1
|
Benedicenti O, Dahle MK, Makvandi-Nejad S, Andresen AMS, Moldal T, Sindre H, Fosse JH. The Atlantic salmon gill transcriptional response to natural infection with HPR0-ISAV (Isavirus salaris) in three Norwegian smolt farms. FISH & SHELLFISH IMMUNOLOGY 2025; 157:110096. [PMID: 39724996 DOI: 10.1016/j.fsi.2024.110096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Infectious Salmon Anaemia virus (ISAV) is an orthomyxovirus that causes large economic losses in Atlantic salmon (Salmo salar L.) aquaculture. All virulent ISAV variants originally emerged from a non-virulent subtype, ISAV-HPR0. Transient ISAV-HPR0 infections are common in both freshwater and marine environments. ISAV-HPR0 infects juveniles, marine salmon at on-growing sites, and broodstock salmon. The shift in virulence from ISAV-HPR0 to the virulent HPRΔ is suggested to be a stochastic event that depends on the virus's replication frequency. Therefore, reducing the capacity to maintain ISAV-HPR0 infection within individual farms may limit the risk of emerging pathogenic ISAV variants and ISA disease. The absence of infection-related clinical signs and the lack of experimental models limit our understanding of ISAV-HPR0-host interactions. We characterise the host transcriptional response to natural ISAV-HPR0 infection, using Atlantic salmon gill tissues collected on three Norwegian smolt farms. The comparison of all infected (qPCR-positive) and non-infected (qPCR-negative) individuals revealed a classic antiviral response in the gills of ISAV-HPR0 infected fish in a site-independent transcriptomic analysis. Complementary analyses showed that the response to infection varied considerably between sites. Site-specific differences could be associated with a range of factors that are challenging to control in field studies, such as fish size, the stage of infection, and the presence of additional microorganisms. Our findings enhance our understanding of how Atlantic salmon respond to ISAV-HPR0 infection, pinpointing common HPR0-induced antiviral response genes. Future studies should investigate whether these candidate genes limit virus replication in the gill for risk of novel transitions to virulence.
Collapse
Affiliation(s)
| | - Maria K Dahle
- Norwegian Veterinary Institute, Postboks 64, 1431, Ås, Norway
| | | | | | - Torfinn Moldal
- Norwegian Veterinary Institute, Postboks 64, 1431, Ås, Norway
| | - Hilde Sindre
- Norwegian Veterinary Institute, Postboks 64, 1431, Ås, Norway
| | | |
Collapse
|
2
|
Holmlund I, Ahmadi S, Ruyter B, Østbye TK, Bou M, Gjøen T. Effect of eicosapentaenoic acid on innate immune responses in Atlantic salmon cells infected with infectious salmon anemia virus. Virol J 2025; 22:5. [PMID: 39780168 PMCID: PMC11715085 DOI: 10.1186/s12985-024-02619-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025] Open
Abstract
Aquaculture is one of the world's fastest-growing sectors in food production but with multiple challenges related to animal handling and infections. The disease caused by infectious salmon anemia virus (ISAV) leads to outbreaks of local epidemics, reducing animal welfare, and causing significant economic losses. The composition of feed has shifted from marine ingredients such as fish oil and fish meal towards a more plant-based diet causing reduced levels of eicosapentaenoic acid (EPA). The aim of this study was to investigate whether low or high levels of EPA affect the expression of genes related to the innate immune response 48 h after infection with ISAV. The study includes seven experimental groups: ± ISAV and various levels of EPA up to 200 µM. Analysis of RNA sequencing data showed that more than 3000 genes were affected by ISAV alone (without additional EPA). In cells with increasing levels of EPA, more than 2500 additional genes were differentially expressed. This indicates that high levels of EPA concentration have an independent effect on gene expression in virus-infected cells, not observed at lower levels of EPA. Analyses of enriched biological processes and molecular functions (GO and KEGG analysis) revealed that EPA had a limited impact on the innate immune system alone, but that many processes were affected by EPA when cells were virus infected. Several biological pathways were affected, including protein synthesis (ribosomal transcripts), peroxisome proliferator activated receptor (PPAR) signaling, and ferroptosis. Cells exposed to both increasing concentrations of EPA and virus displayed gene expression patterns indicating increased formation of oxygen radicals and that cell death via ferroptosis was activated. This gene expression pattern was not observed during infection at low EPA levels or when Atlantic salmon kidney (ASK) cells were exposed to the highest EPA level (200 μM) without virus infection. Cell death via ferroptosis may therefore be a mechanism for controlled cell death and thus reduction of virus replication when there are enough polyunsaturated fatty acids (PUFAs) in the membrane.
Collapse
|
3
|
Sharma Humagain P, Aguilar Quinones V, Kent MP, Boyartchuk V, Torgersen JS. Establishment of a genetically amenable fibroblast cell line from Atlantic salmon skin. Exp Cell Res 2024; 443:114295. [PMID: 39447625 DOI: 10.1016/j.yexcr.2024.114295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
The Atlantic salmon, Salmo Salar, is a societally important species of fish, both as a food source and as a component of aquatic biosphere. Its sustainable production is hampered by a wide range of infectious diseases, which is difficult to address due to the lack of in vitro tools to study the disease-host interaction. In this paper, we describe the establishment and characterization of a homogenous Atlantic salmon skin fibroblast (ASSF) cell line. This immortalized cell line grows well in standard media formulations and is capable of migration. It is transcriptionally stable over dozens of passages, and its transcriptome is distinct from other publicly available Atlantic salmon cell lines (SHK1 and ASK). Even though ASSF cells show limited cytopathic effects when challenged with Infectious Pancreatic Necrosis Virus (IPNV) molecular evidence reveals that they are infected and support IPNV production, especially compared to other cell lines like ASK or SHK1. The potential of the ASSF cell line as a tool for Atlantic salmon research is highlighted by its permissibility to genetic manipulation with various methods including CRISPR/cas9, transfection and transduction.
Collapse
Affiliation(s)
| | - Valeria Aguilar Quinones
- Faculty of Biosciences, Norwegian University of Life Science, ÅS, Norway; AQUAGEN AS, Ås, Norway
| | - Matthew Peter Kent
- Faculty of Biosciences, Norwegian University of Life Science, ÅS, Norway
| | - Victor Boyartchuk
- Faculty of Biosciences, Norwegian University of Life Science, ÅS, Norway
| | - Jacob Seilø Torgersen
- Faculty of Biosciences, Norwegian University of Life Science, ÅS, Norway; AQUAGEN AS, Ås, Norway
| |
Collapse
|
4
|
Polinski MP, Lifgren D, Clayton RD, Warg JV, Pietrak MR, Peterson BC. Nonvirulent Infectious Salmon Anemia Virus (ISAV-HPR0) Not Detectable in Eggs or Progeny of Infected Captive Atlantic Salmon Brood. Viruses 2024; 16:1288. [PMID: 39205262 PMCID: PMC11359038 DOI: 10.3390/v16081288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
The potential for infectious salmon anemia virus (ISAV)-an internationally regulated pathogen of salmon-to transmit vertically from parent to offspring is currently unclear. While the highly virulent ISAV phenotype known as ISAV-HPRΔ has been observed intra-ova, evidence for vertical transmission of the avirulent ISAV phenotype known as ISAV-HPR0 is lacking. In this study, we identified ISAV-HPR0-infected Atlantic salmon broodstock during spawning within a government research recirculating aquaculture facility using qPCR. Eggs and milt from infected brood were used to initiate 16 unique family dam-sire crosses from which 29-60 fertilized eggs per cross were screened for ISAV using qPCR (limit of detection ~100 virus genome copies/egg). A portion of eggs (~300) from one family cross was hatched and further reared in biosecure containment and periodically screened for ISAV by gill clipping over a 2-year period. ISAV was not detected in any of the 781 eggs screened from 16 family crosses generated by infected brood, nor in 870 gill clips periodically sampled from the single-family cohort raised for 2 years in biocontainment. Based on these findings, we conclude that ISAV-HPR0 has a limited likelihood for vertical parent-to-offspring transmission in cultured Atlantic salmon.
Collapse
Affiliation(s)
- Mark P. Polinski
- National Cold Water Marine Aquaculture Center, U.S. Department of Agriculture–Agricultural Research Service, Franklin, ME 04634, USA; (D.L.); (M.R.P.); (B.C.P.)
| | - Demitri Lifgren
- National Cold Water Marine Aquaculture Center, U.S. Department of Agriculture–Agricultural Research Service, Franklin, ME 04634, USA; (D.L.); (M.R.P.); (B.C.P.)
| | - Richard D. Clayton
- National Veterinary Services Laboratories, U.S. Department of Agriculture–Animal and Plant Health Inspection Service, Ames, IA 50010, USA; (R.D.C.); (J.V.W.)
| | - Janet V. Warg
- National Veterinary Services Laboratories, U.S. Department of Agriculture–Animal and Plant Health Inspection Service, Ames, IA 50010, USA; (R.D.C.); (J.V.W.)
| | - Michael R. Pietrak
- National Cold Water Marine Aquaculture Center, U.S. Department of Agriculture–Agricultural Research Service, Franklin, ME 04634, USA; (D.L.); (M.R.P.); (B.C.P.)
| | - Brian C. Peterson
- National Cold Water Marine Aquaculture Center, U.S. Department of Agriculture–Agricultural Research Service, Franklin, ME 04634, USA; (D.L.); (M.R.P.); (B.C.P.)
| |
Collapse
|
5
|
Eckstrand CD, Torrevillas BK, Wolking RM, Bradway DS, Warg JV, Clayton RD, Williams LB, Pessier AP, Reno JL, McMenamin-Snekvik KM, Thompson J, Baszler T, Snekvik KR. Investigation of laboratory methods for characterization of aquatic viruses in fish infected experimentally with infectious salmon anemia virus. J Vet Diagn Invest 2024; 36:319-328. [PMID: 37203453 PMCID: PMC11110770 DOI: 10.1177/10406387231173332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
Rapid growth in aquaculture has resulted in high-density production systems in ecologically and geographically novel conditions in which the emergence of diseases is inevitable. Well-characterized methods for detection and surveillance of infectious diseases are vital for rapid identification, response, and recovery to protect economic and food security. We implemented a proof-of-concept approach for virus detection using a known high-consequence fish pathogen, infectious salmon anemia virus (ISAV), as the archetypal pathogen. In fish infected with ISAV, we integrated histopathology, virus isolation, whole-genome sequencing (WGS), electron microscopy (EM), in situ hybridization (ISH), and reverse transcription real-time PCR (RT-rtPCR). Fresh-frozen and formalin-fixed tissues were collected from virus-infected, control, and sham-infected Atlantic salmon (Salmo salar). Microscopic differences were not evident between uninfected and infected fish. Viral cytopathic effect was observed in cell cultures inoculated with fresh-frozen tissue homogenates from 3 of 3 ISAV-infected and 0 of 4 uninfected or sham-infected fish. The ISAV genome was detected by shotgun metagenomics in RNA extracted from the medium from 3 of 3 inoculated cell cultures, 3 of 3 infected fish, and 0 of 4 uninfected or sham-infected fish, yielding sufficient coverage for de novo assembly. An ISH probe against ISAV revealed ISAV genome in multiple organs, with abundance in renal hematopoietic tissue. Virus was detected by RT-rtPCR in gill, heart, kidney, liver, and spleen. EM and metagenomic WGS from tissues were challenging and unsuccessful. Our proof-of-concept methodology has promise for detection and characterization of unknown aquatic pathogens and also highlights some associated methodology challenges that require additional investigation.
