1
|
Lurain KA, Ramaswami R, Krug LT, Whitby D, Ziegelbauer JM, Wang HW, Yarchoan R. HIV-associated cancers and lymphoproliferative disorders caused by Kaposi sarcoma herpesvirus and Epstein-Barr virus. Clin Microbiol Rev 2024; 37:e0002223. [PMID: 38899877 PMCID: PMC11391709 DOI: 10.1128/cmr.00022-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
SUMMARYWithin weeks of the first report of acquired immunodeficiency syndrome (AIDS) in 1981, it was observed that these patients often had Kaposi sarcoma (KS), a hitherto rarely seen skin tumor in the USA. It soon became apparent that AIDS was also associated with an increased incidence of high-grade lymphomas caused by Epstein-Barr virus (EBV). The association of AIDS with KS remained a mystery for more than a decade until Kaposi sarcoma-associated herpesvirus (KSHV) was discovered and found to be the cause of KS. KSHV was subsequently found to cause several other diseases associated with AIDS and human immunodeficiency virus (HIV) infection. People living with HIV/AIDS continue to have an increased incidence of certain cancers, and many of these cancers are caused by EBV and/or KSHV. In this review, we discuss the epidemiology, virology, pathogenesis, clinical manifestations, and treatment of cancers caused by EBV and KSHV in persons living with HIV.
Collapse
Affiliation(s)
- Kathryn A Lurain
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Ramya Ramaswami
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Laurie T Krug
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Joseph M Ziegelbauer
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Hao-Wei Wang
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Robert Yarchoan
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Peng X, Li L, Xing J, Cheng C, Hu M, Luo Y, Shi S, Liu Y, Cui Z, Yu X. Cross-linking porcine peritoneum by oxidized konjac glucomannan: a novel method to improve the properties of cardiovascular substitute material. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2023. [DOI: 10.1186/s42825-023-00114-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
AbstractThe use of natural polysaccharide crosslinkers for decellularized matrices is an effective approach to prepare cardiovascular substitute materials. In this research, NaIO4 was applied to oxidize konjac glucomannan to prepare the polysaccharide crosslinker oxidized konjac glucomannan (OKGM). The as-prepared crosslinker was then used to stabilize collagen-rich decellularized porcine peritoneum (DPP) to construct a cardiovascular substitute material (OKGM-fixed DPP). The results demonstrated that compared with GA-fixed DPP and GNP-fixed DPP, 3.75% OKGM [1:1.5 (KGM: NaIO4)]-fixed DPP demonstrated suitable mechanical properties, as well as good hemocompatibility, excellent anti-calcification capability, and anti-enzymolysis in vitro. Furthermore, 3.75% OKGM [1:1.5 (KGM: NaIO4)]-fixed DPP was suitable for vascular endothelial cell adhesion and rapid proliferation, and a single layer of endothelial cells was formed on the fifth day of culture. The in vivo experimental results also showed excellent histocompatibility. The current results demonstrted that OKGM was a novel polysaccharide cross-linking reagent for crosslinking natural tissues featured with rich collagen content, and 3.75% OKGM [1:1.5 (KGM: NaIO4)]-fixed DPP was a potential cardiovascular substitute material.
Graphical Abstract
Collapse
|
3
|
A panel of KSHV mutants in the polycistronic kaposin locus for precise analysis of individual protein products. J Virol 2021; 96:e0156021. [PMID: 34936820 PMCID: PMC8906436 DOI: 10.1128/jvi.01560-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is the cause of several human cancers, including the endothelial cell (EC) malignancy, Kaposi’s sarcoma. Unique KSHV genes absent from other human herpesvirus genomes, the “K-genes,” are important for KSHV replication and pathogenesis. Among these, the kaposin transcript is highly expressed in all phases of infection, but its complex polycistronic nature has hindered functional analysis to date. At least three proteins are produced from the kaposin transcript: Kaposin A (KapA), B (KapB), and C (KapC). To determine the relative contributions of kaposin proteins during KSHV infection, we created a collection of mutant viruses unable to produce kaposin proteins individually or in combination. In previous work, we showed KapB alone recapitulated the elevated proinflammatory cytokine transcripts associated with KS via the disassembly of RNA granules called processing bodies (PBs). Using the new ΔKapB virus, we showed that KapB was necessary for this effect during latent KSHV infection. Moreover, we observed that despite the ability of all kaposin-deficient latent iSLK cell lines to produce virions, all displayed low viral episome copy number, a defect that became more pronounced after primary infection of naive ECs. For ΔKapB, provision of KapB in trans failed to complement the defect, suggesting a requirement for the kaposin locus in cis. These findings demonstrate that our panel of kaposin-deficient viruses enables precise analysis of the respective contributions of individual kaposin proteins to KSHV replication. Moreover, our mutagenesis approach serves as a guide for the functional analysis of other complex multicistronic viral loci. IMPORTANCE Kaposi’s sarcoma-associated herpesvirus (KSHV) expresses high levels of the kaposin transcript during both latent and lytic phases of replication. Due to its repetitive, GC-rich nature and polycistronic coding capacity, until now no reagents existed to permit a methodical analysis of the role of individual kaposin proteins in KSHV replication. We report the creation of a panel of recombinant viruses and matched producer cell lines that delete kaposin proteins individually or in combination. We demonstrate the utility of this panel by confirming the requirement of one kaposin translation product to a key KSHV latency phenotype. This study describes a new panel of molecular tools for the KSHV field to enable precise analysis of the roles of individual kaposin proteins during KSHV infection.
Collapse
|
4
|
Jary A, Veyri M, Gothland A, Leducq V, Calvez V, Marcelin AG. Kaposi's Sarcoma-Associated Herpesvirus, the Etiological Agent of All Epidemiological Forms of Kaposi's Sarcoma. Cancers (Basel) 2021; 13:cancers13246208. [PMID: 34944828 PMCID: PMC8699694 DOI: 10.3390/cancers13246208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 01/08/2023] Open
Abstract
Simple Summary Kaposi’s sarcoma-associated herpesvirus (KSHV) is one of the seven oncogenic viruses currently recognized by the International Agency for Research on Cancer. Its presence for Kaposi’s sarcoma development is essential and knowledge on the oncogenic process has increased since its discovery in 1994. However, some uncertainties remain to be clarified, in particular on the exact routes of transmission and disparities in KSHV seroprevalence and the prevalence of Kaposi’s sarcoma worldwide. Here, we summarized the current data on the KSHV viral particle’s structure, its genome, the replication, its seroprevalence, the viral diversity and the lytic and latent oncogenesis proteins involved in Kaposi’s sarcoma. Lastly, we reported the environmental, immunological and viral factors possibly associated with KSHV transmission that could also play a role in the development of Kaposi’s sarcoma. Abstract Kaposi’s sarcoma-associated herpesvirus (KSHV), also called human herpesvirus 8 (HHV-8), is an oncogenic virus belonging to the Herpesviridae family. The viral particle is composed of a double-stranded DNA harboring 90 open reading frames, incorporated in an icosahedral capsid and enveloped. The viral cycle is divided in the following two states: a short lytic phase, and a latency phase that leads to a persistent infection in target cells and the expression of a small number of genes, including LANA-1, v-FLIP and v-cyclin. The seroprevalence and risk factors of infection differ around the world, and saliva seems to play a major role in viral transmission. KSHV is found in all epidemiological forms of Kaposi’s sarcoma including classic, endemic, iatrogenic, epidemic and non-epidemic forms. In a Kaposi’s sarcoma lesion, KSHV is mainly in a latent state; however, a small proportion of viral particles (<5%) are in a replicative state and are reported to be potentially involved in the proliferation of neighboring cells, suggesting they have crucial roles in the process of tumorigenesis. KSHV encodes oncogenic proteins (LANA-1, v-FLIP, v-cyclin, v-GPCR, v-IL6, v-CCL, v-MIP, v-IRF, etc.) that can modulate cellular pathways in order to induce the characteristics found in all cancer, including the inhibition of apoptosis, cells’ proliferation stimulation, angiogenesis, inflammation and immune escape, and, therefore, are involved in the development of Kaposi’s sarcoma.
Collapse
Affiliation(s)
- Aude Jary
- Service de Virologie, Hôpital Pitié-Salpêtrière, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.); (V.L.); (V.C.); (A.-G.M.)
- Correspondence: ; Tel.: +33-1-4217-7401
| | - Marianne Veyri
- Service d’Oncologie Médicale, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France;
| | - Adélie Gothland
- Service de Virologie, Hôpital Pitié-Salpêtrière, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.); (V.L.); (V.C.); (A.-G.M.)
| | - Valentin Leducq
- Service de Virologie, Hôpital Pitié-Salpêtrière, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.); (V.L.); (V.C.); (A.-G.M.)
| | - Vincent Calvez
- Service de Virologie, Hôpital Pitié-Salpêtrière, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.); (V.L.); (V.C.); (A.-G.M.)
| | - Anne-Geneviève Marcelin
- Service de Virologie, Hôpital Pitié-Salpêtrière, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.); (V.L.); (V.C.); (A.-G.M.)
| |
Collapse
|
5
|
Gabaev I, Williamson JC, Crozier TW, Schulz TF, Lehner PJ. Quantitative Proteomics Analysis of Lytic KSHV Infection in Human Endothelial Cells Reveals Targets of Viral Immune Modulation. Cell Rep 2020; 33:108249. [PMID: 33053346 PMCID: PMC7567700 DOI: 10.1016/j.celrep.2020.108249] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/13/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Kaposi's sarcoma herpesvirus (KSHV) is an oncogenic human virus and the leading cause of mortality in HIV infection. KSHV reactivation from latent- to lytic-stage infection initiates a cascade of viral gene expression. Here we show how these changes remodel the host cell proteome to enable viral replication. By undertaking a systematic and unbiased analysis of changes to the endothelial cell proteome following KSHV reactivation, we quantify >7,000 cellular proteins and 71 viral proteins and provide a temporal profile of protein changes during the course of lytic KSHV infection. Lytic KSHV induces >2-fold downregulation of 291 cellular proteins, including PKR, the key cellular sensor of double-stranded RNA. Despite the multiple episomes per cell, CRISPR-Cas9 efficiently targets KSHV genomes. A complementary KSHV genome-wide CRISPR genetic screen identifies K5 as the viral gene responsible for the downregulation of two KSHV targets, Nectin-2 and CD155, ligands of the NK cell DNAM-1 receptor.
