1
|
Del Arco J, Acosta J, Fernández-Lucas J. Biotechnological applications of purine and pyrimidine deaminases. Biotechnol Adv 2024; 77:108473. [PMID: 39505057 DOI: 10.1016/j.biotechadv.2024.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/21/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024]
Abstract
Deaminases, ubiquitous enzymes found in all living organisms from bacteria to humans, serve diverse and crucial functions. Notably, purine and pyrimidine deaminases, while biologically essential for regulating nucleotide pools, exhibit exceptional versatility in biotechnology. This review systematically consolidates current knowledge on deaminases, showcasing their potential uses and relevance in the field of biotechnology. Thus, their transformative impact on pharmaceutical manufacturing is highlighted as catalysts for the synthesis of nucleic acid derivatives. Additionally, the role of deaminases in food bioprocessing and production is also explored, particularly in purine content reduction and caffeine production, showcasing their versatility in this field. The review also delves into most promising biomedical applications including deaminase-based GDEPT and genome and transcriptome editing by deaminase-based systems. All in all, illustrated with practical examples, we underscore the role of purine and pyrimidine deaminases in advancing sustainable and efficient biotechnological practices. Finally, the review highlights future challenges and prospects in deaminase-based biotechnological processes, encompassing both industrial and medical perspectives.
Collapse
Affiliation(s)
- Jon Del Arco
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain
| | - Javier Acosta
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain; Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55-66, 080002 Barranquilla, Colombia; Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| |
Collapse
|
2
|
Li YH, Hou HF, Geng Z, Zhang H, She Z, Dong YH. Structural basis of a multi-functional deaminase in chlorovirus PBCV-1. Arch Biochem Biophys 2022; 727:109339. [DOI: 10.1016/j.abb.2022.109339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/02/2022]
|
3
|
Jacobson TB, Callaghan MM, Amador-Noguez D. Hostile Takeover: How Viruses Reprogram Prokaryotic Metabolism. Annu Rev Microbiol 2021; 75:515-539. [PMID: 34348026 DOI: 10.1146/annurev-micro-060621-043448] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To reproduce, prokaryotic viruses must hijack the cellular machinery of their hosts and redirect it toward the production of viral particles. While takeover of the host replication and protein synthesis apparatus has long been considered an essential feature of infection, recent studies indicate that extensive reprogramming of host primary metabolism is a widespread phenomenon among prokaryotic viruses that is required to fulfill the biosynthetic needs of virion production. In this review we provide an overview of the most significant recent findings regarding virus-induced reprogramming of prokaryotic metabolism and suggest how quantitative systems biology approaches may be used to provide a holistic understanding of metabolic remodeling during lytic viral infection. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Tyler B Jacobson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , .,Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA.,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Melanie M Callaghan
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , .,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , .,Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA.,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
4
|
Niu M, Wang Y, Wang C, Lyu J, Wang Y, Dong H, Long W, Wang D, Kong W, Wang L, Guo X, Sun L, Hu T, Zhai H, Wang H, Wan J. ALR encoding dCMP deaminase is critical for DNA damage repair, cell cycle progression and plant development in rice. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5773-5786. [PMID: 29186482 DOI: 10.1093/jxb/erx380] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/26/2017] [Indexed: 06/07/2023]
Abstract
Deoxycytidine monophosphate deaminase (dCMP deaminase, DCD) is crucial to the production of dTTP needed for DNA replication and damage repair. However, the effect of DCD deficiency and its molecular mechanism are poorly understood in plants. Here, we isolated and characterized a rice albinic leaf and growth retardation (alr) mutant that is manifested by albinic leaves, dwarf stature and necrotic lesions. Map-based cloning and complementation revealed that ALR encodes a DCD protein. OsDCD was expressed ubiquitously in all tissues. Enzyme activity assays showed that OsDCD catalyses conversion of dCMP to dUMP, and the ΔDCD protein in the alr mutant is a loss-of-function protein that lacks binding ability. We report that alr plants have typical DCD-mediated imbalanced dNTP pools with decreased dTTP; exogenous dTTP recovers the wild-type phenotype. A comet assay and Trypan Blue staining showed that OsDCD deficiency causes accumulation of DNA damage in the alr mutant, sometimes leading to cell apoptosis. Moreover, OsDCD deficiency triggered cell cycle checkpoints and arrested cell progression at the G1/S-phase. The expression of nuclear and plastid genome replication genes was down-regulated under decreased dTTP, and together with decreased cell proliferation and defective chloroplast development in the alr mutant this demonstrated the molecular and physiological roles of DCD-mediated dNTP pool balance in plant development.