Collapse
Affiliation(s)
- Chrissy D. Eckstrand
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA
| | - Brandi K. Torrevillas
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA
| | - Rebecca M. Wolking
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA
| | - Daniel S. Bradway
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA
| | - Janet V. Warg
- National Veterinary Services Laboratories, U.S. Department of Agriculture, Ames, IA, USA
| | - Richard D. Clayton
- National Veterinary Services Laboratories, U.S. Department of Agriculture, Ames, IA, USA
| | - Laura B. Williams
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA
| | - Allan P. Pessier
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA
| | - Joetta Lynn Reno
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA
| | | | - Jim Thompson
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA
| | - Timothy Baszler
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA
| | - Kevin R. Snekvik
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA
| |
Collapse
|
6
|
Andresen AMS, Taylor RS, Grimholt U, Daniels RR, Sun J, Dobie R, Henderson NC, Martin SAM, Macqueen DJ, Fosse JH. Mapping the cellular landscape of Atlantic salmon head kidney by single cell and single nucleus transcriptomics. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109357. [PMID: 38181891 DOI: 10.1016/j.fsi.2024.109357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024]
Abstract
Single-cell transcriptomics is the current gold standard for global gene expression profiling, not only in mammals and model species, but also in non-model fish species. This is a rapidly expanding field, creating a deeper understanding of tissue heterogeneity and the distinct functions of individual cells, making it possible to explore the complexities of immunology and gene expression on a highly resolved level. In this study, we compared two single cell transcriptomic approaches to investigate cellular heterogeneity within the head kidney of healthy farmed Atlantic salmon (Salmo salar). We compared 14,149 cell transcriptomes assayed by single cell RNA-seq (scRNA-seq) with 18,067 nuclei transcriptomes captured by single nucleus RNA-Seq (snRNA-seq). Both approaches detected eight major cell populations in common: granulocytes, heamatopoietic stem cells, erythrocytes, mononuclear phagocytes, thrombocytes, B cells, NK-like cells, and T cells. Four additional cell types, endothelial, epithelial, interrenal, and mesenchymal cells, were detected in the snRNA-seq dataset, but appeared to be lost during preparation of the single cell suspension submitted for scRNA-seq library generation. We identified additional heterogeneity and subpopulations within the B cells, T cells, and endothelial cells, and revealed developmental trajectories of heamatopoietic stem cells into differentiated granulocyte and mononuclear phagocyte populations. Gene expression profiles of B cell subtypes revealed distinct IgM and IgT-skewed resting B cell lineages and provided insights into the regulation of B cell lymphopoiesis. The analysis revealed eleven T cell sub-populations, displaying a level of T cell heterogeneity in salmon head kidney comparable to that observed in mammals, including distinct subsets of cd4/cd8-negative T cells, such as tcrγ positive, progenitor-like, and cytotoxic cells. Although snRNA-seq and scRNA-seq were both useful to resolve cell type-specific expression in the Atlantic salmon head kidney, the snRNA-seq pipeline was overall more robust in identifying several cell types and subpopulations. While scRNA-seq displayed higher levels of ribosomal and mitochondrial genes, snRNA-seq captured more transcription factor genes. However, only scRNA-seq-generated data was useful for cell trajectory inference within the myeloid lineage. In conclusion, this study systematically outlines the relative merits of scRNA-seq and snRNA-seq in Atlantic salmon, enhances understanding of teleost immune cell lineages, and provides a comprehensive list of markers for identifying major cell populations in the head kidney with significant immune relevance.
Collapse
Affiliation(s)
| | - Richard S Taylor
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Rose Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Jianxuan Sun
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Ross Dobie
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, United Kingdom
| | - Neil C Henderson
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, United Kingdom; MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Samuel A M Martin
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Daniel J Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
| | | |
Collapse
|
7
|
Løkka G, Gamil AAA, Evensen Ø, Kortner TM. Establishment of an In Vitro Model to Study Viral Infections of the Fish Intestinal Epithelium. Cells 2023; 12:1531. [PMID: 37296652 PMCID: PMC10252704 DOI: 10.3390/cells12111531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Viral infections are still a major concern for the aquaculture industry. For salmonid fish, even though breeding strategies and vaccine development have reduced disease outbreaks, viral diseases remain among the main challenges having a negative impact on the welfare of fish and causing massive economic losses for the industry. The main entry port for viruses into the fish is through mucosal surfaces including that of the gastrointestinal tract. The contradictory functions of this surface, both creating a barrier towards the external environment and at the same time being responsible for the uptake of nutrients and ion/water regulation make it particularly vulnerable. The connection between dietary components and viral infections in fish has been poorly investigated and until now, a fish intestinal in vitro model to investigate virus-host interactions has been lacking. Here, we established the permissiveness of the rainbow trout intestinal cell line RTgutGC towards the important salmonid viruses-infectious pancreatic necrosis virus (IPNV), salmonid alphavirus (subtype 3, SAV3) and infectious salmon anemia virus (ISAV)-and explored the infection mechanisms of the three different viruses in these cells at different virus to cell ratios. Cytopathic effect (CPE), virus replication in the RTgutGC cells, antiviral cell responses and viral effects on the barrier permeability of polarized cells were investigated. We found that all virus species infected and replicated in RTgutGC cells, although with different replication kinetics and ability to induce CPE and host responses. The onset and progression of CPE was more rapid at high multiplicity of infection (MOI) for IPNV and SAV3 while the opposite was true of ISAV. A positive correlation between the MOI used and the induction of antiviral responses was observed for IPNV while a negative correlation was detected for SAV3. Viral infections compromised barrier integrity at early time points prior to observations of CPE microscopically. Further, the replication of IPNV and ISAV had a more pronounced effect on barrier function than SAV3. The in vitro infection model established herein can thus provide a novel tool to generate knowledge about the infection pathways and mechanisms used to surpass the intestinal epithelium in salmonid fish, and to study how a virus can potentially compromise gut epithelial barrier functions.
Collapse
Affiliation(s)
- Guro Løkka
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway; (A.A.A.G.); (Ø.E.); (T.M.K.)
| | | | | | | |
Collapse
|
8
|
Turner JK, Sakulpolwat S, Sukdanon S, Lertwanakarn T, Waiyamitra P, Piewbang C, Pierezan F, Techangamsuwan S, Soto E, Surachetpong W. Tilapia lake virus (TiLV) causes severe anaemia and systemic disease in tilapia. JOURNAL OF FISH DISEASES 2023; 46:643-651. [PMID: 36848441 DOI: 10.1111/jfd.13775] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 05/07/2023]
Abstract
Tilapia lake virus disease (TiLVD) is an emerging disease in tilapia that is associated with mass mortality affecting global tilapia aquaculture. In this study, red hybrid tilapias (Oreochromis spp.) were experimentally infected by intracoelomic injection with Tilapia lake virus (TiLV) to gain a better understanding of the clinicopathological changes during infection. Pale bodies and gill were observed in infected fish after 7 days of post-challenge (dpc) associated with severe anaemia. Further haematological analysis in TiLV-infected fish revealed decreased levels of haemoglobin and haematocrit at 3 dpc. Common pathological findings included pale and friable liver, pale intestine with catarrhal content, and dark and shrunken spleen in TiLV-infected fish at 7 dpc and 14 dpc. Histologically, reduced numbers of red blood cells and accumulation of melano-macrophage centre in the spleen were found in infected fish at 3 dpc, and severe lesions were more commonly observed at 7 and 14 dpc. Lymphocyte infiltration, syncytial cell formation and multifocal necrotic hepatitis were the prominent pathological findings in the liver of infected fish. The severity of pathological changes was associated with TiLV-infection with higher viral loads and with the expression pattern of pro-inflammatory cytokines and antiviral genes, including interferon regulatory factor 1 (irf1), interleukin (il-8), radical s-adenosyl methionine domain containing 2 (rsad2) and mx. Our study provides a comprehensive analysis of the haematological profile and pathological changes in tilapia during TiLV infection. Overall, lesions present in various organs, together with alteration of host immune response in TiLV-infected fish, indicate the systemic infection of this virus. The knowledge gained from this study improves our understanding of how TiLV causes pathological and haematological changes in tilapia.
Collapse
Affiliation(s)
- Jessica Kaye Turner
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Sasakorn Sakulpolwat
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Suchanuch Sukdanon
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Tuchakorn Lertwanakarn
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Pitchaporn Waiyamitra
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Chutchai Piewbang
- Animal Virome and Diagnostic Development Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Felipe Pierezan
- Department of Pathology, Veterinary Clinics and Surgery, School of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Somporn Techangamsuwan
- Animal Virome and Diagnostic Development Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Esteban Soto
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
9
|
Fosse JH, Andresen AMS, Ploss FB, Weli SC, Heffernan IA, Sapkota S, Lundgård K, Kuiper RV, Solhaug A, Falk K. The infectious salmon anemia virus esterase prunes erythrocyte surfaces in infected Atlantic salmon and exposes terminal sialic acids to lectin recognition. Front Immunol 2023; 14:1158077. [PMID: 37180109 PMCID: PMC10167051 DOI: 10.3389/fimmu.2023.1158077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/03/2023] [Indexed: 05/15/2023] Open
Abstract
Many sialic acid-binding viruses express a receptor-destroying enzyme (RDE) that removes the virus-targeted receptor and limits viral interactions with the host cell surface. Despite a growing appreciation of how the viral RDE promotes viral fitness, little is known about its direct effects on the host. Infectious salmon anemia virus (ISAV) attaches to 4-O-acetylated sialic acids on Atlantic salmon epithelial, endothelial, and red blood cell surfaces. ISAV receptor binding and destruction are effectuated by the same molecule, the haemagglutinin esterase (HE). We recently discovered a global loss of vascular 4-O-acetylated sialic acids in ISAV-infected fish. The loss correlated with the expression of viral proteins, giving rise to the hypothesis that it was mediated by the HE. Here, we report that the ISAV receptor is also progressively lost from circulating erythrocytes in infected fish. Furthermore, salmon erythrocytes exposed to ISAV ex vivo lost their capacity to bind new ISAV particles. The loss of ISAV binding was not associated with receptor saturation. Moreover, upon loss of the ISAV receptor, erythrocyte surfaces became more available to the lectin wheat germ agglutinin, suggesting a potential to alter interactions with endogenous lectins of similar specificity. The pruning of erythrocyte surfaces was inhibited by an antibody that prevented ISAV attachment. Furthermore, recombinant HE, but not an esterase-silenced mutant, was sufficient to induce the observed surface modulation. This links the ISAV-induced erythrocyte modulation to the hydrolytic activity of the HE and shows that the observed effects are not mediated by endogenous esterases. Our findings are the first to directly link a viral RDE to extensive cell surface modulation in infected individuals. This raises the questions of whether other sialic acid-binding viruses that express RDEs affect host cells to a similar extent, and if such RDE-mediated cell surface modulation influences host biological functions with relevance to viral disease.
Collapse
|
10
|
Emergence of Salmon Gill Poxvirus. Viruses 2022; 14:v14122701. [PMID: 36560705 PMCID: PMC9783891 DOI: 10.3390/v14122701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
The Salmon gill poxvirus (SGPV) has emerged in recent years as the cause of an acute respiratory disease that can lead to high mortality in farmed Atlantic salmon presmolts, known as Salmon gill poxvirus disease. SGPV was first identified in Norway in the 1990s, and its large DNA genome, consisting of over 206 predicted protein-coding genes, was characterized in 2015. This review summarizes current knowledge relating to disease manifestation and its effects on the host immune system and describes dissemination of the virus. It also demonstrates how newly established molecular tools can help us to understand SGPV and its pathogenesis. Finally, we conclude and ask some burning questions that should be addressed in future research.