Collapse
Affiliation(s)
- Ildar Gabaev
- Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK; Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK.
| | - James C. Williamson
- Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK,Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Thomas W.M. Crozier
- Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK,Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Thomas F. Schulz
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover 30625, Germany,German Center for Infection Research, Hannover-Braunschweig, Germany
| | - Paul J. Lehner
- Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK,Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK,Corresponding author
| |
Collapse
|
6
|
Targeting Kaposi's Sarcoma-Associated Herpesvirus ORF21 Tyrosine Kinase and Viral Lytic Reactivation by Tyrosine Kinase Inhibitors Approved for Clinical Use. J Virol 2020; 94:JVI.01791-19. [PMID: 31826996 DOI: 10.1128/jvi.01791-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/04/2019] [Indexed: 12/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the cause of three human malignancies: Kaposi's sarcoma, primary effusion lymphoma, and the plasma cell variant of multicentric Castleman disease. Previous research has shown that several cellular tyrosine kinases play crucial roles during several steps in the virus replication cycle. Two KSHV proteins also have protein kinase function: open reading frame (ORF) 36 encodes a serine-threonine kinase, while ORF21 encodes a thymidine kinase (TK), which has recently been found to be an efficient tyrosine kinase. In this study, we explore the role of the ORF21 tyrosine kinase function in KSHV lytic replication. By generating a recombinant KSHV mutant with an enzymatically inactive ORF21 protein, we show that the tyrosine kinase function of ORF21/TK is not required for the progression of the lytic replication in tissue culture but that it is essential for the phosphorylation and activation to toxic moieties of the antiviral drugs zidovudine and brivudine. In addition, we identify several tyrosine kinase inhibitors, already in clinical use against human malignancies, which potently inhibit not only ORF21 TK kinase function but also viral lytic reactivation and the development of KSHV-infected endothelial tumors in mice. Since they target both cellular tyrosine kinases and a viral kinase, some of these compounds might find a use in the treatment of KSHV-associated malignancies.IMPORTANCE Our findings address the role of KSHV ORF21 as a tyrosine kinase during lytic replication and the activation of prodrugs in KSHV-infected cells. We also show the potential of selected clinically approved tyrosine kinase inhibitors to inhibit KSHV TK, KSHV lytic replication, infectious virion release, and the development of an endothelial tumor. Since they target both cellular tyrosine kinases supporting productive viral replication and a viral kinase, these drugs, which are already approved for clinical use, may be suitable for repurposing for the treatment of KSHV-related tumors in AIDS patients or transplant recipients.
Collapse
|
7
|
Koch S, Damas M, Freise A, Hage E, Dhingra A, Rückert J, Gallo A, Kremmer E, Tegge W, Brönstrup M, Brune W, Schulz TF. Kaposi's sarcoma-associated herpesvirus vIRF2 protein utilizes an IFN-dependent pathway to regulate viral early gene expression. PLoS Pathog 2019; 15:e1007743. [PMID: 31059555 PMCID: PMC6522069 DOI: 10.1371/journal.ppat.1007743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 05/16/2019] [Accepted: 03/31/2019] [Indexed: 12/14/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV; human herpesvirus 8) belongs to the subfamily of Gammaherpesvirinae and is the etiological agent of Kaposi’s sarcoma as well as of two lymphoproliferative diseases: primary effusion lymphoma and multicentric Castleman disease. The KSHV life cycle is divided into a latent and a lytic phase and is highly regulated by viral immunomodulatory proteins which control the host antiviral immune response. Among them is a group of proteins with homology to cellular interferon regulatory factors, the viral interferon regulatory factors 1–4. The KSHV vIRFs are known as inhibitors of cellular interferon signaling and are involved in different oncogenic pathways. Here we characterized the role of the second vIRF protein, vIRF2, during the KSHV life cycle. We found the vIRF2 protein to be expressed in different KSHV positive cells with early lytic kinetics. Importantly, we observed that vIRF2 suppresses the expression of viral early lytic genes in both newly infected and reactivated persistently infected endothelial cells. This vIRF2-dependent regulation of the KSHV life cycle might involve the increased expression of cellular interferon-induced genes such as the IFIT proteins 1, 2 and 3, which antagonize the expression of early KSHV lytic proteins. Our findings suggest a model in which the viral protein vIRF2 allows KSHV to harness an IFN-dependent pathway to regulate KSHV early gene expression. The life cycle of Kaposi Sarcoma herpesvirus involves both persistence in a latent form and productive replication to generate new viral particles. How the virus switches between latency and productive (‘lytic’) replication is only partially understood. Here we show that a viral homologue of interferon regulatory factors, vIRF2, antagonizes lytic protein expression in endothelial cells. It does this by inducing the expression of cellular interferon-regulated genes such as IFIT 1–3, which in turn dampens early viral gene expression. This observation suggests that vIRF2 allows KSHV to harness the interferon pathway to regulate early viral gene expression in endothelial cells.
Collapse
Affiliation(s)
- Sandra Koch
- Hannover Medical School, Institute of Virology, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Modester Damas
- Hannover Medical School, Institute of Virology, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Anika Freise
- Hannover Medical School, Institute of Virology, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Elias Hage
- Hannover Medical School, Institute of Virology, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Akshay Dhingra
- Hannover Medical School, Institute of Virology, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Jessica Rückert
- Hannover Medical School, Institute of Virology, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Antonio Gallo
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- German Centre for Infection Research, Hamburg Site, Germany
| | - Elisabeth Kremmer
- Institute of Molecular Immunology, Helmholtz Centre Munich, German Research Center for Environmental Health, Munich, Germany
| | - Werner Tegge
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mark Brönstrup
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Wolfram Brune
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- German Centre for Infection Research, Hamburg Site, Germany
| | - Thomas F. Schulz
- Hannover Medical School, Institute of Virology, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
- * E-mail:
| |
Collapse
|
8
|
Dubich T, Lieske A, Santag S, Beauclair G, Rückert J, Herrmann J, Gorges J, Büsche G, Kazmaier U, Hauser H, Stadler M, Schulz TF, Wirth D. An endothelial cell line infected by Kaposi's sarcoma-associated herpes virus (KSHV) allows the investigation of Kaposi's sarcoma and the validation of novel viral inhibitors in vitro and in vivo. J Mol Med (Berl) 2019; 97:311-324. [PMID: 30610257 DOI: 10.1007/s00109-018-01733-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 12/18/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS), a tumor of endothelial origin predominantly affecting immunosuppressed individuals. Up to date, vaccines and targeted therapies are not available. Screening and identification of anti-viral compounds are compromised by the lack of scalable cell culture systems reflecting properties of virus-transformed cells in patients. Further, the strict specificity of the virus for humans limits the development of in vivo models. In this study, we exploited a conditionally immortalized human endothelial cell line for establishment of in vitro 2D and 3D KSHV latency models and the generation of KS-like xenograft tumors in mice. Importantly, the invasive properties and tumor formation could be completely reverted by purging KSHV from the cells, confirming that tumor formation is dependent on the continued presence of KSHV, rather than being a consequence of irreversible transformation of the infected cells. Upon testing a library of 260 natural metabolites, we selected the compounds that induced viral loss or reduced the invasiveness of infected cells in 2D and 3D endothelial cell culture systems. The efficacy of selected compounds against KSHV-induced tumor formation was verified in the xenograft model. Together, this study shows that the combined use of anti-viral and anti-tumor assays based on the same cell line is predictive for tumor reduction in vivo and therefore allows faithful selection of novel drug candidates against Kaposi's sarcoma. KEY MESSAGES: Novel 2D, 3D, and xenograft mouse models mimic the consequences of KSHV infection. KSHV-induced tumorigenesis can be reverted upon purging the cells from the virus. A 3D invasiveness assay is predictive for tumor reduction in vivo. Chondramid B, epothilone B, and pretubulysin D diminish KS-like lesions in vivo.
Collapse
Affiliation(s)
- Tatyana Dubich
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Anna Lieske
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Susann Santag
- Institute of Virology, Hannover Medical School, Hannover, Germany.,German Centre for Infection Research, Hannover-Braunschweig, Germany
| | - Guillaume Beauclair
- Institute of Virology, Hannover Medical School, Hannover, Germany.,German Centre for Infection Research, Hannover-Braunschweig, Germany
| | - Jessica Rückert
- Institute of Virology, Hannover Medical School, Hannover, Germany.,German Centre for Infection Research, Hannover-Braunschweig, Germany
| | - Jennifer Herrmann
- German Centre for Infection Research, Hannover-Braunschweig, Germany.,Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research, Saarbrücken, Germany
| | - Jan Gorges
- Institute of Organic Chemistry, Saarland University, Saarbrücken, Germany
| | - Guntram Büsche
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Uli Kazmaier
- Institute of Organic Chemistry, Saarland University, Saarbrücken, Germany
| | - Hansjörg Hauser
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Marc Stadler
- German Centre for Infection Research, Hannover-Braunschweig, Germany.,Microbial Drugs, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Thomas F Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany.,German Centre for Infection Research, Hannover-Braunschweig, Germany
| | - Dagmar Wirth
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany. .,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
9
|
Ruder B, Murtadak V, Stürzl M, Wirtz S, Distler U, Tenzer S, Mahapatro M, Greten FR, Hu Y, Neurath MF, Cesarman E, Ballon G, Günther C, Becker C. Chronic intestinal inflammation in mice expressing viral Flip in epithelial cells. Mucosal Immunol 2018; 11:1621-1629. [PMID: 30104627 PMCID: PMC8063487 DOI: 10.1038/s41385-018-0068-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 07/04/2018] [Accepted: 07/10/2018] [Indexed: 02/04/2023]
Abstract
Viruses are present in the intestinal microflora and are currently discussed as a potential causative mechanism for the development of inflammatory bowel disease. A number of viruses, such as Human Herpesvirus-8, express homologs to cellular FLIPs, which are major contributors for the regulation of epithelial cell death. In this study we analyzed the consequences of constitutive expression of HHV8-viral FLIP in intestinal epithelial cells (IECs) in mice. Surprisingly, expression of vFlip disrupts tissue homeostasis and induces severe intestinal inflammation. Moreover vFlipIEC-tg mice showed reduced Paneth cell numbers, associated with excessive necrotic cell death. On a molecular level vFlip expression altered classical and alternative NFκB activation. Blocking of alternative NFκB signaling by deletion of Ikka in vivo largely protected mice from inflammation and Paneth cell loss induced by vFLIP. Collectively, our data provide functional evidence that expression of a single viral protein in IECs can be sufficient to disrupt epithelial homeostasis and to initiate chronic intestinal inflammation.
