems to be a risky path of transfer, and hence, it renders them poor choices as probiotics. Auspiciously, enterococcal virulence factors seem to be strain specific suggesting that clinical isolates carry much more determinants that food isolates. The latter remain widely susceptible to clinically relevant antibiotics and subsequently, have a lower potential for pathogenicity. In terms of the ideal enterococcal candidate, selected strains deemed for use in foods should not possess any virulence genes and should be susceptible to clinically relevant antibiotics. Overall, implementation of an appropriate risk/benefit analysis, in addition to the case-by-case assessment, the establishment of a strain's innocuity, and consideration for relevant guidelines, legislation, and regulatory aspects surrounding functional food development seem to be the crucial elements for industries, health-staff and consumers to accept enterococci, like other LAB, as important candidates for useful and beneficial applications in food industry and food biotechnology. The present review aims at shedding light on the world of hurdles and limitations that hampers the Enterococcus spp. genus and its representatives from being used or proposed for use as probiotics. The future of enterococci use as probiotics and legislation in this field are also discussed.
Collapse
Affiliation(s)
- Mounir Ferchichi
- Unité de Protéomique Fonctionnelle et Potentiel Nutraceutique de la Biodiversité de Tunisie, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, Tunis 1006, Tunisia; (M.F.); (K.S.)
| | - Khaled Sebei
- Unité de Protéomique Fonctionnelle et Potentiel Nutraceutique de la Biodiversité de Tunisie, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, Tunis 1006, Tunisia; (M.F.); (K.S.)
| | - Amine Mohamed Boukerb
- Laboratoire de Microbiologie, Signaux et Microenvironnement (LMSM) EA 4312, Université de Rouen Normandie, 27000 Evreux, France; (A.M.B.); (S.C.); (M.G.J.F.); (N.C.)
| | - Najoua Karray-Bouraoui
- Laboratoire de Productivité Végétale et Contraintes Abiotiques, LR18ES04, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis 2092, Tunisia;
| | - Sylvie Chevalier
- Laboratoire de Microbiologie, Signaux et Microenvironnement (LMSM) EA 4312, Université de Rouen Normandie, 27000 Evreux, France; (A.M.B.); (S.C.); (M.G.J.F.); (N.C.)
| | - Marc G. J. Feuilloley
- Laboratoire de Microbiologie, Signaux et Microenvironnement (LMSM) EA 4312, Université de Rouen Normandie, 27000 Evreux, France; (A.M.B.); (S.C.); (M.G.J.F.); (N.C.)
| | - Nathalie Connil
- Laboratoire de Microbiologie, Signaux et Microenvironnement (LMSM) EA 4312, Université de Rouen Normandie, 27000 Evreux, France; (A.M.B.); (S.C.); (M.G.J.F.); (N.C.)
| | - Mohamed Zommiti
- Laboratoire de Microbiologie, Signaux et Microenvironnement (LMSM) EA 4312, Université de Rouen Normandie, 27000 Evreux, France; (A.M.B.); (S.C.); (M.G.J.F.); (N.C.)
| |
Collapse
|
28
|
Özkan ER, Öztürk Hİ, Demirci T, Akın N. Detection of biofilm formation, virulence factor genes, antibiotic-resistance, adherence properties, and some beneficial properties of cheese origin S. infantarius, S. gallolyticus, and S. lutetiensis strains belonging to the S. bovis/S. equinus complex. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Oruc O, Ceti̇n O, Onal Darilmaz D, Yüsekdag ZN. Determination of the biosafety of potential probiotic Enterococcus faecalis and Enterococcus faecium strains isolated from traditional white cheeses. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111741] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Bourdichon F, Arias E, Babuchowski A, Bückle A, Bello FD, Dubois A, Fontana A, Fritz D, Kemperman R, Laulund S, McAuliffe O, Miks MH, Papademas P, Patrone V, Sharma DK, Sliwinski E, Stanton C, Von Ah U, Yao S, Morelli L. The forgotten role of food cultures. FEMS Microbiol Lett 2021; 368:fnab085. [PMID: 34223876 PMCID: PMC8397475 DOI: 10.1093/femsle/fnab085] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 07/01/2021] [Indexed: 12/15/2022] Open
Abstract
Fermentation is one of if not the oldest food processing technique, yet it is still an emerging field when it comes to its numerous mechanisms of action and potential applications. The effect of microbial activity on the taste, bioavailability and preservation of the nutrients and the different food matrices has been deciphered by the insights of molecular microbiology. Among those roles of fermentation in the food chain, biopreservation remains the one most debated. Presumably because it has been underestimated for quite a while, and only considered - based on a food safety and technological approach - from the toxicological and chemical perspective. Biopreservation is not considered as a traditional use, where it has been by design - but forgotten - as the initial goal of fermentation. The 'modern' use of biopreservation is also slightly different from the traditional use, due mainly to changes in cooling of food and other ways of preservation, Extending shelf life is considered to be one of the properties of food additives, classifying - from our perspective - biopreservation wrongly and forgetting the role of fermentation and food cultures. The present review will summarize the current approaches of fermentation as a way to preserve and protect the food, considering the different way in which food cultures and this application could help tackle food waste as an additional control measure to ensure the safety of the food.
