1
|
Du S, Chen X, Han X, Wang Y, Yu D, Li Y, Zhu C, Tong Y, Gao S, Wang J, Wei F, Cai Q. Lactate Induces Tumor Progression via LAR Motif-Dependent Yin-Yang 1 Degradation. Mol Cancer Res 2024; 22:957-972. [PMID: 38888574 DOI: 10.1158/1541-7786.mcr-23-0583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/22/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
The metabolic reprogramming of aerobic glycolysis contributes to tumorigenesis. High plasma lactate is a critical regulator in the development of many human malignancies; however, the underlying molecular mechanisms of cancer progression in response to lactate (LA) remain elusive. Here, we show that the reduction of Yin-Yang 1 (YY1) expression correlated with high LA commonly occurs in various cancer cell types, including B-lymphoma and cervical cancer. Mechanistically, LA induces YY1 nuclear export and degradation via HSP70-mediated autophagy adjacent to mitochondria in a histidine (His)-rich LA-responsive (LAR) motif-dependent manner. The mutation of the LAR motif blocks LA-mediated YY1 cytoplasmic accumulation and in turn enhances cell apoptosis. Furthermore, low expression of YY1 promotes colony formation, invasion, angiogenesis, and growth of cancer cells in response to LA in vitro and in vivo using a murine xenograft model. Taken together, our findings reveal a key LAR element and may serve as therapeutic target for intervening cancer progression. Implications: We have shown that lactate can induce YY1 degradation via its His-rich LAR motif and low expression of YY1 promotes cancer cell progression in response to lactate, leading to better prediction of YY1 targeting therapy.
Collapse
Affiliation(s)
- Shujuan Du
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Xiaoting Chen
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Xiao Han
- Center of Diagnosis and Treatment for Cervical and Uterine Cavity Disease, Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Shanghai, China
| | - Yuyan Wang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Dan Yu
- Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Ying Li
- Division of Hematology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Caixia Zhu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Yin Tong
- Division of Hematology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Shujun Gao
- Center of Diagnosis and Treatment for Cervical and Uterine Cavity Disease, Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Shanghai, China
| | - Junwen Wang
- Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Fang Wei
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Qiliang Cai
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| |
Collapse
|
2
|
Wang S, Liu J, Hu S, Mao Y. LDH and NLR, as inflammatory markers, the independent risk factors for COVID-19 complicated with respiratory failure in elderly patients. Pak J Med Sci 2024; 40:2112-2117. [PMID: 39416623 PMCID: PMC11476168 DOI: 10.12669/pjms.40.9.8728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 10/19/2024] Open
Abstract
Objective Lactate dehydrogenase (LDH) is an enzyme that is responsible for the production of lactic acid, which is a necessary byproduct when the body does not have enough oxygen. LDH levels in the blood can be used as a marker to predict mortality in patients with ARDS, severe COVID-19, and cancer. To analyze the clinical characteristics of COVID-19 in the elderly and the correlation between LDH and respiratory failure in COVID-19 patients, to improve the identification and management of this type of pneumonia by clinicians. Methods This was a single-center retrospective study. We performed routine laboratory tests in 105 COVID-19 patients admitted to the affiliated hospital of Qingdao University (Qingdao, China) from October 1, 2022 to February 1, 2023. The diagnosis of respiratory failure was established based on the results of blood gas analysis upon admission. Results The median age was 79 years. Among all univariable parameters, LDH, neutrophil to lymphocyte ratio (NLR) and Prothrombin Time (PT) were significantly independent risk factors of RF in elderly COVID-19 patients. LDH (AUC=0.829) also had a maximum specificity (96.5%), with the cutoff value of 280.5. Conclusion The levels of LDH, NLR, and PT may serve as potential indicators for elderly COVID-19 patients combined with respiratory failure. LDH, NLR and PT assays can be beneficial for patients who need closer respiratory monitoring and more aggressive supportive care to prevent a negative prognosis.
Collapse
Affiliation(s)
- Shan Wang
- Shan Wang, Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| | - Jia Liu
- Jia Liu, Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| | - Song Hu
- Song Hu, Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| | - Yongjun Mao
- Yongjun Mao, Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| |
Collapse
|
3
|
Li Y, Du S, Zhou K, Zhang Y, Chen X, Zhu C, Jia Y, Wang Y, Zhang D, Wei F, Tong Y, Cai Q. A small molecule that selectively inhibits the growth of Epstein-Barr virus-latently infected cancer cells. iScience 2024; 27:110581. [PMID: 39220260 PMCID: PMC11365366 DOI: 10.1016/j.isci.2024.110581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/10/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Epstein-Barr virus (EBV), an oncogenic herpesvirus, is predominantly found in the latent infection form and is highly associated with many human malignancies, which mainly have poor prognoses and no effective treatments. Here, we obtained thirteen compounds from small-molecule libraries for specific inhibition of EBV-latently infected cell growth in vitro by high-throughput screening. Among them, cetrimonium bromide (CetB) was identified to selectively inhibit the growth of different EBV-infected B lymphoma cell lines. Importantly, CetB reduced EBNA1 protein stability, activated G1 arrest and early apoptosis of EBV-latently infected cells without viral lytic reactivation, which leads to dramatically inhibit colony formation and tumor growth of EBV-infected cells in vitro and in vivo, and significantly prolong the survival of tumor-bearing mice. Overall, these findings demonstrate that CetB acts as a highly selective inhibitor of the growth of EBV-infected cells and has the potential for further development of effective therapeutic strategies specific against EBV-associated cancers.
Collapse
Affiliation(s)
- Ying Li
- Division of Hematology, Shanghai First People’s Hospital, School of Medicine & ShengYushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Shujuan Du
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Kun Zhou
- Division of Hematology, Shanghai First People’s Hospital, School of Medicine & ShengYushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Yulin Zhang
- Division of Hematology, Shanghai First People’s Hospital, School of Medicine & ShengYushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Xiaoting Chen
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Caixia Zhu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Yuping Jia
- Shandong Academy of Pharmaceutical Sciences, Jinan 250100, P.R. China
| | - Yuyan Wang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Daizhou Zhang
- Shandong Academy of Pharmaceutical Sciences, Jinan 250100, P.R. China
| | - Fang Wei
- Division of Hematology, Shanghai First People’s Hospital, School of Medicine & ShengYushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Yin Tong
- Division of Hematology, Shanghai First People’s Hospital, School of Medicine & ShengYushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Qiliang Cai
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
4
|
Aciole MR, Gonçales JP, Neves PAF, Soares CRP, de Oliveira MI, de Melo HRL, de Lima Neto RG, Moura LCRV, Araújo PSR, de Lorena VMB. Levels of soluble TNF receptors (sTNFR1 and sTNFR2) increase with clinical worsening of patients and are related to COVID-19 mortality. Immunobiology 2024; 229:152748. [PMID: 38128238 DOI: 10.1016/j.imbio.2023.152748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/01/2023] [Accepted: 09/13/2023] [Indexed: 12/23/2023]
Abstract
The present study aimed to inspect the serum levels of the soluble receptors, sTNFR1 and sTNFR2, in patients with COVID-19. The large production of inflammatory cytokines is an essential process in the pathogenesis of COVID-19. TNF is a multifaceted proinflammatory cytokine which has soluble and membrane receptors. Thus, knowing the role of these receptors will help better understand this disease's immunopathogenesis. We included 131 patients confirmed for SARS-CoV-2, separated into three groups: ward patients without O2 support, group A (n = 14); ward patients with O2 support, group B (n = 85), and patients in an intensive care unit (ICU), group C (n = 32), making up the receptors dosed by flow cytometry. The results showed that sTNFR1 and sTNFR2 are associated with disease severity, being higher in group C when compared to group A. As for the levels of receptors and their relationship with the degree of lung involvement, we found higher values of sTNFR1 in patients in group 1 (pulmonary involvement < 25%), suggesting that inflammatory processes related to TNF are not necessarily associated with the primary site of infection. When we analysed the patients who passed away compared to those who recovered, both receptors significantly increased the mortality numbers. These findings suggest a relevant influence of soluble receptors in the inflammatory processes involved in the pathogenesis of COVID-19. Wherefore, we suggest using these receptors as biomarkers of severity and mortality of the disease.