Collapse
|
11
|
Aamelfot M, Fosse JH, Viljugrein H, Ploss FB, Benestad SL, McBeath A, Christiansen DH, Garver K, Falk K. Destruction of the vascular viral receptor in infectious salmon anaemia provides in vivo evidence of homologous attachment interference. PLoS Pathog 2022; 18:e1010905. [PMID: 36240255 PMCID: PMC9621750 DOI: 10.1371/journal.ppat.1010905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/31/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022] Open
Abstract
Viral interference is a process where infection with one virus prevents a subsequent infection with the same or a different virus. This is believed to limit superinfection, promote viral genome stability, and protect the host from overwhelming infection. Mechanisms of viral interference have been extensively studied in plants, but remain poorly understood in vertebrates. We demonstrate that infection with infectious salmon anaemia virus (ISAV) strongly reduces homologous viral attachment to the Atlantic salmon, Salmo salar L. vascular surface. A generalised loss of ISAV binding was observed after infection with both high-virulent and low-virulent ISAV isolates, but with different kinetics. The loss of ISAV binding was accompanied by an increased susceptibility to sialidase, suggesting a loss of the vascular 4-O-sialyl-acetylation that mediates ISAV attachment and simultaneously protects the sialic acid from cleavage. Moreover, the ISAV binding capacity of cultured cells dramatically declined 3 days after ISAV infection, accompanied by reduced cellular permissiveness to infection with a second antigenically distinct isolate. In contrast, neither infection with infectious haematopoietic necrosis virus nor stimulation with the viral mimetic poly I:C restricted subsequent cellular ISAV attachment, revealing an ISAV-specific mechanism rather than a general cellular antiviral response. Our study demonstrates homologous ISAV attachment interference by de-acetylation of sialic acids on the vascular surface. This is the first time the kinetics of viral receptor destruction have been mapped throughout the full course of an infection, and the first report of homologous attachment interference by the loss of a vascular viral receptor. Little is known about the biological functions of vascular O-sialyl-acetylation. Our findings raise the question of whether this vascular surface modulation could be linked to the breakdown of central vascular functions that characterises infectious salmon anaemia. Viral interference, also referred to as superinfection exclusion, is a process that supports viral genome integrity and protects the host from overwhelming infection. Here, we demonstrate that infection of Atlantic salmon with infectious salmon anaemia virus (ISAV) results in the destruction of the viral vascular surface receptor, thus preventing virus attachment. We also observed that the loss of viral receptor strongly restricted the extent of a second ISAV infection in cultured cells, suggesting viral interference. To our knowledge, this is the first time the kinetics of viral receptor destruction has been explored in an infected host. This is important, because we know little of how such responses develop in animals and humans. Our study therefore improves the general understanding of how viral infections progress. Finally, our findings raise the question of whether modulation of the vascular surface by ISAV and other viruses may contribute to the pathogenesis of viral disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kyle Garver
- Fisheries and Oceans Canada Pacific Biological Station, Nanaimo, British Columbia, Canada
| | - Knut Falk
- Norwegian Veterinary Institute, Ås, Norway
- * E-mail:
| |
Collapse
|
12
|
Weli SC, Bernhardt LV, Qviller L, Dale OB, Lillehaug A. Infectious Salmon Anemia Virus Shedding from Infected Atlantic Salmon ( Salmo salar L.)-Application of a Droplet Digital PCR Assay for Virus Quantification in Seawater. Viruses 2021; 13:v13091770. [PMID: 34578351 PMCID: PMC8471646 DOI: 10.3390/v13091770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022] Open
Abstract
Infectious salmon anemia virus (ISAV) infection is currently detected by fish sampling for PCR and immunohistochemistry analysis. As an alternative to sampling fish, we evaluated two different membrane filters in combination with four buffers for elution, concentration, and detection of ISAV in seawater, during a bath challenge of Atlantic salmon (Salmo salar L.) post-smolts with high and low concentrations of ISAV. Transmission of ISAV in the bath challenge was confirmed by a high mortality, clinical signs associated with ISA disease, and detection of ISAV RNA in organ tissues and seawater samples. The electronegatively charged filter, combined with lysis buffer, gave significantly higher ISAV RNA detection by droplet digital PCR from seawater (5.6 × 104 ISAV RNA copies/L; p < 0.001). Viral shedding in seawater was first detected at two days post-challenge and peaked on day 11 post-challenge, one day before mortalities started in fish challenged with high dose ISAV, demonstrating that a large viral shedding event occurs before death. These data provide important information for ISAV shedding that is relevant for the development of improved surveillance tools based on water samples, transmission models, and management of ISA.
Collapse
|
13
|
Alarcón M, Moldal T, Dverdal Jansen M, Aamelfot M, Sindre H, Lyngstad TM, Falk K. Infectious salmon anaemia virus detected by RT-qPCR in Norwegian farmed rainbow trout, Oncorhynchus mykiss (Walbaum, 1792). JOURNAL OF FISH DISEASES 2021; 44:479-481. [PMID: 33284992 DOI: 10.1111/jfd.13315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Affiliation(s)
- Marta Alarcón
- Norwegian Veterinary Institute, Oslo, Norway
- Fish Vet Group, Benchmark Norway AS, Norway
| | | | | | - Maria Aamelfot
- Norwegian Veterinary Institute, Oslo, Norway
- Norwegian Institute of Public Health, Oslo, Norway
| | | | - Trude M Lyngstad
- Norwegian Veterinary Institute, Oslo, Norway
- Norwegian Institute of Public Health, Oslo, Norway
| | - Knut Falk
- Norwegian Veterinary Institute, Oslo, Norway
- AkvaMed Consulting AS, Oslo, Norway
| |
Collapse
|
14
|
Lima PC, Hartley-Tassell L, Cooper O, Wynne JW. Searching for the sweet spot of amoebic gill disease of farmed Atlantic salmon: the potential role of glycan-lectin interactions in the adhesion of Neoparamoeba perurans. Int J Parasitol 2021; 51:545-557. [PMID: 33675796 DOI: 10.1016/j.ijpara.2020.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/04/2020] [Accepted: 11/15/2020] [Indexed: 01/25/2023]
Abstract
One of the first critical steps in the pathogenesis of amoebic gill disease (AGD) of farmed salmon is the adhesion of the causative amoeba to the host. The current study aimed to investigate the potential involvement of glycan-binding proteins expressed on the extracellular surface of Neoparamoeba perurans in gill tissue recognition and binding. The glycan-binding properties of the surface membrane of N. perurans and the carbohydrate binding profile of Atlantic salmon gill-derived epithelial cells were identified through the use of glycan and lectin microarrays, respectively. The occurrence of specific carbohydrate-mediated binding was then further assessed by in vitro attachment assays using microtitre plates pre-coated with the main glycan candidates. Adhesion assays were also performed in the presence of exogenous saccharides with the aim of blocking glycan-specific binding activity. Comparative analysis of the results from both lectin and glycan arrays showed significant overlap, as some glycans to which binding by the amoeba was seen were reflected as being present on the gill epithelial cells. The two main candidates proposed to be involved in amoeba attachment to the gills are mannobiose and N-acetylgalactosamine (GalNAc). Adhesion of amoebae significantly increased by 33.5 and 23% when cells were added to α1,3-Mannobiose-BSA and GalNAc-BSA coated plates. The observed increased in attachment was significantly reduced when the amoebae were incubated with exogenous glycans, further demonstrating the presence of mannobiose- and GalNAc-binding sites on the surfaces of the cells. We believe this study provides the first evidence for the presence of a highly specific carbohydrate recognition and binding system in N. perurans. These preliminary findings could be of extreme importance given that AGD is an external parasitic infestation and much of the current research on the development of alternative treatment strategies relies on either instant amoeba detachment or blocking parasite attachment.
Collapse
Affiliation(s)
- P C Lima
- CSIRO Agriculture and Food, Livestock & Aquaculture, Queensland Biosciences Precinct, 306 Carmody Road, Brisbane, QLD 4067, Australia.
| | - L Hartley-Tassell
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| | - O Cooper
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| | - J W Wynne
- CSIRO Agriculture and Food, Livestock & Aquaculture, Castray Esplanade, Battery Point, TAS 7004, Australia
| |
Collapse
|
15
|
Fosse JH, Haraldsen G, Falk K, Edelmann R. Endothelial Cells in Emerging Viral Infections. Front Cardiovasc Med 2021; 8:619690. [PMID: 33718448 PMCID: PMC7943456 DOI: 10.3389/fcvm.2021.619690] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
There are several reasons to consider the role of endothelial cells in COVID-19 and other emerging viral infections. First, severe cases of COVID-19 show a common breakdown of central vascular functions. Second, SARS-CoV-2 replicates in endothelial cells. Third, prior deterioration of vascular function exacerbates disease, as the most common comorbidities of COVID-19 (obesity, hypertension, and diabetes) are all associated with endothelial dysfunction. Importantly, SARS-CoV-2's ability to infect endothelium is shared by many emerging viruses, including henipaviruses, hantavirus, and highly pathogenic avian influenza virus, all specifically targeting endothelial cells. The ability to infect endothelium appears to support generalised dissemination of infection and facilitate the access to certain tissues. The disturbed vascular function observed in severe COVID-19 is also a prominent feature of many other life-threatening viral diseases, underscoring the need to understand how viruses modulate endothelial function. We here review the role of vascular endothelial cells in emerging viral infections, starting with a summary of endothelial cells as key mediators and regulators of vascular and immune responses in health and infection. Next, we discuss endotheliotropism as a possible virulence factor and detail features that regulate viruses' ability to attach to and enter endothelial cells. We move on to review how endothelial cells detect invading viruses and respond to infection, with particular focus on pathways that may influence vascular function and the host immune system. Finally, we discuss how endothelial cell function can be dysregulated in viral disease, either by viral components or as bystander victims of overshooting or detrimental inflammatory and immune responses. Many aspects of how viruses interact with the endothelium remain poorly understood. Considering the diversity of such mechanisms among different emerging viruses allows us to highlight common features that may be of general validity and point out important challenges.
Collapse
Affiliation(s)
| | - Guttorm Haraldsen
- Department of Pathology, Oslo University Hospital, Oslo, Norway.,Department of Pathology, University of Oslo, Oslo, Norway
| | - Knut Falk
- Norwegian Veterinary Institute, Oslo, Norway.,AquaMed Consulting AS, Oslo, Norway
| | - Reidunn Edelmann
- Department of Clinical Medicine, Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway
| |
Collapse
|
16
|
Ojeda N, Salazar C, Cárdenas C, Marshall SH. Expression of DC-SIGN-like C-Type Lectin Receptors in Salmo salar. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 113:103806. [PMID: 32739503 PMCID: PMC7392198 DOI: 10.1016/j.dci.2020.103806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 05/05/2023]
Abstract
C-Type Lectin Receptors (CTLR) are involved in the activation of innate and adaptative immune responses. Among these receptors, the Dendritic Cell-Specific ICAM-3-Grabbing nonintegrin (DC-SIGN/CD209) has become a hot topic due to its ability to bind and facilitate the infections processes of several pathogens. Although well characterized in mammals, little documentation exists about the receptor in salmonid fishes. Here, we report the sequence and expression analysis of eight DC-SIGN-like genes in Salmo salar. Each receptor displays structural similarities to DC-SIGN molecules described in mammals, including internalization motifs, a neck region with heptad repeats, and a Ca+2-dependent carbohydrate recognition domain. The receptors are expressed in multiple tissues of fish, and fish cell lines, with differential expression upon infection with viral and bacterial pathogens. The identification of DC-SIGN-like receptors in Salmo salar provides new information regarding the structure of the immune system of salmon, potential markers for cell subsets, as well as insights into DC-SIGN conservation across species.
Collapse
Affiliation(s)
- Nicolás Ojeda
- Instituto de Biologia, Pontificia Universidad Catolica de Valparaiso, Valparaiso, Chile
| | - Carolina Salazar
- Instituto de Biologia, Pontificia Universidad Catolica de Valparaiso, Valparaiso, Chile
| | - Constanza Cárdenas
- Instituto de Biologia, Pontificia Universidad Catolica de Valparaiso, Valparaiso, Chile
| | - Sergio H Marshall
- Instituto de Biologia, Pontificia Universidad Catolica de Valparaiso, Valparaiso, Chile.
| |
Collapse
|
17
|
Samsing F, Hoad J, Mohr P, Dearnley M, Wynne JW. Comparative transcriptome analysis of pilchard orthomyxovirus (POMV) and infectious salmon anaemia virus (ISAV). FISH & SHELLFISH IMMUNOLOGY 2020; 105:415-426. [PMID: 32629102 DOI: 10.1016/j.fsi.2020.06.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/01/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
The Tasmanian Atlantic salmon (Salmo salar) aquaculture industry had remained relatively free of major viral diseases until the recent emergence of pilchard orthomyxovirus (POMV). The virus originally isolated from wild pilchards in Southern Australia is of great concern to the industry as it can cause high mortality. Despite its classification in the Orthomyxoviridae family, POMV is genetically divergent from infectious salmon anaemia virus (ISAV) and potentially represents a new genus within the family. Previous research has produced a formal case definition for clinical POMV, but the molecular events that underpin viral infection have not been characterized. Here we have undertaken a comparative transcriptome analysis of the response of Atlantic salmon kidney cells (ASK) in vitro to both POMV and ISAV using RNA sequencing, by harvesting cells at 6 and 24 h post infection (hpi). Despite their genomic differences, both orthomyxoviruses induced significant, and in some cases similar, innate antiviral responses. Early up-regulation of pathogen recognition receptor genes, RIG-I and TLR3, was observed in response to both viruses and triggered downstream interferon (IFN) responses. Interferon transcripts (IFN-alpha1 and INF-alpha2) were only induced in POMV infected cells at 24 hpi, but IFN-alpha3 was up-regulated in all time points and with both viruses. In addition, a strong induction of antiviral response genes (Mx and ISG15) was observed during the early infection with both viruses. Analysis of transcription factor binding sites in the up-regulated gene sets indicated that the host response to both viruses was largely driven by interferon regulatory factors (IRF) 1 and 2. Only three genes (slc35f2, odf2, LOC106608698) were differentially expressed in opposite directions, up-regulated with POMV and strongly down-regulated with ISAV at 24 hpi. Differential expression of these transcripts is possibly a consequence of virus divergence, but could also be associated to higher viral loads observed in the infection with POMV. Results from this study improve our understanding of the innate immune responses and host-pathogen interactions between POMV and Atlantic salmon. Early host response genes could potentially be exploited as subclinical biomarkers specific to POMV, and improved the development of tools for disease surveillance.
