1
|
Torices S, Moreno T, Ramaswamy S, Naranjo O, Teglas T, Osborne OM, Park M, Sun E, Toborek M. MITOCHONDRIAL ANTIVIRAL PATHWAYS CONTROL ANTI-HIV RESPONSES AND ISCHEMIC STROKE OUTCOMES VIA THE RIG-1 SIGNALING AND INNATE IMMUNITY MECHANISMS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.598027. [PMID: 38895303 PMCID: PMC11185786 DOI: 10.1101/2024.06.07.598027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Occludin (ocln) is one of the main regulatory cells of the blood-brain barrier (BBB). Ocln silencing resulted in alterations of the gene expression signatures of a variety of genes of the innate immunity system, including IFN-stimulated genes (ISGs) and the antiviral retinoic acid-inducible gene-1 (RIG-1) signaling pathway, which functions as a regulator of the cytoplasmic sensors upstream of the mitochondrial antiviral signaling protein (MAVS). Indeed, we observed dysfunctional mitochondrial bioenergetics, dynamics, and autophagy in our system. Alterations of mitochondrial bioenergetics and innate immune protection translated into worsened ischemic stroke outcomes in EcoHIV-infected ocln deficient mice. Overall, these results allow for a better understanding of the molecular mechanisms of viral infection in the brain and describe a previously unrecognized role of ocln as a key factor in the control of innate immune responses and mitochondrial dynamics, which affect cerebral vascular diseases such as ischemic stroke.
Collapse
Affiliation(s)
- Silvia Torices
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Thaidy Moreno
- Department of Radiation Oncology, UCSF, San Francisco, California, USA
| | - Sita Ramaswamy
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Oandy Naranjo
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Timea Teglas
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Olivia M. Osborne
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Minseon Park
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Enze Sun
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Michal Toborek
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| |
Collapse
|
2
|
Zhang Z, Wang Y, Zhang Y, Geng S, Wu H, Shao Y, Kang G. Construction of Immune-Related Diagnostic Model for Latent Tuberculosis Infection and Active Tuberculosis. J Inflamm Res 2024; 17:2499-2511. [PMID: 38699596 PMCID: PMC11063471 DOI: 10.2147/jir.s451338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
Background Tuberculosis (TB) is one of the most infectious diseases caused by Mycobacterium tuberculosis (M. tb), and the diagnosis of active tuberculosis (TB) and latent TB infection (LTBI) remains challenging. Methods Gene expression files were downloaded from the GEO database to identify the differentially expressed genes (DEGs). The ssGSEA algorithm was applied to assess the immunological characteristics of patients with LTBI and TB. Weighted gene co-expression network analysis, protein-protein interaction network, and the cytoHubba plug-in of Cytoscape were used to identify the real hub genes. Finally, a diagnostic model was constructed using real hub genes and validated using a validation set. Results Macrophages and natural killer cells were identified as important immune cells strongly associated with TB. In total, 726 mRNAs were identified as DEGs. MX1, STAT1, IFIH1, DDX58, and IRF7 were identified as real hub immune-related genes. The diagnostic model generated by the five real hub genes could distinguish active TB from healthy controls or patients with LTBI. Conclusion Our study may provide implications for the diagnosis and drug development of M. tb infections.
Collapse
Affiliation(s)
- Zhihua Zhang
- Department of Science & Education, Hebei Chest Hospital, Hebei Provincial Key Laboratory of Lung Disease, Shijiazhuang, People’s Republic of China
| | - Yuhong Wang
- Department of Tuberculosis, Hebei Chest Hospital, Hebei Provincial Key Laboratory of Lung Disease, Shijiazhuang, People’s Republic of China
| | - Yankun Zhang
- Department of Ophthalmology, Hebei Chest Hospital, Hebei Provincial Key Laboratory of Lung Disease, Shijiazhuang, People’s Republic of China
| | - Shujun Geng
- Department of Tuberculosis, Hebei Chest Hospital, Hebei Provincial Key Laboratory of Lung Disease, Shijiazhuang, People’s Republic of China
| | - Haifeng Wu
- Clinical Laboratory, Hebei Chest Hospital, Hebei Provincial Key Laboratory of Lung Disease, Shijiazhuang, People’s Republic of China
| | - Yanxin Shao
- Office of Clinical Pharmacological Center, Hebei Chest Hospital, Hebei Provincial Key Laboratory of Lung Disease, Shijiazhuang, People’s Republic of China
| | - Guannan Kang
- Department of Tuberculosis, Hebei Chest Hospital, Shijiazhuang, People’s Republic of China
| |
Collapse
|
3
|
Yang Q, Gong H, Liu S, Huang S, Yan W, Wang K, Li H, Lei CW, Wang HN, Yang X. Differential analysis of IBV-infected primary chicken embryonic fibroblasts and immortalized DF-1. Microbiol Spectr 2024; 12:e0240223. [PMID: 38299864 PMCID: PMC10913733 DOI: 10.1128/spectrum.02402-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/30/2023] [Indexed: 02/02/2024] Open
Abstract
Infectious bronchitis virus (IBV), the causative agent of infectious bronchitis, is responsible for major economic losses in the poultry industry worldwide. While IBVs can usually be passaged in primary chicken embryonic fibroblasts (CEFs), most of the wild ones cannot adapt to passaged cell lines. In this study, the wild strain CK/CH/MY/2020 was used to infect primary CEF and immortalize DF-1 CEF cells. Results indicated that IBV was able to cause lesions and pass onto CEF, but not DF-1. Indeed, the virus could enter DF-1 cells and synthesize the associated structural gene but could not assemble into complete viral particles for release. Furthermore, transcriptome sequencing analysis showed significant differences in gene expression between CEF and DF-1 cells after viral infection, although the corresponding antiviral responses could be activated in both cell types. The biggest difference was in terms of the amino acid biosynthesis pathway and the cytokine receptor interaction pathway, which were significantly and specifically activated in CEF. This could actually explain why intact viruses can be assembled but not in DF-1. In addition, SLBP and P2RX7 affect the replication of IBV's structural genes to some extent. Overall, IBV can enter CEF and DF-1 cells, but the complex intracellular cytokine interactions affect the assembly and release of viral particles. The insight will be useful for the study of IBV through in vitro transmission and pathogenesis. IMPORTANCE Infectious bronchitis virus (IBV) is responsible for high morbidity and mortality as well as substantial economic losses worldwide. Transcriptome sequencing of IBV-infected chicken embryonic fibroblast and DF-1 cells revealed that the virus elicits antiviral immunity in cells after viral infection, but IBV cannot activate DF-1 cells to produce sufficient amounts of viral structures to assemble into complete virions, which may be caused by the interactions between cytokines. The study of IBV cellular adaptations is important for vaccine development and investigation of the pathogenesis of IBV.