Collapse
Affiliation(s)
- Melayne Rocha Aciole
- Department of Immunology, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Pernambuco, Brazil; Federal University of Pernambuco - Postgraduate in Tropical Medicine, Recife, Pernambuco, Brazil; Ser Educational Group - Recife, Pernambuco, Brazil
| | - Juliana Prado Gonçales
- Department of Immunology, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Pernambuco, Brazil; Ser Educational Group - Recife, Pernambuco, Brazil
| | - Patrícia Areias Feitosa Neves
- Department of Immunology, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Pernambuco, Brazil; Federal University of Pernambuco - Postgraduate in Tropical Medicine, Recife, Pernambuco, Brazil
| | | | - Marta Iglis de Oliveira
- Federal University of Pernambuco - Postgraduate in Tropical Medicine, Recife, Pernambuco, Brazil
| | | | | | | | | | | |
Collapse
|
5
|
Mu T, Wang X, Lu Z, Tong J. Implications of LDH in patients with coronavirus disease 2019 pneumonia. Front Cell Infect Microbiol 2023; 13:1180187. [PMID: 37965268 PMCID: PMC10642759 DOI: 10.3389/fcimb.2023.1180187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 10/02/2023] [Indexed: 11/16/2023] Open
Abstract
Objective The objective of this study was to explore the value of serum lactic dehydrogenase (LDH) in the early diagnosis and prognostic evaluation of pneumonia associated with the novel coronavirus infection. Methods A total of 101 patients with coronavirus disease 2019 (COVID-19) pneumonia were included in the study. According to the severity of the initial chest computed tomography (CT), the patients were divided into the ordinary pneumonia group and the severe pneumonia group and then divided into the remission group and the nonremission group according to the changes of the chest CT after medication treatment. The differences in general characteristics, underlying diseases, clinical symptoms, laboratory findings, and imaging examination outcomes between groups were observed retrospectively. To analyze the diagnostic performance of LDH, receiver operating characteristic (ROC) curves were constructed and the area under the curve (AUC) was calculated. Results Compared with ordinary pneumonia patients, patients in the severe group presented with significantly higher LDH, neutrophil count, high-sensitivity troponin T (HS-TnT), C-reactive protein (CRP), human serum amyloid A (SAA), N-terminal pro-brain natriuretic peptide (NTproBNP), and D-dimer. Compared with remission patients, non-remission patients presented with significantly higher LDH, neutrophil count, HS-TnT, CRP, SAA, procalcitonin (PCT), creatine kinase-MB mass (CKMB_M), NTproBNP, and D-dimer. In multivariate logistic regression analysis, we found that LDH [odds ratio (OR), 1.015; 95% confidence interval (CI), 1.006-1024; p = 0.001] and neutrophil count (OR, 1.352; 95% CI, 1.008-1.811; p = 0.044) were independently associated with exacerbation in COVID-19 patients. For ROC analysis, the AUC was 0.833 (95% CI, 0.729-0.936; p < 0.001) when we use the LDH value of 256.69 U/L to discriminate the ordinary pneumonia and severe pneumonia patients. The AUC was 0.759 (95% CI, 0.603-0.914; p = 0.008) and the sensitivity is 92.3% when we combined the LDH (cutoff value 258.46 U/L) and the neutrophil count (cutoff value 6.76 × 109/L) to discriminate remission and non-remission patients. Conclusion The level of LDH is associated with the severity of COVID-19 pneumonia and can be used as important indicators to evaluate the prognosis of patients.
Collapse
Affiliation(s)
- Tong Mu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong, China
| | - Xingguang Wang
- Department of Respiratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong, China
| | - Zhiming Lu
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong, China
| | - Jia Tong
- Department of Geriatric Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
6
|
Thakur A, Kumar M. Integration of Human and Viral miRNAs in Epstein-Barr Virus-Associated Tumors and Implications for Drug Repurposing. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:93-108. [PMID: 36927073 DOI: 10.1089/omi.2023.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Epstein-Barr virus (EBV) is associated with several tumors, and has substantial relevance for public health. Therapeutics innovation for EBV-related disorders is much needed. In this context, miRNAs are noncoding RNA molecules that play vital roles in EBV infection. miRNA-Seq and RNA-Seq data for EBV-associated clinical samples and cell lines have been generated, but their detailed integrative analyses, and exploitation for drug repurposing against EBV are lacking. Hence, we identified and analyzed the differentially expressed miRNAs (DEmiRs) in EBV-infected cell lines (28) and infected (28) and uninfected human tissue (20) samples using an in-house pipeline. We found significantly enriched host miRNAs like hsa-mir-3651, hsa-mir-1248, and hsa-mir-29c-3p in EBV-infected samples from EBV-associated nasopharyngeal carcinoma and Hodgkin's lymphoma, among others. Furthermore, we also identified significantly enriched novel miRNAs such as hsa-mir-29c-3p, hsa-mir-3651, and hsa-mir-98-3p, which were not previously reported in EBV-related tumors. Differentially expressed mRNAs (DEMs) were identified in EBV-infected cell lines (21) and uninfected human tissue (14) samples. We predicted and selected 1572 DEMs (upregulated) that are targeted by 547 DEmiRs (downregulated). These were further classified into essential (870) and nonessential (702) genes. Moreover, a miRNA-mRNA network was developed for the hub miRNAs. Importantly, we used the DEMs during EBV latent infection types I, II, and III to identify the candidate drugs for repurposing: Glyburide, Levodopa, Nateglinide, and Stiripentol, among others. To the best of our knowledge, this is the first integrative analyses that identified DEmiRs and DEMs as potential therapeutic targets and predicted drugs as potential candidates for repurposing against EBV-related tumors.