Collapse
Affiliation(s)
- Barbara Ruder
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Vinay Murtadak
- Division of Molecular and Experimental Surgery, Department of Surgery, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Department of Surgery, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ute Distler
- Institute for Immunology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Mousumi Mahapatro
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Florian R. Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Yinling Hu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Markus F. Neurath
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | - Gianna Ballon
- Department of Pathology and Laboratory Medicine, Northwell Health, Lake Success, NY, USA
| | - Claudia Günther
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
10
|
Kaposi's Sarcoma-Associated Herpesvirus Nonstructural Membrane Protein pK15 Recruits the Class II Phosphatidylinositol 3-Kinase PI3K-C2α To Activate Productive Viral Replication. J Virol 2018; 92:JVI.00544-18. [PMID: 29950425 DOI: 10.1128/jvi.00544-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/24/2018] [Indexed: 12/16/2022] Open
Abstract
Kaposi's sarcoma (KS)-associated herpesvirus (KSHV)/human herpesvirus 8 (HHV-8) causes the angiogenic tumor KS and two B-cell malignancies. The KSHV nonstructural membrane protein encoded by the open reading frame (ORF) K15 recruits and activates several cellular proteins, including phospholipase Cγ1 (PLCγ1), components of the NF-κB pathway, as well as members of the Src family of nonreceptor tyrosine kinases, and thereby plays an important role in the activation of angiogenic and inflammatory pathways that contribute to the pathogenesis of KS as well as KSHV productive (lytic) replication. In order to identify novel cellular components involved in the biology of pK15, we immunoprecipitated pK15 from KSHV-infected endothelial cells and identified associated proteins by label-free quantitative mass spectrometry. Cellular proteins interacting with pK15 point to previously unappreciated cellular processes, such as the endocytic pathway, that could be involved in the function of pK15. We found that the class II phosphatidylinositol 3-kinase (PI3K) PI3K-C2α, which is involved in the endocytosis of activated receptor tyrosine kinases and their signaling from intracellular organelles, interacts and colocalizes with pK15 in vesicular structures abundant in the perinuclear area. Further functional analysis revealed that PI3K-C2α contributes to the pK15-dependent phosphorylation of PLCγ1 and Erk1/2. PI3K-C2α also plays a role in KSHV lytic replication, as evidenced by the reduced expression of the viral lytic genes K-bZIP and ORF45 as well as the reduced release of infectious virus in PI3K-C2α-depleted KSHV-infected endothelial cells. Taken together, our results suggest a role of the cellular PI3K-C2α protein in the functional properties of the KSHV pK15 protein.IMPORTANCE The nonstructural membrane protein encoded by open reading frame K15 of Kaposi's sarcoma-associated herpesvirus (KSHV) (HHV8) activates several intracellular signaling pathways that contribute to the angiogenic properties of KSHV in endothelial cells and to its reactivation from latency. A detailed understanding of how pK15 activates these intracellular signaling pathways is a prerequisite for targeting these processes specifically in KSHV-infected cells. By identifying pK15-associated cellular proteins using a combination of immunoprecipitation and mass spectrometry, we provide evidence that pK15-dependent signaling may occur from intracellular vesicles and rely on the endocytotic machinery. Specifically, a class II PI3K, PI3K-C2α, is recruited by pK15 and involved in pK15-dependent intracellular signaling and viral reactivation from latency. These findings are of importance for future intervention strategies that aim to disrupt the activation of intracellular signaling by pK15 in order to antagonize KSHV productive replication and tumorigenesis.
Collapse
|
11
|
Yang Z, Honda T, Ueda K. vFLIP upregulates IKKε, leading to spindle morphology formation through RelA activation. Virology 2018; 522:106-121. [PMID: 30029010 DOI: 10.1016/j.virol.2018.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/07/2018] [Accepted: 07/07/2018] [Indexed: 12/31/2022]
Abstract
Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) vFLIP, a latent gene of KSHV, was first identified as a FLICE-inhibitory protein (FLIP) protecting cells from apoptosis. The vFLIP protein has been shown to activate the NF-κB signaling involved in spindle morphology formation both in HUVECs infected with KSHV and Kaposi's sarcoma (KS) itself. In this study, we independently established stably vFLIP-expressing cells and showed that they exhibited upregulated NF-κB family protein expression independent of the ability of IKKs to bind vFLIP. Further, vFLIP induced upregulation of IKKε, phosphorylation of RelA at Ser468 (p-RelA S468) and nuclear localization of Re1A concomitant with spindle morphology formation, and these effects were reversed by knockdown of IKKε and treatment with Bay-11. Overexpression of IKKε alone also showed spindle morphology formation with p-RelA S468. In conclusion, the spindle cell morphology in KS should be induced by RelA activation (p-RelA S468) by IKKε upregulation in vFLIP-expressing EA hy926 cells.
Collapse
Affiliation(s)
- Zunlin Yang
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Tomoyuki Honda
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Keiji Ueda
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
12
|
VEGF Upregulation in Viral Infections and Its Possible Therapeutic Implications. Int J Mol Sci 2018; 19:ijms19061642. [PMID: 29865171 PMCID: PMC6032371 DOI: 10.3390/ijms19061642] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 12/12/2022] Open
Abstract
Several viruses are recognized as the direct or indirect causative agents of human tumors and other severe human diseases. Vascular endothelial growth factor (VEGF) is identified as a principal proangiogenic factor that enhances the production of new blood vessels from existing vascular network. Therefore, oncogenic viruses such as Kaposi’s sarcoma herpesvirus (KSHV) and Epstein-Barr virus (EBV) and non-oncogenic viruses such as herpes simplex virus (HSV-1) and dengue virus, which lack their own angiogenic factors, rely on the recruitment of cellular genes for angiogenesis in tumor progression or disease pathogenesis. This review summarizes how human viruses exploit the cellular signaling machinery to upregulate the expression of VEGF and benefit from its physiological functions for their own pathogenesis. Understanding the interplay between viruses and VEGF upregulation will pave the way to design targeted and effective therapeutic approaches for viral oncogenesis and severe diseases.
Collapse
|
13
|
Mariggiò G, Koch S, Schulz TF. Kaposi sarcoma herpesvirus pathogenesis. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0275. [PMID: 28893942 PMCID: PMC5597742 DOI: 10.1098/rstb.2016.0275] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2017] [Indexed: 12/15/2022] Open
Abstract
Kaposi sarcoma herpesvirus (KSHV), taxonomical name human gammaherpesvirus 8, is a phylogenetically old human virus that co-evolved with human populations, but is now only common (seroprevalence greater than 10%) in sub-Saharan Africa, around the Mediterranean Sea, parts of South America and in a few ethnic communities. KSHV causes three human malignancies, Kaposi sarcoma, primary effusion lymphoma, and many cases of the plasmablastic form of multicentric Castleman's disease (MCD) as well as occasional cases of plasmablastic lymphoma arising from MCD; it has also been linked to rare cases of bone marrow failure and hepatitis. As it has colonized humans physiologically for many thousand years, cofactors are needed to allow it to unfold its pathogenic potential. In most cases, these include immune defects of genetic, iatrogenic or infectious origin, and inflammation appears to play an important role in disease development. Our much improved understanding of its life cycle and its role in pathogenesis should now allow us to develop new therapeutic strategies directed against key viral proteins or intracellular pathways that are crucial for virus replication or persistence. Likewise, its limited (for a herpesvirus) distribution and transmission should offer an opportunity for the development and use of a vaccine to prevent transmission. This article is part of the themed issue ‘Human oncogenic viruses’.
Collapse
Affiliation(s)
- Giuseppe Mariggiò
- Institute of Virology, Hannover Medical School, Carl Neuberg Strasse 1, 30625 Hannover, Germany.,German Centre for Infection Research, Hannover-Braunschweig site, Hannover, Germany
| | - Sandra Koch
- Institute of Virology, Hannover Medical School, Carl Neuberg Strasse 1, 30625 Hannover, Germany.,German Centre for Infection Research, Hannover-Braunschweig site, Hannover, Germany
| | - Thomas F Schulz
- Institute of Virology, Hannover Medical School, Carl Neuberg Strasse 1, 30625 Hannover, Germany .,German Centre for Infection Research, Hannover-Braunschweig site, Hannover, Germany
| |
Collapse
|
14
|
Bussey KA, Lau U, Schumann S, Gallo A, Osbelt L, Stempel M, Arnold C, Wissing J, Gad HH, Hartmann R, Brune W, Jänsch L, Whitehouse A, Brinkmann MM. The interferon-stimulated gene product oligoadenylate synthetase-like protein enhances replication of Kaposi's sarcoma-associated herpesvirus (KSHV) and interacts with the KSHV ORF20 protein. PLoS Pathog 2018; 14:e1006937. [PMID: 29499066 PMCID: PMC5851652 DOI: 10.1371/journal.ppat.1006937] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 03/14/2018] [Accepted: 02/12/2018] [Indexed: 12/23/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is one of the few oncogenic human viruses known to date. Its large genome encodes more than 85 proteins and includes both unique viral proteins as well as proteins conserved amongst herpesviruses. KSHV ORF20 is a member of the herpesviral core UL24 family, but the function of ORF20 and its role in the viral life cycle is not well understood. ORF20 encodes three largely uncharacterized isoforms, which we found were localized predominantly in the nuclei and nucleoli. Quantitative affinity purification coupled to mass spectrometry (q-AP-MS) identified numerous specific interacting partners of ORF20, including ribosomal proteins and the interferon-stimulated gene product (ISG) oligoadenylate synthetase-like protein (OASL). Both endogenous and transiently transfected OASL co-immunoprecipitated with ORF20, and this interaction was conserved among all ORF20 isoforms and multiple ORF20 homologs of the UL24 family in other herpesviruses. Characterization of OASL interacting partners by q-AP-MS identified a very similar interactome to that of ORF20. Both ORF20 and OASL copurified with 40S and 60S ribosomal subunits, and when they were co-expressed, they associated with polysomes. Although ORF20 did not have a global effect on translation, ORF20 enhanced RIG-I induced expression of endogenous OASL in an IRF3-dependent but IFNAR-independent manner. OASL has been characterized as an ISG with antiviral activity against some viruses, but its role for gammaherpesviruses was unknown. We show that OASL and ORF20 mRNA expression were induced early after reactivation of latently infected HuARLT-rKSHV.219 cells. Intriguingly, we found that OASL enhanced infection of KSHV. During infection with a KSHV ORF20stop mutant, however, OASL-dependent enhancement of infectivity was lost. Our data have characterized the interaction of ORF20 with OASL and suggest ORF20 usurps the function of OASL to benefit KSHV infection. The herpesviruses are a family of large double-stranded DNA viruses that cause a variety of illnesses from chicken pox to cancer. Kaposi’s sarcoma-associated herpesvirus (KSHV) is a cancer-causing herpesvirus and can lead to development of Kaposi’s sarcoma, a major form of cancer in HIV-positive patients. As for all herpesviruses, infection with KSHV is lifelong. Exactly how KSHV initiates and maintains its infection is still not well understood, but it must manipulate the host cell to establish favorable conditions. Likewise, the host has developed a complicated system to fight off invaders, which includes the production of interferon-stimulated gene products. We have now found that KSHV exploits one such host cell protein, the oligoadenylate synthetase-like protein (OASL). Rather than OASL acting as an antiviral protein as it does during many other viral infections, KSHV appears to have found a way to utilize OASL for its own benefit. The KSHV protein ORF20 interacts with OASL, they co-localize in nucleoli, and both ORF20 and OASL associate and purify with components of the cellular translational machinery. This may help viral infection by selectively controlling protein production.