Collapse
Affiliation(s)
- Qingcheng Yang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Huiling Gong
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Song Liu
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Siyu Huang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Wenjun Yan
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Kailu Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Hao Li
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Chang-Wei Lei
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Hong-Ning Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Xin Yang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Zhang K, Huang Q, Li X, Zhao Z, Hong C, Sun Z, Deng B, Li C, Zhang J, Wang S. The cGAS-STING pathway in viral infections: a promising link between inflammation, oxidative stress and autophagy. Front Immunol 2024; 15:1352479. [PMID: 38426093 PMCID: PMC10902852 DOI: 10.3389/fimmu.2024.1352479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
The host defence responses play vital roles in viral infection and are regulated by complex interactive networks. The host immune system recognizes viral pathogens through the interaction of pattern-recognition receptors (PRRs) with pathogen-associated molecular patterns (PAMPs). As a PRR mainly in the cytoplasm, cyclic GMP-AMP synthase (cGAS) senses and binds virus DNA and subsequently activates stimulator of interferon genes (STING) to trigger a series of intracellular signalling cascades to defend against invading pathogenic microorganisms. Integrated omic and functional analyses identify the cGAS-STING pathway regulating various host cellular responses and controlling viral infections. Aside from its most common function in regulating inflammation and type I interferon, a growing body of evidence suggests that the cGAS-STING signalling axis is closely associated with a series of cellular responses, such as oxidative stress, autophagy, and endoplasmic reticulum stress, which have major impacts on physiological homeostasis. Interestingly, these host cellular responses play dual roles in the regulation of the cGAS-STING signalling axis and the clearance of viruses. Here, we outline recent insights into cGAS-STING in regulating type I interferon, inflammation, oxidative stress, autophagy and endoplasmic reticulum stress and discuss their interactions with viral infections. A detailed understanding of the cGAS-STING-mediated potential antiviral effects contributes to revealing the pathogenesis of certain viruses and sheds light on effective solutions for antiviral therapy.
Collapse
Affiliation(s)
- Kunli Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Qiuyan Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xinming Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ziqiao Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Chun Hong
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zeyi Sun
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Bo Deng
- Division of Nephrology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunling Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Jianfeng Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Sutian Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| |
Collapse
|
5
|
Huang T, He J, Zhou X, Pan H, He F, Du A, Yu B, Jiang N, Li X, Yuan K, Wang Z. Discovering common pathogenetic processes between COVID-19 and tuberculosis by bioinformatics and system biology approach. Front Cell Infect Microbiol 2023; 13:1280223. [PMID: 38162574 PMCID: PMC10757339 DOI: 10.3389/fcimb.2023.1280223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/07/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction The coronavirus disease 2019 (COVID-19) pandemic, stemming from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has persistently threatened the global health system. Meanwhile, tuberculosis (TB) caused by Mycobacterium tuberculosis (M. tuberculosis) still continues to be endemic in various regions of the world. There is a certain degree of similarity between the clinical features of COVID-19 and TB, but the underlying common pathogenetic processes between COVID-19 and TB are not well understood. Methods To elucidate the common pathogenetic processes between COVID-19 and TB, we implemented bioinformatics and systematic research to obtain shared pathways and molecular biomarkers. Here, the RNA-seq datasets (GSE196822 and GSE126614) are used to extract shared differentially expressed genes (DEGs) of COVID-19 and TB. The common DEGs were used to identify common pathways, hub genes, transcriptional regulatory networks, and potential drugs. Results A total of 96 common DEGs were selected for subsequent analyses. Functional enrichment analyses showed that viral genome replication and immune-related pathways collectively contributed to the development and progression of TB and COVID-19. Based on the protein-protein interaction (PPI) network analysis, we identified 10 hub genes, including IFI44L, ISG15, MX1, IFI44, OASL, RSAD2, GBP1, OAS1, IFI6, and HERC5. Subsequently, the transcription factor (TF)-gene interaction and microRNA (miRNA)-gene coregulatory network identified 61 TFs and 29 miRNAs. Notably, we identified 10 potential drugs to treat TB and COVID-19, namely suloctidil, prenylamine, acetohexamide, terfenadine, prochlorperazine, 3'-azido-3'-deoxythymidine, chlorophyllin, etoposide, clioquinol, and propofol. Conclusion This research provides novel strategies and valuable references for the treatment of tuberculosis and COVID-19.
Collapse
Affiliation(s)
- Tengda Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jinyi He
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyi Zhou
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongyuan Pan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Fang He
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Ao Du
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Bingxuan Yu
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Nan Jiang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoquan Li
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Kefei Yuan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen Wang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Dupuis AP, Lange RE, Ciota AT. Emerging tickborne viruses vectored by Amblyomma americanum (Ixodida: Ixodidae): Heartland and Bourbon viruses. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:1183-1196. [PMID: 37862097 DOI: 10.1093/jme/tjad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/01/2023] [Accepted: 05/19/2023] [Indexed: 10/21/2023]
Abstract
Heartland (HRTV) and Bourbon (BRBV) viruses are newly identified tick-borne viruses, isolated from serious clinical cases in 2009 and 2014, respectively. Both viruses originated in the lower Midwest United States near the border of Missouri and Kansas, cause similar disease manifestations, and are presumably vectored by the same tick species, Amblyomma americanum Linnaeus (Ixodida: Ixodidae). In this article, we provide a current review of HRTV and BRBV, including the virology, epidemiology, and ecology of the viruses with an emphasis on the tick vector. We touch on current challenges of vector control and surveillance, and we discuss future directions in the study of these emergent pathogens.