Collapse
Affiliation(s)
- Anamika Thakur
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Manoj Kumar
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
7
|
Han X, Du S, Chen X, Min X, Dong Z, Wang Y, Zhu C, Wei F, Gao S, Cai Q. Lactate-mediated Fascin protrusions promote cell adhesion and migration in cervical cancer. Theranostics 2023; 13:2368-2383. [PMID: 37153736 PMCID: PMC10157738 DOI: 10.7150/thno.83938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/13/2023] [Indexed: 05/10/2023] Open
Abstract
Background: Lactate is associated with the poor prognosis of many human malignancies. Cervical cancer, one of main causes of women mortality worldwide, is aggressive and absent of effective pharmacological treatment, and its underlying mechanisms of progression remain elusive. Methods: The regulation of β-catenin to fascin protrusion formation upon acidic lactate (Lactic acid [LA]) stimulation was evaluated through in β-catenin or fascin deficiency cell line models by immunofluorescence assays, and subcellular fractionation. The effect of β-catenin and fascin relocation by LA and its antagonist were evaluated by immunohistochemistry assay in patient tissues and mouse tumor xenograft model. Trypsin digestion, Transwell assay, cell proliferation in vitro was performed to explore the role of LA in the cell growth, adhesion and migration. Results: Low concentration of LA significantly promotes cytoskeleton remodeling via `protrusion formation to increase cell adhesion and migration. Mechanistically, upon LA stimulation, β-catenin diffuses from the cytoplasmic membrane into the nucleus, which in turn induces fascin nuclear-cytoplasm redistribution to the protrusion compartment. Moreover, the antagonist of LA sufficiently blocks the LA-mediated β-catenin nuclear import, fascin nuclear export, and the growth and invasion of cervical cancer cells in vitro and in vivo using a murine xenograft model. Conclusions: This study uncovers β-catenin-fascin axis as a key signal in response to extracellular lactate and indicates that antagonist of LA may serve as a potential clinical intervention for cancer development.
Collapse
Affiliation(s)
- Xiao Han
- Center of Diagnosis and Treatment For Cervical & Uterine Cavity Disease, Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, & MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Shujuan Du
- Center of Diagnosis and Treatment For Cervical & Uterine Cavity Disease, Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, & MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Xiaoting Chen
- Center of Diagnosis and Treatment For Cervical & Uterine Cavity Disease, Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, & MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Xuehua Min
- Center of Diagnosis and Treatment For Cervical & Uterine Cavity Disease, Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, & MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Zhongwei Dong
- Center of Diagnosis and Treatment For Cervical & Uterine Cavity Disease, Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, & MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Yuyan Wang
- Center of Diagnosis and Treatment For Cervical & Uterine Cavity Disease, Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, & MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Caixia Zhu
- Center of Diagnosis and Treatment For Cervical & Uterine Cavity Disease, Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, & MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Fang Wei
- ShengYushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- ✉ Corresponding author: (QC); (SG); (FW)
| | - Shujun Gao
- Center of Diagnosis and Treatment For Cervical & Uterine Cavity Disease, Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, & MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
- ✉ Corresponding author: (QC); (SG); (FW)
| | - Qiliang Cai
- Center of Diagnosis and Treatment For Cervical & Uterine Cavity Disease, Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, & MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
- ✉ Corresponding author: (QC); (SG); (FW)
| |
Collapse
|
8
|
Ye L, Jiang Y, Zhang M. Crosstalk between glucose metabolism, lactate production and immune response modulation. Cytokine Growth Factor Rev 2022; 68:81-92. [PMID: 36376165 DOI: 10.1016/j.cytogfr.2022.11.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
Metabolites of glycolytic metabolism have been identified as signaling molecules and regulators of gene expression, in addition to their basic function as major energy and biosynthetic source. Immune cells reprogram metabolic pathways to cater to energy and biosynthesis demands upon activation. Most lymphocytes, including inflammatory M1 macrophages, mainly shift from oxidative phosphorylation to glycolysis, whereas regulatory T cells and M2 macrophages preferentially use the tricarboxylic acid (TCA) cycle and have reduced glycolysis. Recent studies have revealed the "non-metabolic" signaling functions of intermediates of the mitochondrial pathway and glycolysis. The roles of citrate, succinate and itaconate in immune response, including post-translational modifications of proteins and macrophages activation, have been highlighted. As an end product of glycolysis, lactate has received considerable interest from researchers. In this review, we specifically focused on studies exploring the integration of lactate into immune cell biology and associated pathologies. Lactate can act as a double-edged sword. On one hand, activated immune cells prefer to use lactate to support their function. On the other hand, accumulated lactate in the tissue microenvironment acts as a signaling molecule that restricts immune cell function. Recently, a novel epigenetic change mediated by histone lysine lactylation has been proposed. The burgeoning researches support the idea that histone lactylation participates in diverse cellular events. This review describes glycolytic metabolism, including the immunoregulation of metabolites of the TCA cycle and lactate. These latest findings strengthen our understanding on tumor and chronic inflammatory diseases and offer potential therapeutic options.
Collapse
Affiliation(s)
- Lei Ye
- Department of Gastroenterology and Hepatology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Shanghai 200001, China
| | - Yi Jiang
- Department of Gastroenterology and Hepatology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Shanghai 200001, China
| | - Mingming Zhang
- Department of Gastroenterology and Hepatology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Shanghai 200001, China; Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
9
|
Gupta GS. The Lactate and the Lactate Dehydrogenase in Inflammatory Diseases and Major Risk Factors in COVID-19 Patients. Inflammation 2022; 45:2091-2123. [PMID: 35588340 PMCID: PMC9117991 DOI: 10.1007/s10753-022-01680-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/04/2022] [Accepted: 05/03/2022] [Indexed: 12/15/2022]
Abstract
Lactate dehydrogenase (LDH) is a terminating enzyme in the metabolic pathway of anaerobic glycolysis with end product of lactate from glucose. The lactate formation is crucial in the metabolism of glucose when oxygen is in inadequate supply. Lactate can also be formed and utilised by different cell types under fully aerobic conditions. Blood LDH is the marker enzyme, which predicts mortality in many conditions such as ARDS, serious COVID-19 and cancer patients. Lactate plays a critical role in normal physiology of humans including an energy source, a signaling molecule and a pH regulator. Depending on the pH, lactate exists as the protonated acidic form (lactic acid) at low pH or as sodium salt (sodium lactate) at basic pH. Lactate can affect the immune system and act as a signaling molecule, which can provide a "danger" signal for life. Several reports provide evidence that the serum lactate represents a chemical marker of severity of disease similar to LDH under inflammatory conditions. Since the mortality rate is much higher among COVID-19 patients, associated with high serum LDH, this article is aimed to review the LDH as a therapeutic target and lactate as potential marker for monitoring treatment response of inflammatory diseases. Finally, the review summarises various LDH inhibitors, which offer potential applications as therapeutic agents for inflammatory diseases, associated with high blood LDH. Both blood LDH and blood lactate are suggested as risk factors for the mortality of patients in serious inflammatory diseases.