Collapse
Affiliation(s)
- Mei Niu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Chunming Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Jia Lyu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Yunlong Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Hui Dong
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Wuhua Long
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Di Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Weiyi Kong
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Liwei Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Xiuping Guo
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, China
| | - Liting Sun
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Tingting Hu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Huqu Zhai
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, China
| | - Haiyang Wang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, China
| |
Collapse
|
5
|
Scortecci JF, Serrão VHB, Cheleski J, Torini JR, Romanello L, DeMarco R, D'Muniz Pereira H. Spectroscopic and calorimetric assays reveal dependence on dCTP and two metals (Zn 2++Mg 2+) for enzymatic activity of Schistosoma mansoni deoxycytidylate (dCMP) deaminase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1326-1335. [PMID: 28807888 DOI: 10.1016/j.bbapap.2017.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 11/27/2022]
Abstract
The parasite Schistosoma mansoni possess all pathways for pyrimidine biosynthesis, whereby deaminases play an essential role in the thymidylate cycle, a crucial step to controlling the ratio between cytidine and uridine nucleotides. In this study, we heterologously expressed and purified the deoxycytidylate (dCMP) deaminase from S. mansoni to obtain structural, biochemical and kinetic information. Small-angle X-ray scattering of this enzyme showed that it is organized as a hexamer in solution. Isothermal titration calorimetry was used to determine the kinetic constants for dCMP-dUMP conversion and the role of dCTP and dTTP in enzymatic regulation. We evaluated the metals involved in activating the enzyme and show for the first time the dependence of correct folding on the interaction of two metals. This study provides information that may be useful for understanding the regulatory mechanisms involved in the metabolic pathways of S. mansoni. Thus, improving our understanding of the function of these essential pathways for parasite metabolism and showing for the first time the hitherto unknown deaminase function in this parasite.
Collapse
Affiliation(s)
| | - Vitor Hugo Balasco Serrão
- Physics Institute of São Carlos, University of São Paulo, São Carlos, SP CEP 13566-590, Brazil; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Juliana Cheleski
- Physics Institute of São Carlos, University of São Paulo, São Carlos, SP CEP 13566-590, Brazil
| | - Juliana Roberta Torini
- Physics Institute of São Carlos, University of São Paulo, São Carlos, SP CEP 13566-590, Brazil
| | - Larissa Romanello
- Physics Institute of São Carlos, University of São Paulo, São Carlos, SP CEP 13566-590, Brazil
| | - Ricardo DeMarco
- Physics Institute of São Carlos, University of São Paulo, São Carlos, SP CEP 13566-590, Brazil
| | | |
Collapse
|
6
|
Weynberg KD, Allen MJ, Wilson WH. Marine Prasinoviruses and Their Tiny Plankton Hosts: A Review. Viruses 2017; 9:E43. [PMID: 28294997 PMCID: PMC5371798 DOI: 10.3390/v9030043] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/04/2017] [Accepted: 03/08/2017] [Indexed: 12/29/2022] Open
Abstract
Viruses play a crucial role in the marine environment, promoting nutrient recycling and biogeochemical cycling and driving evolutionary processes. Tiny marine phytoplankton called prasinophytes are ubiquitous and significant contributors to global primary production and biomass. A number of viruses (known as prasinoviruses) that infect these important primary producers have been isolated and characterised over the past decade. Here we review the current body of knowledge about prasinoviruses and their interactions with their algal hosts. Several genes, including those encoding for glycosyltransferases, methyltransferases and amino acid synthesis enzymes, which have never been identified in viruses of eukaryotes previously, have been detected in prasinovirus genomes. The host organisms are also intriguing; most recently, an immunity chromosome used by a prasinophyte in response to viral infection was discovered. In light of such recent, novel discoveries, we discuss why the cellular simplicity of prasinophytes makes for appealing model host organism-virus systems to facilitate focused and detailed investigations into the dynamics of marine viruses and their intimate associations with host species. We encourage the adoption of the prasinophyte Ostreococcus and its associated viruses as a model host-virus system for examination of cellular and molecular processes in the marine environment.
