1
|
Kembou-Ringert JE, Hotio FN, Steinhagen D, Thompson KD, Surachetpong W, Rakus K, Daly JM, Goonawardane N, Adamek M. Knowns and unknowns of TiLV-associated neuronal disease. Virulence 2024; 15:2329568. [PMID: 38555518 PMCID: PMC10984141 DOI: 10.1080/21505594.2024.2329568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/07/2024] [Indexed: 04/02/2024] Open
Abstract
Tilapia Lake Virus (TiLV) is associated with pathological changes in the brain of infected fish, but the mechanisms driving the virus's neuropathogenesis remain poorly characterized. TiLV establishes a persistent infection in the brain of infected fish even when the virus is no longer detectable in the peripheral organs, rendering therapeutic interventions and disease management challenging. Moreover, the persistence of the virus in the brain may pose a risk for viral reinfection and spread and contribute to ongoing tissue damage and neuroinflammatory processes. In this review, we explore TiLV-associated neurological disease. We discuss the possible mechanism(s) used by TiLV to enter the central nervous system (CNS) and examine TiLV-induced neuroinflammation and brain immune responses. Lastly, we discuss future research questions and knowledge gaps to be addressed to significantly advance this field.
Collapse
Affiliation(s)
- Japhette E. Kembou-Ringert
- Department of infection, immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Fortune N. Hotio
- Department of Animal Biology, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Kim D. Thompson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, UK
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Janet M. Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Niluka Goonawardane
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
2
|
Costa VA, Holmes EC. Diversity, evolution, and emergence of fish viruses. J Virol 2024; 98:e0011824. [PMID: 38785422 PMCID: PMC11237817 DOI: 10.1128/jvi.00118-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
The production of aquatic animals has more than doubled over the last 50 years and is anticipated to continually increase. While fish are recognized as a valuable and sustainable source of nutrition, particularly in the context of human population growth and climate change, the rapid expansion of aquaculture coincides with the emergence of highly pathogenic viruses that often spread globally through aquacultural practices. Here, we provide an overview of the fish virome and its relevance for disease emergence, with a focus on the insights gained through metagenomic sequencing, noting potential areas for future study. In particular, we describe the diversity and evolution of fish viruses, for which the majority have no known disease associations, and demonstrate how viruses emerge in fish populations, most notably at an expanding domestic-wild interface. We also show how wild fish are a powerful and tractable model system to study virus ecology and evolution more broadly and can be used to identify the major factors that shape vertebrate viromes. Central to this is a process of virus-host co-divergence that proceeds over many millions of years, combined with ongoing cross-species virus transmission.
Collapse
Affiliation(s)
- Vincenzo A. Costa
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Blanco-Melo D, Campbell MA, Zhu H, Dennis TPW, Modha S, Lytras S, Hughes J, Gatseva A, Gifford RJ. A novel approach to exploring the dark genome and its application to mapping of the vertebrate virus fossil record. Genome Biol 2024; 25:120. [PMID: 38741126 PMCID: PMC11089739 DOI: 10.1186/s13059-024-03258-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Genomic regions that remain poorly understood, often referred to as the dark genome, contain a variety of functionally relevant and biologically informative features. These include endogenous viral elements (EVEs)-virus-derived sequences that can dramatically impact host biology and serve as a virus fossil record. In this study, we introduce a database-integrated genome screening (DIGS) approach to investigate the dark genome in silico, focusing on EVEs found within vertebrate genomes. RESULTS Using DIGS on 874 vertebrate genomes, we uncover approximately 1.1 million EVE sequences, with over 99% originating from endogenous retroviruses or transposable elements that contain EVE DNA. We show that the remaining 6038 sequences represent over a thousand distinct horizontal gene transfer events across 10 virus families, including some that have not previously been reported as EVEs. We explore the genomic and phylogenetic characteristics of non-retroviral EVEs and determine their rates of acquisition during vertebrate evolution. Our study uncovers novel virus diversity, broadens knowledge of virus distribution among vertebrate hosts, and provides new insights into the ecology and evolution of vertebrate viruses. CONCLUSIONS We comprehensively catalog and analyze EVEs within 874 vertebrate genomes, shedding light on the distribution, diversity, and long-term evolution of viruses and reveal their extensive impact on vertebrate genome evolution. Our results demonstrate the power of linking a relational database management system to a similarity search-based screening pipeline for in silico exploration of the dark genome.