Collapse
Affiliation(s)
- Francisca Samsing
- CSIRO Agriculture and Food, Livestock and Aquaculture, Castray Esplanade, Battery Point, Tasmania 7004, Australia.
| | - John Hoad
- CSIRO Australian Centre for Disease Preparedness (ACDP) (formerly Australian Animal Health Laboratory, AAHL), 5 Portarlington Rd, East Geelong, Victoria 3220, Australia
| | - Peter Mohr
- CSIRO Australian Centre for Disease Preparedness (ACDP) (formerly Australian Animal Health Laboratory, AAHL), 5 Portarlington Rd, East Geelong, Victoria 3220, Australia
| | - Megan Dearnley
- CSIRO Australian Centre for Disease Preparedness (ACDP) (formerly Australian Animal Health Laboratory, AAHL), 5 Portarlington Rd, East Geelong, Victoria 3220, Australia
| | - James W Wynne
- CSIRO Agriculture and Food, Livestock and Aquaculture, Castray Esplanade, Battery Point, Tasmania 7004, Australia
| |
Collapse
|
18
|
Krishnan R, Kim JO, Qadiri SSN, Kim JO, Oh MJ. Early viral uptake and host-associated immune response in the tissues of seven-band grouper following a bath challenge with nervous necrosis virus. FISH & SHELLFISH IMMUNOLOGY 2020; 103:454-463. [PMID: 32439512 DOI: 10.1016/j.fsi.2020.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/20/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
In the present study, early uptake of nervous necrosis virus (NNV) in the tissues (gill, brain, skin, eye, heart) and immune response associated with the uptake in the gill and brain of seven-band grouper was investigated. The gill was found to act as a primary portal of entry for NNV during the initial phase of the water-borne infection. The presence of viral genome and infectious particles was demonstrated using quantitative (qPCR, viral titer) and qualitative (ISH) approach. Initially, an increased viral uptake was noticed, but the virus got cleared from the gills at the later phase of infection. Localization in the brain was evident at the blood-brain barrier followed by the brain parenchyma in the latter stage of infection. Nectin-4, an established NNV receptor, and GHSC70 showed an up-regulated expression throughout the challenge period initially in the gill and at latter phase in brain; however, it seems that the virus does not use gill as a primary replication site but brain as a permissive tissue. Combined activity as reflected by the up-regulation of cytokine, interferon, antigen-presenting cell, and immunoglobulin genes restricts early NNV replication in gill. Observations from the present study provide a better understanding of early NNV entry and also opens a window for further elucidating the modes of NNV neuro-invasion through systemic circulation.
Collapse
Affiliation(s)
- Rahul Krishnan
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Republic of Korea
| | - Jong-Oh Kim
- Institute of Marine Biotechnology, Pukyong National University, Busan, Republic of Korea
| | - Syed Shariq Nazir Qadiri
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Republic of Korea; KVK-Ganderbal, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shuhama, Alusteng, Srinagar, 190006, J&K, India
| | - Jae-Ok Kim
- National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Myung-Joo Oh
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Republic of Korea.
| |
Collapse
|
19
|
Ojeda N, Cárdenas C, Marshall S. Interaction of the Amino-Terminal Domain of the ISAV Fusion Protein with a Cognate Cell Receptor. Pathogens 2020; 9:pathogens9060416. [PMID: 32471165 PMCID: PMC7350309 DOI: 10.3390/pathogens9060416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/12/2020] [Accepted: 05/16/2020] [Indexed: 11/16/2022] Open
Abstract
The infectious salmon anemia virus (ISAV), etiological agent of the disease by the same name, causes major losses to the salmon industry. Classified as a member of the Orthomyxoviridae family, ISAV is characterized by the presence of two surface glycoproteins termed hemagglutinin esterase (HE) and fusion protein (F), both of them directly involved in the initial interaction of the virus with the target cell. HE mediates receptor binding and destruction, while F promotes the fusion process of the viral and cell membranes. The carboxy-terminal end of F (F2) possesses canonical structural characteristics of a type I fusion protein, while no functional properties have been proposed for the amino-terminal (F1) region. In this report, based on in silico modeling, we propose a tertiary structure for the F1 region, which resembles a sialic acid binding domain. Furthermore, using recombinant forms of both HE and F proteins and an in vitro model system, we demonstrate the interaction of F with a cell receptor, the hydrolysis of this receptor by the HE esterase, and a crucial role for F1 in the fusion mechanism. Our interpretation is that binding of F to its cell receptor is fundamental for membrane fusion and that the esterase in HE modulates this interaction.
Collapse
|
20
|
Godwin SE, Morrison RN, Knowles G, Cornish MC, Hayes D, Carson J. Pilchard orthomyxovirus (POMV). II. Causative agent of salmon orthomyxoviral necrosis, a new disease of farmed Atlantic salmon Salmo salar. DISEASES OF AQUATIC ORGANISMS 2020; 139:51-68. [PMID: 32351236 DOI: 10.3354/dao03469] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Since 2012, an orthomyxo-like virus has been consistently linked to epizootics in marine farmed Atlantic salmon in Tasmania, Australia. Here we describe the properties of the virus, designated the pilchard orthomyxovirus (POMV), in cell culture and present data verifying its direct role in a disease of Atlantic salmon. In infected cells, viral RNA was detectable in both the nucleus and cytoplasm, consistent with the replication cycle of an orthomyxovirus. Viral replication in vitro was temperature-dependent (within a range of 10-20°C), and yields of virus were typically in excess of 107 TCID50 ml-1. In controlled infection trials, cell culture-derived POMV produced significant morbidity in Atlantic salmon fry, pre-smolt and post-smolt. In all cases, the development of disease was rapid, with moribund fish detected within 5 d of direct exposure to POMV, and maximum cumulative morbidity occurring within 4 wk. The experimentally infected fish developed a characteristic suite of gross and microscopic pathological changes, which were consistent with those observed in Atlantic salmon overtly affected by POMV-associated disease on sea farms. These included necrotic lesions across multiple organs that were directly associated with the presence of the virus. Together, our observations indicate that POMV is an endemic virus likely transmitted from wild fish to farmed Atlantic salmon in Tasmania. The virus is pathogenic to Atlantic salmon in freshwater and marine environments and causes a disease that we have named salmon orthomyxoviral necrosis.
Collapse
Affiliation(s)
- Scott E Godwin
- Centre for Aquatic Animal Health and Vaccines, Department of Primary Industries, Parks, Water and Environment, Launceston, Tasmania 7250, Australia
| | | | | | | | | | | |
Collapse
|
21
|
Rimstad E, Markussen T. Infectious salmon anaemia virus-molecular biology and pathogenesis of the infection. J Appl Microbiol 2020; 129:85-97. [PMID: 31885186 DOI: 10.1111/jam.14567] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 11/29/2022]
Abstract
Aquaculture has a long history in many parts of the world, but it is still young at an industrial scale. Marine fish farming in open nets of a single fish species at high densities compared to their wild compatriots opens a plethora of possible infections. Infectious salmon anaemia (ISA) is an example of disease that surfaced after large-scale farming of Atlantic salmon (Salmo salar) appeared. Here, a review of the molecular biology of the ISA virus (ISAV) with emphasis on its pathogenicity is presented. The avirulent HPR0 variant of ISAV has resisted propagation in cell cultures, which has restricted the ability to perform in vivo experiments with this variant. The transition from avirulent HPR0 to virulent HPRΔ has not been methodically studied under controlled experimental conditions, and the triggers of the transition from avirulent to virulent forms have not been mapped. Genetic segment reassortment, recombination and mutations are important mechanisms in ISAV evolution, and for the development of virulence. In the 25 years since the ISAV was identified, large amounts of sequence data have been collected for epidemiologic and transmission studies, however, the lack of good experimental models for HPR0 make the risk evaluation of the presence of this avirulent, ubiquitous variant uncertain. This review summarizes the current knowledge related to molecular biology and pathogenicity of this important aquatic orthomyxovirus.
Collapse
Affiliation(s)
- E Rimstad
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - T Markussen
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
22
|
Chengula AA, Mutoloki S, Evensen Ø, Munang’andu HM. Tilapia Lake Virus Does Not Hemagglutinate Avian and Piscine Erythrocytes and NH 4Cl Does Not Inhibit Viral Replication In Vitro. Viruses 2019; 11:v11121152. [PMID: 31842425 PMCID: PMC6950307 DOI: 10.3390/v11121152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 12/21/2022] Open
Abstract
Tilapia lake virus (TiLV) is a negative-sense single-stranded RNA (-ssRNA) icosahedral virus classified to be the only member in the family Amnoonviridae. Although TiLV segment-1 shares homology with the influenza C virus PB1 and has four conserved motifs similar to influenza A, B, and C polymerases, it is unknown whether there are other properties shared between TiLV and orthomyxovirus. In the present study, we wanted to determine whether TiLV agglutinated avian and piscine erythrocytes, and whether its replication was inhibited by lysosomotropic agents, such as ammonium chloride (NH4Cl), as seen for orthomyxoviruses. Our findings showed that influenza virus strain A/Puerto Rico/8 (PR8) was able to hemagglutinate turkey (Meleagris gallopavo), Atlantic salmon (Salmo salar L), and Nile tilapia (Oreochromis niloticus) red blood cells (RBCs), while infectious salmon anemia virus (ISAV) only agglutinated Atlantic salmon, but not turkey or tilapia, RBCs. In contrast to PR8 and ISAV, TiLV did not agglutinate turkey, Atlantic salmon, or tilapia RBCs. qRT-PCR analysis showed that 30 mM NH4Cl, a basic lysosomotropic agent, neither inhibited nor enhanced TiLV replication in E-11 cells. There was no difference in viral quantities in the infected cells with or without NH4Cl treatment during virus adsorption or at 1, 2, and 3 h post-infection. Given that hemagglutinin proteins that bind RBCs also serve as ligands that bind host cells during virus entry leading to endocytosis in orthomyxoviruses, the data presented here suggest that TiLV may use mechanisms that are different from orthomyxoviruses for entry and replication in host cells. Therefore, future studies should seek to elucidate the mechanisms used by TiLV for entry into host cells and to determine its mode of replication in infected cells.
Collapse
Affiliation(s)
- Augustino Alfred Chengula
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 369, NO-0102 Oslo, Norway; (A.A.C.); (S.M.); (Ø.E.)
- Department of Veterinary Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P. O. Box 3019 Chuo Kikuu, Morogoro, Tanzania
| | - Stephen Mutoloki
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 369, NO-0102 Oslo, Norway; (A.A.C.); (S.M.); (Ø.E.)
| | - Øystein Evensen
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 369, NO-0102 Oslo, Norway; (A.A.C.); (S.M.); (Ø.E.)
| | - Hetron Mweemba Munang’andu
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 369, NO-0102 Oslo, Norway; (A.A.C.); (S.M.); (Ø.E.)
- Correspondence: ; Tel.: +47-98-86-86-83
| |
Collapse
|
23
|
Post-Glycosylation Modification of Sialic Acid and Its Role in Virus Pathogenesis. Vaccines (Basel) 2019; 7:vaccines7040171. [PMID: 31683930 PMCID: PMC6963189 DOI: 10.3390/vaccines7040171] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/08/2019] [Accepted: 10/23/2019] [Indexed: 01/20/2023] Open
Abstract
Sialic acids are a family of nine carbon keto-aldononulosonic acids presented at the terminal ends of glycans on cellular membranes. α-Linked sialoglycoconjugates often undergo post-glycosylation modifications, among which O-acetylation of N-acetyl neuraminic acid (Neu5Ac) is the most common in mammalian cells. Isoforms of sialic acid are critical determinants of virus pathogenesis. To date, the focus of viral receptor-mediated attachment has been on Neu5Ac. O-Acetylated Neu5Acs have been largely ignored as receptor determinants of virus pathogenesis, although it is ubiquitous across species. Significantly, the array of structures resulting from site-specific O-acetylation by sialic acid O-acetyltransferases (SOATs) provides a means to examine specificity of viral binding to host cells. Specifically, C4 O-acetylated Neu5Ac can influence virus pathogenicity. However, the biological implications of only O-acetylated Neu5Ac at C7-9 have been explored extensively. This review will highlight the biological significance, extraction methods, and synthetic modifications of C4 O-acetylated Neu5Ac that may provide value in therapeutic developments and targets to prevent virus related diseases.