Collapse
Affiliation(s)
- G S Gupta
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
10
|
Lactic Acid Regulation: A Potential Therapeutic Option in Rheumatoid Arthritis. J Immunol Res 2022; 2022:2280973. [PMID: 36061305 PMCID: PMC9433259 DOI: 10.1155/2022/2280973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, persistent autoimmune disease that causes severe joint tissue damage and irreversible disability. Cumulative evidence suggests that patients suffering from RA for long durations are at risk of functional damage to cardiovascular, kidney, lung, and other tissues. This seriously affects the quality of work and life of patients. To date, no clear etiology of RA has been found. Recent studies have revealed that the massive proliferation of synoviocytes and immune cells requires a large amount of energy supply. Rapid energy supply depends on the anaerobic glucose metabolic pathway in both RA animal models and clinical patients. Anaerobic glycolysis can increase intracellular lactic acid (LA) content. LA induces the overexpression of monocarboxylate transporters (MCTs) in cell membranes. MCTs rapidly transport LA from the intracellular to the intercellular or articular cavity. Hence, a relatively high accumulation of LA could be formed in the intercellular and articular cavities of inflammatory joints. Moreover, LA contributes to the migration and activation of immune cells. Immune cells proliferate and secrete interleukins (IL) including IL-1, IL-2, IL-13, IL-17, and other inflammatory factors. These inflammatory factors enhance the immune inflammatory response of the body and aggravate the condition of RA patients. In this paper, the effects of LA on RA pathogenesis will be summarized from the perspective of the production, transport, and metabolism of synoviocytes and immune cells. Additionally, the drugs involved in the production, transport, and metabolism of LA are highlighted.
Collapse
|
11
|
Ng YS, Lee DY, Liu CH, Tung CY, He ST, Wang HC. White Spot Syndrome Virus Triggers a Glycolytic Pathway in Shrimp Immune Cells (Hemocytes) to Benefit Its Replication. Front Immunol 2022; 13:901111. [PMID: 35860260 PMCID: PMC9289281 DOI: 10.3389/fimmu.2022.901111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
White spot syndrome virus (WSSV) is the causative agent of a shrimp disease that inflicts in huge economic losses in shrimp-farming industry. WSSV triggers aerobic glycolysis in shrimp immune cells (hemocytes), but how this virus regulates glycolytic enzymes or pathway is yet to be characterized. Therefore, mRNA levels and activity of four important glycolytic enzymes, Hexokinase (HK), Phosphofructokinase (PFK), Pyruvate kinase (PK), and Lactate dehydrogenase (LDH), were measured in WSSV-infected shrimp hemocytes. Gene expression of HK and PFK, but not LDH or PK, was increased at the viral genome replication stage (12 hpi); furthermore, activity of these enzymes, except HK, was concurrently increased. However, there was no increased enzyme activity at the viral late stage (24 hpi). In vivo dsRNA silencing and glycolysis disruption by 2-DG further confirmed the role of glycolysis in virus replication. Based on tracing studies using stable isotope labeled glucose, glycolysis was activated at the viral genome replication stage, but not at the viral late stage. This study demonstrated that WSSV enhanced glycolysis by activating glycolytic enzyme at the viral genome replication stage, providing energy and biomolecules for virus replication.
Collapse
Affiliation(s)
- Yen Siong Ng
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Der-Yen Lee
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Cheng-Yi Tung
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Ting He
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan
- *Correspondence: Han-Ching Wang,
| |
Collapse
|
12
|
Indari O, Jakhmola S, Pathak DK, Tanwar M, Kandpal M, Mishra A, Kumar R, Jha HC. Comparative Account of Biomolecular Changes Post Epstein Barr Virus Infection of the Neuronal and Glial Cells Using Raman Microspectroscopy. ACS Chem Neurosci 2022; 13:1627-1637. [PMID: 35561419 DOI: 10.1021/acschemneuro.2c00081] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Raman microspectroscopy is a vibrational spectroscopy technique used for investigating molecular fingerprints of a wide range of liquid or solid samples. The technique can be efficiently utilized to understand the virus-mediated cellular changes and could provide valuable insights into specific biomolecular alterations. The Epstein Barr virus (EBV) has been associated with various types of cancers as well as neurodegenerative diseases. However, EBV-mediated neurological ailments are yet underexplored in terms of biomolecular changes in neuronal and glial cells (astrocytes and microglia). In continuation of our earlier exploration of EBV-influenced glial cells, we tried to decipher biomolecular changes in EBV-infected neuronal cells using Raman microspectroscopy. Additionally, we compared the consecutive biomolecular changes observed in neuronal cells with both the glial cells. We observed that EBV infection gets differentially regulated in the neuronal cells, astrocytes, and microglia. The viral entry and initiation of infection-mediated cellular modulation could start as soon as 2 h post infection but may regulate a distinct biomolecular milieu in different time intervals. Similar to the early timespan, the 24-36 h interval could also be important for EBV to manipulate neuronal as well as glial cells as depicted from elevated biomolecular activities. At these time intervals, some common biomolecules such as proline, glucose, lactic acid, nucleotides, or cholesterol were observed in the cells. However, at these time intervals, some distinct biomolecules were also observed in each cell, such as collagen, lipid, and protein stretches in the neuronal nucleus (2-4 h); tyrosine and RNA in the astrocyte nucleus (2-4 h nucleus); and fatty acids in the microglia nucleus (24-36 h). The observed biomolecular entities could ultimately play pivotal roles in the viral usurpation of cells. We also provided insights into whether these biomolecular changes can be correlated to each other and mediate virus-associated manifestations which can be linked to neurological complications. Our study aids in the understanding of EBV-mediated biomolecular changes in the various compartments of the central nervous system.
Collapse
Affiliation(s)
- Omkar Indari
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Shweta Jakhmola
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Devesh K. Pathak
- Materials and Device Laboratory, Department of Physics, Indian Institute of Technology Indore, Simrol, Indore 453552, India
- Department of Chemical Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Manushree Tanwar
- Materials and Device Laboratory, Department of Physics, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Meenakshi Kandpal
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342011, India
| | - Rajesh Kumar
- Materials and Device Laboratory, Department of Physics, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| |
Collapse
|
13
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Jamali E. The emerging role non-coding RNAs in B cell-related disorders. Cancer Cell Int 2022; 22:91. [PMID: 35193592 PMCID: PMC8862212 DOI: 10.1186/s12935-022-02521-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/10/2022] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNAs and microRNAs have recently attained much attention regarding their role in the development of B cell lineage as well as participation in the lymphomagenesis. These transcripts have a highly cell type specific signature which endows them the potential to be used as biomarkers for clinical situations. Aberrant expression of several non-coding RNAs has been linked with B cell malignancies and immune related disorders such as rheumatoid arthritis, systemic lupus erythematous, asthma and graft-versus-host disease. Moreover, these transcripts can alter response of immune system to infectious conditions. miR-7, miR-16-1, miR-15a, miR-150, miR-146a, miR-155, miR-212 and miR-132 are among microRNAs whose role in the development of B cell-associated disorders has been investigated. Similarly, SNHG14, MALAT1, CRNDE, AL133346.1, NEAT1, SMAD5-AS1, OR3A4 and some other long non-coding RNAs participate in this process. In the current review, we describe the role of non-coding RNAs in B cell malignancies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Elena Jamali
- Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
AKHAVIZADEGAN HAMED, HOSAMIRUDSARI HADISEH, ALIZADEH MAHBOOBEH, ALIMOHAMADI YOUSEF, KARBAKHSH DAVARI MOJGAN, AKBARPOUR SAMANEH, NAKHOSTIN-ANSARI AMIN, FOROUGHI ALIREZA, MANSURI FARIBA, FARAJI NEDA, NASIRI ZOHREH. Can laboratory tests at the time of admission guide us to the prognosis of patients with COVID-19? JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2021; 62:E321-E325. [PMID: 34604572 PMCID: PMC8451338 DOI: 10.15167/2421-4248/jpmh2021.62.2.1700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 05/19/2021] [Indexed: 11/25/2022]
Abstract
Introduction To enhance the COVID-19 patients’ care and to optimize utilizing medical resources during the pandemic, relevant biomarkers are needed for prediction of the disease’s progression. The current study was aimed to determine the factors that affect the mortality of COVID-19 patients admitted in Baharloo hospital in Iran. Methods in the current retrospective study, 56 survived patients and 56 patients who were died (a total of 112 cases) because of COVID-19 infection were randomly selected from those who were admitted to Baharloo hospital. Each patient who was diagnosed with COVID-19 and had recovered from it matched with each non-survived patient in the term of age. Laboratory tests of all these patients at the time of admission were recorded and compared. All analyses performed using spss version 22 by considering α = 0.05 as a significant level. Results There was no statistical difference in the age and gender distribution between the two groups (p > 0.05). The prevalence of diabetes among survived patients was 37.5% and among non-survived patients was 26.8% and there was no statistical difference between two groups regarding this comorbidity (p = 0.22). Also, there was no statistical difference in the prevalence of hypertension and coronary heart diseases between two groups (p > 0.05). Lymphocyte percentage, blood oxygen level, and platelet (PLT) count was significantly higher in patients who had recovered (P < 0.05). Conclusions LDH level, Lymphocyte percentage, PLT count, and blood Oxygen saturation have associations with severe forms of COVID-19 infection and can be used as predictors to assess the patients who are suspected of infection with COVID-19 at the time of admission.