Collapse
Affiliation(s)
- Karen D Weynberg
- Australian Institute of Marine Science, PMB 3, Townsville, Queensland 4810, Australia.
| | - Michael J Allen
- Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, UK.
| | - William H Wilson
- Sir Alister Hardy Foundation for Ocean Science, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK.
| |
Collapse
|
7
|
Li Y, Guo Z, Jin L, Wang D, Gao Z, Su X, Hou H, Dong Y. Mechanism of the allosteric regulation of Streptococcus mutans 2'-deoxycytidylate deaminase. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2016; 72:883-91. [PMID: 27377385 DOI: 10.1107/s2059798316009153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 06/07/2016] [Indexed: 01/24/2023]
Abstract
In cells, dUMP is the intermediate precursor of dTTP in its synthesis during deoxynucleotide metabolism. In Gram-positive bacteria and eukaryotes, zinc-dependent deoxycytidylate deaminases (dCDs) catalyze the conversion of dCMP to dUMP. The activity of dCD is allosterically activated by dCTP and inhibited by dTTP. Here, the crystal structure of Streptococcus mutans dCD (SmdCD) complexed with dTTP is presented at 2.35 Å resolution, thereby solving the first pair of activator-bound and inhibitor-bound structures from the same species to provide a more definitive description of the allosteric mechanism. In contrast to the dTTP-bound dCD from the bacteriophage S-TIM5 (S-TIM5-dCD), dTTP-bound SmdCD adopts an inactive conformation similar to the apo form. A structural comparison suggests that the distinct orientations of the triphosphate group in S-TIM5-dCD and SmdCD are a result of the varying protein binding environment. In addition, calorimetric data establish that the modulators bound to dCD can be mutually competitively replaced. The results reveal the mechanism underlying its regulator-specific activity and might greatly enhance the understanding of the allosteric regulation of other dCDs.
Collapse
Affiliation(s)
- Yanhua Li
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhen Guo
- Key Laboratory of Molecular Biology on Infectious Disease, Chongqing Medical University, YiXueYuanlu-1, Chongqing, People's Republic of China
| | - Li Jin
- Key Laboratory of Molecular Biology on Infectious Disease, Chongqing Medical University, YiXueYuanlu-1, Chongqing, People's Republic of China
| | - Deqiang Wang
- Key Laboratory of Molecular Biology on Infectious Disease, Chongqing Medical University, YiXueYuanlu-1, Chongqing, People's Republic of China
| | - Zengqiang Gao
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiaodong Su
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Science, Peking University, Beijing 100871, People's Republic of China
| | - Haifeng Hou
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yuhui Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
8
|
Marx A, Galilee M, Alian A. Zinc enhancement of cytidine deaminase activity highlights a potential allosteric role of loop-3 in regulating APOBEC3 enzymes. Sci Rep 2015; 5:18191. [PMID: 26678087 PMCID: PMC4683357 DOI: 10.1038/srep18191] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/16/2015] [Indexed: 12/25/2022] Open
Abstract
The strong association of APOBEC3 cytidine deaminases with somatic mutations leading to cancers accentuates the importance of their tight intracellular regulation to minimize cellular transformations. We reveal a novel allosteric regulatory mechanism of APOBEC3 enzymes showing that APOBEC3G and APOBEC3A coordination of a secondary zinc ion, reminiscent to ancestral deoxycytidylate deaminases, enhances deamination activity. Zinc binding is pinpointed to loop-3 which whilst highly variable harbors a catalytically essential and spatially conserved asparagine at its N-terminus. We suggest that loop-3 may play a general role in allosterically tuning the activity of zinc-dependent cytidine deaminase family members.
Collapse
Affiliation(s)
- Ailie Marx
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | - Meytal Galilee
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | - Akram Alian
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 320003, Israel
| |
Collapse
|
9
|
Marx A, Alian A. The first crystal structure of a dTTP-bound deoxycytidylate deaminase validates and details the allosteric-inhibitor binding site. J Biol Chem 2014; 290:682-90. [PMID: 25404739 DOI: 10.1074/jbc.m114.617720] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deoxycytidylate deaminase is unique within the zinc-dependent cytidine deaminase family as being allosterically regulated, activated by dCTP, and inhibited by dTTP. Here we present the first crystal structure of a dTTP-bound deoxycytidylate deaminase from the bacteriophage S-TIM5, confirming that this inhibitor binds to the same site as the dCTP activator. The molecular details of this structure, complemented by structures apo- and dCMP-bound, provide insights into the allosteric mechanism. Although the positioning of the nucleoside moiety of dTTP is almost identical to that previously described for dCTP, protonation of N3 in deoxythymidine and not deoxycytidine would facilitate hydrogen bonding of dTTP but not dCTP and may result in a higher affinity of dTTP to the allosteric site conferring its inhibitory activity. Further the functional group on C4 (O in dTTP and NH2 in dCTP) makes interactions with nonconserved protein residues preceding the allosteric motif, and the relative strength of binding to these residues appears to correspond to the potency of dTTP inhibition. The active sites of these structures are also uniquely occupied by dTMP and dCMP resolving aspects of substrate specificity. The methyl group of dTMP apparently clashes with a highly conserved tyrosine residue, preventing the formation of a correct base stacking shown to be imperative for deamination activity. The relevance of these findings to the wider zinc-dependent cytidine deaminase family is also discussed.