Collapse
|
24
|
Gjessing MC, Steinum T, Olsen AB, Lie KI, Tavornpanich S, Colquhoun DJ, Gjevre AG. Histopathological investigation of complex gill disease in sea farmed Atlantic salmon. PLoS One 2019; 14:e0222926. [PMID: 31581255 PMCID: PMC6776330 DOI: 10.1371/journal.pone.0222926] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/10/2019] [Indexed: 12/24/2022] Open
Abstract
Various agents including Ca. Piscichlamydia salmonis, Ca. Branchiomonas cysticola, Desmozoon lepeophtherii, Paramoeba perurans and salmon gill poxvirus may be associated with complex gill disease in Atlantic salmon. Co-infections involving two or more of these agents are common and histopathological interpretation of lesions is therefore challenging. In this study, we developed a semi-quantitative scoring system for examination of histopathological gill lesions in sea-farmed Atlantic salmon suffering from gill disease. Following qPCR analysis of gills sampled for Ca. P. salmonis, Ca. B. cysticola, D. lepeophtherii and P. perurans from 22 geographically spread outbreaks, five cases representing different infectious loads and combinations of agents were chosen for histopathological scoring. Twenty-eight histological features were evaluated and potential associations between individual pathological changes and the occurrence of individual agents studied. The inter-observer agreement in interpretation of histological parameters between the three pathologists involved, was calculated to validate robustness of the scoring scheme. Seventeen histological parameters met the criteria for inter-observer agreement analysis and were included in the calculation. The three most frequent findings were identification of subepithelial leukocytes, epithelial cell hyperplasia and mucus cell hyperplasia. While few findings could be specifically related to particular agents, necrosis in hyperplastic lesions, pustules and necrosis of subepithelial cells appeared to be associated with the presence of Ca. B. cysticola. Further, lesion profiles clearly support the previously identified association between P. perurans and pathological changes associated with AGD. Very few pathological changes were observed in the single case in which Ca. P. salmonis was the dominating agent. Some lesions were only very rarely observed e.g. chloride cell necrosis, epithelial cell apoptosis, lamellar deposition of melanin and haemophagocytosis. The scoring scheme developed and applied was robust and sensitive. A less extensive scheme for routine diagnostic use is proposed.
Collapse
|
25
|
Integrated Transcriptomic and Proteomic Analysis of Red Blood Cells from Rainbow Trout Challenged with VHSV Point Towards Novel Immunomodulant Targets. Vaccines (Basel) 2019; 7:vaccines7030063. [PMID: 31324030 PMCID: PMC6789484 DOI: 10.3390/vaccines7030063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 12/15/2022] Open
Abstract
Teleost red blood cells (RBCs) are nucleated and therefore can propagate cellular responses to exogenous stimuli. RBCs can mount an immune response against a variety of fish viruses, including the viral septicemia hemorrhagic virus (VHSV), which is one of the most prevalent fish viruses resulting in aquaculture losses. In this work, RBCs from blood and head kidney samples of rainbow trout challenged with VHSV were analyzed via transcriptomic and proteomic analyses. We detected an overrepresentation of differentially expressed genes (DEGs) related to the type I interferon response and signaling in RBCs from the head kidney and related to complement activation in RBCs from blood. Antigen processing and presentation of peptide antigen was overrepresented in RBCs from both tissues. DEGs shared by both tissues showed an opposite expression profile. In summary, this work has demonstrated that teleost RBCs can modulate the immune response during an in vivo viral infection, thus implicating RBCs as cell targets for the development of novel immunomodulants.
Collapse
|
26
|
Dahle MK, Jørgensen JB. Antiviral defense in salmonids - Mission made possible? FISH & SHELLFISH IMMUNOLOGY 2019; 87:421-437. [PMID: 30708056 DOI: 10.1016/j.fsi.2019.01.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/24/2019] [Accepted: 01/27/2019] [Indexed: 06/09/2023]
Abstract
Viral diseases represent one of the major threats for salmonid aquaculture. Survival from viral infections are highly dependent on host innate antiviral immune defense, where interferons are of crucial importance. Neutralizing antibodies and T cell effector mechanisms mediate long-term antiviral protection. Despite an immune cell repertoire comparable to higher vertebrates, farmed fish often fail to mount optimal antiviral protection. In the quest to multiply and spread, viruses utilize a variety of strategies to evade or escape the host immune system. Understanding the specific interplay between viruses and host immunity at depth is crucial for developing successful vaccination and treatment strategies in mammals. However, this knowledge base is still limited for pathogenic fish viruses. Here, we have focused on five RNA viruses with major impact on salmonid aquaculture: Salmonid alphavirus, Infectious salmon anemia virus, Infectious pancreatic necrosis virus, Piscine orthoreovirus and Piscine myocarditis virus. This review explore the protective immune responses that salmonids mount to these viruses and the existing knowledge on how the viruses counteract and/or bypass the immune response, including their IFN antagonizing effects and their mechanisms to establish persisting infections.
Collapse
Affiliation(s)
- Maria K Dahle
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø, The Arctic University of Norway, Norway; Department of Fish Health, Norwegian Veterinary Institute, Oslo, Norway
| | - Jorunn B Jørgensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø, The Arctic University of Norway, Norway.
| |
Collapse
|
27
|
Polinski MP, Marty GD, Snyman HN, Garver KA. Piscine orthoreovirus demonstrates high infectivity but low virulence in Atlantic salmon of Pacific Canada. Sci Rep 2019; 9:3297. [PMID: 30867461 PMCID: PMC6416343 DOI: 10.1038/s41598-019-40025-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 02/04/2019] [Indexed: 02/05/2023] Open
Abstract
Piscine orthoreovirus (PRV) is ubiquitous in farmed Atlantic salmon and sometimes associated with disease - most notably, Heart and Skeletal Muscle Inflammation (HSMI). However, PRV is also widespread in non-diseased fish, particularly in Pacific Canada, where few cases of severe heart inflammation have been documented. To better understand the mechanisms behind PRV-associated disease, this study investigated the infection dynamics of PRV from Pacific Canada and the potential for experimental passage of putatively associated heart inflammation in Pacific-adapted Mowi-McConnell Atlantic salmon. Regardless of the PRV source (fish with or without HSMI-like heart inflammation), infections led to high-load viremia that induced only minor focal heart inflammation without significant transcriptional induction of inflammatory cytokines. Repeated screening of PRV dsRNA/ssRNA along with histopathology and gene expression analysis of host blood and heart tissues identified three distinct phases of infection: (1) early systemic dissemination and replication without host recognition; (2) peak replication, erythrocyte inclusion body formation and load-dependent host recognition; (3) long-term, high-load viral persistence with limited replication or host recognition sometimes accompanied by minor heart inflammation. These findings contrast previous challenge trials with PRV from Norway that induced severe heart inflammation and indicate that strain and/or host specific factors are necessary to initiate PRV-associated disease.
Collapse
Affiliation(s)
- Mark P Polinski
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, V9T 6N7, Canada.
| | - Gary D Marty
- Animal Health Centre, Ministry of Agriculture, Abbotsford, V3G 2M3, Canada
| | - Heindrich N Snyman
- Animal Health Centre, Ministry of Agriculture, Abbotsford, V3G 2M3, Canada
| | - Kyle A Garver
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, V9T 6N7, Canada
| |
Collapse
|
28
|
Munang'andu HM, Evensen Ø. Correlates of protective immunity for fish vaccines. FISH & SHELLFISH IMMUNOLOGY 2019; 85:132-140. [PMID: 29621636 DOI: 10.1016/j.fsi.2018.03.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/25/2018] [Accepted: 03/31/2018] [Indexed: 05/07/2023]
Abstract
Vaccination is one of the most effective disease control strategies that has contributed to the significant reduction of disease outbreaks and antibiotics usage in salmonid aquaculture. To date, licensing of fish vaccines is to a limited extent based on in vitro correlates of protection, as done for many mammalian vaccines. This is because the immunological mechanisms of vaccine protection have not been clearly elucidated for most fish vaccines. Herein, we provide an overview of the different steps required to establish correlates of protective immunity required to serve as benchmarks in optimizing vaccine production in aquaculture. We highlight the importance of optimizing challenge models needed to generate consistent results used during vaccine development as a basis for establishing immune correlates of protection. Data generated this far shows that antibodies are potentially the most reliable correlates of protective immunity for fish vaccines. Our findings also show that antigen dose can be optimized to serve as a correlate of protection for fish vaccines. Further, there is need to establish signatures of T-cell protective immunity when antibodies fail to serve as proxies of immune protection, particularly for vaccines against intracellular pathogens. We can anticipate that documentation of efficacy for future vaccines in aquaculture, particularly batch testing will be based on in vitro correlates of protective immunity.
Collapse
Affiliation(s)
- Hetron Mweemba Munang'andu
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Department of Basic Sciences and Aquatic Medicine, Ullevålsveien 72, P.O. Box 8146, NO-0033, Oslo, Norway.
| | - Øystein Evensen
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Department of Basic Sciences and Aquatic Medicine, Ullevålsveien 72, P.O. Box 8146, NO-0033, Oslo, Norway.
| |
Collapse
|
29
|
Arseneau JR, Gautreau C, Boston L, Goguen ML, Laflamme M. Accelerated ISAV replication detection by cell culture methods combined with time-monitoring RT-qPCR. JOURNAL OF FISH DISEASES 2019; 42:257-267. [PMID: 30488967 DOI: 10.1111/jfd.12925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 06/09/2023]
Abstract
Infectious salmon anaemia (ISA) is a viral disease that affects farmed Atlantic salmon (Salmo salar L.), often leading to mass mortalities. A quick detection of the ISA virus (ISAV) is crucial for decision-making and can prevent the occurrence of future outbreaks. Screening done by Canada's National Aquatic Animal Health Laboratory System (NAAHLS) uses quantitative reverse transcription PCR (RT-qPCR) followed by sequencing of PCR amplicons. As neither technique provides information regarding the infectivity of the virus, suspected virulent strains are subsequently tested using viral isolation. However, this stepwise process can require significant time to deliver results. To speed up this delivery, we have improved on these pre-existing techniques by combining the use of cell culture with RT-qPCR to detect replicative virus in as little as 5 days. Preliminary assays enabled the establishment of a minimal shift in Ct values over time, which is representative of viral replication in cultured cells. Subsequent blind panel analyses allowed the establishment of the optimal sampling days, as well as diagnostic sensitivity (DSe) and specificity (DSp) estimates. This method could be adopted not only by laboratories conducting diagnostic analyses for ISAV, but also for other slow-replicating viral agents that replicate through a budding mechanism.
Collapse
Affiliation(s)
- Jean-René Arseneau
- Fisheries and Oceans Canada, Gulf Fisheries Centre, Moncton, New Brunswick, Canada
| | - Chantal Gautreau
- Fisheries and Oceans Canada, Gulf Fisheries Centre, Moncton, New Brunswick, Canada
| | - Linda Boston
- Fisheries and Oceans Canada, Gulf Fisheries Centre, Moncton, New Brunswick, Canada
| | - Michel L Goguen
- Fisheries and Oceans Canada, Gulf Fisheries Centre, Moncton, New Brunswick, Canada
| | - Mark Laflamme
- Fisheries and Oceans Canada, Gulf Fisheries Centre, Moncton, New Brunswick, Canada
| |
Collapse
|
30
|
Eckart V, Yamaguchi T, Franzke K, Bergmann SM, Boudinot P, Quillet E, Kawanobe M, de Haro NA, Fischer U. New cell lines for efficient propagation of koi herpesvirus and infectious salmon anaemia virus. JOURNAL OF FISH DISEASES 2019; 42:181-187. [PMID: 30537062 DOI: 10.1111/jfd.12921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 06/09/2023]
Abstract
The production of piscine viruses, in particular of koi herpesvirus (KHV, CyHV-3) and infectious salmon anaemia virus (ISAV), is still challenging due to the limited susceptibility of available cell lines to these viruses. A number of cell lines from different fish species were compared to standard diagnostic cell lines for KHV and ISAV regarding their capability to exhibit a cytopathic effect (CPE) and to accumulate virus. Two cell lines, so far undescribed, appeared to be useful for diagnostic purposes. Fr994, a cell line derived from ovaries of rainbow trout (Oncorhynchus mykiss), produced constantly high ISA virus (ISAV) titres and developed a pronounced CPE even at high cell passage numbers, while standard cell lines are reported to gradually loose these properties upon propagation. Another cell line isolated from the head kidney of common carp (Cyprinus carpio), KoK, showed a KHV induced CPE earlier than the standard cell line used for diagnostics. A third cell line, named Fin-4, established from the fin epithelium of rainbow trout did not promote efficient replication of tested viruses, but showed antigen sampling properties and might be useful as an in vitro model for virus uptake or phagocytosis.