Collapse
Affiliation(s)
- François Bourdichon
- Food Safety, Microbiology, Hygiene, 16 Rue Gaston de Caillavet, 75015 Paris, France
- Facoltà di Scienze agrarie, alimentarie ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense, Piacenza-Cremona, Italy
| | - Emmanuelle Arias
- AGROSCOPE, Food Microbial Systems, Schwarzenburgstrasse 161, CH-3003 Bern, Switzerland
| | | | - Anne Bückle
- Milchprüfring Baden-Württemberg e.V., Marie-Curie-Straße 19, 73230 Kirchheim, u.T., Germany
| | | | - Aurélie Dubois
- International Dairy Federationiry Federation, 70 Boulevard Auguste Reyers, 1030 Brussels, Belgium
| | - Alessandra Fontana
- Facoltà di Scienze agrarie, alimentarie ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense, Piacenza-Cremona, Italy
| | - Duresa Fritz
- International Flavors and Fragrances, 20 rue Brunel, Paris 75017, France
| | - Rober Kemperman
- Lesaffre International, 152 rue du Docteur Yersin, 59120 Loos, France
| | - Svend Laulund
- Chr. Hansen A/S, Agern Allé 24, 2970 Hoersholm, Denmark
| | | | - Marta Hanna Miks
- Glycom A/S, Kogle Allé 4, 2970 Hørsholm, Denmark
- Faculty of Food Science, Food Biochemistry, University of Warmia and Mazury in Olsztyn, Plac Cieszynski 1, 10–726 Olsztyn, Poland
| | - Photis Papademas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Archiepiskopou Kyprianou, PO BOX 50329, Limassol, Cyprus
| | - Vania Patrone
- Facoltà di Scienze agrarie, alimentarie ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense, Piacenza-Cremona, Italy
| | | | - Edward Sliwinski
- The European Federation of Food Science & Technology, Nieuwe Kanaal 9a, 6709 PA, Wageningen, The Netherlands
| | | | - Ueli Von Ah
- AGROSCOPE, Food Microbial Systems, Schwarzenburgstrasse 161, CH-3003 Bern, Switzerland
| | - Su Yao
- China National Research Institute of Food & Fermentation Industries, China Center of Industrial Culture Collection, Building 6, No.24, Jiuxianqiaozhong Road, Chaoyang District, Beijing 100015, PR China
| | - Lorenzo Morelli
- Facoltà di Scienze agrarie, alimentarie ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense, Piacenza-Cremona, Italy
| |
Collapse
|
31
|
Wu X, Wu B, Li Y, Jin X, Wang X. Identification and safety assessment of Enterococcus thailandicus TC1 isolated from healthy pigs. PLoS One 2021; 16:e0254081. [PMID: 34197541 PMCID: PMC8248690 DOI: 10.1371/journal.pone.0254081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/21/2021] [Indexed: 11/18/2022] Open
Abstract
Enterococci have the dual characteristics of being opportunistic pathogens and promising probiotics. The isolation from patients of CDC PNS-E2, a newly described Enterococcus species Enterococcus sanguinicola, may pose potential hazards. Enterococcus thailandicus from fermented sausage is a senior subjective synonym of E. sanguinicola. In this study, Enterococcus thailandicus TC1 was first isolated in healthy pigs in Tongcheng, China and identified by phenotypic analysis and 16S rRNA-based techniques. To evaluate the strain safety, an approach including virulence factors, antibiotic resistance, and animal experiments was adopted. The results show that cylA, gelE, esp, agg, ace, efaAfm, efaAfs, ptsD genes were undetected, and that the strain was sensitive or poorly resistant to some clinically relevant antibiotics. However, the isolated strain demonstrated β-hemolytic activity in rabbit blood agar plates. Analysis of animal experiments revealed that the isolated strain had no adverse effect on translocation and the internal organ indices, though significant differences in histology (villi height, crypts height) of ileum were observed. The data acquired suggest that E. thailandicus TC1 may be associated with a potential health risk.
Collapse
Affiliation(s)
- Xiaoying Wu
- Department of Biology, Taiyuan Normal College, Taiyuan, PR China
| | - Bei Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P.R. China
| | - Yue Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P.R. China
| | - Xiue Jin
- Hubei Provincial Institute of Veterinary Drug Control, Wuhan, P.R. China
| | - Xiliang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P.R. China
- * E-mail:
| |
Collapse
|
32
|
Isolation, Identification, and Screening of Lactic Acid Bacteria with Probiotic Potential in Silage of Different Species of Forage Plants, Cocoa Beans, and Artisanal Salami. Probiotics Antimicrob Proteins 2021; 13:173-186. [PMID: 32601953 DOI: 10.1007/s12602-020-09679-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The objective of this study was to isolate and characterize lactic acid bacteria with probiotic potential in silages of different species of forage plants, cocoa beans, and artisanal salami. The obtained isolates were submitted to the following evaluations: (i) screening for tolerance to pH 2 and bile salts, (ii) genotypic identification of isolates, (iii) survival in simulated gastric and pancreatic conditions, (iv) antimicrobial activity, (v) antibiotic susceptibility and safety, and (vi) properties associated with adhesion capacity. A total of 82 isolates were obtained and were screened for pH 2.0 tolerance and capacity to growth in the presence of bile salts (1.0 and 2.0%). Only 19 strains simultaneously presented tolerance to pH 2.0 and bile salts. These 19 strains were evaluated for genetic profile by Box-PCR. Subsequently, the selected strains were subjected to partial sequencing of the 16S rRNA gene. The species Lactobacillus plantarum was prevalent. The identified strains were evaluated for survival under simulated gastric and pancreatic conditions. Some strains have shown tolerance in both conditions. Different strains showed variations in antimicrobial activity, susceptibility to antibiotics, and properties associated with adhesion (hydrophobicity, autoaggregation, coaggregation, and adhesion to CaCo2 cells). All strains were negative for hemolysis, DNase, gelatinase, and biogenic amine synthesis activity. The L. plantarum SBR64.7 strain can be considered the most promising for it presented the lowest viability reduction when exposed to gastric and pancreatic juices.