Collapse
Affiliation(s)
- Ailie Marx
- From the Faculty of Biology, Technion-Israel Institute of Technology, Haifa 320003, Israel
| | - Akram Alian
- From the Faculty of Biology, Technion-Israel Institute of Technology, Haifa 320003, Israel
| |
Collapse
|
10
|
Lu S, Le S, Tan Y, Zhu J, Li M, Rao X, Zou L, Li S, Wang J, Jin X, Huang G, Zhang L, Zhao X, Hu F. Genomic and proteomic analyses of the terminally redundant genome of the Pseudomonas aeruginosa phage PaP1: establishment of genus PaP1-like phages. PLoS One 2013; 8:e62933. [PMID: 23675441 PMCID: PMC3652863 DOI: 10.1371/journal.pone.0062933] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 03/26/2013] [Indexed: 11/22/2022] Open
Abstract
We isolated and characterized a new Pseudomonas aeruginosa myovirus named PaP1. The morphology of this phage was visualized by electron microscopy and its genome sequence and ends were determined. Finally, genomic and proteomic analyses were performed. PaP1 has an icosahedral head with an apex diameter of 68–70 nm and a contractile tail with a length of 138–140 nm. The PaP1 genome is a linear dsDNA molecule containing 91,715 base pairs (bp) with a G+C content of 49.36% and 12 tRNA genes. A strategy to identify the genome ends of PaP1 was designed. The genome has a 1190 bp terminal redundancy. PaP1 has 157 open reading frames (ORFs). Of these, 143 proteins are homologs of known proteins, but only 38 could be functionally identified. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and high-performance liquid chromatography-mass spectrometry allowed identification of 12 ORFs as structural protein coding genes within the PaP1 genome. Comparative genomic analysis indicated that the Pseudomonas aeruginosa phage PaP1, JG004, PAK_P1 and vB_PaeM_C2-10_Ab1 share great similarity. Besides their similar biological characteristics, the phages contain 123 core genes and have very close phylogenetic relationships, which distinguish them from other known phage genera. We therefore propose that these four phages be classified as PaP1-like phages, a new phage genus of Myoviridae that infects Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Shuguang Lu
- Department of Microbiology, College of Basic Medical Science, Third Military Medical University, Chongqing, China
| | - Shuai Le
- Department of Microbiology, College of Basic Medical Science, Third Military Medical University, Chongqing, China
| | - Yinling Tan
- Department of Microbiology, College of Basic Medical Science, Third Military Medical University, Chongqing, China
| | - Junmin Zhu
- Department of Microbiology, College of Basic Medical Science, Third Military Medical University, Chongqing, China
| | - Ming Li
- Department of Microbiology, College of Basic Medical Science, Third Military Medical University, Chongqing, China
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Science, Third Military Medical University, Chongqing, China
| | - Lingyun Zou
- Department of Microbiology, College of Basic Medical Science, Third Military Medical University, Chongqing, China
| | - Shu Li
- Department of Microbiology, College of Basic Medical Science, Third Military Medical University, Chongqing, China
| | - Jing Wang
- Department of Microbiology, College of Basic Medical Science, Third Military Medical University, Chongqing, China
| | - Xiaolin Jin
- Department of Microbiology, College of Basic Medical Science, Third Military Medical University, Chongqing, China
| | - Guangtao Huang
- Department of Microbiology, College of Basic Medical Science, Third Military Medical University, Chongqing, China
| | - Lin Zhang
- Department of Microbiology, College of Basic Medical Science, Third Military Medical University, Chongqing, China
| | - Xia Zhao
- Department of Microbiology, College of Basic Medical Science, Third Military Medical University, Chongqing, China