Collapse
Affiliation(s)
| | - HADISEH HOSAMIRUDSARI
- Infectious disease department, Tehran University of Medical Sciences, Tehran, Iran
- Correspondence: Hadiseh Hosamirudsari, Infectious Disease Department, Tehran University of Medical Sciences, Tehran, Iran - E-mail:
| | - MAHBOOBEH ALIZADEH
- Infectious disease department, Baharloo hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - YOUSEF ALIMOHAMADI
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran
| | | | - SAMANEH AKBARPOUR
- Department of Epidemiology & Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - ALIREZA FOROUGHI
- Department of Radiology, Tehran University of Medical Sciences, Tehran, Iran
| | - FARIBA MANSURI
- Department of Pulmonology and respiratory diseases, Tehran University of Medical Sciences, Tehran, Iran
| | - NEDA FARAJI
- Department of Internal medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - ZOHREH NASIRI
- Medical physiology and nursing office, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Llibre A, Grudzinska FS, O'Shea MK, Duffy D, Thickett DR, Mauro C, Scott A. Lactate cross-talk in host-pathogen interactions. Biochem J 2021; 478:3157-3178. [PMID: 34492096 PMCID: PMC8454702 DOI: 10.1042/bcj20210263] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
Lactate is the main product generated at the end of anaerobic glycolysis or during the Warburg effect and its role as an active signalling molecule is increasingly recognised. Lactate can be released and used by host cells, by pathogens and commensal organisms, thus being essential for the homeostasis of host-microbe interactions. Infection can alter this intricate balance, and the presence of lactate transporters in most human cells including immune cells, as well as in a variety of pathogens (including bacteria, fungi and complex parasites) demonstrates the importance of this metabolite in regulating host-pathogen interactions. This review will cover lactate secretion and sensing in humans and microbes, and will discuss the existing evidence supporting a role for lactate in pathogen growth and persistence, together with lactate's ability to impact the orchestration of effective immune responses. The ubiquitous presence of lactate in the context of infection and the ability of both host cells and pathogens to sense and respond to it, makes manipulation of lactate a potential novel therapeutic strategy. Here, we will discuss the preliminary research that has been carried out in the context of cancer, autoimmunity and inflammation.
Collapse
Affiliation(s)
- Alba Llibre
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
- Translational Immunology Laboratory, Institut Pasteur, Paris, France
| | - Frances S Grudzinska
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| | - Matthew K O'Shea
- Department of Infection, University Hospitals Birmingham NHS Foundation Trust, Birmingham, U.K
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, U.K
| | - Darragh Duffy
- Translational Immunology Laboratory, Institut Pasteur, Paris, France
| | - David R Thickett
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| | - Aaron Scott
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| |
Collapse
|
16
|
YILDIRIM A, OZCAN ABACIOGLU O, BELİBAĞLI MC. The impact of objective nutritional indexes on in-hospital mortality in Covid-19 infection. CUKUROVA MEDICAL JOURNAL 2021. [DOI: 10.17826/cumj.866208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
17
|
|
18
|
Fan S, Wu K, Zhao M, Yuan J, Ma S, Zhu E, Chen Y, Ding H, Yi L, Chen J. LDHB inhibition induces mitophagy and facilitates the progression of CSFV infection. Autophagy 2020; 17:2305-2324. [PMID: 32924761 DOI: 10.1080/15548627.2020.1823123] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cellular metabolism caters to the energy and metabolite needs of cells. Although the role of the terminal metabolic enzyme LDHB (lactate dehydrogenase B) in the glycolysis pathway has been widely studied in cancer cells, its role in viral infection is relatively unknown. In this study, we found that CSFV (classical swine fever virus) infection reduces pyruvate levels while promotes lactate release in pigs and in PK-15 cells. Moreover, using a yeast two-hybrid screening system, we identified LDHB as a novel interacting partner of CSFV non-structural protein NS3. These results were confirmed via co-immunoprecipitation, glutathione S-transferase and confocal assays. Furthermore, knockdown of LDHB via interfering RNA induced mitochondrial fission and mitophagy, as detected reduced mitochondrial mass. Upon inhibition of LDHB, expression of the mitophagy proteins TOMM20 and VDAC1 decreased and the ubiquitination of MFN2, a mitochondrial fusion mediator, was promoted. In addition, a sensitive dual fluorescence reporter (mito-mRFP-EGFP) was utilized to analyze the delivery of autophagosomes to lysosomes in LDHB inhibition cells. Furthermore, LDHB inhibition promoted NFKB signaling, which was regulated by mitophagy; meanwhile, infection with CSFV negated these NFKB anti-viral responses. Inhibition of LDHB also inhibited apoptosis, providing an environment conducive to persistent viral infection. Finally, we demonstrated that LDHB inhibition promoted CSFV growth via mitophagy, whereas its overexpression decreased CSFV replication. Our data revealed a novel mechanism through which LDHB, a metabolic enzyme, mediates CSFV infection, and provides new avenues for the development of anti-viral strategies.Abbreviations: 3-MA:3-methyladenine; CCCP:carbonyl cyanide 3-chlorophenylhydrazone; CCK-8:cell counting kit-8; CSFV:classical swine fever virus; DAPI:4',6-diamidino-2-phenylindole; DMSO:dimethyl sulfoxide; EGFP:enhanced green fluorescent protein; FBS:fetal bovine serum; FITC:fluorescein isothiocyanate; GST:glutathione-S-transferase; HCV:hepatitis C virus; IFN:interferon; LDH:lactate dehydrogenase; MAP1LC3/LC3:microtubule associated protein 1 light chain 3; MFN2:mitofusin 2; MOI:multiplicity of infection; NFKB:nuclear factor kappa B subunit 1; NFKBIA:nuclear factor inhibitor alpha; NS3:nonstructural protein 3; NKIRAS2:NFKB inhibitor interacting Ras like 2; PRKN:parkin E3 ubiquitin protein ligase; PBS:phosphate-buffered saline; qRT-PCR:real-time quantitative reverse transcriptase polymerase chain reaction; RELA:RELA proto-oncogene, NF-kB subunit; shRNA: short hairpin RNA; siRNA: small interfering RNA; TCID50:50% tissue culture infectious doses; TEM:transmission electron microscopy; TNF:tumor necrosis factor; TOMM20:translocase of outer mitochondrial membrane 20; VDAC1:voltage dependent anion channel 1.