Collapse
Affiliation(s)
- Valentin Eckart
- Friedrich-Loeffler-Institut (FLI), Institute of Infectology, Greifswald-Insel Riems, Germany
| | - Takuya Yamaguchi
- Friedrich-Loeffler-Institut (FLI), Institute of Infectology, Greifswald-Insel Riems, Germany
| | - Kati Franzke
- Friedrich-Loeffler-Institut (FLI), Institute of Infectology, Greifswald-Insel Riems, Germany
| | - Sven M Bergmann
- Friedrich-Loeffler-Institut (FLI), Institute of Infectology, Greifswald-Insel Riems, Germany
| | - Pierre Boudinot
- Institut National de la Recherche Agronomique (INRA), Unité de Virologie et Immunologie Moléculaires, Université Paris-Saclay, Jouy-en-Josas, France
| | - Edwige Quillet
- IGABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Motokazu Kawanobe
- Nagano Prefectural Fisheries Experimental Station, Akashina-Nakagawate, Japan
| | | | - Uwe Fischer
- Friedrich-Loeffler-Institut (FLI), Institute of Infectology, Greifswald-Insel Riems, Germany
- Faculty of Agriculture and Environmental Sciences, University of Rostock, Rostock, Germany
| |
Collapse
|
31
|
Ashfaq H, Soliman H, Saleh M, El-Matbouli M. CD4: a vital player in the teleost fish immune system. Vet Res 2019; 50:1. [PMID: 30616664 PMCID: PMC6323851 DOI: 10.1186/s13567-018-0620-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/21/2018] [Indexed: 12/24/2022] Open
Abstract
CD4 is a nonpolymorphic transmembrane glycoprotein molecule that is expressed on the surface of T-helper cells and plays an essential role in the immune response. It functions as a coreceptor with the T-cell receptor by binding to major histocompatibility complex class II on the surface of dendritic cells that present antigens. CD4+ T cells hold a key position in coordinating the immune system through production of several cytokines after activation and differentiation. The CD4+ T helper subtypes (T-helper 1, T-helper 2, T-helper 17, T-helper 9, and regulatory-T cells) perform different immune functions subsequent to their differentiation from the naive T cells. Different types of CD4+ T cells require different cytokines such as drivers and effectors, as well as master transcription factors for their activation. Fish cells that express CD4-related genes are activated in the presence of a pathogen and release cytokines against the pathogen. This review highlights the types of CD4+ T cells in fish and describes their direct role in cell-mediated and humoral immunity for protection against the intracellular bacterial as well as viral infections in fish.
Collapse
Affiliation(s)
- Hassan Ashfaq
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Hatem Soliman
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Mona Saleh
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| |
Collapse
|
32
|
LeBlanc F, Leadbeater S, Laflamme M, Gagné N. In vivo virulence and genomic comparison of infectious Salmon Anaemia Virus isolates from Atlantic Canada. JOURNAL OF FISH DISEASES 2018; 41:1373-1384. [PMID: 29938793 DOI: 10.1111/jfd.12832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 06/08/2023]
Abstract
The infectious salmon anaemia virus (ISAV) is capable of causing a significant disease in Atlantic salmon, which has resulted in considerable financial losses for salmon farmers around the world. Since the first detection of ISAV in Canada in 1996, it has been a high priority for aquatic animal health management and surveillance programmes have led to the identification of many genetically distinct ISAV isolates of variable virulence. In this study, we evaluated the virulence of three ISAV isolates detected in Atlantic Canada in 2012 by doing in vivo-controlled disease challenges with two sources of Atlantic salmon. We measured viral loads in fish tissues during the course of infection. Sequences of the full viral RNA genomes of these three ISAV isolates were obtained and compared to a high-virulence and previously characterized isolate detected in the Bay of Fundy in 2004, as well as a newly identified ISAV NA-HPR0 isolate. All three ISAV isolates studied were shown to be of low to mid-virulence with fish from source A having a lower mortality rate than fish from source B. Viral load estimation using an RT-qPCR assay targeting viral segment 8 showed a high degree of similarity between tissues. Through genomic comparison, we identified various amino acid substitutions unique to some isolates, including a stop codon in the segment 8 ORF2 not previously reported in ISAV, present in the isolate with the lowest observed virulence.
Collapse
Affiliation(s)
- Francis LeBlanc
- Fisheries & Oceans Canada, Gulf Fisheries Center, Moncton, NB, Canada
| | - Steven Leadbeater
- Fisheries & Oceans Canada, St Andrews Biological Station, St Andrews, NB, Canada
| | - Mark Laflamme
- Fisheries & Oceans Canada, Gulf Fisheries Center, Moncton, NB, Canada
| | - Nellie Gagné
- Fisheries & Oceans Canada, Gulf Fisheries Center, Moncton, NB, Canada
| |
Collapse
|
33
|
Gjessing MC, Christensen DH, Manji F, Mohammad S, Petersen PE, Saure B, Skjengen C, Weli SC, Dale OB. Salmon gill poxvirus disease in Atlantic salmon fry as recognized by improved immunohistochemistry also demonstrates infected cells in non-respiratory epithelial cells. JOURNAL OF FISH DISEASES 2018; 41:1103-1110. [PMID: 29745427 DOI: 10.1111/jfd.12802] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
Gill diseases cause serious losses in farming of Atlantic salmon and the number of agents involved increases. Salmon gill poxvirus (SGPV) and the gill disease in causes where SGPV apparently was the only disease-causing agent were initially characterized. Recently, it was further shown that SGPV can be a common denominator in widely different multifactorial gill diseases. Here, we present the challenge of diagnosing gill disease with SGPV in salmon fry of 0,3-5 grams. Apoptosis of gill lamellar epithelial cells and hemophagocytosis was also observed in fry similar to findings in smolts and grow-out fish. Using our newly developed immunohistochemistry method, we further demonstrate that some of the apoptotic epithelial cells covering the oral cavity were positive for SGPV. Thus, SGPV is not restricted to respiratory epithelium alone and may infect the fish at very early life stages. Furthermore, as the cases examined here are from Norway, Faroe Island and Scotland, we show that SGPV is more widespread than previously reported.
Collapse
Affiliation(s)
| | - D H Christensen
- National Reference Laboratory for Fish Diseases, Food and Veterinary Authority, Torshavn, Faroe Islands
| | - F Manji
- Marine Harvest ASA, Bergen, Norway
| | - S Mohammad
- Norwegian Veterinary Institute, Oslo, Norway
| | - P E Petersen
- National Reference Laboratory for Fish Diseases, Food and Veterinary Authority, Torshavn, Faroe Islands
| | - B Saure
- Norwegian Veterinary Institute, Oslo, Norway
| | | | - S C Weli
- Norwegian Veterinary Institute, Oslo, Norway
| | - O B Dale
- Norwegian Veterinary Institute, Oslo, Norway
| |
Collapse
|
34
|
Sudhagar A, Kumar G, El-Matbouli M. Transcriptome Analysis Based on RNA-Seq in Understanding Pathogenic Mechanisms of Diseases and the Immune System of Fish: A Comprehensive Review. Int J Mol Sci 2018; 19:ijms19010245. [PMID: 29342931 PMCID: PMC5796193 DOI: 10.3390/ijms19010245] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 12/12/2022] Open
Abstract
In recent years, with the advent of next-generation sequencing along with the development of various bioinformatics tools, RNA sequencing (RNA-Seq)-based transcriptome analysis has become much more affordable in the field of biological research. This technique has even opened up avenues to explore the transcriptome of non-model organisms for which a reference genome is not available. This has made fish health researchers march towards this technology to understand pathogenic processes and immune reactions in fish during the event of infection. Recent studies using this technology have altered and updated the previous understanding of many diseases in fish. RNA-Seq has been employed in the understanding of fish pathogens like bacteria, virus, parasites, and oomycetes. Also, it has been helpful in unraveling the immune mechanisms in fish. Additionally, RNA-Seq technology has made its way for future works, such as genetic linkage mapping, quantitative trait analysis, disease-resistant strain or broodstock selection, and the development of effective vaccines and therapies. Until now, there are no reviews that comprehensively summarize the studies which made use of RNA-Seq to explore the mechanisms of infection of pathogens and the defense strategies of fish hosts. This review aims to summarize the contemporary understanding and findings with regard to infectious pathogens and the immune system of fish that have been achieved through RNA-Seq technology.
Collapse
Affiliation(s)
- Arun Sudhagar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna 1210, Austria.
- Central Institute of Fisheries Education, Rohtak Centre, Haryana 124411, India.
| | - Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna 1210, Austria.
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna 1210, Austria.
| |
Collapse
|
35
|
Transcriptome Analysis of Flounder (Paralichthys olivaceus) Gill in Response to Lymphocystis Disease Virus (LCDV) Infection: Novel Insights into Fish Defense Mechanisms. Int J Mol Sci 2018; 19:ijms19010160. [PMID: 29304016 PMCID: PMC5796109 DOI: 10.3390/ijms19010160] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/01/2018] [Accepted: 01/02/2018] [Indexed: 12/21/2022] Open
Abstract
Lymphocystis disease virus (LCDV) infection may induce a variety of host gene expression changes associated with disease development; however, our understanding of the molecular mechanisms underlying host-virus interactions is limited. In this study, RNA sequencing (RNA-seq) was employed to investigate differentially expressed genes (DEGs) in the gill of the flounder (Paralichthys olivaceus) at one week post LCDV infection. Transcriptome sequencing of the gill with and without LCDV infection was performed using the Illumina HiSeq 2500 platform. In total, RNA-seq analysis generated 193,225,170 clean reads aligned with 106,293 unigenes. Among them, 1812 genes were up-regulated and 1626 genes were down-regulated after LCDV infection. The DEGs related to cellular process and metabolism occupied the dominant position involved in the LCDV infection. A further function analysis demonstrated that the genes related to inflammation, the ubiquitin-proteasome pathway, cell proliferation, apoptosis, tumor formation, and anti-viral defense showed a differential expression. Several DEGs including β actin, toll-like receptors, cytokine-related genes, antiviral related genes, and apoptosis related genes were involved in LCDV entry and immune response. In addition, RNA-seq data was validated by quantitative real-time PCR. For the first time, the comprehensive gene expression study provided valuable insights into the host-pathogen interaction between flounder and LCDV.
Collapse
|
36
|
Tattiyapong P, Dachavichitlead W, Surachetpong W. Experimental infection of Tilapia Lake Virus (TiLV) in Nile tilapia ( Oreochromis niloticus ) and red tilapia ( Oreochromis spp.). Vet Microbiol 2017; 207:170-177. [DOI: 10.1016/j.vetmic.2017.06.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/13/2017] [Accepted: 06/16/2017] [Indexed: 10/19/2022]
|
37
|
Noguera PA, Grunow B, Klinger M, Lester K, Collet B, del-Pozo J. Atlantic salmon cardiac primary cultures: An in vitro model to study viral host pathogen interactions and pathogenesis. PLoS One 2017; 12:e0181058. [PMID: 28727799 PMCID: PMC5519056 DOI: 10.1371/journal.pone.0181058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 06/26/2017] [Indexed: 11/18/2022] Open
Abstract
Development of Salmon Cardiac Primary Cultures (SCPCs) from Atlantic salmon pre-hatch embryos and their application as in vitro model for cardiotropic viral infection research are described. Producing SCPCs requires plating of trypsin dissociated embryos with subsequent targeted harvest from 24h up to 3 weeks, of relevant tissues after visual identification. SCPCs are then transferred individually to chambered wells for culture in isolation, with incubation at 15-22°. SCPCs production efficiency was not influenced by embryo's origin (0.75/ farmed or wild embryo), but mildly influenced by embryonic developmental stage (0.3 decline between 380 and 445 accumulated thermal units), and strongly influenced by time of harvest post-plating (0.6 decline if harvested after 72 hours). Beating rate was not significantly influenced by temperature (15-22°) or age (2-4 weeks), but was significantly lower on SCPCs originated from farmed embryos with a disease resistant genotype (F = 5.3, p<0.05). Two distinct morphologies suggestive of an ex vivo embryonic heart and a de novo formation were observed sub-grossly, histologically, ultra-structurally and with confocal microscopy. Both types contained cells consistent with cardiomyocytes, endothelium, and fibroblasts. Ageing of SCPCs in culture was observed with increased auto fluorescence in live imaging, and as myelin figures and cellular degeneration ultra-structurally. The SCPCs model was challenged with cardiotropic viruses and both the viral load and the mx gene expression were measurable along time by qPCR. In summary, SCPCs represent a step forward in salmon cardiac disease research as an in vitro model that partially incorporates the functional complexity of the fish heart.