| | - Fuquan Hu
- Department of Microbiology, College of Basic Medical Science, Third Military Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
11
|
Marine prasinovirus genomes show low evolutionary divergence and acquisition of protein metabolism genes by horizontal gene transfer. J Virol 2010; 84:12555-63. [PMID: 20861243 DOI: 10.1128/jvi.01123-10] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although marine picophytoplankton are at the base of the global food chain, accounting for half of the planetary primary production, they are outnumbered 10 to 1 and are largely controlled by hugely diverse populations of viruses. Eukaryotic microalgae form a ubiquitous and particularly dynamic fraction of such plankton, with environmental clone libraries from coastal regions sometimes being dominated by one or more of the three genera Bathycoccus, Micromonas, and Ostreococcus (class Prasinophyceae). The complete sequences of two double-stranded (dsDNA) Bathycoccus, one dsDNA Micromonas, and one new dsDNA Ostreococcus virus genomes are described. Genome comparison of these giant viruses revealed a high degree of conservation, both for orthologous genes and for synteny, except for one 36-kb inversion in the Ostreococcus lucimarinus virus and two very large predicted proteins in Bathycoccus prasinos viruses. These viruses encode a gene repertoire of certain amino acid biosynthesis pathways never previously observed in viruses that are likely to have been acquired from lateral gene transfer from their host or from bacteria. Pairwise comparisons of whole genomes using all coding sequences with homologous counterparts, either between viruses or between their corresponding hosts, revealed that the evolutionary divergences between viruses are lower than those between their hosts, suggesting either multiple recent host transfers or lower viral evolution rates.
Collapse
|
12
|
Yanai-Balser GM, Duncan GA, Eudy JD, Wang D, Li X, Agarkova IV, Dunigan DD, Van Etten JL. Microarray analysis of Paramecium bursaria chlorella virus 1 transcription. J Virol 2010; 84:532-42. [PMID: 19828609 PMCID: PMC2798440 DOI: 10.1128/jvi.01698-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 10/07/2009] [Indexed: 11/20/2022] Open
Abstract
Paramecium bursaria chlorella virus 1 (PBCV-1), a member of the family Phycodnaviridae, is a large double-stranded DNA, plaque-forming virus that infects the unicellular green alga Chlorella sp. strain NC64A. The 330-kb PBCV-1 genome is predicted to encode 365 proteins and 11 tRNAs. To monitor global transcription during PBCV-1 replication, a microarray containing 50-mer probes to the PBCV-1 365 protein-encoding genes (CDSs) was constructed. Competitive hybridization experiments were conducted by using cDNAs from poly(A)-containing RNAs obtained from cells at seven time points after virus infection. The results led to the following conclusions: (i) the PBCV-1 replication cycle is temporally programmed and regulated; (ii) 360 (99%) of the arrayed PBCV-1 CDSs were expressed at some time in the virus life cycle in the laboratory; (iii) 227 (62%) of the CDSs were expressed before virus DNA synthesis begins; (iv) these 227 CDSs were grouped into two classes: 127 transcripts disappeared prior to initiation of virus DNA synthesis (considered early), and 100 transcripts were still detected after virus DNA synthesis begins (considered early/late); (v) 133 (36%) of the CDSs were expressed after virus DNA synthesis begins (considered late); and (vi) expression of most late CDSs is inhibited by adding the DNA replication inhibitor, aphidicolin, prior to virus infection. This study provides the first comprehensive evaluation of virus gene expression during the PBCV-1 life cycle.