Collapse
Affiliation(s)
- Alan P Dupuis
- Wadsworth Center, New York State Department of Health, Griffin Laboratory, 5668 State Farm Road, Slingerlands, NY 12159, USA
| | - Rachel E Lange
- Wadsworth Center, New York State Department of Health, Griffin Laboratory, 5668 State Farm Road, Slingerlands, NY 12159, USA
- Department of Biomedical Sciences, School of Public Health, State University of New York University at Albany, Rensselaer, NY 12144, USA
| | - Alexander T Ciota
- Wadsworth Center, New York State Department of Health, Griffin Laboratory, 5668 State Farm Road, Slingerlands, NY 12159, USA
- Department of Biomedical Sciences, School of Public Health, State University of New York University at Albany, Rensselaer, NY 12144, USA
| |
Collapse
|
7
|
Yang MY, Zheng MH, Meng XT, Ma LW, Liang HY, Fan HY. Role of toll-like receptors in the pathogenesis of COVID-19: Current and future perspectives. Scand J Immunol 2023; 98:e13275. [PMID: 38441378 DOI: 10.1111/sji.13275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 03/07/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic underlines a persistent threat of respiratory tract infectious diseases and warrants preparedness for a rapid response. At present, COVID-19 has had a serious social impact and imposed a heavy global burden on public health. The exact pathogenesis of COVID-19 has not been fully elucidated. Since the outbreak of COVID-19, a renewed attention has been brought to Toll-like receptors (TLRs). Available data and new findings have demonstrated that the interaction of human TLRs and SARS-CoV-2 is a vital mediator of COVID-19 immunopathogenesis. TLRs such as TLR2, 4, 7 and 8 are potentially important in viral combat and activation of immunity in patients with COVID-19. Therapeutics targeting TLRs are currently considered promising options against the pandemic. A number of TLR-targeting immunotherapeutics are now being investigated in preclinical studies and different phases of clinical trials. In addition, innovative vaccines based on TLRs under development could be a promising approach for building a new generation of vaccines to solve the current challenges. In this review, we summarize recent progress in the role of TLRs in COVID-19, focusing the new candidate drugs targeting TLRs, the current technology and potential paths forward for employing TLR agonists as vaccine adjuvants.
Collapse
Affiliation(s)
- Ming-Yan Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Mei-Hua Zheng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Xiang-Ting Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Le-Wei Ma
- Ruikang Pharmaceutical Group Co. Ltd., Yantai, China
| | - Hai-Yue Liang
- Yantai Center for Food and Drug Control, Yantai, China
| | - Hua-Ying Fan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
8
|
Bendl E, Fuchs J, Kochs G. Bourbon virus, a newly discovered zoonotic thogotovirus. J Gen Virol 2023; 104. [PMID: 37643129 DOI: 10.1099/jgv.0.001887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
The recent discovery of Bourbon virus (BRBV) put a new focus on the genus of thogotoviruses as zoonotic, tick-transmitted pathogens within the orthomyxovirus family. Since 2014, BRBV has been linked to several human cases in the Midwest United States with severe acute febrile illness and a history of tick bites. The detection of the virus in the Lone Star tick, Amblyomma americanum, and a high sero-prevalence in wild animals suggest widespread circulation of BRBV. Phylogenetic analysis of the viral RNA genome classified BRBV into the subgroup of Dhori-like thogotoviruses. Strikingly, BRBV is apathogenic in mice, contrasting not only with the fatal disease in affected patients but also with the severe disease in mice caused by other members of the thogotovirus genus. To gain insights into this intriguing discrepancy, we will review the molecular biology and pathology of BRBV and its unique position within the thogotovirus genus. Lastly, we will discuss the zoonotic threat posed by this newly discovered pathogen.
Collapse
Affiliation(s)
- Elias Bendl
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Hermann-Herder-Strasse 11, 79104 Freiburg, Germany
| | - Jonas Fuchs
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Hermann-Herder-Strasse 11, 79104 Freiburg, Germany
| | - Georg Kochs
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Hermann-Herder-Strasse 11, 79104 Freiburg, Germany
| |
Collapse
|
9
|
Zhang N, Li J, Wang L, Wei Y, Emu Q, Xu F, Zhang L. Transcriptome analysis reveals the regulatory effects of Bacillus amyloliquefaciens and Bacillus pumilus on immune and digestive related genes in the spleen of weanling black goats. Funct Integr Genomics 2023; 23:124. [PMID: 37055595 DOI: 10.1007/s10142-023-01025-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 04/15/2023]
Abstract
The aim of the present study was to evaluate the effects of Bacillus amyloliquefaciens fsznc-06 and Bacillus pumilus fsznc-09 on the expressions of spleen genes in weanling Jintang black goats. Bacillus amyloliquefaciens fsznc-06 (BA-treated group) and Bacillus pumilus fsznc-09 (BP-treated group) were directly fed to goats, and the spleens were harvested for transcriptome analysis. The KEGG pathway analysis showed that the differentially expressed genes (DEGs) in BA-treated vs CON group were mainly involved in digestive system and immune system, while those in BP-treated vs CON group were mainly involved in immune system, and those in BA-treated vs BP-treated group were mainly involved in digestive system. In conclusion, Bacillus amyloliquefaciens fsznc-06 might promote the expressions of genes related to immune system and digestive system, reduce the expressions of disease genes related to digestive system and might promote mutual accommodation of some immune genes in weanling black goat. Bacillus pumilus fsznc-09 might promote the expressions of genes related to immune system and mutual accommodation of some immune genes in weanling black goat. Bacillus amyloliquefaciens fsznc-06 has advantages over Bacillus pumilus fsznc-09 in promoting the expressions of genes related to digestive system and mutual accommodation of some immune genes.
Collapse
Affiliation(s)
- Nanchi Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Chengdu, 610041, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, No.16, South Fourth Section, First Ring Road, Chengdu, 610041, China
| | - Juan Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Chengdu, 610041, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, No.16, South Fourth Section, First Ring Road, Chengdu, 610041, China
| | - Li Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Chengdu, 610041, China.