Collapse
|
33
|
Hossain MI, Kim K, Rahaman Mizan MF, Toushik SH, Ashrafudoulla M, Roy PK, Nahar S, Jahid IK, Choi C, Park SH, Ha SD. Comprehensive molecular, probiotic, and quorum-sensing characterization of anti-listerial lactic acid bacteria, and application as bioprotective in a food (milk) model. J Dairy Sci 2021; 104:6516-6534. [PMID: 33741164 DOI: 10.3168/jds.2020-19034] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022]
Abstract
Listeria monocytogenes is a major foodborne pathogen that adversely affects the food industry. In this study, 6 anti-listerial lactic acid bacteria (LAB) isolates were screened. These anti-listerial LAB isolates were identified via 16S rRNA gene sequencing and analyzed via repetitive extragenic palindromic-PCR. Probiotic assessment of these isolates, comprising an evaluation of the antibiotic susceptibility, tolerance to lysozyme, simulated gastric and intestinal juices, and gut conditions (low pH, bile salts, and 0.4% phenol), was carried out. Most of the isolates were resistant to streptomycin, vancomycin, gentamycin, kanamycin, and ciprofloxacin. All of the isolates were negative for virulence genes, including agg, ccf, cylA, cylB, cylLL, cylLS, cylM, esp, and gelE, and hemolytic activity. Furthermore, autoinducer-2 (a quorum-sensing molecule) was detected and quantified via HPLC with fluorescence detection after derivatization with 2,3-diaminonaphthalene. Metabolites profiles of the Lactobacillus sakei D.7 and Lactobacillus plantarum I.60 were observed and presented various organic acids linked with antibacterial activity. Moreover, freeze-dried cell-free supernatants from Lb. sakei (55 mg/mL) and Lb. plantarum (40 mg/mL) showed different minimum effective concentration (MEC) against L. monocytogenes in the food model (whole milk). In summary, these anti-listerial LAB isolates do not pose a risk to consumer health, are eco-friendly, and may be promising candidates for future use as bioprotective cultures and new probiotics to control contamination by L. monocytogenes in the food and dairy industries.
Collapse
Affiliation(s)
- Md Iqbal Hossain
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, 17546, South Korea
| | - Kyeongjun Kim
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, 17546, South Korea
| | - Md Furkanur Rahaman Mizan
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, 17546, South Korea
| | - Sazzad Hossen Toushik
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, 17546, South Korea
| | - Md Ashrafudoulla
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, 17546, South Korea
| | - Pantu Kumar Roy
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, 17546, South Korea
| | - Shamsun Nahar
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, 17546, South Korea
| | - Iqbal Kabir Jahid
- Department of Microbiology, Jashore University of Science and Technology, Jashore-7408, Bangladesh
| | - Changsun Choi
- Department of Food and Nutrition, School of Food Science and Technology, Chung-Ang University, Anseong, 17546, South Korea
| | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis 97331
| | - Sang-Do Ha
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, 17546, South Korea.
| |
Collapse
|
34
|
Dinçer E, Kıvanç M. In vitro evaluation of probiotic potential of Enterococcus faecium strains isolated from Turkish pastırma. Arch Microbiol 2021; 203:2831-2841. [PMID: 33743024 DOI: 10.1007/s00203-021-02273-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 11/20/2020] [Accepted: 03/10/2021] [Indexed: 11/26/2022]
Abstract
This study is aimed at evaluating the probiotic potential of three Enterococcus faecium strains (called 29-P2, 168-P6 and 277-S3) isolated from 'pastırma', a Turkish traditional dry-cured meat product. For this, key probiotic properties and some functional characteristics of strains were tested in vitro. Antimicrobial activity of 3 E. faecium strains was evaluated against 18 indicator microorganisms consisting of 13 foodborne pathogens and 5 lactic acid bacteria and all strains were found as the producer of antimicrobial substance. Especially one strain 168-P6 showed a remarkable activity spectrum and inhibited all of the used foodborne pathogen indicators. Antimicrobial compounds produced by strains were identified by determining the effect of enzyme, pH and temperature on antimicrobial activity. All strains exhibited tolerance to acidic conditions and a simulated gastric environment. Also, strains exhibited high adhesion capacity. The safety of the strains was assessed by determining hemolytic activity and the resistance to 14 different antibiotics. None of the three strains exhibited hemolytic activity, also strains were found reliable in terms of clinically relevant antibiotics, only one strain 29-P2 was found resistant to vancomycin. In addition, metabolic activities of strains including lactic acid, hydrogen peroxide, exopolysaccharide production and proteolytic activity were determined and amounts of all metabolic products were found low. When evaluated all data obtained, it is believed that the strains have enviable characteristics as a probiotic candidate.
Collapse
Affiliation(s)
- Emine Dinçer
- Faculty of Health Science, Department of Nutrition and Dietetics, Sivas Cumhuriyet University, 58140, Sivas, Turkey.
| | - Merih Kıvanç
- Faculty of Sciences, Department of Biology, Eskisehir Teknik University, 26470, Eskisehir, Turkey
| |
Collapse
|
35
|
Stępień-Pyśniak D, Hauschild T, Dec M, Marek A, Urban-Chmiel R, Kosikowska U. Phenotypic and genotypic characterization of Enterococcus spp. from yolk sac infections in broiler chicks with a focus on virulence factors. Poult Sci 2021; 100:100985. [PMID: 33647720 PMCID: PMC7933482 DOI: 10.1016/j.psj.2021.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/19/2020] [Accepted: 01/01/2021] [Indexed: 11/29/2022] Open
Abstract
Bacterial infections of yolk sacs contribute to increased mortality of chicks, chronic infections during their rearing, or increased selection in the flock, which in turn leads to high economic losses in poultry production worldwide. The aim of this study was a phenotypic and genotypic characterization of enterococci isolated from yolk sac infections (YSI) of broiler chickens from Poland and the Netherlands. Biochemical, matrix-assisted laser desorption/ionization (MALDI)–time-of-flight (TOF) MS, and rpoA gene sequencing identification was performed. Moreover, phenotypic and genotypic characterization of virulence factors and analysis of the clonal relationship of isolates by MALDI-TOF MS and enterobacterial repetitive intergenic consensus—polymerase chain reaction (ERIC-PCR) were performed. The biochemical test identified 70 isolates as Enterococcus faecalis and 6 as Enterococcus mundtii. The results of MALDI-TOF MS were 100% concordant with those obtained by rpoA gene sequencing, and all 76 isolates were identified as E. faecalis. Differences were noted in the β-glucuronidase, β-glucosidase, α-galactosidase, phosphatase, melibiose, lactose, and raffinose tests that is going about the results of biochemical identification. None of the isolates were beta-hemolytic on blood agar in aerobic conditions, but all but one were gelatinase positive. Among biofilm-forming isolates (30/76; 39.5%), as many as 66.7% (20/30) were Polish E. faecalis strains. Most of the isolates carried virulence genes, that is gelE, ace, asa1, efaAfs, fsrA, fsrB, fsrC, cob, cpd, and ccf, but none had the hyl gene. Some isolates harbored cyl operon genes. One Polish strain (ST16) had all of the tested cyl genes and the esp gene, considered clinically important, and showed the highest biofilm-forming ability. Nearly 50% of the isolates showed close genetic relatedness in ERIC typing. In contrast with MALDI-TOF MS cluster analysis, ERIC-PCR results did not show a relationship with the origin of the strains. Using MALDI-TOF MS, 7 peaks were found in Polish and Dutch isolates, which may type them as species-specific biomarkers in E. faecalis from YSI.