Collapse
Affiliation(s)
- Daniel Blanco-Melo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
- Herbold Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | | | - Henan Zhu
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow, G61 1QH, UK
| | - Tristan P W Dennis
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow, G61 1QH, UK
| | - Sejal Modha
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow, G61 1QH, UK
| | - Spyros Lytras
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow, G61 1QH, UK
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow, G61 1QH, UK
| | - Anna Gatseva
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow, G61 1QH, UK
| | - Robert J Gifford
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow, G61 1QH, UK.
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
4
|
Parry RH, Slonchak A, Campbell LJ, Newton ND, Debat HJ, Gifford RJ, Khromykh AA. A novel tamanavirus ( Flaviviridae) of the European common frog ( Rana temporaria) from the UK. J Gen Virol 2023; 104:001927. [PMID: 38059479 PMCID: PMC10770923 DOI: 10.1099/jgv.0.001927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/19/2023] [Indexed: 12/08/2023] Open
Abstract
Flavivirids are small, enveloped, positive-sense RNA viruses from the family Flaviviridae with genomes of ~9-13 kb. Metatranscriptomic analyses of metazoan organisms have revealed a diversity of flavivirus-like or flavivirid viral sequences in fish and marine invertebrate groups. However, no flavivirus-like virus has been identified in amphibians. To remedy this, we investigated the virome of the European common frog (Rana temporaria) in the UK, utilizing high-throughput sequencing at six catch locations. De novo assembly revealed a coding-complete virus contig of a novel flavivirid ~11.2 kb in length. The virus encodes a single ORF of 3456 aa and 5' and 3' untranslated regions (UTRs) of 227 and 666 nt, respectively. We named this virus Rana tamanavirus (RaTV), as BLASTp analysis of the polyprotein showed the closest relationships to Tamana bat virus (TABV) and Cyclopterus lumpus virus from Pteronotus parnellii and Cyclopterus lumpus, respectively. Phylogenetic analysis of the RaTV polyprotein compared to Flavivirus and Flavivirus-like members indicated that RaTV was sufficiently divergent and basal to the vertebrate Tamanavirus clade. In addition to the Mitcham strain, partial but divergent RaTV, sharing 95.64-97.39 % pairwise nucleotide identity, were also obtained from the Poole and Deal samples, indicating that RaTV is widespread in UK frog samples. Bioinformatic analyses of predicted secondary structures in the 3'UTR of RaTV showed the presence of an exoribonuclease-resistant RNA (xrRNA) structure standard in flaviviruses and TABV. To examine this biochemically, we conducted an in vitro Xrn1 digestion assay showing that RaTV probably forms a functional Xrn1-resistant xrRNA.
Collapse
Affiliation(s)
- Rhys H. Parry
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Andrii Slonchak
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre (AIDRC), Brisbane, QLD, Australia
| | - Lewis J. Campbell
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Institute of Zoology, Zoological Society of London, London, UK
- Environment and Sustainability Institute, University of Exeter, Penryn, UK
| | - Natalee D. Newton
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre (AIDRC), Brisbane, QLD, Australia
| | - Humberto J. Debat
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Córdoba X5020ICA, Argentina
- Unidad de Fitopatología y Modelización Agrícola (UFYMA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5020ICA, Argentina
| | | | - Alexander A. Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre (AIDRC), Brisbane, QLD, Australia
- AIDRC Global Virus Network Centre of Excellence, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Mifsud JCO, Costa VA, Petrone ME, Marzinelli EM, Holmes EC, Harvey E. Transcriptome mining extends the host range of the Flaviviridae to non-bilaterians. Virus Evol 2022; 9:veac124. [PMID: 36694816 PMCID: PMC9854234 DOI: 10.1093/ve/veac124] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 12/27/2022] Open
Abstract
The flavivirids (family Flaviviridae) are a group of positive-sense RNA viruses that include well-documented agents of human disease. Despite their importance and ubiquity, the timescale of flavivirid evolution is uncertain. An ancient origin, spanning millions of years, is supported by their presence in both vertebrates and invertebrates and by the identification of a flavivirus-derived endogenous viral element in the peach blossom jellyfish genome (Craspedacusta sowerbii, phylum Cnidaria), implying that the flaviviruses arose early in the evolution of the Metazoa. To date, however, no exogenous flavivirid sequences have been identified in these hosts. To help resolve the antiquity of the Flaviviridae, we mined publicly available transcriptome data across the Metazoa. From this, we expanded the diversity within the family through the identification of 32 novel viral sequences and extended the host range of the pestiviruses to include amphibians, reptiles, and ray-finned fish. Through co-phylogenetic analysis we found cross-species transmission to be the predominate macroevolutionary event across the non-vectored flavivirid genera (median, 68 per cent), including a cross-species transmission event between bats and rodents, although long-term virus-host co-divergence was still a regular occurrence (median, 23 per cent). Notably, we discovered flavivirus-like sequences in basal metazoan species, including the first associated with Cnidaria. This sequence formed a basal lineage to the genus Flavivirus and was closer to arthropod and crustacean flaviviruses than those in the tamanavirus group, which includes a variety of invertebrate and vertebrate viruses. Combined, these data attest to an ancient origin of the flaviviruses, likely close to the emergence of the metazoans 750-800 million years ago.