Collapse
Affiliation(s)
- Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Jin Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Shengming Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Erpeng Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Yuming Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| |
Collapse
|
19
|
Mo X, Du S, Chen X, Wang Y, Liu X, Zhang C, Zhu C, Ding L, Li Y, Tong Y, Ju Q, Qu D, Tan F, Wei F, Cai Q. Lactate Induces Production of the tRNA His Half to Promote B-lymphoblastic Cell Proliferation. Mol Ther 2020; 28:2442-2457. [PMID: 32966775 DOI: 10.1016/j.ymthe.2020.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/27/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
High plasma lactate is emerging as a critical regulator in development and progression of many human malignancies. Small RNAs derived from cleavage of mature tRNAs have been implicated in many cellular stresses, but the detailed mechanisms that respond to lactic acid (LA; acidic lactate) are not well defined. Here, using an Epstein-Barr virus (EBV)-immortalized B lymphoblastic cell line (LCL) as a model, we report that LA induces cleavage of mature tRNA at the anticodon loop, particularly production of three 5'-tRNA halves (5'-HisGUG, 5'-ValAAC, and 5'-GlyGCC), along with increased expression of RNA polymerase III and angiogenin (ANG). Of these, only the 5'-HisGUG half binds to the chromatin regulator argonaute-2 (AGO2) instead of the AGO1 protein for stability. Notably, the levels of ANG and 5'-HisGUG half expression in peripheral blood mononuclear cells from B cell lymphoma patients are tightly correlated with lactate dehydrogenase (LDH; a lactate indicator) in plasma. Silencing production of the 5'-HisGUG half by small interfering RNA or inhibition of ANG significantly reduces colony formation and growth of LA-induced tumor cells in vitro and in vivo using a murine xenograft model. Overall, our findings identify a novel molecular therapeutic target for the diagnosis and treatment of B cell lymphoma.
Collapse
Affiliation(s)
- Xiaohui Mo
- Department of Dermatology, Renji Hospital, School of Medicine & ShengYushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China; MOE & NHC & CAMS Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology and Parasitology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China; Central Laboratory, Shanghai Dermatology Hospital, Shanghai 200443, P.R. China
| | - Shujuan Du
- MOE & NHC & CAMS Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology and Parasitology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Xiaoting Chen
- MOE & NHC & CAMS Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology and Parasitology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Yuyan Wang
- MOE & NHC & CAMS Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology and Parasitology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Xiaoqing Liu
- MOE & NHC & CAMS Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology and Parasitology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Chongqi Zhang
- Department of Dermatology, Renji Hospital, School of Medicine & ShengYushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Caixia Zhu
- MOE & NHC & CAMS Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology and Parasitology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Ling Ding
- MOE & NHC & CAMS Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology and Parasitology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Ying Li
- Division of Hematology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Yin Tong
- Division of Hematology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Qiang Ju
- Department of Dermatology, Renji Hospital, School of Medicine & ShengYushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Di Qu
- MOE & NHC & CAMS Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology and Parasitology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Fei Tan
- Central Laboratory, Shanghai Dermatology Hospital, Shanghai 200443, P.R. China.
| | - Fang Wei
- Department of Dermatology, Renji Hospital, School of Medicine & ShengYushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
| | - Qiliang Cai
- MOE & NHC & CAMS Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology and Parasitology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China; Expert Workstation, Baoji Central Hospital, Baoji 721008, P.R. China.
| |
Collapse
|
20
|
Han Y, Zhang H, Mu S, Wei W, Jin C, Tong C, Song Z, Zha Y, Xue Y, Gu G. Lactate dehydrogenase, an independent risk factor of severe COVID-19 patients: a retrospective and observational study. Aging (Albany NY) 2020; 12:11245-11258. [PMID: 32633729 PMCID: PMC7343511 DOI: 10.18632/aging.103372] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/22/2020] [Indexed: 01/31/2023]
Abstract
BACKGROUND The World Health Organization has declared coronavirus disease 2019 (COVID-19) a public health emergency of global concern. Updated analysis of cases might help identify the risk factors of illness severity. RESULTS The median age was 63 years, and 44.9% were severe cases. Severe patients had higher APACHE II (8.5 vs. 4.0) and SOFA (2 vs. 1) scores on admission. Among all univariable parameters, lymphocytes, CRP, and LDH were significantly independent risk factors of COVID-19 severity. LDH was positively related both with APACHE II and SOFA scores, as well as P/F ratio and CT scores. LDH (AUC = 0.878) also had a maximum specificity (96.9%), with the cutoff value of 344.5. In addition, LDH was positively correlated with CRP, AST, BNP and cTnI, while negatively correlated with lymphocytes and its subsets. CONCLUSIONS This study showed that LDH could be identified as a powerful predictive factor for early recognition of lung injury and severe COVID-19 cases. METHODS We extracted data regarding 107 patients with confirmed COVID-19 from Renmin Hospital of Wuhan University. The degree of severity of COVID-19 patients (severe vs. non-severe) was defined at the time of admission according to American Thoracic Society guidelines for community acquired pneumonia.