Collapse
Affiliation(s)
- Patricia A. Noguera
- Aquaculture and Marine Environment, Marine Scotland Science, Aberdeen, United Kingdom
- * E-mail:
| | - Bianka Grunow
- Fraunhofer Research Institution for Marine Biotechnology, Lübeck, Germany
| | | | - Katherine Lester
- Aquaculture and Marine Environment, Marine Scotland Science, Aberdeen, United Kingdom
| | - Bertrand Collet
- Aquaculture and Marine Environment, Marine Scotland Science, Aberdeen, United Kingdom
| | - Jorge del-Pozo
- Royal Dick School of Veterinary Sciences - University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
38
|
Christiansen DH, McBeath AJA, Aamelfot M, Matejusova I, Fourrier M, White P, Petersen PE, Falk K. First field evidence of the evolution from a non-virulent HPR0 to a virulent HPR-deleted infectious salmon anaemia virus. J Gen Virol 2017; 98:595-606. [PMID: 28475029 DOI: 10.1099/jgv.0.000741] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The putatively non-virulent subtype of infectious salmon anaemia virus (ISAV), ISAV-HPR0, is proposed to act as a progenitor and reservoir for all virulent ISAVs and thus represent a potential risk factor for the emergence of infectious salmon anaemia (ISA) disease. Here, we provide the first evidence of genetic and functional evolution from an ISAV-HPR0 variant (FO/07/12) to a low-virulent ISAV virus (FO/121/14) in a Faroese Atlantic salmon marine farm. The FO/121/14 virus infection was not associated with specific clinical signs of ISA and was confined to a single net-pen, while various ISAV-HPR0 subtypes were found circulating in most epidemiologically linked marine and freshwater farms. Sequence analysis of all eight segments revealed that the FO/121/14 virus was identical, apart from a substitution in the fusion (F) gene (Q266L) and a deletion in the haemagglutinin-esterase (HE) gene, to the FO/07/12 variant from a freshwater farm, which supplied smolts exclusively to the FO/121/14-positive net-pen. An immersion challenge with the FO/121/14 virus induced a systemic infection in Atlantic salmon associated with a low mortality and mild clinical signs confirming its low pathogenicity. Our results demonstrate that mutations in the F protein and deletions in the highly polymorphic region (HPR) of the HE protein represent a minimum requirement for ISAV to gain virulence and to switch cell tropism from a localized epithelial infection to a systemic endotheliotropic infection. This documents that ISAV-HPR0 represents a reservoir and risk factor for the emergence of ISA disease.
Collapse
Affiliation(s)
- Debes H Christiansen
- Faroese Food and Veterinary Authority, National Reference Laboratory for Fish Diseases, Tórshavn, Faroe Islands
| | | | | | | | | | - Patricia White
- Marine Scotland Science, Marine Laboratory, Aberdeen, Scotland
| | - Petra E Petersen
- Faroese Food and Veterinary Authority, National Reference Laboratory for Fish Diseases, Tórshavn, Faroe Islands
| | - Knut Falk
- Norwegian Veterinary Institute, Oslo, Norway
| |
Collapse
|
39
|
Dettleff P, Moen T, Santi N, Martinez V. Transcriptomic analysis of spleen infected with infectious salmon anemia virus reveals distinct pattern of viral replication on resistant and susceptible Atlantic salmon (Salmo salar). FISH & SHELLFISH IMMUNOLOGY 2017; 61:187-193. [PMID: 28063951 DOI: 10.1016/j.fsi.2017.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 12/26/2016] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
The infectious salmon anemia virus (ISAv) produces a systemic infection in salmonids, causing large losses in salmon production. However, little is known regarding the mechanisms exerting disease resistance. In this paper, we perform an RNA-seq analysis in Atlantic salmon challenged with ISAv (using individuals coming from families that were highly susceptible or highly resistant to ISAv infection). We evaluated the differential expression of both host and ISAv genes in a target organ for the virus, i.e. the spleen. The results showed differential expression of host genes related to response to stress, immune response and protein folding (genes such as; atf3, mhc, mx1-3, cd276, cd2, cocs1, c7, il10, il10rb, il13ra2, ubl-1, ifng, ifngr1, hivep2, sigle14 and sigle5). An increased protein processing activity was found in susceptible fish, which generates a subsequent unfolded protein response. We observed extreme differences in the expression of viral segments between susceptible and resistant groups, demonstrating the capacity of resistant fish to overcome the virus replication, generating a very low viral load. This phenomenon and survival of this higher resistant fish seem to be related to differences in immune and translational process, as well as to the increase of HIV-EP2 (hivep2) transcript in resistant fish, although the causal mechanism is yet to be discovered. This study provides valuable information about disease resistance mechanisms in Atlantic salmon from a host-pathogen interaction point of view.
Collapse
Affiliation(s)
- Phillip Dettleff
- FAVET-INBIOGEN, Faculty of Veterinary Sciences, University of Chile, Avda. Santa Rosa 11735, Santiago, Chile.
| | | | - Nina Santi
- AQUAGEN Norway, Trondheim NO-7462, Norway.
| | - Victor Martinez
- FAVET-INBIOGEN, Faculty of Veterinary Sciences, University of Chile, Avda. Santa Rosa 11735, Santiago, Chile.
| |
Collapse
|
40
|
Pham PH, Vo NTK, Tan EJH, Russell S, Jones G, Lumsden JS, Bols NC. Development of an Atlantic salmon heart endothelial cell line (ASHe) that responds to lysophosphatidic acid (LPA). In Vitro Cell Dev Biol Anim 2016; 53:20-32. [PMID: 27586265 DOI: 10.1007/s11626-016-0077-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 07/22/2016] [Indexed: 12/16/2022]
Abstract
As diseases and abnormalities of the heart can interfere with the aquaculture of Atlantic salmon, the heart was investigated as a source of cell lines that could be used to study the cellular basis of these conditions. An Atlantic salmon heart endothelial cell line, ASHe, was developed and characterized for growth properties, endothelial cell characteristics, and responsiveness to lysophosphatidic acid (LPA). AHSe cells stained negative for senescence associated ß-galactosidase and grew well in 10 and 20% FBS/L15 at high cell density, but not in L15 medium supplemented with calf serum. It displayed many endothelial cell-like characteristics including a cobblestone morphology, capillary-like structures formation on Matrigel, and expression of von Willebrand factor and endothelial cell-related tight junction proteins ZO-1, claudin 3, and claudin 5. ASHe cells responded to the cardiovascular modulator, LPA, in two contrasting ways. LPA at 5 and 25 μM inhibited the ability of ASHe cells to heal a wound but stimulated their proliferation, especially as evaluated by colony formation in low-density cultures. The enhancement of proliferation by LPA parallels what has been observed previously in mammalian endothelial cell cultures exposed to LPA, whereas the LPA slowing of ASHe cell migration contrasted with the LPA-enhanced migration of some mammalian cells. Therefore, this cell line is a potentially useful model for future comparative studies on piscine and mammalian cardiovascular cell biology and for studies on diseases of Atlantic salmon in aquaculture.
Collapse
Affiliation(s)
- Phuc H Pham
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Nguyen T K Vo
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, ON, Canada
| | | | - Spencer Russell
- Department of Fisheries and Aquaculture, Vancouver Island University, Nanaimo, BC, Canada
| | | | - John S Lumsden
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Niels C Bols
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
41
|
Localised Infection of Atlantic Salmon Epithelial Cells by HPR0 Infectious Salmon Anaemia Virus. PLoS One 2016; 11:e0151723. [PMID: 26999815 PMCID: PMC4801213 DOI: 10.1371/journal.pone.0151723] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/03/2016] [Indexed: 12/13/2022] Open
Abstract
Infectious salmon anaemia (ISA) is an important, systemic viral disease of farmed Atlantic salmon, Salmo salar L. Endothelial cells are the main target cells for highly virulent HPR-deleted ISA virus (ISAV) types. Here we examine the pathogenesis of non-virulent ISAV HPR0 infections, presenting evidence of an epithelial tropism for this virus type, including actual infection and replication in the epithelial cells. Whereas all HPR0 RT-qPCR positive gills prepared for cryosection tested positive by immunohistochemistry (IHC) and immunofluorescent labelling, only 21% of HPR0 RT-qPCR positive formalin-fixed paraffin-embedded gills were IHC positive, suggesting different methodological sensitivities. Only specific epithelial cell staining was observed and no staining was observed in endothelial cells of positive gills. Furthermore, using an ISAV segment 7 RT-PCR assay, we demonstrated splicing of HPR0, suggesting initial activation of the replication machinery in the epithelial gill cells. Immunological responses were investigated by the expression of interferon-related genes (e.g. Mx and γIP) and by ELISA for presence of anti-ISAV antibodies on samples taken sequentially over several months during an episode of transient HPR0 infection. All fish revealed a variable, but increased expression of the immunological markers in comparison to normal healthy fish. Taken together, we conclude that HPR0 causes a localized epithelial infection of Atlantic salmon.
Collapse
|
42
|
Kavaliauskis A, Arnemo M, Rishovd AL, Gjøen T. Activation of unfolded protein response pathway during infectious salmon anemia virus (ISAV) infection in vitro an in vivo. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 54:46-54. [PMID: 26303456 DOI: 10.1016/j.dci.2015.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 08/17/2015] [Accepted: 08/17/2015] [Indexed: 06/04/2023]
Abstract
Infectious salmon anemia virus (ISAV) is a salmon pathogen causing serious outbreaks in fish farms world-wide. There is currently no effective commercially available vaccine and there is a need for better understanding of host pathogen interactions with this virus. Various strains can cause both acute and persistent infections and therefore establish a balance with the host immune responses. We have studied host responses to this infection by analyzing the main branches of the unfolded protein response (UPR) in salmon cells in vitro and in tissues from infected fish to gain a better understanding of virus-host interactions. ISAV induce the main symptoms and signaling pathways of UPR (ATF6, PERK and IRE1) without inducing translational attenuation. This may be due to concomitant induction of an important negative feedback loop via the phosphatase regulator GADD34. The host cells can therefore respond with translation of cytokine and antiviral proteins to curb or control infection.
Collapse
Affiliation(s)
- Arturas Kavaliauskis
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, NO-0316 Oslo, Norway.
| | - Marianne Arnemo
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, NO-0316 Oslo, Norway.
| | - Anne-Lise Rishovd
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, NO-0316 Oslo, Norway.
| | - Tor Gjøen
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, NO-0316 Oslo, Norway.
| |
Collapse
|
43
|
Kibenge F, Kibenge M. Orthomyxoviruses of Fish. AQUACULTURE VIROLOGY 2016. [PMCID: PMC7173593 DOI: 10.1016/b978-0-12-801573-5.00019-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The family Orthomyxoviridae is well known for containing influenza viruses with a segmented RNA genome that is prone to gene reassortment in mixed infections (known as antigenic shift) resulting in new virus subtypes that cause pandemics, and cumulative mutations (known as antigenic drift), resulting in new virus strains that cause epidemics. This family also contains infectious salmon anemia virus (ISAV) and tilapia lake virus (TiLV), which are a unique orthomyxoviruses that infect fish and is unable to replicate above room temperature (24°C). This chapter describes the comparative virology of members in the family Orthomyxoviridae in general, helping to understand the emergent teleost orthomyxoviruses, ISAV and TiLV. The most current information on virus–host interactions of the fish orthomyxoviruses, particularly ISAV, as they relate to variations in virus structure, virulence, persistence, host range and immunological aspects is presented in detail.