Collapse
Affiliation(s)
- Kendra A. Bussey
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Ulrike Lau
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Sophie Schumann
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Antonio Gallo
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Lisa Osbelt
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Markus Stempel
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Christine Arnold
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Josef Wissing
- Cellular Proteomics Research Group, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Hans Henrik Gad
- Center for Structural Biology, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Rune Hartmann
- Center for Structural Biology, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Wolfram Brune
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Lothar Jänsch
- Cellular Proteomics Research Group, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Adrian Whitehouse
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Melanie M. Brinkmann
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
15
|
Wang F, Guo Y, Li W, Lu C, Yan Q. Generation of a KSHV K13 deletion mutant for vFLIP function study. J Med Virol 2018; 90:753-760. [PMID: 29244209 DOI: 10.1002/jmv.25009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/27/2017] [Indexed: 01/11/2023]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded viral Fas-associated death domain-like IL-1-converting enzyme inhibitory protein (vFLIP) is one of the latently expressed genes and plays a key role in cell survival and maintenance of latent infection by activating the NF-κB pathway. To obtain a genetic system for studying KSHV vFLIP mutation in the context of the viral genome, we generated recombinant viruses lacking the coding sequence (CDS) of vFLIP gene (K13/ORF71) by bacterial artificial chromosome (BAC) technology and the Escherichia coli Red recombination system. After a series of verification with PCR, restriction digestion and sequencing, the K13 deletion bacmids was transfected into a stable viral producer cell line based on iSLK cells to create vFLIP-knockout mutant. Importantly, human umbilical vein endothelial cells (HUVECs) could be de novo infected by vFLIP mutant virus, which are now available for studying the roles of vFLIP in regulation of other KSHV genes and viral pathogenesis.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, P. R. China.,Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| | - Yuanyuan Guo
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Wan Li
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, P. R. China.,Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| | - Chun Lu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, P. R. China.,Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| | - Qin Yan
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, P. R. China.,Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| |
Collapse
|
16
|
Abere B, Mamo TM, Hartmann S, Samarina N, Hage E, Rückert J, Hotop SK, Büsche G, Schulz TF. The Kaposi's sarcoma-associated herpesvirus (KSHV) non-structural membrane protein K15 is required for viral lytic replication and may represent a therapeutic target. PLoS Pathog 2017; 13:e1006639. [PMID: 28938025 PMCID: PMC5627962 DOI: 10.1371/journal.ppat.1006639] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/04/2017] [Accepted: 09/09/2017] [Indexed: 12/18/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is the infectious cause of the highly vascularized tumor Kaposi’s sarcoma (KS), which is characterized by proliferating spindle cells of endothelial origin, extensive neo-angiogenesis and inflammatory infiltrates. The KSHV K15 protein contributes to the angiogenic and invasive properties of KSHV-infected endothelial cells. Here, we asked whether K15 could also play a role in KSHV lytic replication. Deletion of the K15 gene from the viral genome or its depletion by siRNA lead to reduced virus reactivation, as evidenced by the decreased expression levels of KSHV lytic proteins RTA, K-bZIP, ORF 45 and K8.1 as well as reduced release of infectious virus. Similar results were found for a K1 deletion virus. Deleting either K15 or K1 from the viral genome also compromised the ability of KSHV to activate PLCγ1, Erk1/2 and Akt1. In infected primary lymphatic endothelial (LEC-rKSHV) cells, which have previously been shown to spontaneously display a viral lytic transcription pattern, transfection of siRNA against K15, but not K1, abolished viral lytic replication as well as KSHV-induced spindle cell formation. Using a newly generated monoclonal antibody to K15, we found an abundant K15 protein expression in KS tumor biopsies obtained from HIV positive patients, emphasizing the physiological relevance of our findings. Finally, we used a dominant negative inhibitor of the K15-PLCγ1 interaction to establish proof of principle that pharmacological intervention with K15-dependent pathways may represent a novel approach to block KSHV reactivation and thereby its pathogenesis. Both the latent and lytic replication phases of the KSHV life cycle are thought to contribute to its persistence and pathogenesis. The non-structural signaling membrane protein K15 is involved in the angiogenic and invasive properties of KSHV-infected endothelial cells. Here we show that the K15 protein is required for virus replication, early viral gene expression and virus production through its activation of the cellular signaling pathways PLCγ1 and Erk 1/2. K15 is abundantly expressed in KSHV-infected lymphatic endothelial cells (LECs) and contributes to KSHV-induced endothelial spindle cell formation. The abundant K15 protein expression observed in LECs is also observed in KS tumors. We also show that it may be possible to target K15 in order to intervene therapeutically with KSHV lytic replication and pathogenesis.
Collapse
Affiliation(s)
- Bizunesh Abere
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Hannover–Braunschweig Site, Germany
| | - Tamrat M. Mamo
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Silke Hartmann
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Hannover–Braunschweig Site, Germany
| | - Naira Samarina
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Hannover–Braunschweig Site, Germany
| | - Elias Hage
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Hannover–Braunschweig Site, Germany
| | - Jessica Rückert
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Hannover–Braunschweig Site, Germany
| | - Sven-Kevin Hotop
- German Centre for Infection Research, Hannover–Braunschweig Site, Germany
- Department of Chemical Biology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Guntram Büsche
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Thomas F. Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Hannover–Braunschweig Site, Germany
- * E-mail:
| |
Collapse
|
17
|
Koch S, Schulz TF. Rhadinoviral interferon regulatory factor homologues. Biol Chem 2017; 398:857-870. [PMID: 28455950 DOI: 10.1515/hsz-2017-0111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/20/2017] [Indexed: 01/17/2023]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV), or human herpesvirus 8 (HHV8) is a gammaherpesvirus and the etiological agent of Kaposi's sarcoma, primary effusion lymphoma and multicentric Castleman disease. The KSHV genome contains genes for a unique group of proteins with homology to cellular interferon regulatory factors, termed viral interferon regulatory factors (vIRFs). This review will give an overview over the oncogenic, antiapoptotic and immunomodulatory characteristics of KSHV and related vIRFs.
Collapse
|
18
|
Sethuraman S, Gay LA, Jain V, Haecker I, Renne R. microRNA dependent and independent deregulation of long non-coding RNAs by an oncogenic herpesvirus. PLoS Pathog 2017; 13:e1006508. [PMID: 28715488 PMCID: PMC5531683 DOI: 10.1371/journal.ppat.1006508] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/27/2017] [Accepted: 07/02/2017] [Indexed: 02/07/2023] Open
Abstract
Kaposi’s sarcoma (KS) is a highly prevalent cancer in AIDS patients, especially in sub-Saharan Africa. Kaposi’s sarcoma-associated herpesvirus (KSHV) is the etiological agent of KS and other cancers like Primary Effusion Lymphoma (PEL). In KS and PEL, all tumors harbor latent KSHV episomes and express latency-associated viral proteins and microRNAs (miRNAs). The exact molecular mechanisms by which latent KSHV drives tumorigenesis are not completely understood. Recent developments have highlighted the importance of aberrant long non-coding RNA (lncRNA) expression in cancer. Deregulation of lncRNAs by miRNAs is a newly described phenomenon. We hypothesized that KSHV-encoded miRNAs deregulate human lncRNAs to drive tumorigenesis. We performed lncRNA expression profiling of endothelial cells infected with wt and miRNA-deleted KSHV and identified 126 lncRNAs as putative viral miRNA targets. Here we show that KSHV deregulates host lncRNAs in both a miRNA-dependent fashion by direct interaction and in a miRNA-independent fashion through latency-associated proteins. Several lncRNAs that were previously implicated in cancer, including MEG3, ANRIL and UCA1, are deregulated by KSHV. Our results also demonstrate that KSHV-mediated UCA1 deregulation contributes to increased proliferation and migration of endothelial cells. KS is the most prevalent cancer associated with AIDS in sub-Saharan Africa, and is also common in males not affected by AIDS. KSHV manipulates human cells by targeting protein-coding genes and cell signaling. Here we show that KSHV alters the expression of hundreds of human lncRNAs, a broad class of regulatory molecules involved in a variety of cellular pathways including cell cycle and apoptosis. KSHV uses both latency proteins and miRNAs to target lncRNAs. miRNA-mediated targeting of lncRNAs is a novel regulatory mechanism of gene expression. Given that most herpesviruses encode miRNAs, this mechanism might be a common theme during herpesvirus infections. Understanding lncRNA deregulation by KSHV will help decipher the important molecular mechanisms underlying viral pathogenesis and tumorigenesis.
Collapse
Affiliation(s)
- Sunantha Sethuraman
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Lauren Appleby Gay
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Vaibhav Jain
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Irina Haecker
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
- UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
- UF Genetics Institute, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
19
|
Mariggiò G, Koch S, Zhang G, Weidner-Glunde M, Rückert J, Kati S, Santag S, Schulz TF. Kaposi Sarcoma Herpesvirus (KSHV) Latency-Associated Nuclear Antigen (LANA) recruits components of the MRN (Mre11-Rad50-NBS1) repair complex to modulate an innate immune signaling pathway and viral latency. PLoS Pathog 2017; 13:e1006335. [PMID: 28430817 PMCID: PMC5415203 DOI: 10.1371/journal.ppat.1006335] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 05/03/2017] [Accepted: 04/05/2017] [Indexed: 12/31/2022] Open
Abstract
Kaposi Sarcoma Herpesvirus (KSHV), a γ2-herpesvirus and class 1 carcinogen, is responsible for at least three human malignancies: Kaposi Sarcoma (KS), Primary Effusion Lymphoma (PEL) and Multicentric Castleman's Disease (MCD). Its major nuclear latency protein, LANA, is indispensable for the maintenance and replication of latent viral DNA in infected cells. Although LANA is mainly a nuclear protein, cytoplasmic isoforms of LANA exist and can act as antagonists of the cytoplasmic DNA sensor, cGAS. Here, we show that cytosolic LANA also recruits members of the MRN (Mre11-Rad50-NBS1) repair complex in the cytosol and thereby inhibits their recently reported role in the sensing of cytoplasmic DNA and activation of the NF-κB pathway. Inhibition of NF-κB activation by cytoplasmic LANA is accompanied by increased lytic replication in KSHV-infected cells, suggesting that MRN-dependent NF-κB activation contributes to KSHV latency. Cytoplasmic LANA may therefore support the activation of KSHV lytic replication in part by counteracting the activation of NF-κB in response to cytoplasmic DNA. This would complement the recently described role of cytoplasmic LANA in blocking an interferon response triggered by cGAS and thereby promoting lytic reactivation. Our findings highlight a second point at which cytoplasmic LANA interferes with the innate immune response, as well as the importance of the recently discovered role of cytoplasmic MRN complex members as innate sensors of cytoplasmic DNA for the control of KSHV replication.