Collapse
Affiliation(s)
- Yi Han
- Emergency Department, Zhongshan Hospital, Fudan University, Shanghai 20032, China
| | - Haidong Zhang
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Sucheng Mu
- Emergency Department, Zhongshan Hospital, Fudan University, Shanghai 20032, China
| | - Wei Wei
- Emergency Department, Zhongshan Hospital, Fudan University, Shanghai 20032, China
| | - Chaoyuan Jin
- Emergency Department, Zhongshan Hospital, Fudan University, Shanghai 20032, China
| | - Chaoyang Tong
- Emergency Department, Zhongshan Hospital, Fudan University, Shanghai 20032, China
| | - Zhenju Song
- Emergency Department, Zhongshan Hospital, Fudan University, Shanghai 20032, China
| | - Yunfei Zha
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Yuan Xue
- Emergency Department, Zhongshan Hospital, Fudan University, Shanghai 20032, China
| | - Guorong Gu
- Emergency Department, Zhongshan Hospital, Fudan University, Shanghai 20032, China
| |
Collapse
|
21
|
Zhu Q, Ding L, Zi Z, Gao S, Wang C, Wang Y, Zhu C, Yuan Z, Wei F, Cai Q. Viral-Mediated AURKB Cleavage Promotes Cell Segregation and Tumorigenesis. Cell Rep 2020; 26:3657-3671.e5. [PMID: 30917319 DOI: 10.1016/j.celrep.2019.02.106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/04/2019] [Accepted: 02/27/2019] [Indexed: 12/31/2022] Open
Abstract
Aurora kinase B (AURKB), a central regulator of chromosome segregation and cytokinesis, is aberrantly expressed in various cancer cells. However, the relationship of AURKB and oncogenic viruses in cancer progression remains unclear. Here, we reveal that N-cleaved isoforms of AURKB exist in several oncovirus-associated tumor cells and patient cancer tissues, including Kaposi's sarcoma-associated herpesvirus (KSHV), Epstein-Barr virus (EBV), and human papillomavirus virus (HPV). Mechanistically, in KSHV-infected tumor cells, the latent viral antigen LANA cleaves AURKB at Asp76 in a serine protease-dependent manner. The N'-AURKB relocalizes to the spindle pole and promotes the metaphase-to-telophase transition in mitotic cells. Introduction of N'-AURKB but not C'-AURKB promotes colony formation and malignant growth of tumor cells in vitro and in vivo using a murine xenograft model. Altogether, our findings uncover a proteolytic cleavage mechanism by which oncoviruses induce cancer cell segregation and tumorigenesis.
Collapse
Affiliation(s)
- Qing Zhu
- MOE and MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ling Ding
- MOE and MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhenguo Zi
- ShengYushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shujun Gao
- Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chong Wang
- MOE and MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuyan Wang
- MOE and MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Caixia Zhu
- MOE and MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhenghong Yuan
- MOE and MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fang Wei
- ShengYushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiliang Cai
- MOE and MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China; Expert Workstation, Baoji Central Hospital, Baoji, 721008 Shaanxi Province, China.
| |
Collapse
|
22
|
Ge H, Lin K, Zhou C, Lin Q, Zhang Z, Wu J, Zheng L, Yang Q, Wu S, Chen W, Wang Y. A multi-omic analysis of orange-spotted grouper larvae infected with nervous necrosis virus identifies increased adhesion molecules and collagen synthesis in the persistent state. FISH & SHELLFISH IMMUNOLOGY 2020; 98:595-604. [PMID: 32004615 DOI: 10.1016/j.fsi.2020.01.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Grouper (Epinephelus coioides) is an important commercial maricultural fish, which suffers from nervous necrosis virus (NNV) infection. The molecular mechanisms underlying the pathogenesis of the viral infection are not clear. In this study, we combined deep RNA sequencing and label-free mass spectrum for the first time to analyze the transcriptomic and proteomic profiles in infected/dead, infected/survival (persistent), and infection-free (control)orange-spotted groupers in the larval stage. Further analyses showed that the transcriptome and proteome changed dramatically among the three distinct groups, especially differentially-expressed genes in the infected/dead and infected/survival larvae enriched for pathways related to immune response. Notably, the overlapped genes between transcriptomes and proteomes identified that genes related to collagen synthesis and adhesion molecules were enhanced in the persistent (infected/survival) stage, which might contribute to suppressing the acute and lethal immune responses upon NNV infection. These transcriptomic and proteomic datasets enable the investigation of molecular mechanisms underlying NNV infection, thus may help further development of molecular breeding in marine fishery.
Collapse
Affiliation(s)
- Hui Ge
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China; Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, 361012, China
| | - Kebing Lin
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, 361012, China
| | - Chen Zhou
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, 361012, China.
| | - Qi Lin
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, 361012, China
| | - Ziping Zhang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350117, China
| | - Jianshao Wu
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, 361012, China
| | - Leyun Zheng
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, 361012, China
| | - Qiuhua Yang
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, 361012, China
| | - Shuiqing Wu
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, 361012, China
| | - Wei Chen
- Shanghai Applied Protein Technology Co., Ltd, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
23
|
Ding L, Zhu Q, Zhou F, Tan H, Xu W, Pan C, Zhu C, Wang Y, Zhang H, Fu W, Qian Z, Yuan Z, Xu H, Wei F, Cai Q. Identification of viral SIM-SUMO2-interaction inhibitors for treating primary effusion lymphoma. PLoS Pathog 2019; 15:e1008174. [PMID: 31830143 PMCID: PMC6932820 DOI: 10.1371/journal.ppat.1008174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/26/2019] [Accepted: 10/30/2019] [Indexed: 12/19/2022] Open
Abstract
Primary effusion lymphoma (PEL) is an aggressive B-cell malignancy without effective treatment, and caused by the infection of Kaposi’s sarcoma-associated herpesvirus (KSHV), predominantly in its latent form. Previously we showed that the SUMO2-interacting motif within the viral latency-associated nuclear antigen (LANASIM) is essential for establishment and maintenance of KSHV latency. Here, we developed a luciferase based live-cell reporter system to screen inhibitors selectively targeting the interaction between LANASIM and SUMO2. Cambogin, a bioactive natural product isolated from the Garcinia genus (a traditional herbal medicine used for cancer treatment), was obtained from the reporter system screening to efficiently inhibit the association of SUMO2 with LANASIM, in turn reducing the viral episome DNA copy number for establishment and maintenance of KSHV latent infection at a low concentration (nM). Importantly, Cambogin treatments not only specifically inhibited proliferation of KSHV-latently infected cells in vitro, but also induced regression of PEL tumors in a xenograft mouse model. This study has identified Cambogin as a novel therapeutic agent for treating PEL as well as eliminating persistent infection of oncogenic herpesvirus. Primary effusion lymphoma is a common AIDS-associated malignancy caused by infection with Kaposi’s sarcoma-associated herpesvirus (KSHV), and is currently absence of efficient and specific treatment. Natural product from herbal medicines is a major source of drug discovery for the treatment of a variety of diseases. In this study, the authors demonstrated that Cambogin, a polycyclic polyprenylated acylphloroglucinols (PPAPs) isolated from the branches of Garcinia esculenta (a tropical evergreen tree and traditional cancer treatment across Southern Asia), is a potent and effective inhibitor of KSHV-latently infected cells at a low concentration (nM) in vitro and in vivo, through targeting viral LANASIM-SUMO2 interaction.