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, No.16, South Fourth Section, First Ring Road, Chengdu, 610041, China.
| | - Yong Wei
- Animal Genetics and Breeding Key Laboratory of Sichuan Province, Sichuan Animal Sciences Academy, No.7, Niusha Road, Chengdu, 610066, China.
| | - Quzhe Emu
- Animal Genetics and Breeding Key Laboratory of Sichuan Province, Sichuan Animal Sciences Academy, No.7, Niusha Road, Chengdu, 610066, China
| | - Feng Xu
- Animal Genetics and Breeding Key Laboratory of Sichuan Province, Sichuan Animal Sciences Academy, No.7, Niusha Road, Chengdu, 610066, China
| | - Lin Zhang
- Animal Genetics and Breeding Key Laboratory of Sichuan Province, Sichuan Animal Sciences Academy, No.7, Niusha Road, Chengdu, 610066, China
| |
Collapse
|
10
|
Yang J, Zhang J, Yang Q, Huang X, Yan Z, Wang P, Gao X, Li J, Li N, Gao Y, Gun S. LncRNA EN-90756 promotes CPB2-induced proliferation and inhibits apoptosis in IPEC-J2 cells by affecting the JAK-STAT signaling pathway activation. Front Microbiol 2023; 13:1082025. [PMID: 36713226 PMCID: PMC9879603 DOI: 10.3389/fmicb.2022.1082025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
Background Long non-coding RNAs (lncRNAs), as key regulators, are closely associated with the development of a variety of disease. However, the mechanisms by which lncRNAs regulate Clostridium perfringens type C induced piglet diarrhea are unclear. Methods In the present study, we explored the expression and characterization of lncRNAs in a C. perfringens beta2 (CPB2) toxin-treated intestinal porcine epithelial cell line-J2 (IPEC-J2) using RNA-sequencing (RNA-seq). Results A total of 6,558 lncRNAs were identified, of which 49 lncRNAs were significantly differentially expressed between the control and CPB2 groups. Functional enrichment analysis showed that the target genes of differentially expressed lncRNA EN-90756 were mainly associated with defense response to virus, and negative regulation of apoptotic process. LncRNA EN-90756 was significantly up-regulated in IPEC-J2 cells at different time points after CPB2 treatment. Functionally, knockdown of lncRNA EN-90756 might regulate the proliferation and apoptosis of IPEC-J2 cells by affecting the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway. LncRNA EN-90756 may be involved in CPB2 toxin-induced piglet diarrhea by regulating the expression of its target gene MX1 (encoding MX dynamin like GTPase 1). Conclusion Long non-coding RNA EN-90756 affected the antiviral ability of IPEC-J2 cells by regulating the expression of MX1. Meanwhile, lncRNA EN-90756 might regulate cell proliferation and apoptosis by affecting JAK-STAT signaling pathway activation. These findings provide novel perspectives and directions for further exploration of the regulatory mechanisms of lncRNAs on CPB2 toxin-induced diarrhea in piglets.
Collapse
Affiliation(s)
- Jiaojiao Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Juanli Zhang
- College of Life Sciences and Technology, Longdong University, Qingyang, China
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaoli Gao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jie Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Na Li
- Jilin Rongtai Agricultural Development Co., Ltd., Changchun, China
| | - Yi Gao
- Jilin Rongtai Agricultural Development Co., Ltd., Changchun, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China,Gansu Research Center for Swine Production Engineering and Technology, Lanzhou, China,*Correspondence: Shuangbao Gun,
| |
Collapse
|
11
|
Dai J, Zhou P, Li S, Qiu HJ. New Insights into the Crosstalk among the Interferon and Inflammatory Signaling Pathways in Response to Viral Infections: Defense or Homeostasis. Viruses 2022; 14:v14122798. [PMID: 36560803 PMCID: PMC9783938 DOI: 10.3390/v14122798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Innate immunity plays critical roles in eliminating viral infections, healing an injury, and restoring tissue homeostasis. The signaling pathways of innate immunity, including interferons (IFNs), nuclear factor kappa B (NF-κB), and inflammasome responses, are activated upon viral infections. Crosstalk and interplay among signaling pathways are involved in the complex regulation of antiviral activity and homeostasis. To date, accumulating evidence has demonstrated that NF-κB or inflammasome signaling exhibits regulatory effects on IFN signaling. In addition, several adaptors participate in the crosstalk between IFNs and the inflammatory response. Furthermore, the key adaptors in innate immune signaling pathways or the downstream cytokines can modulate the activation of other signaling pathways, leading to excessive inflammatory responses or insufficient antiviral effects, which further results in tissue injury. This review focuses on the crosstalk between IFN and inflammatory signaling to regulate defense and homeostasis. A deeper understanding of the functional aspects of the crosstalk of innate immunity facilitates the development of targeted treatments for imbalanced homeostasis.
Collapse
Affiliation(s)
- Jingwen Dai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Pingping Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Department of Immunology, School of Basic Medicine, Harbin Medical University, Harbin 150081, China
| | - Su Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Correspondence: (S.L.); (H.-J.Q.)
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Correspondence: (S.L.); (H.-J.Q.)
| |
Collapse
|
12
|
Comparative Study on Immune Function of the Head and Trunk Kidney in Rainbow Trout Responding to IHNV Infection. Viruses 2022; 14:v14122663. [PMID: 36560667 PMCID: PMC9788286 DOI: 10.3390/v14122663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
A teleost's kidney was divided into head kidney and trunk kidney. The head kidney is an important lymphatic organ, while the trunk kidney mainly performs osmotic pressure regulation and excretion functions. Previous studies have shown that the teleost's head kidney exerts a strong immune response against pathogen invasion, while the mechanism of immune response in the trunk kidney is still rarely reported. Therefore, in this study, we established an Infectious hematopoietic necrosis virus (IHNV) immersion infection model to compare the similarities and differences of immune response mechanisms between the head kidney and trunk kidney against viral infection. The results showed that IHNV infection causes severe tissue damage and inflammatory reaction in the head and trunk kidney, triggers a series of interferon cascade reactions, and produces strong immune response. In addition, the transcriptome data showed that the head kidney and trunk kidney had similar immune response mechanisms, which showed that the NOD-like receptor signaling pathway and Toll-like receptor signaling pathway were activated. In conclusion, despite functional differentiation, the teleost's trunk kidney still has a strong immune response, especially the interferon-stimulated genes, which have stronger immune response in the trunk kidney than in the head kidney when responding to IHNV infection. This study contributes to a more comprehensive understanding of the teleost immune system and enriches the theory of kidney immunity in teleosts.