Collapse
MESH Headings
- Acid Anhydride Hydrolases
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cytoplasm/metabolism
- DNA Repair Enzymes/genetics
- DNA Repair Enzymes/metabolism
- DNA Replication
- DNA, Viral/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- HEK293 Cells
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/immunology
- Herpesvirus 8, Human/physiology
- Humans
- Immunity, Innate
- MRE11 Homologue Protein
- Models, Biological
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/immunology
- Nuclear Proteins/metabolism
- Protein Isoforms
- Sarcoma, Kaposi/immunology
- Sarcoma, Kaposi/virology
- Signal Transduction
- Virus Latency
- Virus Replication
Collapse
Affiliation(s)
- Giuseppe Mariggiò
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Sandra Koch
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Guigen Zhang
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Magdalena Weidner-Glunde
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Jessica Rückert
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Semra Kati
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Susann Santag
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Thomas F. Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| |
Collapse
|
20
|
Abere B, Schulz TF. KSHV non-structural membrane proteins involved in the activation of intracellular signaling pathways and the pathogenesis of Kaposi's sarcoma. Curr Opin Virol 2016; 20:11-19. [DOI: 10.1016/j.coviro.2016.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 11/30/2022]
|
21
|
Schulz TF, Cesarman E. Kaposi Sarcoma-associated Herpesvirus: mechanisms of oncogenesis. Curr Opin Virol 2015; 14:116-28. [PMID: 26431609 DOI: 10.1016/j.coviro.2015.08.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 08/30/2015] [Indexed: 10/23/2022]
Abstract
Kaposi Sarcoma-associated Herpesvirus (KSHV, HHV8) causes three human malignancies, Kaposi Sarcoma (KS), an endothelial tumor, as well as Primary Effusion Lymphoma (PEL) and the plasma cell variant of Multicentric Castleman's Disease (MCD), two B-cell lymphoproliferative diseases. All three cancers occur primarily in the context of immune deficiency and/or HIV infection, but their pathogenesis differs. KS most likely results from the combined effects of an endotheliotropic virus with angiogenic properties and inflammatory stimuli and thus represents an interesting example of a cancer that arises in an inflammatory context. Viral and cellular angiogenic and inflammatory factors also play an important role in the pathogenesis of MCD. In contrast, PEL represents an autonomously growing malignancy that is, however, still dependent on the continuous presence of KSHV and the action of several KSHV proteins.
Collapse
Affiliation(s)
- Thomas F Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany; German Centre of Infection Research, Hannover-Braunschweig Site, Hannover, Germany.
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, USA.
| |
Collapse
|
22
|
Gramolelli S, Weidner-Glunde M, Abere B, Viejo-Borbolla A, Bala K, Rückert J, Kremmer E, Schulz TF. Inhibiting the Recruitment of PLCγ1 to Kaposi's Sarcoma Herpesvirus K15 Protein Reduces the Invasiveness and Angiogenesis of Infected Endothelial Cells. PLoS Pathog 2015; 11:e1005105. [PMID: 26295810 PMCID: PMC4546648 DOI: 10.1371/journal.ppat.1005105] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/22/2015] [Indexed: 11/28/2022] Open
Abstract
Kaposi’s sarcoma (KS), caused by Kaposi’s sarcoma herpesvirus (KSHV), is a highly vascularised tumour of endothelial origin. KSHV infected endothelial cells show increased invasiveness and angiogenesis. Here, we report that the KSHV K15 protein, which we showed previously to contribute to KSHV-induced angiogenesis, is also involved in KSHV-mediated invasiveness in a PLCγ1-dependent manner. We identified βPIX, GIT1 and cdc42, downstream effectors of PLCγ1 in cell migration, as K15 interacting partners and as contributors to KSHV-triggered invasiveness. We mapped the interaction between PLCγ1, PLCγ2 and their individual domains with two K15 alleles, P and M. We found that the PLCγ2 cSH2 domain, by binding to K15P, can be used as dominant negative inhibitor of the K15P-PLCγ1 interaction, K15P-dependent PLCγ1 phosphorylation, NFAT-dependent promoter activation and the increased invasiveness and angiogenic properties of KSHV infected endothelial cells. We increased the binding of the PLCγ2 cSH2 domain for K15P by substituting two amino acids, thereby creating an improved dominant negative inhibitor of the K15P-dependent PLCγ1 activation. Taken together, these results demonstrate a necessary role of K15 in the increased invasiveness and angiogenesis of KSHV infected endothelial cells and suggest the K15-PLCγ1 interaction as a possible new target for inhibiting the angiogenic and invasive properties of KSHV. Kaposi’s Sarcoma (KS), etiologically linked to Kaposi’s sarcoma herpesvirus (KSHV), is a tumour of endothelial origin characterised by angiogenesis and invasiveness. In vitro, KSHV infected endothelial cells display an increased invasiveness and high angiogenicity. Here we report that the KSHV protein K15, which increases the angiogenicity of endothelial cells, contributes to KSHV-mediated invasiveness by the recruitment and activation of the cellular protein PLCγ1 and its downstream effectors βPIX, GIT1 and cdc42. We explored the functional consequences of disrupting the K15-PLCγ1 interaction by using an isolated PLCγ2 cSH2 domain as a dominant negative inhibitor. This protein fragment, by interacting with K15, reduces K15-driven recruitment and activation of PLCγ1 in a dose-dependent manner. Moreover, the PCLγ2 cSH2 domain, when overexpressed in KSHV infected endothelial cells, reduces the angiogenesis and invasiveness induced by the virus. These findings highlight the role of the K15-PLCγ1 interaction in KSHV-mediated invasiveness and identify it as a possible therapeutic target.
Collapse
Affiliation(s)
- Silvia Gramolelli
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Magdalena Weidner-Glunde
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Bizunesh Abere
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | | | - Kiran Bala
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Jessica Rückert
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Elisabeth Kremmer
- Institute of Molecular Immunology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Thomas F. Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
- * E-mail:
| |
Collapse
|
23
|
Hughes DJ, Wood JJ, Jackson BR, Baquero-Pérez B, Whitehouse A. NEDDylation is essential for Kaposi's sarcoma-associated herpesvirus latency and lytic reactivation and represents a novel anti-KSHV target. PLoS Pathog 2015; 11:e1004771. [PMID: 25794275 PMCID: PMC4368050 DOI: 10.1371/journal.ppat.1004771] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 02/28/2015] [Indexed: 01/12/2023] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL), which are aggressive malignancies associated with immunocompromised patients. For many non-viral malignancies, therapeutically targeting the ubiquitin proteasome system (UPS) has been successful. Likewise, laboratory studies have demonstrated that inhibition of the UPS might provide a promising avenue for the treatment of KSHV-associated diseases. The largest class of E3 ubiquitin ligases are the cullin-RING ligases (CRLs) that are activated by an additional ubiquitin-like protein, NEDD8. We show that pharmacological inhibition of NEDDylation (using the small molecule inhibitor MLN4924) is cytotoxic to PEL cells by inhibiting NF-κB. We also show that CRL4B is a novel regulator of latency as its inhibition reactivated lytic gene expression. Furthermore, we uncovered a requirement for NEDDylation during the reactivation of the KSHV lytic cycle. Intriguingly, inhibition prevented viral DNA replication but not lytic cycle-associated gene expression, highlighting a novel mechanism that uncouples these two features of KSHV biology. Mechanistically, we show that MLN4924 treatment precluded the recruitment of the viral pre-replication complex to the origin of lytic DNA replication (OriLyt). These new findings have revealed novel mechanisms that regulate KSHV latency and reactivation. Moreover, they demonstrate that inhibition of NEDDylation represents a novel approach for the treatment of KSHV-associated malignancies. Kaposi’s sarcoma-associated herpesvirus (KSHV) causes Kaposi’s sarcoma (KS) and primary effusion lymphoma (PEL), often fatal malignancies afflicting HIV-infected patients. Previous research has shown that blockade of the ubiquitin proteasome system (UPS, a normal quality control pathway that degrades cellular proteins) is able to kill KSHV-infected lymphoma cells. A large component of the UPS is made up by the protein family known as the cullin-RING ubiquitin ligases (CRLs), which are activated by NEDD8 (a process known as NEDDylation). Recently, an inhibitor of NEDDylation (MLN4924) was developed and is currently in clinical trials as an anti-cancer drug. As NEDDylation has not been investigated for many viruses, we used this to compound examine its importance in KSHV biology. Firstly we show that NEDDylation is essential for the viability of KSHV-infected lymphoma cells, and MLN4924 treatment killed these cells by blocking NF-κB activity (required for KSHV latency gene expression and KSHV-associated cancer). Furthermore, we show that NEDDylation is required for KSHV to replicate its genome, a critical step in the production of new virus particles. Therefore, this research has identified a novel molecular mechanism that governs KSHV replication. Furthermore, it demonstrates that NEDDylation is a viable target for the treatment of KSHV-associated malignancies.
Collapse
Affiliation(s)
- David J. Hughes
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- * E-mail: (DJH); (AW)
| | - Jennifer J. Wood
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Brian R. Jackson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Belinda Baquero-Pérez
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Adrian Whitehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- * E-mail: (DJH); (AW)
| |
Collapse
|
24
|
Gramolelli S, Schulz TF. The role of Kaposi sarcoma-associated herpesvirus in the pathogenesis of Kaposi sarcoma. J Pathol 2015; 235:368-80. [PMID: 25212381 DOI: 10.1002/path.4441] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/05/2014] [Accepted: 09/06/2014] [Indexed: 01/07/2023]
Abstract
Kaposi sarcoma (KS) is an unusual vascular tumour caused by an oncogenic-herpesvirus, Kaposi sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8 (HHV 8). KS lesions are characterized by an abundant inflammatory infiltrate, the presence of KSHV-infected endothelial cells that show signs of aberrant differentiation, as well as faulty angiogenesis/ vascularization. Here we discuss the molecular mechanisms that lead to the development of these histological features of KS, with an emphasis on the viral proteins that are responsible for their development.