Collapse
Affiliation(s)
- Giane M. Yanai-Balser
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583-0722, Biology Department, Nebraska Wesleyan University, Lincoln, Nebraska 68504-2794, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198-5455, Statistics Department, University of Nebraska, Lincoln, Nebraska 68583-0963, Biomedical Engineering and Biotechnology, University of Massachusetts, Lowell, Massachusetts 01854, Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68583-0900
| | - Garry A. Duncan
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583-0722, Biology Department, Nebraska Wesleyan University, Lincoln, Nebraska 68504-2794, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198-5455, Statistics Department, University of Nebraska, Lincoln, Nebraska 68583-0963, Biomedical Engineering and Biotechnology, University of Massachusetts, Lowell, Massachusetts 01854, Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68583-0900
| | - James D. Eudy
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583-0722, Biology Department, Nebraska Wesleyan University, Lincoln, Nebraska 68504-2794, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198-5455, Statistics Department, University of Nebraska, Lincoln, Nebraska 68583-0963, Biomedical Engineering and Biotechnology, University of Massachusetts, Lowell, Massachusetts 01854, Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68583-0900
| | - Dong Wang
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583-0722, Biology Department, Nebraska Wesleyan University, Lincoln, Nebraska 68504-2794, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198-5455, Statistics Department, University of Nebraska, Lincoln, Nebraska 68583-0963, Biomedical Engineering and Biotechnology, University of Massachusetts, Lowell, Massachusetts 01854, Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68583-0900
| | - Xiao Li
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583-0722, Biology Department, Nebraska Wesleyan University, Lincoln, Nebraska 68504-2794, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198-5455, Statistics Department, University of Nebraska, Lincoln, Nebraska 68583-0963, Biomedical Engineering and Biotechnology, University of Massachusetts, Lowell, Massachusetts 01854, Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68583-0900
| | - Irina V. Agarkova
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583-0722, Biology Department, Nebraska Wesleyan University, Lincoln, Nebraska 68504-2794, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198-5455, Statistics Department, University of Nebraska, Lincoln, Nebraska 68583-0963, Biomedical Engineering and Biotechnology, University of Massachusetts, Lowell, Massachusetts 01854, Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68583-0900
| | - David D. Dunigan
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583-0722, Biology Department, Nebraska Wesleyan University, Lincoln, Nebraska 68504-2794, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198-5455, Statistics Department, University of Nebraska, Lincoln, Nebraska 68583-0963, Biomedical Engineering and Biotechnology, University of Massachusetts, Lowell, Massachusetts 01854, Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68583-0900
| | - James L. Van Etten
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583-0722, Biology Department, Nebraska Wesleyan University, Lincoln, Nebraska 68504-2794, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198-5455, Statistics Department, University of Nebraska, Lincoln, Nebraska 68583-0963, Biomedical Engineering and Biotechnology, University of Massachusetts, Lowell, Massachusetts 01854, Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68583-0900
| |
Collapse
|
13
|
Abstract
Members of the family Iridoviridae infect a diverse array of invertebrate and cold-blooded vertebrate hosts and are currently viewed as emerging pathogens of fish and amphibians. Iridovirid replication is unique and involves both nuclear and cytoplasmic compartments, a circularly permuted, terminally redundant genome that, in the case of vertebrate iridoviruses, is also highly methylated, and the efficient shutoff of host macromolecular synthesis. Although initially neglected largely due to the perceived lack of health, environmental, and economic concerns, members of the genus Ranavirus, and the newly recognized genus Megalocytivirus, are rapidly attracting growing interest due to their involvement in amphibian population declines and their adverse impacts on aquaculture. Herein we describe the molecular and genetic basis of viral replication, pathogenesis, and immunity, and discuss viral ecology with reference to members from each of the invertebrate and vertebrate genera.
Collapse
|
14
|
Wilson WH, Van Etten JL, Allen MJ. The Phycodnaviridae: the story of how tiny giants rule the world. Curr Top Microbiol Immunol 2009; 328:1-42. [PMID: 19216434 DOI: 10.1007/978-3-540-68618-7_1] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The family Phycodnaviridae encompasses a diverse and rapidly expanding collection of large icosahedral, dsDNA viruses that infect algae. These lytic and lysogenic viruses have genomes ranging from 160 to 560 kb. The family consists of six genera based initially on host range and supported by sequence comparisons. The family is monophyletic with branches for each genus, but the phycodnaviruses have evolutionary roots that connect them with several other families of large DNA viruses, referred to as the nucleocytoplasmic large DNA viruses (NCLDV). The phycodnaviruses have diverse genome structures, some with large regions of noncoding sequence and others with regions of ssDNA. The genomes of members in three genera in the Phycodnaviridae have been sequenced. The genome analyses have revealed more than 1000 unique genes, with only 14 homologous genes in common among the three genera of phycodnaviruses sequenced to date. Thus, their gene diversity far exceeds the number of so-called core genes. Not much is known about the replication of these viruses, but the consequences of these infections on phytoplankton have global affects, including influencing geochemical cycling and weather patterns.
Collapse
Affiliation(s)
- W H Wilson
- Bigelow Laboratory for Ocean Sciences, 180 McKown Point, P.O. Box 475, West Boothbay Harbor, ME 04575-0475, USA.
| | | | | |
Collapse
|