Collapse
|
13
|
Free ISG15 Inhibits the Replication of Peste des Petits Ruminants Virus by Breaking the Interaction of Nucleoprotein and Phosphoprotein. Microbiol Spectr 2022; 10:e0103122. [PMID: 36036587 PMCID: PMC9603952 DOI: 10.1128/spectrum.01031-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Peste des petits ruminants virus (PPRV) causes a highly contagious disease in small ruminants and severe economic losses in developing countries. PPRV infection can stimulate high levels of interferon (IFN) and many IFN-stimulated genes (ISGs), such as ISG15, which may play a key role in the process of viral infection. However, the role of ISG15 in PPRV infection and replication has not yet been reported. In this study, we found ISG15 expression to be significantly upregulated after PPRV infection of caprine endometrial epithelial cells (EECs), and ISG15 inhibits the proliferation of PPRV. Further analysis showed that free ISG15 could inhibit PPRV proliferation. Moreover, ISG15 does not affect the binding, entry, and transcription but does suppress the replication of PPRV. A detailed analysis revealed that ISG15 interacts and colocalizes with both viral N and P proteins and that its interactive regions are all located in the N-terminal domain. Further studies showed that ISG15 can competitively interact with N and P proteins and significantly interfere with their binding. Finally, through the construction of the C-terminal mutants of ISG15 with different lengths, it was found that amino acids (aa) 77 to 101 play a key role in inhibiting the binding of N and P proteins and that interaction with the P protein disappears after the deletion of 77 to 101 aa. The present study revealed a novel mechanism of ISG15 in disrupting the activity of the N0-P complex to inhibit viral replication. IMPORTANCE PPRV, a widespread and fatal disease of small ruminants, is one of the most devastating animal diseases in Africa, the Middle East, and Asia, causing severe economic losses. IFNs play an important role as a component of natural immunity against pathogens, yet the role of ISG15, an IFN-stimulated gene, in protecting against PPRV infection is currently unknown. We demonstrated, for the first time, that free ISG15 inhibits PPRV proliferation by disrupting the activity of the N0-P complex, a finding that has not been reported in other viruses. Our results provide important insights that can further understand the pathogenesis and innate immune mechanisms of PPRV.
Collapse
|
14
|
Sun RH, Chen KW, Wang Q, Huang ZY, Wang BC, Shi ZC, Ji W. Blood brain barrier permeability and immune function of brain in rainbow trout responding to IHNV infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104482. [PMID: 35760220 DOI: 10.1016/j.dci.2022.104482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Viral infection of the central nervous system (CNS) is often associated with blood-brain barrier (BBB) disruption. Mammals have developed complicated and efficient immune strategies to protect the BBB. However, the immune defense of brain and BBB permeability changes are not well-understood in teleost during virus invading. In this study, we constructed an infectious hematopoietic necrosis virus (IHNV) immersion infected rainbow trout model. After IHNV infection, pathological changes occurred in the brain, and MPO and ROS activities were significantly increased. In addition, the expression levels of BBB permeability-related genes were also changed. Transcriptome analysis showed that immune-related genes and signaling pathways in the brain were activated after IHNV infection. These results showed that the permeability of BBB increased significantly after IHNV infection, thus activating immune related factors and cells to enter the CNS through blood circulation to resist pathogenic infection.
Collapse
Affiliation(s)
- Ru-Han Sun
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kai-Wei Chen
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qin Wang
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhen-Yu Huang
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bing-Chao Wang
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ze-Chao Shi
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Wei Ji
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
15
|
Luo J, Zhang L, Shen F, Luo L, Chen L, Fan Z, Hou R, Yue B, Zhang X. Blood transcriptome analysis revealing aging gene expression profiles in red panda. PeerJ 2022; 10:e13743. [PMID: 35898935 PMCID: PMC9310792 DOI: 10.7717/peerj.13743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/27/2022] [Indexed: 01/17/2023] Open
Abstract
The red panda is an endangered forest species distributed on the edge of the Qinghai Tibet Plateau. The species has been conserved in ex-situ in many countries and its survival is threatened by many diseases. Its immune system is vulnerable to age-associated alterations, which accumulate and result in a progressive deterioration that leads to an increased incidence of diseases. We identified 2,219 differentially expressed genes (DEGs) between geriatric (11-16 years) and adult individuals (4-8 years), and 1690 DEGs between adults and juveniles (1 year). The gene expression and functional annotation results showed that the innate immunity of red pandas increases significantly in geriatric individuals, whereas its change remains unclear when comparing adults and juveniles. We found that the adaptive immunity of red pandas first increased and then decreased with age. We identified CXCR3, BLNK, and CCR4 as the hub genes in the age-related protein-protein interaction network, which showed their central role in age-related immune changes. Many DNA repair genes were down-regulated in geriatric red pandas, suggesting that the DNA repair ability of the blood tissue in geriatric red pandas is significantly reduced. The significantly up-regulated TLR5 in geriatric individuals also suggests the possibility of enhancing the vaccination immune response by incorporating flagellin, which could be used to address decreased vaccine responses caused by age-related declines in immune system function. This work provides an insight into gene expression changes associated with aging and paves the way for effective disease prevention and treatment strategies for red pandas in the future.