Collapse
Affiliation(s)
- Dagmara Stępień-Pyśniak
- Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-612 Lublin, Poland.
| | - Tomasz Hauschild
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-245 Białystok, Poland
| | - Marta Dec
- Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| | - Agnieszka Marek
- Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| | - Renata Urban-Chmiel
- Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| | - Urszula Kosikowska
- Department of Pharmaceutical Microbiology, Medical University in Lublin, 20-093 Lublin, Poland
| |
Collapse
|
36
|
Gomez JS, Parada RB, Vallejo M, Marguet ER, Bellomio A, Perotti N, de Carvalho KG. Assessment of the bioprotective potential of lactic acid bacteria against Listeria monocytogenes in ground beef. Arch Microbiol 2021; 203:1427-1437. [PMID: 33388790 DOI: 10.1007/s00203-020-02118-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 07/13/2020] [Accepted: 11/08/2020] [Indexed: 10/22/2022]
Abstract
Lactic acid bacteria can be considered as natural biopreservative and good biotechnological alternative to food safety. In this study, the antilisterial compounds produced by Enterococcus isolates from the Patagonian environment and their effectiveness for the control of Listeria monocytogenes in a food model were studied. Enterococcus isolates whose cell-free supernatant presented activity against Listeria monocytogenes were identified and evaluated for their virulence factors. The activity of the antimicrobial compounds produced by Enterococcus sp. against Listeria monocytogenes Scott A in meat gravy and ground beef during refrigerated storage was tested. The results indicated that ten Enterococcus isolates presented activity against Listeria monocytogenes and none of the selected strains presented virulence factors. L. monocytogenes in the food models containing the antilisterial compounds produced by Enterococcus sp. has decreased over the days, indicating that these compounds and cultures are an alternative to control the growth of L. monocytogenes in foods.
Collapse
Affiliation(s)
- Johana S Gomez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pje. Caseros, San Miguel de Tucumán, 4000, Tucumán, Argentina
| | - Romina B Parada
- Laboratorio de Biotecnología Bacteriana, Fac. de Cs. Naturales y Cs. de la Salud - UNPSJB, Sede Trelew, Chubut, Argentina
| | - Marisol Vallejo
- Laboratorio de Biotecnología Bacteriana, Fac. de Cs. Naturales y Cs. de la Salud - UNPSJB, Sede Trelew, Chubut, Argentina
| | - Emilio R Marguet
- Laboratorio de Biotecnología Bacteriana, Fac. de Cs. Naturales y Cs. de la Salud - UNPSJB, Sede Trelew, Chubut, Argentina
| | - Augusto Bellomio
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia - Universidad Nacional de Tucumán, Batalla de Chacabuco, 461, San Miguel de Tucuman, Tucumán, 4000, Argentina
| | - Nora Perotti
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pje. Caseros, San Miguel de Tucumán, 4000, Tucumán, Argentina
| | - Kátia G de Carvalho
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pje. Caseros, San Miguel de Tucumán, 4000, Tucumán, Argentina.
| |
Collapse
|
37
|
The microbiota of Kalathaki and Melichloro Greek artisanal cheeses comprises functional lactic acid bacteria. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Bin-Asif H, Abid Ali S. The Genus Enterococcus and Its Associated Virulent Factors. Microorganisms 2020. [DOI: 10.5772/intechopen.89083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
39
|
Structural enterocin gene profiles and mode of antilisterial activity in synthetic liquid media and skim milk of autochthonous Enterococcus spp. isolates from artisan Greek Graviera and Galotyri cheeses. Food Microbiol 2020; 86:103335. [DOI: 10.1016/j.fm.2019.103335] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/28/2019] [Accepted: 09/13/2019] [Indexed: 12/18/2022]
|
40
|
Vivero RJ, Mesa GB, Robledo SM, Herrera CXM, Cadavid-Restrepo G. Enzymatic, antimicrobial, and leishmanicidal bioactivity of gram-negative bacteria strains from the midgut of Lutzomyia evansi, an insect vector of leishmaniasis in Colombia. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2019; 24:e00379. [PMID: 31641623 PMCID: PMC6796522 DOI: 10.1016/j.btre.2019.e00379] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/15/2019] [Accepted: 09/15/2019] [Indexed: 02/03/2023]
Abstract
Knowledge regarding new compounds, peptides, and/or secondary metabolites secreted by bacteria isolated from the intestine of phebotominae has the potential to control insect vectors and pathogens (viruses, bacteria, and parasites) transmitted by them. In this respect, twelve Gram-negative bacteria isolated from the intestine of Lutzomyia evansi were selected and screened for their enzymatic, antimicrobial, and leishmanicidal activity. E. cancerogenus, E. aerogenes, P. otitidis, E. cloacae, L. soli, and P. ananatis exhibited enzymatic activity. 83.3% of the isolates displayed lipolytic and nitrate reductase activity and 58.3% of the isolates displayed protease activity. Hemolytic activity (17%) was identified only in E. hormaechei, and P. ananatis. E. cancerogenus, A. calcoaceticus, and P. otitidis showed cellulolytic activity. A. gyllenbergii, P. aeruginosa, and E. hormaechei showed amylolytic activity. In general, the totality of methanolic extracts exhibited antimicrobial activity, where E. hormaechei, A. calcoaceticus, and E. cancerogenus presented the highest activity against the evaluated reference bacteria strains. Cell-free supernatants (CFSS) of the Gram-negative bacteria showed higher growth inhibitory activity against the reference Gram-positive bacteria. The CFS of A. gyllenbergii was the most active antimicrobial in this study, against S. aureus (AAODs = 95.12%) and E. faecalis (AAODs = 86.90%). The inhibition percentages of CFS against Gram-positive bacteria showed statistically significant differences (repeated measure ANOVA df= 2; F= 6.095; P= 0.007832). The E. hormaechei methanolic extract showed leishmanicidal activity (CE-50 μg/ml = 47.7 + 3.8) against metacyclic promastigotes of Leishmania braziliensis (UA301). Based on this finding, we discuss the possible implications of these bacteria in digestion and physiological processes in the Lu. evansi intestine. P. ananatis, E. cloacae, E. hormaechei, and P. otitidis were considered the most promising bacteria in this study and they could potentially be used for biological control.