Collapse
Affiliation(s)
- Jonathon C O Mifsud
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia
| | - Vincenzo A Costa
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia
| | - Mary E Petrone
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia
| | - Ezequiel M Marzinelli
- School of Life and Environmental Sciences, The University of Sydney, Sydney NSW 2006, Australia
- Sydney Institute of Marine Science, 19 Chowder Bay Rd, Mosman, NSW 2088, Australia
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551 Singapore
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia
| | - Erin Harvey
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia
| |
Collapse
|
6
|
Li Y, Bletsa M, Zisi Z, Boonen I, Gryseels S, Kafetzopoulou L, Webster JP, Catalano S, Pybus OG, Van de Perre F, Li H, Li Y, Li Y, Abramov A, Lymberakis P, Lemey P, Lequime S. Endogenous Viral Elements in Shrew Genomes Provide Insights into Pestivirus Ancient History. Mol Biol Evol 2022; 39:msac190. [PMID: 36063436 PMCID: PMC9550988 DOI: 10.1093/molbev/msac190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
As viral genomic imprints in host genomes, endogenous viral elements (EVEs) shed light on the deep evolutionary history of viruses, ancestral host ranges, and ancient viral-host interactions. In addition, they may provide crucial information for calibrating viral evolutionary timescales. In this study, we conducted a comprehensive in silico screening of a large data set of available mammalian genomes for EVEs deriving from members of the viral family Flaviviridae, an important group of viruses including well-known human pathogens, such as Zika, dengue, or hepatitis C viruses. We identified two novel pestivirus-like EVEs in the reference genome of the Indochinese shrew (Crocidura indochinensis). Homologs of these novel EVEs were subsequently detected in vivo by molecular detection and sequencing in 27 shrew species, including 26 species representing a wide distribution within the Crocidurinae subfamily and one in the Soricinae subfamily on different continents. Based on this wide distribution, we estimate that the integration event occurred before the last common ancestor of the subfamily, about 10.8 million years ago, attesting to an ancient origin of pestiviruses and Flaviviridae in general. Moreover, we provide the first description of Flaviviridae-derived EVEs in mammals even though the family encompasses numerous mammal-infecting members. This also suggests that shrews were past and perhaps also current natural reservoirs of pestiviruses. Taken together, our results expand the current known Pestivirus host range and provide novel insight into the ancient evolutionary history of pestiviruses and the Flaviviridae family in general.
Collapse
Affiliation(s)
- Yiqiao Li
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Magda Bletsa
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Zafeiro Zisi
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Ine Boonen
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Sophie Gryseels
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
- Belgium Evolutionary Ecology Group, University of Antwerp, 2610 Wilrijk, Belgium
| | - Liana Kafetzopoulou
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
- Virology Department, Belgium Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Joanne P Webster
- Department of Pathobiology and Population Science, Royal Veterinary College, University of London, Herts, AL9 7TA, UK
| | - Stefano Catalano
- Department of Pathobiology and Population Science, Royal Veterinary College, University of London, Herts, AL9 7TA, UK
| | - Oliver G Pybus
- Department of Pathobiology and Population Science, Royal Veterinary College, University of London, Herts, AL9 7TA, UK
| | | | - Haotian Li
- Marine College, Shandong University (Weihai), 264209 Weihai, China
| | - Yaoyao Li
- Marine College, Shandong University (Weihai), 264209 Weihai, China
| | - Yuchun Li
- Marine College, Shandong University (Weihai), 264209 Weihai, China
| | - Alexei Abramov
- Laboratory of Theriology, Zoological Institute of the Russian Academy of Sciences, 190121 Saint Petersburg, Russia
| | | | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Sébastian Lequime
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, the Netherlands
| |
Collapse
|
7
|
Abstract
Flaviviruses are positive-sense single-stranded RNA viruses, including some well-known human pathogens such as Zika, dengue, and yellow fever viruses, which are primarily associated with mosquito and tick vectors. The vast majority of flavivirus research has focused on terrestrial environments; however, recent findings indicate that a range of flaviviruses are also present in aquatic environments, both marine and freshwater. These flaviviruses are found in various hosts, including fish, crustaceans, molluscs, and echinoderms. Although the effects of aquatic flaviviruses on the hosts they infect are not all known, some have been detected in farmed species and may have detrimental effects on the aquaculture industry. Exploration of the evolutionary history through the discovery of the Wenzhou shark flavivirus in both a shark and crab host is of particular interest since the potential dual-host nature of this virus may indicate that the invertebrate-vertebrate relationship seen in other flaviviruses may have a more profound evolutionary root than previously expected. Potential endogenous viral elements and the range of novel aquatic flaviviruses discovered thus shed light on virus origins and evolutionary history and may indicate that, like terrestrial life, the origins of flaviviruses may lie in aquatic environments.