Collapse
Affiliation(s)
- Jing Luo
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Liang Zhang
- Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan, China
| | - Fujun Shen
- Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan, China
| | - Li Luo
- Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan, China
| | - Lei Chen
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Zhenxin Fan
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Rong Hou
- Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan, China
| | - Bisong Yue
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Xiuyue Zhang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Mouse Mx1 Inhibits Herpes Simplex Virus Type 1 Genomic Replication and Late Gene Expression In Vitro and Prevents Lesion Formation in the Mouse Zosteriform Model. J Virol 2022; 96:e0041922. [PMID: 35638820 DOI: 10.1128/jvi.00419-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Myxovirus resistance (Mx) proteins are dynamin-like GTPases that are inducible by interferons (IFNs) following virus infections. Most studies investigating Mx proteins have focused on their activity against influenza A viruses (IAV), although emerging evidence suggests that some Mx proteins may exhibit broader antiviral activity. Herein, we demonstrate that in addition to IAV, overexpression of mouse Mx1 (mMx1), but not mMx2, resulted in potent inhibition of growth of the human alphaherpesviruses herpes simplex virus 1 (HSV-1) and HSV-2, whereas neither inhibited the mouse betaherpesvirus murine cytomegalovirus (MCMV) in vitro. IFN induction of a functional endogenous mMx1 in primary mouse fibroblasts ex vivo was also associated with inhibition of HSV-1 growth. Using an in vitro overexpression approach, we demonstrate that mutations that result in redistribution of mMx1 from the nucleus to the cytoplasm or in loss of its combined GTP binding and GTPase activity also abrogated its ability to inhibit HSV-1 growth. Overexpressed mMx1 did not inhibit early HSV-1 gene expression but was shown to inhibit both replication of the HSV-1 genome as well as subsequent late gene expression. In a mouse model of cutaneous HSV-1 infection, mice expressing a functional endogenous mMx1 showed significant reductions in the severity of skin lesions as well as reduced HSV-1 titers in both the skin and dorsal root ganglia (DRG). Together, these data demonstrate that mMx1 mediates potent antiviral activity against human alphaherpesviruses by blocking replication of the viral genome and subsequent steps in virus replication. Moreover, endogenous mMx1 potently inhibited pathogenesis in the zosteriform mouse model of HSV-1 infection. IMPORTANCE While a number of studies have demonstrated that human Mx proteins can inhibit particular herpesviruses in vitro, we are the first to report the antiviral activity of mouse Mx1 (mMx1) against alphaherpesviruses both in vitro and in vivo. We demonstrate that both overexpressed mMx1 and endogenous mMx1 potently restrict HSV-1 growth in vitro. mMx1-mediated inhibition of HSV-1 was not associated with inhibition of virus entry and/or import of the viral genome into the nucleus, but rather with inhibition of HSV-1 genomic replication as well as subsequent late gene expression. Therefore, inhibition of human alphaherpesviruses by mMx1 occurs by a mechanism that is distinct from that reported for human Mx proteins against herpesviruses. Importantly, we also provide evidence that expression of a functional endogenous mMx1 can limit HSV-1 pathogenesis in a mouse model of infection.
Collapse
|
17
|
Yang H, Zhu J, Guo H, Tang A, Chen S, Zhang D, Yuan L, Liu G. Molecular cloning, characterization, and functional analysis of the uncharacterized C11orf96 gene. BMC Vet Res 2022; 18:170. [PMID: 35538492 PMCID: PMC9086667 DOI: 10.1186/s12917-022-03224-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 03/22/2022] [Indexed: 11/10/2022] Open
Abstract
Background The mammalian genome encodes millions of proteins. Although many proteins have been discovered and identified, a large part of proteins encoded by genes are yet to be discovered or fully characterized. In the present study, we successfully identified a host protein C11orf96 that was significantly upregulated after viral infection. Results First, we successfully cloned the coding sequence (CDS) region of the cat, human, and mouse C11orf96 gene. The CDS region of the C11orf96 gene is 372 bp long, encodes 124 amino acids, and is relatively conserved in different mammals. From bioinformatics analysis, we found that C11orf96 is rich in Ser and has multiple predicted phosphorylation sites. Moreover, protein interaction prediction analysis revealed that the protein is associated with several transmembrane family proteins and zinc finger proteins. Subsequently, we found that C11orf96 is strictly distributed in the cytoplasm. According to the tissue distribution characteristics, C11orf96 is distributed in all tissues and organs, with the highest expression levels in the kidney. These results indicate that C11orf96 may play a specific biological role in the kidney. Conclusions Summarizing, these data lay the foundation for studying the biological functions of C11orf96 and for exploring its role in viral replication. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03224-5.
Collapse
Affiliation(s)
- Hongzao Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.,Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Jie Zhu
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Hongyuan Guo
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Aoxing Tang
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Shaoyu Chen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Da Zhang
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Ligang Yuan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| | - Guangqing Liu
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
18
|
Du X, Zhou D, Zhou J, Xue J, Cheng Z. Marek's Disease Virus and Reticuloendotheliosis Virus Coinfection Enhances Viral Replication and Alters Cellular Protein Profiles. Front Vet Sci 2022; 9:854007. [PMID: 35392111 PMCID: PMC8981388 DOI: 10.3389/fvets.2022.854007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Coinfection with Marek's disease virus (MDV) and reticuloendotheliosis virus (REV) causes synergistic pathogenic effects and serious losses to the poultry industry. However, whether there is a synergism between the two viruses in viral replication and the roles of host factors in regulating MDV and REV coinfection remains elusive. In this study, we found that MDV and REV coinfection increased viral replication in coinfected cells as compared to a single infection in a limited period. Further, we explore the host cell responses to MDV and REV coinfection using tandem mass tag (TMT) peptide labeling coupled with liquid chromatography–tandem mass spectrometry (LC-MS/MS). Compared with MDV/REV-infected cells, 38 proteins increased (fold change > 1.2) and 60 decreased (fold change < 0.83) their abundance in MDV and REV coinfected cells. Differentially accumulated proteins (DAPs) were involved in important biological processes involved in the immune system process, cell adhesion and migration, cellular processes, and multicellular organismal systems. STRING analysis found that IRF7, MX1, TIMP3, and AKT1 may be associated with MDV and REV synergistic replication in chicken embryo fibroblasts (CEFs). Western blotting analysis showed that the selected DAPs were identical to the quantitative proteomics data. Taken together, we verified that MDV and REV can synergistically replicate in coinfected cells and revealed the host molecules involved in it. However, the synergistic pathogenesis of MDV and REV needs to be further studied.