Collapse
Affiliation(s)
- Rafael J. Vivero
- Grupo de Microbiodiversidad y Bioprospección, Laboratorio de Biología Celular y Molecular, Universidad Nacional de Colombia, Sede Medellín, Colombia, Street 59 A # 63-20, Medellín 050003, Colombia
- PECET (Programa de Estudio y Control de Enfermedades Tropicales), Universidad de Antioquia, Medellín, Colombia, Laboratory 632, Medellín 050003, Colombia
| | - Gustavo Bedoya Mesa
- Grupo de Microbiodiversidad y Bioprospección, Laboratorio de Biología Celular y Molecular, Universidad Nacional de Colombia, Sede Medellín, Colombia, Street 59 A # 63-20, Medellín 050003, Colombia
| | - Sara M. Robledo
- PECET (Programa de Estudio y Control de Enfermedades Tropicales), Universidad de Antioquia, Medellín, Colombia, Laboratory 632, Medellín 050003, Colombia
| | - Claudia Ximena Moreno Herrera
- Grupo de Microbiodiversidad y Bioprospección, Laboratorio de Biología Celular y Molecular, Universidad Nacional de Colombia, Sede Medellín, Colombia, Street 59 A # 63-20, Medellín 050003, Colombia
| | - Gloria Cadavid-Restrepo
- Grupo de Microbiodiversidad y Bioprospección, Laboratorio de Biología Celular y Molecular, Universidad Nacional de Colombia, Sede Medellín, Colombia, Street 59 A # 63-20, Medellín 050003, Colombia
| |
Collapse
|
41
|
Stępień-Pyśniak D, Hauschild T, Kosikowska U, Dec M, Urban-Chmiel R. Biofilm formation capacity and presence of virulence factors among commensal Enterococcus spp. from wild birds. Sci Rep 2019; 9:11204. [PMID: 31371744 PMCID: PMC6671946 DOI: 10.1038/s41598-019-47602-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 07/19/2019] [Indexed: 12/31/2022] Open
Abstract
Enterococci are opportunistic pathogens that can form biofilms during infections and many virulence determinants are involved in this process. Although the virulence factors are often analysed in Enterococcus spp. from humans and food animals, little is known about gut enterococcal isolates from wild birds. Therefore, the determination of virulence factors among enterococci isolated from wild birds may provide new information about a possible source of infection for humans and animals or vice versa via the environment. We analysed different phenotypic and genotypic traits in enterococci from wild birds related to potential virulence in humans and animals and to evaluate biofilm formation and its relationship to virulence genes. The E. faecalis isolates were characterised by greater frequency of biofilm formation in BHI than E. faecium. There was a correlation between hydrophobicity and biofilm formation in BHI broth in E. faecalis. None of the isolates was haemolytic. The presence of some adhesion and gelatinase genes was detected in biofilm-positive isolates. The enterococcal pathogenic factors (esp, hyl, and cyl operon genes) did not seem to be necessary or sufficient for production of biofilm by analysed bacteria. Enterococcus species isolated from wild birds should be considered as a possible source of some virulence determinants.
Collapse
Affiliation(s)
- Dagmara Stępień-Pyśniak
- Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland.
| | - Tomasz Hauschild
- Department of Microbiology, Institute of Biology, University of Bialystok, Białystok, Poland
| | - Urszula Kosikowska
- Department of Pharmaceutical Microbiology with Laboratory for Microbiological Diagnostics, Medical University in Lublin, Lublin, Poland
| | - Marta Dec
- Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Renata Urban-Chmiel
- Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| |
Collapse
|
42
|
Delcarlo SB, Parada R, Schelegueda LI, Vallejo M, Marguet ER, Campos CA. From the isolation of bacteriocinogenic LAB strains to the application for fish paste biopreservation. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.04.079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
43
|
Vallejo M, Parada RB, Marguet ER. [Isolation of enterocin-producing Enterococcus hirae strains from the intestinal content of the Patagonian mussel (Mytilus edulis platensis)]. Rev Argent Microbiol 2019; 52:136-144. [PMID: 31320255 DOI: 10.1016/j.ram.2019.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 05/02/2019] [Accepted: 06/01/2019] [Indexed: 01/22/2023] Open
Abstract
Two bacteriocin-producing lactic acid bacterial strains were isolated from the intestinal content of the Patagonian mussel and characterized by phenotypic and molecular tests. The isolates were identified as Enterococcus hirae and named E. hirae 463Me and 471Me. The presence of the enterocin P gene was identified in both strains by PCR techniques, while enterocin hiracin JM79 was detected only in the 471Me strain. Both strains were sensitive to clinically important antibiotics and among the virulence traits investigated by PCR amplification, only cylLl and cylLs could be detected; however, no hemolytic activity was observed in the blood agar test. Cell free supernatants were active against all Listeria and Enterococcus strains tested, Lactobacillus plantarum TwLb 5 and Vibrio anguilarum V10. Under optimal growth conditions, both strains displayed inhibitory activity against Listeria innocua ATCC 33090 after 2h of incubation. E. hirae 471Me achieved a maximum activity of 163840AU/ml after 6h of incubation, while the same value was recorded for E. hirae 463Me after 8h. In both cases, the antagonist activity reached its maximum before the growth achieved the stationary phase and remained stable up to 24h of incubation. To our knowledge, this is first report of the isolation of bacteriocinogenic E. hirae strains from the Patagonian mussel. The high inhibitory activity and the absence of virulence traits indicate that they could be applied in different biotechnological areas such as food biopreservation or probiotic formulations.