Collapse
Affiliation(s)
- Silvia Gramolelli
- Institute of Virology, Hannover Medical School, Carl Neuberg Strasse 1, 30625 Hannover, Germany; German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | | |
Collapse
|
25
|
Ballon G, Akar G, Cesarman E. Systemic expression of Kaposi sarcoma herpesvirus (KSHV) Vflip in endothelial cells leads to a profound proinflammatory phenotype and myeloid lineage remodeling in vivo. PLoS Pathog 2015; 11:e1004581. [PMID: 25607954 PMCID: PMC4301867 DOI: 10.1371/journal.ppat.1004581] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 11/16/2014] [Indexed: 12/02/2022] Open
Abstract
KSHV is the causative agent of Kaposi sarcoma (KS), a spindle-shaped endothelial cell neoplasm accompanied by an inflammatory infiltrate. To evaluate the role of KSHV vFLIP in the pathogenesis of KS, we constructed mice with inducible expression of vFLIP in endothelial cells. Abnormal cells with endothelial marker expression and fusiform appearance were observed in several tissues reminiscent of the spindle cells found in KS. Serum cytokines displayed a profound perturbation similar to that described in KSHV inflammatory cytokine syndrome (KICS), a recently described clinical condition characterized by elevated IL6 and IL10. An increased myeloid component with suppressive immune phenotype was found, which may contribute to functional changes in the microenvironment and cellular heterogeneity as observed in KS. These mice represent the first in vivo demonstration that vFLIP is capable of inducing vascular abnormalities and changes in host microenvironment with important implications for understanding the pathogenesis and treating KSHV-associated diseases. Kaposi’s sarcoma (KS) is the most common cancer in men infected with HIV, and also among the most frequent malignancies in Sub-Equatorial Africa. KS is a tumor of endothelial cell origin that is caused by infection with a gamma-herpesvirus, called KS herpesvirus (KSHV) or human herpesvirus 8 (HHV-8). KSHV vFLIP is a viral oncoprotein expressed during latent infection. We report here the generation and characterization of mice expressing KSHV vFLIP in an inducible manner in endothelial cells. Transgenic mice showed: 1) systemic endothelial abnormalities, with the presence of fusiform cells reminiscent of the spindle cells found in KS, 2) development of a profound perturbation in serum cytokines, reminiscent of the cytokine storm characteristic of KSHV-associated cytokine syndrome (KICS), and 3) remodeling of myeloid differentiation with expansion of myeloid cells displaying a suppressive immunophenotype that potentially favors host immune evasion, angiogenesis and tumor progression. This is the first example of significant changes in myeloid differentiation, vascular abnormalities and cytokine perturbation entirely initiated by ectopic expression of a single viral gene, making this mouse model a useful system to dissect the mechanisms viruses use to manipulate the host microenvironment culminating in sabotage of immunity and development of vascular lesions.
Collapse
Affiliation(s)
- Gianna Ballon
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail: , (GB); (EC)
| | - Gunkut Akar
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail: , (GB); (EC)
| |
Collapse
|
26
|
Hävemeier A, Gramolelli S, Pietrek M, Jochmann R, Stürzl M, Schulz TF. Activation of NF-κB by the Kaposi's sarcoma-associated herpesvirus K15 protein involves recruitment of the NF-κB-inducing kinase, IκB kinases, and phosphorylation of p65. J Virol 2014; 88:13161-72. [PMID: 25187543 PMCID: PMC4249085 DOI: 10.1128/jvi.01766-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/26/2014] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED Kaposi's sarcoma herpesvirus (KSHV) (or human herpesvirus 8) is the cause of Kaposi's sarcoma, primary effusion lymphoma (PEL), and the plasma cell variant of multicentric Castleman's disease (MCD). The transmembrane K15 protein, encoded by KSHV, has been shown to activate NF-κB and the mitogen-activated protein kinases (MAPKs) c-jun-N-terminal kinase (JNK) and extracellular signal-regulated kinase (Erk) as well as phospholipase C gamma (PLCγ) and to contribute to KSHV-induced angiogenesis. Here we investigate how the K15 protein activates the NF-κB pathway. We show that activation of NF-κB involves the recruitment of NF-κB-inducing kinase (NIK) and IKK α/β to result in the phosphorylation of p65/RelA on Ser536. A K15 mutant devoid in NIK/IKK recruitment fails to activate NF-κB but remains proficient in the stimulation of both NFAT- and AP1-dependent promoters, showing that the structural integrity of the mutant K15 protein has not been altered dramatically. Direct recruitment of NIK represents a novel way for a viral protein to activate and manipulate the NF-κB pathway. IMPORTANCE KSHV K15 is a viral protein involved in the activation of proinflammatory and angiogenic pathways. Previous studies reported that K15 can activate the NF-κB pathway. Here we show the molecular mechanism underlying the activation of this signaling pathway by K15, which involves direct recruitment of the NF-κB-inducing kinase NIK to K15 as well as NIK-mediated NF-κB p65 phosphorylation on Ser536. K15 is the first viral protein shown to activate NF-κB through direct recruitment of NIK. These results indicate a new mechanism whereby a viral protein can manipulate the NF-κB pathway.
Collapse
Affiliation(s)
- Anika Hävemeier
- Institut für Virologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Silvia Gramolelli
- Institut für Virologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Marcel Pietrek
- Institut für Virologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Ramona Jochmann
- Chirurgische Klinik, Abteilung Molekulare und Experimentelle Chirurgie, Translational Research Center Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Stürzl
- Chirurgische Klinik, Abteilung Molekulare und Experimentelle Chirurgie, Translational Research Center Universitätsklinikum Erlangen, Erlangen, Germany
| | - Thomas F Schulz
- Institut für Virologie, Medizinische Hochschule Hannover, Hannover, Germany
| |
Collapse
|
27
|
OWEN CHRISTOPHERB, HUGHES DAVIDJ, BAQUERO-PEREZ BELINDA, BERNDT ANJA, SCHUMANN SOPHIE, JACKSON BRIANR, WHITEHOUSE ADRIAN. Utilising proteomic approaches to understand oncogenic human herpesviruses (Review). Mol Clin Oncol 2014; 2:891-903. [PMID: 25279171 PMCID: PMC4179824 DOI: 10.3892/mco.2014.341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 06/10/2014] [Indexed: 12/16/2022] Open
Abstract
The γ-herpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus are successful pathogens, each infecting a large proportion of the human population. These viruses persist for the life of the host and may each contribute to a number of malignancies, for which there are currently no cures. Large-scale proteomic-based approaches provide an excellent means of increasing the collective understanding of the proteomes of these complex viruses and elucidating their numerous interactions within the infected host cell. These large-scale studies are important for the identification of the intricacies of viral infection and the development of novel therapeutics against these two important pathogens.
Collapse
Affiliation(s)
- CHRISTOPHER B. OWEN
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - DAVID J. HUGHES
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - BELINDA BAQUERO-PEREZ
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - ANJA BERNDT
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - SOPHIE SCHUMANN
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - BRIAN R. JACKSON
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - ADRIAN WHITEHOUSE
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
28
|
Nair S, Michaelsen-Preusse K, Finsterbusch K, Stegemann-Koniszewski S, Bruder D, Grashoff M, Korte M, Köster M, Kalinke U, Hauser H, Kröger A. Interferon regulatory factor-1 protects from fatal neurotropic infection with vesicular stomatitis virus by specific inhibition of viral replication in neurons. PLoS Pathog 2014; 10:e1003999. [PMID: 24675692 PMCID: PMC3968136 DOI: 10.1371/journal.ppat.1003999] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 01/30/2014] [Indexed: 01/08/2023] Open
Abstract
The innate immune system protects cells against invading viral pathogens by the auto- and paracrine action of type I interferon (IFN). In addition, the interferon regulatory factor (IRF)-1 can induce alternative intrinsic antiviral responses. Although both, type I IFN and IRF-1 mediate their antiviral action by inducing overlapping subsets of IFN stimulated genes, the functional role of this alternative antiviral action of IRF-1 in context of viral infections in vivo remains unknown. Here, we report that IRF-1 is essential to counteract the neuropathology of vesicular stomatitis virus (VSV). IFN- and IRF-1-dependent antiviral responses act sequentially to create a layered antiviral protection program against VSV infections. Upon intranasal infection, VSV is cleared in the presence or absence of IRF-1 in peripheral organs, but IRF-1−/− mice continue to propagate the virus in the brain and succumb. Although rapid IFN induction leads to a decline in VSV titers early on, viral replication is re-enforced in the brains of IRF-1−/− mice. While IFN provides short-term protection, IRF-1 is induced with delayed kinetics and controls viral replication at later stages of infection. IRF-1 has no influence on viral entry but inhibits viral replication in neurons and viral spread through the CNS, which leads to fatal inflammatory responses in the CNS. These data support a temporal, non-redundant antiviral function of type I IFN and IRF-1, the latter playing a crucial role in late time points of VSV infection in the brain. IRFs are a family of transcription factors that play a key role in viral defense. Apart from their function in the adaptive immune system, recent work revealed that several IRFs contribute to antiviral response independent of secreted IFN. IRFs have been developed earlier in evolution than IFN and are regarded as precursor of today's IFN system, acting only on an intrinsic level. IRF-1 by itself exhibits antiviral effects that are exerted by the induction of a set of genes that overlaps the set of IFN-induced genes (ISGs). Our data show that IRF-1 contributes decisively for the protection of mice from neurotropic Vesicular stomatitis virus (VSV), a virus similar to rabies virus. Mice, deficient in IRF-1, are highly vulnerable to VSV infection and succumb with signs of encephalitis. Although type I IFN action is a prerequisite for survival from the infection, IRF-1 becomes increasingly crucial in neuronal tissue at a time point where clearance of the virus has not been achieved. The data highlight the importance of IRF-1 as an antiviral agent that acts in combination with the IFN system.