Collapse
Affiliation(s)
- Megan J. Lensink
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Yiqiao Li
- Clinical and Epidemiological Virology, Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Sebastian Lequime
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
8
|
Mauduit F, Segarra A, Mandic M, Todgham AE, Baerwald MR, Schreier AD, Fangue NA, Connon RE. Understanding risks and consequences of pathogen infections on the physiological performance of outmigrating Chinook salmon. CONSERVATION PHYSIOLOGY 2022; 10:coab102. [PMID: 35492407 PMCID: PMC9040276 DOI: 10.1093/conphys/coab102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 10/20/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
The greatest concentration of at-risk anadromous salmonids is found in California (USA)-the populations that have been negatively impacted by the degradation of freshwater ecosystems. While climate-driven environmental changes threaten salmonids directly, they also change the life cycle dynamics and geographic distribution of pathogens, their resulting host-pathogen interactions and potential for disease progression. Recent studies have established the correlation between pathogen detection and salmonid smolt mortality during their migration to the ocean. The objective of the present study was to screen for up to 47 pathogens in juvenile Chinook salmon (Oncorhynchus tshawytscha) that were held in cages at two key sites of the Sacramento River (CA, USA) and measure potential consequences on fish health. To do so, we used a combination of transcriptomic analysis, enzymatic assays for energy metabolism and hypoxia and thermal tolerance measures. Results revealed that fish were infected by two myxozoan parasites: Ceratonova shasta and Parvicapsula minibicornis within a 2-week deployment. Compared to the control fish maintained in our rearing facility, infected fish displayed reduced body mass, depleted hepatic glycogen stores and differential regulation of genes involved in the immune and general stress responses. This suggests that infected fish would have lower chances of migration success. In contrast, hypoxia and upper thermal tolerances were not affected by infection, suggesting that infection did not impair their capacity to cope with acute abiotic stressors tested in this study. An evaluation of long-term consequences of the observed reduced body mass and hepatic glycogen depletion is needed to establish a causal relationship between salmon parasitic infection and their migration success. This study highlights that to assess the potential sublethal effects of a stressor, or to determine a suitable management action for fish, studies need to consider a combination of endpoints from the molecular to the organismal level.
Collapse
Affiliation(s)
- F Mauduit
- Corresponding author: Department of Anatomy, Physiology & Cell Biology, University of California Davis, 95616 Davis, CA, USA.
| | - A Segarra
- Department of Anatomy, Physiology & Cell Biology, University of California Davis, 95616 Davis, CA, USA
| | - M Mandic
- Department of Animal Science, University of California Davis, 95616 Davis, CA, USA
| | - A E Todgham
- Department of Animal Science, University of California Davis, 95616 Davis, CA, USA
| | - M R Baerwald
- California Department of Water Resources, Division of Environmental Services, 95814 Sacramento, CA, USA
| | - A D Schreier
- Department of Animal Science, University of California Davis, 95616 Davis, CA, USA
| | - N A Fangue
- Department of Wildlife, Fish, and Conservation Biology, University of California Davis, 95616 Davis, CA, USA
| | - R E Connon
- Department of Anatomy, Physiology & Cell Biology, University of California Davis, 95616 Davis, CA, USA
| |
Collapse
|
9
|
Blasdell KR, Wynne JW, Perera D, Firth C. First detection of a novel 'unknown host' flavivirus in a Malaysian rodent. Access Microbiol 2021; 3:000223. [PMID: 34151174 PMCID: PMC8208762 DOI: 10.1099/acmi.0.000223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/22/2021] [Indexed: 11/18/2022] Open
Abstract
Current phylogenetic analysis of the flavivirus genus has identified a group of mosquito-borne viruses for which the vertebrate hosts are currently unknown. Here we report the identification of a novel member of this group from a peridomestic rodent species (Sundamys muelleri) collected in Sarawak, Malaysia in 2016. We propose to name this novel flavivirus Batu Kawa virus after the location in which it was identified, with the abbreviation BKWV. Characterization of the BKWV genome allowed identification of putative mature peptides, potential enzyme motifs and conserved structural elements. Phylogenetic analysis found BKWV to be most closely related to Nhumirim virus (from Brazil) and Barkedji virus (from Senegal and Israel). Both of these viruses have been identified in Culex mosquitoes and belong to a group of viruses with unknown vertebrate hosts. This is the first known report of a member of this group of viruses from a potential mammalian host.