Collapse
Affiliation(s)
- Marisol Vallejo
- Laboratorio de Biotecnología Bacteriana, Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Trelew, Chubut, Argentina
| | - Romina B Parada
- Laboratorio de Biotecnología Bacteriana, Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Trelew, Chubut, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), República Argentina
| | - Emilio R Marguet
- Laboratorio de Biotecnología Bacteriana, Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Trelew, Chubut, Argentina.
| |
Collapse
|
44
|
Chai Y, Gu X, Wu Q, Guo B, Qi Y, Wang X, Zhou X, Li J, Han M, Zhong F. Genome sequence analysis reveals potential for virulence genes and multi-drug resistance in an Enterococcus faecalis 2A (XJ05) strain that causes lamb encephalitis. BMC Vet Res 2019; 15:235. [PMID: 31286947 PMCID: PMC6615116 DOI: 10.1186/s12917-019-1936-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/29/2019] [Indexed: 01/06/2023] Open
Abstract
Background Enterococcus is an important component of normal flora in human and animals, but in recent years, the pathogenicity of Enterococcus has been confirmed in clinical medicine. More and more animal infections have been reported in veterinary clinics. For the last decades, outbreaks of encephalitis in lambs have become much more common in Northern Xinjiang, China. Consequent studies have confirmed that these affected lambs had been commonly infected with E. faecalis. More than 60 E. faecalis were isolated from the brain of infected lambs, A highly virulent strain entitled E. faecalis 2A (XJ05) were selected, sequenced and analyzed. Result Using whole genome sequence and de novo assembly, 18 contigs with NGS and annotation were obtained. It is confirmed that the genome has a size of 2.9 Mb containing 2783 protein-coding genes, as well as 54 tRNA genes and 4 rRNA genes. Some key features of this strain were identified, which included 7 predicted antibiotic resistance genes and 18 candidate virulence factor genes. Conclusion The E. faecalis 2A (XJ05) genome is conspicuous smaller than E.faecalis V583, but not significantly different from other non-pathogenic E. faecalis. It carried 7 resistance genes including 4 kind of antibiotics which were consistent with the results of extensive drug resistance phenotypic, including aminoglycoside, macrolide, phenicol, and tetracycline. 2A (XJ05) also carried 18 new virulence factor genes related to virulence, hemolysin genes (cylA, cylB, cylM, cylL) may play an important role in lamb encephalitis by E. faecalis 2A (XJ05).
Collapse
Affiliation(s)
- Yingjin Chai
- College of Animal Science and Technology, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Xiaoxiao Gu
- College of Animal Science and Technology, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Qin Wu
- College of Animal Science and Technology, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Bingjiao Guo
- College of Animal Science and Technology, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Yayin Qi
- College of Animal Science and Technology, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Xiaolan Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Xia Zhou
- College of Animal Science and Technology, Shihezi University, Shihezi, 832000, Xinjiang, China.
| | - Jie Li
- College of Animal Science and Technology, Shihezi University, Shihezi, 832000, Xinjiang, China.
| | - Mengli Han
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, Xinjiang, China.
| | - Fagang Zhong
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, Xinjiang, China
| |
Collapse
|
45
|
Sattari-Maraji A, Jabalameli F, Node Farahani N, Beigverdi R, Emaneini M. Antimicrobial resistance pattern, virulence determinants and molecular analysis of Enterococcus faecium isolated from children infections in Iran. BMC Microbiol 2019; 19:156. [PMID: 31286887 PMCID: PMC6615243 DOI: 10.1186/s12866-019-1539-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/01/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Enterococcus species continues to be an important cause of hospital-acquired infection worldwide. This study was designed to determine the antibiotic resistance profiles, virulence genes and molecular characteristics of Enterococcus faecium strains isolated from an Iranian children hospital in a four-years period. RESULTS A total 189 Enterococcus strains, comprising 108 (57%) E. faecium, 67 (35%) E. faecalis and 14 (7%) isolates of other spp. were isolated during the collection period. More than 92% of E. faecium isolates were resistant to ampicillin (92.5%), ciprofloxacin (96%), erythromycin (100%) and clindamycin (96%). A high frequency of resistance to clindamycin (100%), erythromycin (98.5%) and ciprofloxacin (80.5%) was observed among E. faecalis isolates, while resistance to ampicillin (7%) was less frequent. The prevalence of vanA gene among vancomycin resistant E. faecium and vancomycin resistant E. faecalis was 95 and 50%, respectively. The analysis of 108 E. faecium isolates revealed 34 variable number tandem repeat (VNTR) patterns and 27 Multi Locus VNTR Analysis (MLVA) types (MTs). CONCLUSIONS The results show a shift from E. faecalis to E. faecium as the dominant enterococcal species among patients at the children Hospital. Our data revealed that the majority of E. faecium isolates (66%) belonged to three common MTs and these types were isolated from different wards in children hospital.