Collapse
Affiliation(s)
- Sharmila Nair
- Research Group Innate Immunity and Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Katja Finsterbusch
- Research Group Innate Immunity and Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Dunja Bruder
- Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Infection Immunology Group, Department of Medical Microbiology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Martina Grashoff
- Research Group Innate Immunity and Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Martin Korte
- Department of Cellular Neurobiology, Technical University Braunschweig, Braunschweig, Germany
- Research Group Neuroinflammation and Neurodegeneration, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mario Köster
- Department of Gene Regulation and Differentiation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Hannover, Germany
| | - Hansjörg Hauser
- Department of Gene Regulation and Differentiation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Andrea Kröger
- Research Group Innate Immunity and Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany
- * E-mail:
| |
Collapse
|
29
|
NEMO is essential for Kaposi's sarcoma-associated herpesvirus-encoded vFLIP K13-induced gene expression and protection against death receptor-induced cell death, and its N-terminal 251 residues are sufficient for this process. J Virol 2014; 88:6345-54. [PMID: 24672029 DOI: 10.1128/jvi.00028-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED Kaposi's sarcoma-associated herpesvirus-encoded viral FLICE inhibitory protein (vFLIP) K13 was originally believed to protect virally infected cells against death receptor-induced apoptosis by interfering with caspase 8/FLICE activation. Subsequent studies revealed that K13 also activates the NF-κB pathway by binding to the NEMO/inhibitor of NF-κB (IκB) kinase gamma (IKKγ) subunit of an IKK complex and uses this pathway to modulate the expression of genes involved in cellular survival, proliferation, and the inflammatory response. However, it is not clear if K13 can also induce gene expression independently of NEMO/IKKγ. The minimum region of NEMO that is sufficient for supporting K13-induced NF-κB has not been delineated. Furthermore, the contribution of NEMO and NF-κB to the protective effect of K13 against death receptor-induced apoptosis remains to be determined. In this study, we used microarray analysis on K13-expressing wild-type and NEMO-deficient cells to demonstrate that NEMO is required for modulation of K13-induced genes. Reconstitution of NEMO-null cells revealed that the N-terminal 251 amino acid residues of NEMO are sufficient for supporting K13-induced NF-κB but fail to support tumor necrosis factor alpha (TNF-α)-induced NF-κB. K13 failed to protect NEMO-null cells against TNF-α-induced cell death but protected those reconstituted with the NEMO mutant truncated to include only the N-terminal 251 amino acid residues [the NEMO(1-251) mutant]. Taken collectively, our results demonstrate that NEMO is required for modulation of K13-induced genes and the N-terminal 251 amino acids of NEMO are sufficient for supporting K13-induced NF-κB. Finally, the ability of K13 to protect against TNF-α-induced cell death is critically dependent on its ability to interact with NEMO and activate NF-κB. IMPORTANCE Kaposi's sarcoma-associated herpesvirus-encoded vFLIP K13 is believed to protect virally infected cells against death receptor-induced apoptosis and to activate the NF-κB pathway by binding to adaptor protein NEMO/IKKγ. However, whether K13 can also induce gene expression independently of NEMO and the minimum region of NEMO that is sufficient for supporting K13-induced NF-κB remain to be delineated. Furthermore, the contribution of NEMO and NF-κB to the protective effect of K13 against death receptor-induced apoptosis is not clear. We demonstrate that NEMO is required for modulation of K13-induced genes and its N-terminal 251 amino acids are sufficient for supporting K13-induced NF-κB. The ability of K13 to protect against TNF-α-induced cell death is critically dependent on its ability to interact with NEMO and activate NF-κB. Our results suggest that K13-based gene therapy approaches may have utility for the treatment of patients with NEMO mutations and immunodeficiency.
Collapse
|
30
|
Ojala PM, Schulz TF. Manipulation of endothelial cells by KSHV: implications for angiogenesis and aberrant vascular differentiation. Semin Cancer Biol 2014; 26:69-77. [PMID: 24486643 DOI: 10.1016/j.semcancer.2014.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/16/2014] [Accepted: 01/16/2014] [Indexed: 12/21/2022]
Abstract
Kaposi sarcoma (KS), a viral cancer associated to Kaposi sarcoma herpesvirus (KSHV) infection, is currently the most common tumor in men in sub-Saharan Africa. KS is an angiogenic tumor and characterized by the presence of aberrant vascular structures in the lesion. Although our understanding of how KSHV causes the aberrant differentiation of endothelial cells and the typical vascular abnormalities in KS tumors is far from complete, the experimental evidence reviewed here provides a comprehensive description of the role of KSHV in the pathogenesis of this unusual tumor. In contrast to other tumor viruses, whose interference with cellular processes relating to cell cycle, apoptosis and DNA damage may be at the heart of their oncogenic properties, KSHV may cause KS primarily by its ability to engage with the differentiation and function of endothelial cells. Although the intracellular pathways engaged by KSHV in the endothelial cells are being explored as drug targets, a better understanding of the impact of KSHV on endothelial cell differentiation and vasculogenesis is needed before the encouraging findings can form the basis for new targeted therapeutic approaches to KS.
Collapse
Affiliation(s)
- Päivi M Ojala
- Institute of Biotechnology, University of Helsinki, P.O. Box 56, 00014 University of Helsinki, Finland; Foundation for the Finnish Cancer Institute, Helsinki, Finland; Section of Virology, Imperial College Faculty of Medicine, Norfolk Place, London W2 1PG, UK.
| | - Thomas F Schulz
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
31
|
Haas DA, Bala K, Büsche G, Weidner-Glunde M, Santag S, Kati S, Gramolelli S, Damas M, Dittrich-Breiholz O, Kracht M, Rückert J, Varga Z, Keri G, Schulz TF. The inflammatory kinase MAP4K4 promotes reactivation of Kaposi's sarcoma herpesvirus and enhances the invasiveness of infected endothelial cells. PLoS Pathog 2013; 9:e1003737. [PMID: 24244164 PMCID: PMC3820715 DOI: 10.1371/journal.ppat.1003737] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/15/2013] [Indexed: 12/15/2022] Open
Abstract
Kaposi's sarcoma (KS) is a mesenchymal tumour, which is caused by Kaposi's sarcoma herpesvirus (KSHV) and develops under inflammatory conditions. KSHV-infected endothelial spindle cells, the neoplastic cells in KS, show increased invasiveness, attributed to the elevated expression of metalloproteinases (MMPs) and cyclooxygenase-2 (COX-2). The majority of these spindle cells harbour latent KSHV genomes, while a minority undergoes lytic reactivation with subsequent production of new virions and viral or cellular chemo- and cytokines, which may promote tumour invasion and dissemination. In order to better understand KSHV pathogenesis, we investigated cellular mechanisms underlying the lytic reactivation of KSHV. Using a combination of small molecule library screening and siRNA silencing we found a STE20 kinase family member, MAP4K4, to be involved in KSHV reactivation from latency and to contribute to the invasive phenotype of KSHV-infected endothelial cells by regulating COX-2, MMP-7, and MMP-13 expression. This kinase is also highly expressed in KS spindle cells in vivo. These findings suggest that MAP4K4, a known mediator of inflammation, is involved in KS aetiology by regulating KSHV lytic reactivation, expression of MMPs and COX-2, and, thereby modulating invasiveness of KSHV-infected endothelial cells. Kaposi's sarcoma (KS) is a tumour caused by Kaposi's sarcoma herpesvirus (KSHV) and dysregulated inflammation. Both factors contribute to the high angiogenicity and invasiveness of KS. Various cellular kinases have been reported to regulate the KSHV latent-lytic switch and thereby virus pathogenicity. In this study, we have identified a STE20 kinase family member – MAP4K4 – as a modulator of KSHV lytic cycle and invasive phenotype of KSHV-infected endothelial cells. Moreover, we were able to link MAP4K4 to a known mediator of inflammation and invasiveness, cyclooxygenase-2, which also contributes to KSHV lytic replication. Finally, we could show that MAP4K4 is highly expressed in KS lesions, suggesting an important role for this kinase in tumour development and invasion.
Collapse
Affiliation(s)
- Darya A Haas
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Amin M, Pantanowitz L. Review of latent and lytic phase biomarkers in Kaposi's sarcoma. ACTA ACUST UNITED AC 2013; 7:531-42. [PMID: 24070121 DOI: 10.1517/17530059.2013.842227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Kaposi's sarcoma (KS) is a vascular neoplasm with distinct clinical-epidemiological subtypes and varied clinical presentations. While the association of KS with human herpesvirus-8 (HHV8, KSHV) infection is well known, additional factors are needed for tumorigenesis. The precise sequence of events involved in KS development, progression and regression continues to be investigated. The discovery of KSHV biomarkers is helpful for diagnostic purposes, for understanding KS pathogenesis and for identifying potential druggable targets. AREAS COVERED This article reviews a number of key biomarkers relevant for the diagnosis of KS and HHV8-related pathogenesis. New developments in KS, potential therapeutic targets and the challenges involved in their discovery are highlighted. EXPERT OPINION Although there is currently no cure for KS, continued research devoted to uncovering biomarkers and understanding their pathogenic roles remains encouraging. The hope is that sometime soon one of these candidate targets will provide a curative therapy for this enigmatic sarcoma.
Collapse
Affiliation(s)
- Milon Amin
- University of Pittsburgh Medical Center, Department of Pathology , Suite 201, 5150 Centre Street, Pittsburgh , USA +1 412 794 4195 ; +1 412 794 3195 ;
| | | |
Collapse
|
33
|
Forero A, Moore PS, Sarkar SN. Role of IRF4 in IFN-stimulated gene induction and maintenance of Kaposi sarcoma-associated herpesvirus latency in primary effusion lymphoma cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:1476-85. [PMID: 23804715 DOI: 10.4049/jimmunol.1202514] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
IFN regulatory factor (IRF) 4 is a hematopoietic cell-specific transcription factor that regulates the maturation and differentiation of immune cells. Using an inducible expression system, we found that IRF4 directly induced a specific subset of IFN-stimulated genes (ISGs) in a type I IFN-independent manner in both epithelial and B cell lines. Moreover, Kaposi sarcoma-associated herpesvirus (KSHV)-encoded viral FLICE inhibitory protein (vFLIP) enhances IRF4-mediated gene induction. Coexpression of IRF4 with vFLIP significantly increased ISG60 (IFIT3) and Cig5 (RSAD2) transcription that was dependent on the ability of vFLIP to activate NF-κB. A vFLIP mutant (A57L) defective in NF-κB activation failed to enhance IRF4-mediated ISG induction. Thus, we provide a physiologically relevant mechanism by which viral protein-mediated NF-κB activation modulates specific ISG induction by IRF4. In contrast, IRF4 also acted as a negative regulator of KSHV replication and transcription activator expression after induction of KSHV lytic reactivation in KSHV-positive primary effusion lymphoma cells. Taken together, these results suggest a dual role for IRF4 in regulating ISG induction and KSHV lytic reactivation in primary effusion lymphoma cells.
Collapse
Affiliation(s)
- Adriana Forero
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
34
|
Ets-1 is required for the activation of VEGFR3 during latent Kaposi's sarcoma-associated herpesvirus infection of endothelial cells. J Virol 2013; 87:6758-68. [PMID: 23552426 DOI: 10.1128/jvi.03241-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV), the etiologic agent of Kaposi's sarcoma (KS), is present in the predominant tumor cells of KS, the spindle cells. Spindle cells express markers of lymphatic endothelium and, interestingly, KSHV infection of blood endothelial cells reprograms them to a lymphatic endothelial cell phenotype. KSHV-induced reprogramming requires the activation of STAT3 and phosphatidylinositol 3 (PI3)/AKT through the activation of cellular receptor gp130. Importantly, KSHV-induced reprogramming is specific to endothelial cells, indicating that there are additional host genes that are differentially regulated during KSHV infection of endothelial cells that contribute to lymphatic reprogramming. We found that the transcription factor Ets-1 is highly expressed in KS spindle cells and is upregulated during KSHV infection of endothelial cells in culture. The KSHV latent vFLIP gene is sufficient to induce Ets-1 expression in an NF-κB-dependent fashion. Ets-1 is required for KSHV-induced expression of VEGFR3, a lymphatic endothelial-cell-specific receptor important for lymphangiogenesis, and Ets-1 activates the promoter of VEGFR3. Ets-1 knockdown does not alter the expression of another lymphatic-specific gene, the podoplanin gene, but does inhibit the expression of VEGFR3 in uninfected lymphatic endothelium, indicating that Ets-1 is a novel cellular regulator of VEGFR3 expression. Knockdown of Ets-1 affects the ability of KSHV-infected cells to display angiogenic phenotypes, indicating that Ets-1 plays a role in KSHV activation of endothelial cells during latent KSHV infection. Thus, Ets-1 is a novel regulator of VEGFR3 and is involved in the induction of angiogenic phenotypes by KSHV.