Collapse
|
19
|
Dong Z, Dai H, Liu W, Jiang H, Feng Z, Liu F, Zhao Q, Rui H, Liu WJ, Liu B. Exploring the Differences in Molecular Mechanisms and Key Biomarkers Between Membranous Nephropathy and Lupus Nephritis Using Integrated Bioinformatics Analysis. Front Genet 2022; 12:770902. [PMID: 35047003 PMCID: PMC8762271 DOI: 10.3389/fgene.2021.770902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/06/2021] [Indexed: 01/16/2023] Open
Abstract
Background: Both membranous nephropathy (MN) and lupus nephritis (LN) are autoimmune kidney disease. In recent years, with the deepening of research, some similarities have been found in the pathogenesis of these two diseases. However, the mechanism of their interrelationship is not clear. The purpose of this study was to investigate the differences in molecular mechanisms and key biomarkers between MN and LN. Method: The expression profiles of GSE99325, GSE99339, GSE104948 and GSE104954 were downloaded from GEO database, and the differentially expressed genes (DEGs) of MN and LN samples were obtained. We used Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) for enrichment analysis of DEGs. A protein-protein interaction (PPI) network of DEGs was constructed using Metascape. We filtered DEGs with NetworkAnalyst. Finally, we used receiver operating characteristic (ROC) analysis to identify the most significant DEGs for MN and LN. Result: Compared with LN in the glomerulus, 14 DEGs were up-regulated and 77 DEGs were down-regulated in MN. Compared with LN in renal tubules, 21 DEGs were down-regulated, but no up-regulated genes were found in MN. According to the result of GO and KEGG enrichment, PPI network and Networkanalyst, we screened out six genes (IFI6, MX1, XAF1, HERC6, IFI44L, IFI44). Interestingly, among PLA2R, THSD7A and NELL1, which are the target antigens of podocyte in MN, the expression level of NELL1 in MN glomerulus is significantly higher than that of LN, while there is no significant difference in the expression level of PLA2R and THSD7A. Conclusion: Our study provides new insights into the pathogenesis of MN and LN by analyzing the differences in gene expression levels between MN and LN kidney samples, and is expected to be used to prepare an animal model of MN that is more similar to human.
Collapse
Affiliation(s)
- Zhaocheng Dong
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Renal Research Institution of Beijing University of Chinese Medicine, and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Haoran Dai
- Shunyi Branch, Beijing Traditional Chinese Medicine Hospital, Beijing, China
| | - Wenbin Liu
- Beijing University of Chinese Medicine, Beijing, China
| | - Hanxue Jiang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Zhendong Feng
- Beijing Chinese Medicine Hospital Pinggu Hospital, Beijing, China
| | - Fei Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Qihan Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Capital Medical University, Beijing, China
| | - Hongliang Rui
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Wei Jing Liu
- Renal Research Institution of Beijing University of Chinese Medicine, and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Shunyi Branch, Beijing Traditional Chinese Medicine Hospital, Beijing, China
| |
Collapse
|
20
|
Comparative study of ten thogotovirus isolates and their distinct in vivo characteristics. J Virol 2022; 96:e0155621. [PMID: 35019718 DOI: 10.1128/jvi.01556-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thogotoviruses are tick-borne arboviruses that comprise a unique genus within the Orthomyxoviridae family. Infections with thogotoviruses primarily cause disease in livestock with occasional reports of human infections suggesting a zoonotic potential. In the past, multiple genetically distinct thogotoviruses were isolated mostly from collected ticks. However, many aspects regarding their phylogenetic relationships, morphological characteristics and virulence in mammals remain unclear. For the present comparative study, we used a collection of ten different thogotovirus isolates from different geographic areas. Next generation sequencing and subsequent phylogenetic analyses revealed a distinct separation of these viruses into two major clades - the Thogoto-like and Dhori-like viruses. Electron microscopy demonstrated a heterogeneous morphology with spherical and filamentous particles being present in virus preparations. To study their pathogenicity, we analyzed the viruses in a small animal model system. In intraperitoneally infected C57BL/6 mice, all isolates showed a tropism for liver, lung and spleen. Importantly, we did not observe horizontal transmission to uninfected, highly susceptible contact mice. The isolates enormously differed in their capacity to induce disease, ranging from subclinical to fatal outcomes. In vivo multi-step passaging experiments of two low-pathogenic isolates showed no increased virulence and sequence analyses of the passaged viruses indicated a high stability of the viral genomes after ten mouse passages. In summary, our analysis demonstrates the broad genetic and phenotypic variability within the thogotovirus genus. Moreover, thogotoviruses are well adapted to mammals but their horizontal transmission seems to depend on ticks as their vectors. Importance Since their discovery over sixty years ago, fifteen genetically distinct members of the thogotovirus genus have been isolated. These arboviruses belong to the Orthomyxovirus family and share many features with influenza viruses. However, numerous of these isolates have not been characterized in depth. In the present study, we comparatively analyzed a collection of ten different thogotovirus isolates to answer basic questions about their phylogenetic relationships, morphology and pathogenicity in mice. Our results highlight shared and unique characteristics of this diverse genus. Taken together, these observations provide a framework for the phylogenic classification and phenotypic characterization of newly identified thogotovirus isolates that could potentially cause severe human infections as exemplified by the recently reported, fatal Bourbon virus cases in the United States.