Collapse
Affiliation(s)
- Azin Sattari-Maraji
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, 100 Poursina St., Keshavarz Blvd, Tehran, Iran
| | - Fereshteh Jabalameli
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, 100 Poursina St., Keshavarz Blvd, Tehran, Iran
| | - Narges Node Farahani
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, 100 Poursina St., Keshavarz Blvd, Tehran, Iran
| | - Reza Beigverdi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, 100 Poursina St., Keshavarz Blvd, Tehran, Iran
| | - Mohammad Emaneini
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, 100 Poursina St., Keshavarz Blvd, Tehran, Iran.
| |
Collapse
|
46
|
Cirrincione S, Neumann B, Zühlke D, Riedel K, Pessione E. Detailed Soluble Proteome Analyses of a Dairy-Isolated Enterococcus faecalis: A Possible Approach to Assess Food Safety and Potential Probiotic Value. Front Nutr 2019; 6:71. [PMID: 31157229 PMCID: PMC6533484 DOI: 10.3389/fnut.2019.00071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/26/2019] [Indexed: 12/18/2022] Open
Abstract
Enterococci are common inhabitants of the gastrointestinal tracts of humans and animals and thanks to their capability to tolerate different environmental conditions and their high rates of gene transfer, they are able to colonize various ecological niches, as food matrices. Enterococcus faecalis bacteria are defined as controversial microorganisms. From one side they are used as food starters, bio-control agents and probiotics to improve human or animal health. From the other side, in the last two decades enterococci have emerged as important nosocomial pathogens, because bearing high-level of resistance to antibiotics and several putative virulence factors. In this study, the soluble proteome quantitation data (LC-MS/MS) of the food-isolated strain E. faecalis D27 (dairy-isolate) was compared with the soluble proteome quantitation data of the pathogenic E. faecalis UW3114 (urinary tract infection isolate) and with the one of the health promoting strain E. faecalis Symbioflor1, respectively. The comparison of cytosolic protein expression profiles highlighted statistically significant changes in the abundance of proteins mainly involved in specific metabolic pathways, nutrient transport, stress response, and cell wall modulation. Moreover, especially in the dairy isolate and the clinical isolate, several proteins with potential pathogenic implications were found, such as serine proteases, von Willebrand factor, serine hydrolase with beta lactamase activity, efflux transporter, and proteins involved in horizontal gene transfer. The analysis of the extracellular proteome provided interesting results concerning proteins involved in bacterial communication, such as pheromones and conjugative elements and also proteins able to interact with human components. The phenotypic characterization evaluating (i) biofilm formation (ii) hemolytic activity on blood agar plates (iii) protease activity (iv) gelatinase (v) antibiotic resistance pattern, enabled us to elucidate the risks associated with the poor characterized foodborne E. faecalis D27.
Collapse
Affiliation(s)
- Simona Cirrincione
- Department of Life Sciences and Systems Biology, Univerity of Torino, Turin, Italy
| | - Bernd Neumann
- Department for Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald, Germany
| | - Daniela Zühlke
- Department for Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Department for Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald, Germany
| | - Enrica Pessione
- Department of Life Sciences and Systems Biology, Univerity of Torino, Turin, Italy
| |
Collapse
|
47
|
Baccouri O, Boukerb AM, Farhat LB, Zébré A, Zimmermann K, Domann E, Cambronel M, Barreau M, Maillot O, Rincé I, Muller C, Marzouki MN, Feuilloley M, Abidi F, Connil N. Probiotic Potential and Safety Evaluation of Enterococcus faecalis OB14 and OB15, Isolated From Traditional Tunisian Testouri Cheese and Rigouta, Using Physiological and Genomic Analysis. Front Microbiol 2019; 10:881. [PMID: 31105672 PMCID: PMC6491886 DOI: 10.3389/fmicb.2019.00881] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 04/05/2019] [Indexed: 12/13/2022] Open
Abstract
Lactic acid bacteria (LAB) strains OB14 and OB15 were isolated from traditional Tunisian fermented dairy products, Testouri cheese and Rigouta, respectively. They were identified as Enterococcus faecalis by the MALDI TOF-MS (matrix assisted laser desorption-ionization time of flight mass spectrometry) biotyper system and molecular assays (species-specific PCR). These new isolates were evaluated for probiotic properties, compared to E. faecalis Symbioflor 1 clone DSM 16431, as reference. The bacteria were found to be tolerant to the harsh conditions of the gastrointestinal tract (acidity and bile salt). They were low to moderate biofilm producers, can adhere to Caco-2/TC7 intestinal cells and strengthen the intestinal barrier through the increase of the transepithelial electrical resistance (TER). Susceptibility to ampicillin, vancomycin, gentamicin and erythromycin has been tested using the broth microdilutions method. The results demonstrated that E. faecalis OB14 and OB15 were sensitive to the clinically important ampicillin (MIC = 1 μg/mL) and vancomycin (MIC = 2 μg/mL) antibiotics. However, Whole Genome Sequencing (WGS) showed the presence of tetracycline resistance and cytolysin genes in E. faecalis OB14, and this led to high mortality of Galleria Mellonella larvae in the virulence test. Hierarchical cluster analysis by MALDI TOF-MS biotyper showed that E. faecalis OB15 was closely related to the E. faecalis Symbioflor 1 probiotic strain than to OB14, and this has been confirmed by WGS using the average nucleotide identity (ANI) and Genome-to-Genome Hybridization similarity methods. According to these results, E. faecalis OB15 seems to be reliable for future development as probiotic, in food or feed industry.