Collapse
Affiliation(s)
- Ling Ding
- MOE& NHC&CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Qing Zhu
- MOE& NHC&CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, P. R. China
- ShengYushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Feng Zhou
- Baoji Affiliated Hospital of Xi’an Medical University, Baoji & MOE Key Laboratory of Western Resources and Modern Biotechnology, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Hongsheng Tan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine & Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Wenjia Xu
- Unit of Herpesvirus and Molecular Virology, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, P. R. China
| | - Chengling Pan
- Beijing Computing Center, Beijing Academy of Science and Technology & Beijing Beike Deyuan Bio-Pharm Technology Company, Beijing, P. R. China
| | - Caixia Zhu
- MOE& NHC&CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Yuyan Wang
- MOE& NHC&CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Hong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine & Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Wenwei Fu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine & Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Zhikang Qian
- Unit of Herpesvirus and Molecular Virology, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, P. R. China
| | - Zhenghong Yuan
- MOE& NHC&CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine & Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
- * E-mail: (HX); (FW); (QC)
| | - Fang Wei
- ShengYushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
- * E-mail: (HX); (FW); (QC)
| | - Qiliang Cai
- MOE& NHC&CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, P. R. China
- Expert Workstation, Baoji Central Hospital, Baoji, P. R. China
- * E-mail: (HX); (FW); (QC)
| |
Collapse
|
24
|
Go H, Jang JY, Kim CW, Huh J, Kim PJ, Jeon YK. Identification of microRNAs modulated by DNA hypomethylating drugs in extranodal NK/T-cell lymphoma. Leuk Lymphoma 2019; 61:66-74. [PMID: 31441360 DOI: 10.1080/10428194.2019.1654096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To identify epigenetically silenced miRNAs and to investigate their influences on predictive target oncogenes in extranodal natural killer/T-cell lymphoma (NKTCL). Decitabine treatment was performed to evaluate methylated miRNAs in NKTCL cells. The relationship between a given miRNA and its target mRNA was validated using 24 tumor tissues. miR-379, miR-134, miR-20b, miR-376a, miR-654-3p, miR-143, miR-181c, miR-1225-5p, miR-1246, and miR-1275 were epigenetically silenced in SNK6 cells. miR-134, miR-376a, miR-143 and miR-181c significantly affected cellular viability. PDGFRα was regulated by miR-34a and miR-181c. miR-143, miR-20b and miR34a regulated STAT3 expression. miR-20b and miR-143 expression showed inverse correlations with STAT3 mRNA expression in NKTCL tissues. K-RAS was regulated by miR-181c. Downregulation of cell viability by salirasib treatment was identified. miRNAs were downregulated by DNA methylation, and several microRNAs affected the viability of NKTCL cells. miR-34a and miR-181c may be involved in the oncogenic progression of NKTCL through the regulation of PDGFRα, STAT3, and K-RAS.
Collapse
Affiliation(s)
- Heounjeong Go
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.,Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji-Young Jang
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.,Bioinfra Life Science Inc, Seoul, Republic of Korea
| | - Chul-Woo Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.,Bioinfra Life Science Inc, Seoul, Republic of Korea
| | - Jooryung Huh
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Pil-Jong Kim
- Biomedical Knowledge Engineering Laboratory, Seoul National University College of Dental Medicine, Seoul, Republic of Korea
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
25
|
Wang M, Gu B, Chen X, Wang Y, Li P, Wang K. The Function and Therapeutic Potential of Epstein-Barr Virus-Encoded MicroRNAs in Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:657-668. [PMID: 31400608 PMCID: PMC6698931 DOI: 10.1016/j.omtn.2019.07.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 05/14/2019] [Accepted: 07/06/2019] [Indexed: 02/06/2023]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human γ-herpesvirus that infects over 90% of the global population. EBV is considered a contributory factor in a variety of malignancies including nasopharyngeal carcinoma, gastric carcinoma, Burkitt lymphoma, and Hodgkin’s lymphoma. Notably, EBV was the first virus found to encode microRNAs (miRNAs). Increasing evidence indicates that EBV-encoded miRNAs contribute to the carcinogenesis and development of EBV-associated malignancies. EBV miRNAs have been shown to inhibit the expression of genes involved in cell proliferation, apoptosis, invasion, and immune signaling pathways. Therefore, EBV miRNAs perform a significant function in the complex host-virus interaction and EBV-driven carcinogenesis. However, the integrated mechanisms underlying the roles of EBV miRNAs in carcinogenesis remain to be further explored. In this review, we describe recent advances regarding the involvement of EBV miRNAs in the pathogenesis of EBV-associated malignancies and discuss their potential utility as cancer biomarkers. An in-depth investigation into the pro-carcinogenic role of EBV miRNAs will expand our knowledge of the biological processes associated with virus-driven tumors and contribute to the development of novel therapeutic strategies for the treatment of EBV-associated malignancies.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China.
| | - Bianli Gu
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Xinzhe Chen
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Yefu Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Peifeng Li
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Kun Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China.
| |
Collapse
|
26
|
Gu F, Wang C, Wei F, Wang Y, Zhu Q, Ding L, Xu W, Zhu C, Cai C, Qian Z, Yuan Z, Robertson E, Cai Q. STAT6 degradation and ubiquitylated TRIML2 are essential for activation of human oncogenic herpesvirus. PLoS Pathog 2018; 14:e1007416. [PMID: 30532138 PMCID: PMC6287816 DOI: 10.1371/journal.ppat.1007416] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/17/2018] [Indexed: 01/01/2023] Open
Abstract
Aberrations in STAT6-mediated signaling are linked to the development of multiple cancer types. Increasing evidence has shown that activation of human oncogenic herpesvirus lytic replication is crucial for viral tumorigenesis. However, the role of STAT6 in herpesvirus lytic replication remains elusive. Here, by using Kaposi’s sarcoma-associated herpesvirus (KSHV) as a model, we revealed that RTA, the master regulator of lytic replication, interacts with STAT6 and promotes lysine 48 (K48) and K63-linked ubiquitylation of STAT6 for degradation via the proteasome and lysosome systems. Moreover, degradation of STAT6 is dramatically associated with the increased ubiquitylated form of tripartite motif family like 2 (TRIML2, a tumor suppressor) for prolonged cell survival and virion production, which is also commonly observed in lytic activation of Epstein-Barr virus, herpes simplex virus 1 and cytomegalovirus. These results suggest that degradation of STAT6 is important for the lytic activation of KSHV and as such, may be an attractive therapeutic target. STAT6 is a transcriptional factor that plays an important role in the extracellular cytokine and virus-mediated immune response. Extensive studies have revealed that the dysregulation of STAT6 is linked to the pathological features of virus-associated cancers. However, the molecular mechanism of STAT6 regulation by tumor viruses is still unknown. Here, we report that the degradation of STAT6 is induced and required for the lytic activation of human herpesviruses including oncogenic γ-herpesviruses (KSHV and EBV) and α/β-herpesviruses (HSV1 and HCMV). Importantly, this effect is highly dependent on the expression of viral lytic antigens (i.e., RTA in KSHV). This study reveals the central role of STAT6 in controlling the switch from latency to lytic replication of herpesviruses.
Collapse
Affiliation(s)
- Feng Gu
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Chong Wang
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Fang Wei
- ShengYushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yuyan Wang
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Qing Zhu
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Ling Ding
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Wenjia Xu
- Unit of Herpesvirus and Molecular Virology, Key Laboratory of Molecular Virology &Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, P. R. China
| | - Caixia Zhu
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Cankun Cai
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Zhikang Qian
- Unit of Herpesvirus and Molecular Virology, Key Laboratory of Molecular Virology &Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, P. R. China
| | - Zhenghong Yuan
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Erle Robertson
- Department of Otorhinolaryngology-Head and Neck Surgery, Department of Microbiology, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Qiliang Cai
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, P. R. China
- * E-mail:
| |
Collapse
|