Collapse
Affiliation(s)
- Kim R Blasdell
- Health and Biosecurity Business Unit, Commonwealth Scientific and Industrial Research Organisation, Geelong, Victoria, Australia
| | - James W Wynne
- Agriculture and Food Business Unit, Commonwealth Scientific and Industrial Research Organisation, Hobart, Tasmania, Australia
| | - David Perera
- The Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Cadhla Firth
- Health and Biosecurity Business Unit, Commonwealth Scientific and Industrial Research Organisation, Geelong, Victoria, Australia.,Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| |
Collapse
|
10
|
Paraskevopoulou S, Käfer S, Zirkel F, Donath A, Petersen M, Liu S, Zhou X, Drosten C, Misof B, Junglen S. Viromics of extant insect orders unveil the evolution of the flavi-like superfamily. Virus Evol 2021; 7:veab030. [PMID: 34026271 PMCID: PMC8129625 DOI: 10.1093/ve/veab030] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Insects are the most diversified and species-rich group of animals and harbor an immense diversity of viruses. Several taxa in the flavi-like superfamily, such as the genus Flavivirus, are associated with insects; however, systematic studies on insect virus genetic diversity are lacking, limiting our understanding of the evolution of the flavi-like superfamily. Here, we examined the diversity of flavi-like viruses within the most complete and up-to-date insect transcriptome collection comprising 1,243 insect species by employing a Flaviviridae RdRp profile hidden Markov model search. We identified seventy-six viral sequences in sixty-one species belonging to seventeen insect, one entognathan, and one arachnidan orders. Phylogenetic analyses revealed that twenty-seven sequences fell within the Flaviviridae phylogeny but did not group with established genera. Despite the large diversity of insect hosts studied, we only detected one virus in a blood-feeding insect, which branched within the genus Flavivirus, indicating that this genus likely diversified only in hematophagous arthropods. Nine new jingmenviruses with novel host associations were identified. One of the jingmenviruses established a deep rooting lineage additional to the insect- and tick-associated clades. Segment co-segregation phylogenies support the separation of tick- and insect-associated groups within jingmenviruses, with evidence for segment reassortment. In addition, fourteen viruses grouped with unclassified flaviviruses encompassing genome length of up to 20 kb. Species-specific clades for Hymenopteran- and Orthopteran-associated viruses were identified. Forty-nine viruses populated three highly diversified clades in distant relationship to Tombusviridae, a plant-infecting virus family, suggesting the detection of three previously unknown insect-associated families that contributed to tombusvirus evolution.