Collapse
Affiliation(s)
- Olfa Baccouri
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology, University of Carthage, Tunis, Tunisia
| | - Amine Mohamed Boukerb
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université – Université de Rouen, Évreux, France
| | - Leila Ben Farhat
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology, University of Carthage, Tunis, Tunisia
| | - Arthur Zébré
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université – Université de Rouen, Évreux, France
| | | | - Eugen Domann
- Institute of Medical Microbiology, German Centre for Infection Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - Mélyssa Cambronel
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université – Université de Rouen, Évreux, France
| | - Magalie Barreau
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université – Université de Rouen, Évreux, France
| | - Olivier Maillot
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université – Université de Rouen, Évreux, France
| | | | | | - Mohamed Nejib Marzouki
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology, University of Carthage, Tunis, Tunisia
| | - Marc Feuilloley
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université – Université de Rouen, Évreux, France
| | - Ferid Abidi
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology, University of Carthage, Tunis, Tunisia
| | - Nathalie Connil
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université – Université de Rouen, Évreux, France
| |
Collapse
|
48
|
Popović N, Djokić J, Brdarić E, Dinić M, Terzić-Vidojević A, Golić N, Veljović K. The Influence of Heat-Killed Enterococcus faecium BGPAS1-3 on the Tight Junction Protein Expression and Immune Function in Differentiated Caco-2 Cells Infected With Listeria monocytogenes ATCC 19111. Front Microbiol 2019; 10:412. [PMID: 30891021 PMCID: PMC6411766 DOI: 10.3389/fmicb.2019.00412] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/18/2019] [Indexed: 12/14/2022] Open
Abstract
Listeria monocytogenes, the common foodborne pathogenic bacteria species, compromises the intestinal epithelial barrier, leading to development of the listeriosis, a severe disease especially among immunocompromised individuals. L. monocytogenes infection usually requires antibiotic treatment, however, excessive use of antibiotics promotes emergence of antibiotic resistance and the destruction of gut microbiota. Probiotics, including lactic acid bacteria (LAB), have been repeatedly proven as an alternative approach for the treatment of various infections. We have analyzed the potential of Enterococcus faecium BGPAS1-3, a dairy isolate exhibiting strong direct antilisterial effect, to modulate the response of differentiated Caco-2 intestinal epithelial cells to L. monocytogenes ATCC 19111 infection. We showed that the molecule with antilisterial effect is a bacterial cell-wall protein that is highly resistant to the high-temperature treatment. When we tested the antilisterial potential of heat-killed BGPAS1-3, we found that it could prevent tight junction disruption in differentiated Caco-2 monolayer infected with L. monocytogenes ATCC 19111, induce antilisterial host response mechanisms, and stimulate the production of protective TGF-β in intestinal epithelial cells. We also showed that the modulation of MyD88 dependent TLR2 and TLR4 pathways by BGPAS1-3 are involved in host response against L. monocytogenes ATCC 19111. Since heat-killed BGPAS1-3 possess strong antilisterial effects, such postbiotic could be used as a controllable and safe therapeutic.
Collapse
Affiliation(s)
| | - Jelena Djokić
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | |
Collapse
|
49
|
Silvetti T, Morandi S, Brasca M. Does Enterococcus faecalis from Traditional Raw Milk Cheeses Serve as a Reservoir of Antibiotic Resistance and Pathogenic Traits? Foodborne Pathog Dis 2019; 16:359-367. [PMID: 30741557 DOI: 10.1089/fpd.2018.2542] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Enterococcus faecalis is not only a prevalent species among dairy microbial community but also a well-documented opportunistic pathogen. Food safety should exclude the possibility of consumer exposure to its virulence traits through consumption of dairy products. In this study, an integrated approach based on both phenotypic and genotypic methods was applied to investigate the incidence of antibiotic resistance and pathogenicity potential in 40 E. faecalis isolated from 10 Italian raw milk cheeses over a 13-year period (1997-2009). Among the 14 tested antibiotics, resistance to tetracycline, rifampicin, chloramphenicol, and erythromycin was observed, whereas vancomycin-resistant enterococci were not found. A high incidence (90% of strains) of the tet(M) gene emerged, whereas tet(K), tet(S), tet(L), int, and ermB genes were occasionally amplified (12.5%, 10%, 7.5%, 2.5% and 30%, respectively). No strain was positive for vancomycin-resistant determinants. Among the seven virulence determinants considered, the asa1, gelE, esp, and efaA genes were harbored. No other gene encoding for either different virulence factors (cylA, hyl, and ace) or amino acid decarboxylase activity (hdc, tdc, and odc) was detected. Consequently, E. faecalis isolated from raw milk cheeses does not represent a substantial reservoir of antimicrobial resistance and virulence factors if compared with clinical strains. However, this species occasionally harbors detrimental traits; thus, the possibility that it could be a route for transmission of pathogenic genes through dairy products should never be disregarded.
Collapse
Affiliation(s)
- Tiziana Silvetti
- Institute of Sciences of Food Production, Italian National Research Council, Milan, Italy
| | - Stefano Morandi
- Institute of Sciences of Food Production, Italian National Research Council, Milan, Italy
| | - Milena Brasca
- Institute of Sciences of Food Production, Italian National Research Council, Milan, Italy
| |
Collapse
|
50
|
Bagci U, Ozmen Togay S, Temiz A, Ay M. Probiotic characteristics of bacteriocin-producing Enterococcus faecium strains isolated from human milk and colostrum. Folia Microbiol (Praha) 2019; 64:735-750. [PMID: 30739237 DOI: 10.1007/s12223-019-00687-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 01/28/2019] [Indexed: 01/27/2023]
Abstract
As potential probiotic traits of human milk-isolated bacteria have increasingly been recognized, this study aimed to evaluate the probiotic properties of bacteriocin-producing Enterococcus faecium strains isolated from human milk and colostrum. Among 118 human milk- and colostrum-isolated lactic cocci, only 29 were identified as Enterococcus. Of these, only four Enterococcus faecium isolates exhibited bacteriocigenic activity against several pathogenic Gram-positive bacteria, including Listeria monocytogenes. These isolates exhibited high acid (up to pH 3.0) and bile tolerance (0.5% oxgall) in simulated gastrointestinal conditions, demonstrating their ability to survive through the upper gastrointestinal tract. All of the E. faecium strains were shown to be sensitive to most of the antibiotics including vancomycin, tetracycline, rifampicin, and erythromycin, while they were resistant to kanamycin and chloramphenicol. None of the strains showed any virulence (gelE, agg2, clyA, clyB, clyM) and antibiotic resistance genes (vanA, vanB, ermB, tetM, and aac(6')-le-aph(2″)-la). In addition, all the strains were able to assimilate cholesterol, ranging between 25.2-64.1% and they exhibited variable adherence (19-36%) to Caco-2 cells. Based on the overall results of this in vitro study, four of the E. faecium strains isolated from human milk and colostrum can be considered as promising probiotic candidates; however, further in vivo evaluations are required.
Collapse
Affiliation(s)
- Ufuk Bagci
- Department of Food Engineering, Faculty of Engineering, Trakya University, 22180, Edirne, Turkey.
| | - Sine Ozmen Togay
- Department of Food Engineering, Uludag University, Bursa, Turkey
| | - Ayhan Temiz
- Department of Food Engineering, Hacettepe University, Ankara, Turkey
| | - Mustafa Ay
- Department of Food Technology, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|