Collapse
|
21
|
Zhu W, Zhai X, Jia Z, Wang Y, Mo Y. Bioinformatics analysis of sequential gene expression profiling after skin and skeletal muscle wound in mice. Leg Med (Tokyo) 2021; 54:101982. [PMID: 34687982 DOI: 10.1016/j.legalmed.2021.101982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/26/2021] [Accepted: 10/14/2021] [Indexed: 10/20/2022]
Abstract
It is of great value to use bioinformatics methods to screen the core differentially expressed genes (DEGs) at different times after mouse skin and skeletal muscle wound, and to explore the relationship between them and the wound age. To this end, we downloaded the gene expression profiles of GSE140517 and GSE23006 from the NCBI-GEO gene database, used GEO2R online tools and Venn diagrams to screen out DEGs at different times and common-DEGs. The Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) channel analysis were carried out through the DAVID website respectively. Use STRING tool to build a Protein-protein Interaction (PPI) network, and use Cytoscape software to screen out core DEGs. The results showed that 13, 53, 43 and 13 core DEGs were screened out in the 6 h, 12 h, 24 h and common-DEGs group after wound. There were 7 core DEGs (Cxcl2, Cxcl3, Il1b, Ptgs2, Cxcl1, Timp1, Ccl3) in both the different time point and the common DEGs group. Meanwhile, there are 1 core DEGs (Ccl4) specifically expressed in the 6 h, 29 specifically expressed core DEGs (Isg20, Rtp4, Fcgr1, Ifi44, Trim30a, etc.) in the 12 h, and 18 specifically expressed core DEGs (Ccr7, Myd88, Igsf6, Ccr2, Gpsm3, etc.) in the 24 h, there are 6 core DEGs (Ccl4, Ccl7, Saa3, Cxcl5, Ccl2, Lcn2) specifically expressed in the common-DEGs group. The results of GO and KEGG analysis showed that the deterioration and exudation of the inflammatory response were the main cause at 6 h after wound. In addition to inflammation at 12 h and 24 h, the systemic immune response against viral and bacterial infections also gradually increased. In summary, the core DEGs selected in this study have combined characteristics, consistent with the healing function at the corresponding time point, and they are also has specificity and correlation with wound age. Therefore, by detecting the changes in the expression of co-expressed core DEGs at different times after wound, as well as detecting specific expressed DEGs at a specific time point or a specific period of time, it is very promising to provide help for the wound age estimation. However, limited by the GSE140517 gene expression profile in the database, only the difference in gene expression at different times within 24 h after wound was explored, and the research on the late wound age still needs to be further in-depth.
Collapse
Affiliation(s)
- Weihao Zhu
- School of Forensic Medicine, Henan University of Science and Technology, Luoyang 471003, China
| | - Xiandun Zhai
- School of Forensic Medicine, Henan University of Science and Technology, Luoyang 471003, China
| | - Zelei Jia
- School of Forensic Medicine, Henan University of Science and Technology, Luoyang 471003, China
| | - Yingyi Wang
- School of Forensic Medicine, Henan University of Science and Technology, Luoyang 471003, China; First Affiliated Hospital of Zhengzhou University, Zhengzhou 450046, China
| | - Yaonan Mo
- School of Forensic Medicine, Henan University of Science and Technology, Luoyang 471003, China.
| |
Collapse
|
22
|
A QP509L/QP383R-deleted African swine fever virus is highly attenuated in swine but does not confer protection against parental virus challenge. J Virol 2021; 96:e0150021. [PMID: 34613824 PMCID: PMC8754219 DOI: 10.1128/jvi.01500-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
African swine fever (ASF), a devastating infectious disease in swine, severely threatens the global pig farming industry. Disease control has been hampered by the unavailability of vaccines. Here, we report that deletion of the QP509L and QP383R genes (ASFV-ΔQP509L/QP383R) from the highly virulent ASF virus (ASFV) CN/GS/2018 strain results in complete viral attenuation in swine. Animals inoculated with ASFV-ΔQP509L/QP383R at a 104 50% hemadsorbing dose (HAD50) remained clinically normal during the 17-day observational period. All ASFV-ΔQP509L/QP383R-infected animals had low viremia titers and developed a low-level p30-specific antibody response. However, ASFV-ΔQP509L/QP383R did not induce protection against challenge with the virulent parental ASFV CN/GS/2018 isolate. RNA-sequencing analysis revealed that innate immune-related genes (Ifnb, Traf2, Cxcl10, Isg15, Rantes, and Mx1) were significantly lower in ASFV-ΔQP509L/QP383R-infected than in ASFV-infected porcine alveolar macrophages. In addition, ASFV-ΔQP509L/QP383R-infected pigs had low levels of interferon-β (IFN-β) based on enzyme-linked immunosorbent assay (ELISA). These data suggest that deletion of ASFV QP509L/383R reduces virulence but does not induce protection against lethal ASFV challenge. IMPORTANCE African swine fever (ASF) is endemic to several parts of the word, with outbreaks of the disease devastating the swine farming industry; currently, no commercially available vaccine exists. Here, we report that deletion of the previously uncharacterized QP509L and QP383R viral genes completely attenuates virulence in the ASF virus (ASFV) CN/GS/2018 isolate. However, ASFV-ΔQP509L/QP383R-infected animals were not protected from developing an ASF infection after challenge with the virulent parental virus. ASFV-ΔQP509L/QP383R induced lower levels of innate immune-related genes and IFN-β than the parental virus. Our results increase our knowledge of developing an effective and live ASF attenuated vaccine.
Collapse
|
23
|
Induction of SOCS Expression by EV71 Infection Promotes EV71 Replication. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2430640. [PMID: 32149091 PMCID: PMC7054758 DOI: 10.1155/2020/2430640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/03/2020] [Indexed: 12/30/2022]
Abstract
Enterovirus 71 (EV71) is the causative pathogen of hand, foot, and mouth disease (HFMD). However, no effective antiviral therapy is currently available. Some viruses could escape the host's innate immunity by upregulating suppressor of cytokine signaling (SOCS) proteins. Until now, whether EV71 evades the host immune system by regulating the expression of SOCS proteins remains unknown. In this study, we found that EV71 infection promoted SOCS expression at both mRNA and protein levels in vitro and in vivo. Consistently, the infectivity of EV71 was decreased significantly in the SOCS3 or SOCS1 knockdown cells, suggesting that SOCS1 and especially SOCS3 are crucial for EV71 infection. Further investigation showed that SOCS3 promoted virus infection by inhibiting interferon-induced STAT3 phosphorylation. SOCS1 and SOCS3 mRNA expressions were independent on virus-induced type I interferon expression but were blocked by the inhibitor of NF-κB. Therefore, EV71 infection stimulates the expression of SOCS proteins in an interferon-independent way and negatively regulates the JAK/STAT signaling pathway, thus escaping host immunity. All these results may add new information to the mechanism of EV71 in fighting against type I interferon responses.
Collapse
|