Collapse
Affiliation(s)
- Sofia Paraskevopoulou
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Chariteplatz 1, 10117 Berlin, Germany
| | - Simon Käfer
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Chariteplatz 1, 10117 Berlin, Germany
| | - Florian Zirkel
- Institute of Virology, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Alexander Donath
- Centre for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany
| | - Malte Petersen
- Centre for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany
| | - Shanlin Liu
- Department of Entomology, China Agricultural University, 17 Qinghua E Rd, Haidian District, Beijing, China
| | - Xin Zhou
- Department of Entomology, China Agricultural University, 17 Qinghua E Rd, Haidian District, Beijing, China
| | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Chariteplatz 1, 10117 Berlin, Germany.,German Center for Infection Research (DZIF), partner site Charité, Chariteplatz 1, 10117 Berlin, Germany
| | - Bernhard Misof
- Centre for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany
| | - Sandra Junglen
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Chariteplatz 1, 10117 Berlin, Germany.,German Center for Infection Research (DZIF), partner site Charité, Chariteplatz 1, 10117 Berlin, Germany
| |
Collapse
|
11
|
Costa VA, Mifsud JCO, Gilligan D, Williamson JE, Holmes EC, Geoghegan JL. Metagenomic sequencing reveals a lack of virus exchange between native and invasive freshwater fish across the Murray-Darling Basin, Australia. Virus Evol 2021; 7:veab034. [PMID: 34017611 PMCID: PMC8121191 DOI: 10.1093/ve/veab034] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Biological invasions are among the biggest threats to freshwater biodiversity. This is increasingly relevant in the Murray-Darling Basin, Australia, particularly since the introduction of the common carp (Cyprinus carpio). This invasive species now occupies up to ninety per cent of fish biomass, with hugely detrimental impacts on native fauna and flora. To address the ongoing impacts of carp, cyprinid herpesvirus 3 (CyHV-3) has been proposed as a potentially effective biological control agent. Crucially, however, it is unknown whether CyHV-3 and other cyprinid herpesviruses already exist in the Murray-Darling. Further, little is known about those viruses that naturally occur in wild freshwater fauna, and the frequency with which these viruses jump species boundaries. To document the evolution and diversity of freshwater fish viromes and better understand the ecological context to the proposed introduction of CyHV-3, we performed a meta-transcriptomic viral survey of invasive and native fish across the Murray-Darling Basin, covering over 2,200 km of the river system. Across a total of thirty-six RNA libraries representing ten species, we failed to detect CyHV-3 nor any closely related viruses. Rather, meta-transcriptomic analysis identified eighteen vertebrate-associated viruses that could be assigned to the Arenaviridae, Astroviridae, Bornaviridae, Caliciviridae, Coronaviridae, Chuviridae, Flaviviridae, Hantaviridae, Hepeviridae, Paramyxoviridae, Picornaviridae, Poxviridae, Reoviridae and Rhabdoviridae families, and a further twenty-seven that were deemed to be associated with non-vertebrate hosts. Notably, we revealed a marked lack of viruses that are shared among invasive and native fish sampled here, suggesting that there is little virus transmission from common carp to native fish species, despite co-existing for over fifty years. Overall, this study provides the first data on the viruses naturally circulating in a major river system and supports the notion that fish harbour a large diversity of viruses with often deep evolutionary histories.
Collapse
Affiliation(s)
- Vincenzo A Costa
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Jonathon C O Mifsud
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Dean Gilligan
- NSW Department of Primary Industries, Batemans Bay Fisheries Office, Batemans Bay 2536, Australia
| | - Jane E Williamson
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jemma L Geoghegan
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
- Institute of Environmental Science and Research, Wellington, Porirua 5022, New Zealand
| |
Collapse
|
12
|
Hewson I, Johnson MR, Tibbetts IR. An Unconventional Flavivirus and Other RNA Viruses in the Sea Cucumber (Holothuroidea; Echinodermata) Virome. Viruses 2020; 12:v12091057. [PMID: 32972018 PMCID: PMC7551563 DOI: 10.3390/v12091057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
Sea cucumbers (Holothuroidea; Echinodermata) are ecologically significant constituents of benthic marine habitats. We surveilled RNA viruses inhabiting eight species (representing four families) of holothurian collected from four geographically distinct locations by viral metagenomics, including a single specimen of Apostichopus californicus affected by a hitherto undocumented wasting disease. The RNA virome comprised genome fragments of both single-stranded positive sense and double stranded RNA viruses, including those assigned to the Picornavirales, Ghabrivirales, and Amarillovirales. We discovered an unconventional flavivirus genome fragment which was most similar to a shark virus. Ghabivirales-like genome fragments were most similar to fungal totiviruses in both genome architecture and homology and had likely infected mycobiome constituents. Picornavirales, which are commonly retrieved in host-associated viral metagenomes, were similar to invertebrate transcriptome-derived picorna-like viruses. The greatest number of viral genome fragments was recovered from the wasting A. californicus library compared to the asymptomatic A. californicus library. However, reads from the asymptomatic library recruited to nearly all recovered wasting genome fragments, suggesting that they were present but not well represented in the grossly normal specimen. These results expand the known host range of flaviviruses and suggest that fungi and their viruses may play a role in holothurian ecology.
Collapse
Affiliation(s)
- Ian Hewson
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA;
- Correspondence: ; Tel.: +1-607-255-0151
| | | | - Ian R. Tibbetts
- School of Biological Sciences, University of Queensland, St Lucia, Brisbane, QLD 4072, Australia;
| |
Collapse
|