Collapse
|
44
|
Wu RH, Tang XQ, Sheng XZ, Zhan WB. Tissue Distribution of the 27.8 kDa Receptor and its Dynamic Expression in Response to Lymphocystis Disease Virus Infection in Flounder (Paralichthys olivaceus). J Comp Pathol 2015; 153:324-32. [DOI: 10.1016/j.jcpa.2015.10.176] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 09/12/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
|
45
|
Fourrier M, Lester K, Markussen T, Falk K, Secombes CJ, McBeath A, Collet B. Dual Mutation Events in the Haemagglutinin-Esterase and Fusion Protein from an Infectious Salmon Anaemia Virus HPR0 Genotype Promote Viral Fusion and Activation by an Ubiquitous Host Protease. PLoS One 2015; 10:e0142020. [PMID: 26517828 PMCID: PMC4627773 DOI: 10.1371/journal.pone.0142020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/15/2015] [Indexed: 11/24/2022] Open
Abstract
In Infectious salmon anaemia virus (ISAV), deletions in the highly polymorphic region (HPR) in the near membrane domain of the haemagglutinin-esterase (HE) stalk, influence viral fusion. It is suspected that selected mutations in the associated Fusion (F) protein may also be important in regulating fusion activity. To better understand the underlying mechanisms involved in ISAV fusion, several mutated F proteins were generated from the Scottish Nevis and Norwegian SK779/06 HPR0. Co-transfection with constructs encoding HE and F were performed, fusion activity assessed by content mixing assay and the degree of proteolytic cleavage by western blot. Substitutions in Nevis F demonstrated that K276 was the most likely cleavage site in the protein. Furthermore, amino acid substitutions at three sites and two insertions, all slightly upstream of K276, increased fusion activity. Co-expression with HE harbouring a full-length HPR produced high fusion activities when trypsin and low pH were applied. In comparison, under normal culture conditions, groups containing a mutated HE with an HPR deletion were able to generate moderate fusion levels, while those with a full length HPR HE could not induce fusion. This suggested that HPR length may influence how the HE primes the F protein and promotes fusion activation by an ubiquitous host protease and/or facilitate subsequent post-cleavage refolding steps. Variations in fusion activity through accumulated mutations on surface glycoproteins have also been reported in other orthomyxoviruses and paramyxoviruses. This may in part contribute to the different virulence and tissue tropism reported for HPR0 and HPR deleted ISAV genotypes.
Collapse
Affiliation(s)
- Mickael Fourrier
- Aquaculture and Fish Health, Marine Scotland Science, Aberdeen, United Kingdom
- * E-mail:
| | - Katherine Lester
- Aquaculture and Fish Health, Marine Scotland Science, Aberdeen, United Kingdom
| | | | - Knut Falk
- Epidemiology, Norwegian Veterinary Institute, Oslo, Norway
| | | | - Alastair McBeath
- Aquaculture and Fish Health, Marine Scotland Science, Aberdeen, United Kingdom
| | - Bertrand Collet
- Aquaculture and Fish Health, Marine Scotland Science, Aberdeen, United Kingdom
| |
Collapse
|
46
|
Aamelfot M, McBeath A, Christiansen DH, Matejusova I, Falk K. Infectious salmon anaemia virus (ISAV) mucosal infection in Atlantic salmon. Vet Res 2015; 46:120. [PMID: 26490835 PMCID: PMC4618535 DOI: 10.1186/s13567-015-0265-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/01/2015] [Indexed: 11/25/2022] Open
Abstract
All viruses infecting fish must cross the surface mucosal barrier to successfully enter a host. Infectious salmon anaemia virus (ISAV), the causative agent of the economically important infectious salmon anaemia (ISA) in Atlantic salmon, Salmo salar L., has been shown to use the gills as its entry point. However, other entry ports have not been investigated despite the expression of virus receptors on the surface of epithelial cells in the skin, the gastrointestinal (GI) tract and the conjunctiva. Here we investigate the ISAV mucosal infection in Atlantic salmon after experimental immersion (bath) challenge and in farmed fish collected from a confirmed outbreak of ISA in Norway. We show for the first time evidence of early replication in several mucosal surfaces in addition to the gills, including the pectoral fin, skin and GI tract suggesting several potential entry points for the virus. Initially, the infection is localized and primarily infecting epithelial cells, however at later stages it becomes systemic, infecting the endothelial cells lining the circulatory system. Viruses of low and high virulence used in the challenge revealed possible variation in virus progression during infection at the mucosal surfaces.
Collapse
Affiliation(s)
| | - Alastair McBeath
- Marine Scotland Science, Marine Laboratory, Aberdeen, Scotland, UK.
| | | | - Iveta Matejusova
- Marine Scotland Science, Marine Laboratory, Aberdeen, Scotland, UK.
| | - Knut Falk
- Norwegian Veterinary Institute, Oslo, Norway.
| |
Collapse
|
47
|
Collet B, Urquhart K, Monte M, Collins C, Garcia Perez S, Secombes CJ, Hall M. Individual Monitoring of Immune Response in Atlantic Salmon Salmo salar following Experimental Infection with Infectious Salmon Anaemia Virus (ISAV). PLoS One 2015; 10:e0137767. [PMID: 26397117 PMCID: PMC4580571 DOI: 10.1371/journal.pone.0137767] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 08/20/2015] [Indexed: 01/11/2023] Open
Abstract
Monitoring the immune response in fish over the progression of a disease is traditionally carried out by experimental infection whereby animals are killed at regular intervals and samples taken. We describe here a novel approach to infectiology for salmonid fish where blood samples are collected repeatedly in a small group of PIT-tagged animals. This approach contributes to the reduction of animals used in research and to improved data quality. Two groups of 12 PIT-tagged Atlantic salmon (Salmo salar) were i.p infected with Infectious Salmon Anaemia Virus (ISAV) or culture medium and placed in 1 m3 tanks. Blood samples were collected at 0, 4, 8, 12, 16, 21 and 25 days post infection. The viral load, immune and stress response were determined in individual fish by real-time quantitative PCR (QPCR) on the blood cells, as well as the haematocrit used as an indicator of haemolysis, a clinical consequence of ISAV infection. "In-tank" anaesthesia was used in order to reduce the stress related to chase and netting prior to sampling. The data were analysed using a statistical approach which is novel with respect to its use in fish immunology. The repeated blood collection procedure did not induce stress response as measured by HSP70 and HSP90 gene expression in the un-infected animals. A strong increase in viraemia as well as a significant induction of Mx and γIP gene expression were observed in the infected group. Interleukin 10 was found induced at the later stage of the infection whereas no induction of CD8 or γ IFN could be detected. These results and the advantages of this approach are discussed.
Collapse
Affiliation(s)
- Bertrand Collet
- Aquaculture and Fish Health, Marine Scotland, Aberdeen, Scotland, United Kingdom
| | - Katy Urquhart
- Aquaculture and Fish Health, Marine Scotland, Aberdeen, Scotland, United Kingdom
| | - Milena Monte
- School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Catherine Collins
- Aquaculture and Fish Health, Marine Scotland, Aberdeen, Scotland, United Kingdom
| | - Sandro Garcia Perez
- Aquaculture and Fish Health, Marine Scotland, Aberdeen, Scotland, United Kingdom
| | - Chris J. Secombes
- School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Malcolm Hall
- Aquaculture and Fish Health, Marine Scotland, Aberdeen, Scotland, United Kingdom
| |
Collapse
|
48
|
Aamelfot M, Dale OB, McBeath A, Falk K. Host tropism of infectious salmon anaemia virus in marine and freshwater fish species. JOURNAL OF FISH DISEASES 2015; 38:687-694. [PMID: 25048819 DOI: 10.1111/jfd.12284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 05/06/2014] [Indexed: 06/03/2023]
Abstract
The aquatic orthomyxovirus infectious salmon anaemia virus (ISAV) causes a severe disease in farmed Atlantic salmon, Salmo salar L. Although some ISA outbreaks are caused by horizontal transmission of virus between farms, the source and reservoir of the virus is largely unknown and a wild host has been hypothesized. Atlantic salmon are farmed in open net-pens, allowing transmission of pathogens from wild fish and the surrounding environment to the farmed fish. In this study, a large number of fish species were investigated for ISAV host potential. For orthomyxoviruses, a specific receptor binding is the first requirement for infection; thus, the fish species were investigated for the presence of the ISAV receptor. The receptor was found to be widely distributed across the fish species. All salmonids expressed the receptor. However, only some of the cod-like and perch-like fish did, and all flat fish were negative. In the majority of the positive species, the receptor was found on endothelial cells and/or on red blood cells. The study forms a basis for further investigations and opens up the possibility for screening species to determine whether a wild host of ISAV exists.
Collapse
Affiliation(s)
- M Aamelfot
- Norwegian Veterinary Institute, Oslo, Norway
| | - O B Dale
- Norwegian Veterinary Institute, Oslo, Norway
| | - A McBeath
- Marine Scotland Science, Aberdeen, UK
| | - K Falk
- Norwegian Veterinary Institute, Oslo, Norway
| |
Collapse
|
49
|
Salmon Gill Poxvirus, the Deepest Representative of the Chordopoxvirinae. J Virol 2015; 89:9348-67. [PMID: 26136578 PMCID: PMC4542343 DOI: 10.1128/jvi.01174-15] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/23/2015] [Indexed: 11/20/2022] Open
Abstract
Poxviruses are large DNA viruses of vertebrates and insects causing disease in many animal species, including reptiles, birds, and mammals. Although poxvirus-like particles were detected in diseased farmed koi carp, ayu, and Atlantic salmon, their genetic relationships to poxviruses were not established. Here, we provide the first genome sequence of a fish poxvirus, which was isolated from farmed Atlantic salmon. In the present study, we used quantitative PCR and immunohistochemistry to determine aspects of salmon gill poxvirus disease, which are described here. The gill was the main target organ where immature and mature poxvirus particles were detected. The particles were detected in detaching, apoptotic respiratory epithelial cells preceding clinical disease in the form of lethargy, respiratory distress, and mortality. In moribund salmon, blocking of gas exchange would likely be caused by the adherence of respiratory lamellae and epithelial proliferation obstructing respiratory surfaces. The virus was not found in healthy salmon or in control fish with gill disease without apoptotic cells, although transmission remains to be demonstrated. PCR of archival tissue confirmed virus infection in 14 cases with gill apoptosis in Norway starting from 1995. Phylogenomic analyses showed that the fish poxvirus is the deepest available branch of chordopoxviruses. The virus genome encompasses most key chordopoxvirus genes that are required for genome replication and expression, although the gene order is substantially different from that in other chordopoxviruses. Nevertheless, many highly conserved chordopoxvirus genes involved in viral membrane biogenesis or virus-host interactions are missing. Instead, the salmon poxvirus carries numerous genes encoding unknown proteins, many of which have low sequence complexity and contain simple repeats suggestive of intrinsic disorder or distinct protein structures. IMPORTANCE Aquaculture is an increasingly important global source of high-quality food. To sustain the growth in aquaculture, disease control in fish farming is essential. Moreover, the spread of disease from farmed fish to wildlife is a concern. Serious poxviral diseases are emerging in aquaculture, but very little is known about the viruses and the diseases that they cause. There is a possibility that viruses with enhanced virulence may spread to new species, as has occurred with the myxoma poxvirus in rabbits. Provision of the first fish poxvirus genome sequence and specific diagnostics for the salmon gill poxvirus in Atlantic salmon may help curb this disease and provide comparative knowledge. Furthermore, because salmon gill poxvirus represents the deepest branch of chordopoxvirus so far discovered, the genome analysis provided substantial insight into the evolution of different functional modules in this important group of viruses.
Collapse
|
50
|
McBeath A, Aamelfot M, Christiansen DH, Matejusova I, Markussen T, Kaldhusdal M, Dale OB, Weli SC, Falk K. Immersion challenge with low and highly virulent infectious salmon anaemia virus reveals different pathogenesis in Atlantic salmon, Salmo salar L. JOURNAL OF FISH DISEASES 2015; 38:3-15. [PMID: 24820820 DOI: 10.1111/jfd.12253] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 06/03/2023]
Abstract
The salmonid orthomyxovirus infectious salmon anaemia virus (ISAV) causes disease of varying severity in farmed Atlantic salmon, Salmo salar L. Field observations suggest that host factors, the environment and differences between ISAV strains attribute to the large variation in disease progression. Variation in host mortality and dissemination of ISAV isolates with high and low virulence (based on a previously published injection challenge) were investigated using immersion challenge. Virus dissemination was determined using real-time PCR and immunohistochemistry in several organs, including blood. Surprisingly, the low virulent virus (LVI) replicated and produced nucleoprotein at earlier time points post-infection compared to the virus of high virulence (HVI). This was particularly noticeable in the gills as indicated by different viral load profiles. However, the HVI reached a higher maximum viral load in all tested organs and full blood. This was associated with a higher mortality of 100% as compared to 20% in the LVI group by day 23 post-infection. Immersion challenge represented a more natural infection method and suggested that specific entry routes into the fish may be of key importance between ISAV strains. The results suggest that a difference in virulence is important for variations in virus dissemination and pathogenesis (disease development).
Collapse
Affiliation(s)
- A McBeath
- Marine Scotland Science, Marine Laboratory, Aberdeen, UK
| | | | | | | | | | | | | | | | | |
Collapse
|