Collapse
|
35
|
Kaposi's sarcoma-associated herpesvirus latency in endothelial and B cells activates gamma interferon-inducible protein 16-mediated inflammasomes. J Virol 2013; 87:4417-31. [PMID: 23388709 DOI: 10.1128/jvi.03282-12] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) infections of endothelial and B cells are etiologically linked with Kaposi's sarcoma (KS) and primary effusion B-cell lymphoma (PEL), respectively. KS endothelial and PEL B cells carry multiple copies of the nuclear episomal latent KSHV genome and secrete a variety of inflammatory cytokines, including interleukin-1β (IL-1β) and IL-18. The maturation of IL-1β and IL-18 depends upon active caspase-1, which is regulated by a multiprotein inflammasome complex induced by sensing of danger signals. During primary KSHV infection of endothelial cells, acting as a nuclear pattern recognition receptor, gamma interferon-inducible protein 16 (IFI16) colocalized with the KSHV genome in the nuclei and interacted with ASC and procaspase-1 to form a functional inflammasome (Kerur N et al., Cell Host Microbe 9:363-375, 2011). Here, we demonstrate that endothelial telomerase-immortalized human umbilical cells (TIVE) supporting KSHV stable latency (TIVE-LTC cells) and PEL (cavity-based B-cell lymphoma 1 [BCBL-1]) cells show evidence of inflammasome activation, such as the activation of caspase-1 and cleavage of pro-IL-1β and pro-IL-18. Interaction of ASC with IFI16 but not with AIM2 or NOD-like receptor P3 (NLRP3) was detected. The KSHV latency-associated viral FLIP (vFLIP) gene induced the expression of IL-1β, IL-18, and caspase-1 mRNAs in an NF-κB-dependent manner. IFI16 and cleaved IL-1β were detected in the exosomes released from BCBL-1 cells. Exosomal release could be a KSHV-mediated strategy to subvert IL-1β functions. In fluorescent in situ hybridization analyses, IFI16 colocalized with multiple copies of the KSHV genome in BCBL-1 cells. IFI16 colocalization with ASC was also detected in lung PEL sections from patients. Taken together, these findings demonstrated the constant sensing of the latent KSHV genome by IFI16-mediated innate defense and unraveled a potential mechanism of inflammation induction associated with KS and PEL lesions.
Collapse
|
36
|
Kaposi's sarcoma herpesvirus K15 protein contributes to virus-induced angiogenesis by recruiting PLCγ1 and activating NFAT1-dependent RCAN1 expression. PLoS Pathog 2012; 8:e1002927. [PMID: 23028325 PMCID: PMC3460623 DOI: 10.1371/journal.ppat.1002927] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 08/10/2012] [Indexed: 01/10/2023] Open
Abstract
Kaposi's Sarcoma (KS), caused by Kaposi's Sarcoma Herpesvirus (KSHV), is a highly vascularised angiogenic tumor of endothelial cells, characterized by latently KSHV-infected spindle cells and a pronounced inflammatory infiltrate. Several KSHV proteins, including LANA-1 (ORF73), vCyclin (ORF72), vGPCR (ORF74), vIL6 (ORF-K2), vCCL-1 (ORF-K6), vCCL-2 (ORF-K4) and K1 have been shown to exert effects that can lead to the proliferation and atypical differentiation of endothelial cells and/or the secretion of cytokines with angiogenic and inflammatory properties (VEGF, bFGF, IL6, IL8, GROα, and TNFβ). To investigate a role of the KSHV K15 protein in KSHV-mediated angiogenesis, we carried out a genome wide gene expression analysis on primary endothelial cells infected with KSHV wildtype (KSHVwt) and a KSHV K15 deletion mutant (KSHVΔK15). We found RCAN1/DSCR1 (Regulator of Calcineurin 1/Down Syndrome critical region 1), a cellular gene involved in angiogenesis, to be differentially expressed in KSHVwt- vs KSHVΔK15-infected cells. During physiological angiogenesis, expression of RCAN1 in endothelial cells is regulated by VEGF (vascular endothelial growth factor) through a pathway involving the activation of PLCγ1, Calcineurin and NFAT1. We found that K15 directly recruits PLCγ1, and thereby activates Calcineurin/NFAT1-dependent RCAN1 expression which results in the formation of angiogenic tubes. Primary endothelial cells infected with KSHVwt form angiogenic tubes upon activation of the lytic replication cycle. This effect is abrogated when K15 is deleted (KSHVΔK15) or silenced by an siRNA targeting the K15 expression. Our study establishes K15 as one of the KSHV proteins that contribute to KSHV-induced angiogenesis. Kaposi's Sarcoma Herpesvirus (KSHV) causes a multifocal angio-proliferative neoplasm, Kaposi's Sarcoma (KS), whose development involves angiogenic growth factors and cytokines. The K15 protein of KSHV upregulates the host factor RCAN1/DSCR1. RCAN1/DSCR1 has been implicated in angiogenesis but its role in KS has never been investigated. In this study we show that the increased expression of RCAN1/DSCR1 in KSHV-infected endothelial cells depends on K15 and that K15, by recruiting PLCγ1, activates PLCγ1, Calcineurin and NFAT1 to induce RCAN1/DSCR1 expression and capillary tube formation. Deleting the K15 gene from the viral genome, or silencing its expression with siRNA, reduces the ability of KSHV to induce angiogenesis in infected endothelial cells in tissue culture. These findings suggest that the K15 protein contributes to the angiogenic properties of this virus.
Collapse
|
37
|
Butler LM, Jeffery HC, Wheat RL, Long HM, Rae PC, Nash GB, Blackbourn DJ. Kaposi's sarcoma-associated herpesvirus inhibits expression and function of endothelial cell major histocompatibility complex class II via suppressor of cytokine signaling 3. J Virol 2012; 86:7158-66. [PMID: 22532676 PMCID: PMC3416330 DOI: 10.1128/jvi.06908-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 04/12/2012] [Indexed: 01/03/2023] Open
Abstract
Endothelial cells (EC) can present antigen to either CD8(+) T lymphocytes through constitutively expressed major histocompatibility complex class I (MHC-I) or CD4(+) T lymphocytes through gamma interferon (IFN-γ)-induced MHC-II. Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS), an EC neoplasm characterized by dysregulated angiogenesis and a substantial inflammatory infiltrate. KSHV is understood to have evolved strategies to inhibit MHC-I expression on EC and MHC-II expression on primary effusion lymphoma cells, but its effects on EC MHC-II expression are unknown. Here, we report that the KSHV infection of human primary EC inhibits IFN-γ-induced expression of the MHC-II molecule HLA-DR at the transcriptional level. The effect is functionally significant, since recognition by an HLA-DR-restricted CD4(+) T-cell clone in response to cognate antigen presented by KSHV-infected EC was attenuated. Inhibition of HLA-DR expression was also achieved by exposing EC to supernatant from KSHV-inoculated EC before IFN-γ treatment, revealing a role for soluble mediators. IFN-γ-induced phosphorylation of STAT-1 and transcription of CIITA were suppressed in KSHV-inoculated EC via a mechanism involving SOCS3 (suppressor of cytokine signaling 3). Thus, KSHV infection resulted in transcriptional upregulation of SOCS3, and treatment with RNA interference against SOCS3 relieved virus-induced inhibition of IFN-γ-induced STAT-1 phosphorylation. Since cell surface MHC-II molecules present peptide antigens to CD4(+) T lymphocytes that can function either as direct cytolytic effectors or to initiate and regulate adaptive immune responses, inhibition of this antigen-presenting pathway would provide a survival advantage to the virus.
Collapse
Affiliation(s)
| | - H. C. Jeffery
- School of Clinical and Experimental Medicine
- School of Cancer Sciences and CR UK Centre for Cancer Research
| | - R. L. Wheat
- School of Cancer Sciences and CR UK Centre for Cancer Research
| | - H. M. Long
- School of Cancer Sciences and CR UK Centre for Cancer Research
| | - P. C. Rae
- School of Clinical and Experimental Medicine
- School of Cancer Sciences and CR UK Centre for Cancer Research
| | - G. B. Nash
- School of Clinical and Experimental Medicine
| | - D. J. Blackbourn
- School of Cancer Sciences and CR UK Centre for Cancer Research
- MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
38
|
Identification of host-chromosome binding sites and candidate gene targets for Kaposi's sarcoma-associated herpesvirus LANA. J Virol 2012; 86:5752-62. [PMID: 22419807 DOI: 10.1128/jvi.07216-11] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
LANA is essential for tethering the Kaposi's sarcoma-associated herpesvirus (KSHV) genome to metaphase chromosomes and for modulating host-cell gene expression, but the binding sites in the host-chromosome remain unknown. Here, we use LANA-specific chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-Seq) to identify LANA binding sites in the viral and host-cell genomes of a latently infected pleural effusion lymphoma cell line BCBL1. LANA bound with high occupancy to the KSHV genome terminal repeats (TR) and to a few minor binding sites in the KSHV genome, including the LANA promoter region. We identified 256 putative LANA binding site peaks with P < 0.01 and overlap in two independent ChIP-Seq experiments. We validated several of the high-occupancy binding sites by conventional ChIP assays and quantitative PCR. Candidate cellular LANA binding motifs were identified and assayed for binding to purified recombinant LANA protein in vitro but bound with low affinity compared to the viral TR binding site. More than half of the LANA binding sites (170/256) could be mapped to within 2.5 kb of a cellular gene transcript. Pathways and Gene Ontogeny (GO) analysis revealed that LANA binds to genes within the p53 and tumor necrosis factor (TNF) regulatory network. Further analysis revealed partial overlap of LANA and STAT1 binding sites in several gamma interferon (IFN-γ)-regulated genes. We show that ectopic expression of LANA can downmodulate IFN-γ-mediated activation of a subset of genes, including the TAP1 peptide transporter and proteasome subunit beta type 9 (PSMB9), both of which are required for class I antigen presentation. Our data provide a potential mechanism through which LANA may regulate several host cell pathways by direct binding to gene regulatory elements.
Collapse
|