1
|
Wang JY, Fan NN, Yuan Y, Bass C, Siemann E, Ji XY, Jiang JX, Wan NF. Plant defense metabolites influence the interaction between an insect herbivore and an entomovirus. Curr Biol 2024; 34:5758-5768.e5. [PMID: 39577425 DOI: 10.1016/j.cub.2024.10.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/04/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024]
Abstract
The tri-trophic interaction of plants, insect herbivores, and entomoviruses is an important topic in ecology and pest control. The susceptibility of insect herbivores to entomoviruses (e.g., nucleopolyhedroviruses) is influenced by host plants; however, the role of plant secondary metabolites in determining such susceptibility is poorly understood. Metabolomic analyses of Brassica oleracea, Glycine max, and Ipomoea aquatica plants, which differ in how they affect the susceptibility of Spodoptera exigua to nucleopolyhedroviruses among 14 plants, suggested that the plant secondary metabolites genistein, kaempferol, quercitrin, and coumarin play a role in influencing nucleopolyhedroviruses susceptibility. Subsequently, transcriptomic analysis of caterpillars, treated with nucleopolyhedroviruses alone or with one of these four phenolics, identified four genes (CYP340K4, CXE18, GSTe, and GSTe1) that were significantly downregulated by the phenolics. Functional characterization of these genes suggested that their downregulation significantly increased larval sensitivity to nucleopolyhedroviruses and altered aspects of the immune response. Our findings provide new insight into the role of plant defense metabolites in influencing the interactions between insect herbivores and entomopathogens and identify plant secondary metabolites as potential synergists of viral agents for the control of agricultural pests.
Collapse
Affiliation(s)
- Jin-Yan Wang
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Ministry of Agriculture and Rural Affairs Key Laboratory of Low-carbon Green Agriculture in South eastern China, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy of East China University of Science and Technology, Shanghai 201403, China
| | - Neng-Neng Fan
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Ministry of Agriculture and Rural Affairs Key Laboratory of Low-carbon Green Agriculture in South eastern China, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy of East China University of Science and Technology, Shanghai 201403, China
| | - Yuan Yuan
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Ministry of Agriculture and Rural Affairs Key Laboratory of Low-carbon Green Agriculture in South eastern China, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy of East China University of Science and Technology, Shanghai 201403, China
| | - Chris Bass
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall TR10 9WT, UK
| | - Evan Siemann
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Xiang-Yun Ji
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Ministry of Agriculture and Rural Affairs Key Laboratory of Low-carbon Green Agriculture in South eastern China, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy of East China University of Science and Technology, Shanghai 201403, China.
| | - Jie-Xian Jiang
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Ministry of Agriculture and Rural Affairs Key Laboratory of Low-carbon Green Agriculture in South eastern China, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy of East China University of Science and Technology, Shanghai 201403, China.
| | - Nian-Feng Wan
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Ministry of Agriculture and Rural Affairs Key Laboratory of Low-carbon Green Agriculture in South eastern China, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy of East China University of Science and Technology, Shanghai 201403, China; Institute of Pesticides & Pharmaceuticals, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
2
|
Rangel-Núñez JC, Ibarra JE, Del Rincón-Castro MC. Transcriptomics and interactomics during the primary infection of an SfNPV baculovirus on Spodoptera frugiperda larvae. Front Cell Infect Microbiol 2023; 13:1291433. [PMID: 38076451 PMCID: PMC10703053 DOI: 10.3389/fcimb.2023.1291433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Abstract
The fall armyworm (FAW), Spodoptera frugiperda, has been the most devastating pest of corn as well as of other crops in America, and more recently in Africa and Asia. The development of resistance to chemical insecticides led the search for environmentally friendly biological alternatives such as baculoviruses. This study focuses on the primary infection of the baculovirus SfNPV-Ar in the FAW's midgut epithelium, by analyzing the differential expression of transcripts in excised midguts at 6, 12, and 24 h post-infection (hpi), and predicted their interactions. Interaction of viral factors with the infected midgut tissue could alters various cellular processes, such as the apoptotic system due to the up-regulation observed of FABP at 6 hpi and of HSP90 at 24 hpi, along with the down-regulated PRX at 6 hpi and FABP transcripts between 12 and 24 hpi. Changes in transcript regulation could affect the cellular architecture of infected cells due to up-regulation of ARP 2/3 at 6 and 12 hpi, followed by down-regulation at 24 hpi. In relation to protein folding proteins, HSP90 was up-regulated at 24 hpi and PDI was down-regulated between 6 and 12 hpi. With respect to metabolism and cellular transport, AcilBP and ATPS0 were up regulated at 6 hpi and 12 hpi, respectively. In reference to transcription and translation up-regulation of RPL11 at 6 hpi and of FPN32 and RPL19 at 24 hpi was detected, as well as the down-regulation of RPL19 at 6 hpi, of PDI and RPL7 at 12 hpi, and of FABP at 24 hpi. In conclusion, gene regulation induced by viral infection could be related to the cytoskeleton and cellular metabolism as well as to oxidative stress, apoptosis, protein folding, translation, and ribosomal structure. The results presented in this work are an approach to understanding how the virus takes control of the general metabolism of the insect host during the primary infection period.
Collapse
Affiliation(s)
- Jonatan Carmen Rangel-Núñez
- Posgrado en Biociencias, Departamento de Alimentos, División Ciencias de la Vida, Universidad de Guanajuato, Irapuato, Mexico
| | - Jorge E. Ibarra
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV) Unidad Irapuato, Irapuato, Mexico
| | - Ma. Cristina Del Rincón-Castro
- Posgrado en Biociencias, Departamento de Alimentos, División Ciencias de la Vida, Universidad de Guanajuato, Irapuato, Mexico
| |
Collapse
|
3
|
Tembrock LR, Zink FA, Gilligan TM. Viral Prevalence and Genomic Xenology in the Coevolution of HzNV-2 (Nudiviridae) with Host Helicoverpa zea (Lepidoptera: Noctuidae). INSECTS 2023; 14:797. [PMID: 37887809 PMCID: PMC10607169 DOI: 10.3390/insects14100797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/16/2023] [Accepted: 09/24/2023] [Indexed: 10/28/2023]
Abstract
Insect viruses have been described from numerous lineages, yet patterns of genetic exchange and viral prevalence, which are essential to understanding host-virus coevolution, are rarely studied. In Helicoverpa zea, the virus HzNV-2 can cause deformity of male and female genitalia, resulting in sterility. Using ddPCR, we found that male H. zea with malformed genitalia (agonadal) contained high levels of HzNV-2 DNA, confirming previous work. HzNV-2 was found to be prevalent throughout the United States, at more than twice the rate of the baculovirus HaSNPV, and that it contained several host-acquired DNA sequences. HzNV-2 possesses four recently endogenized lepidopteran genes and several more distantly related genes, including one gene with a bacteria-like sequence found in both host and virus. Among the recently acquired genes is cytosolic serine hydroxymethyltransferase (cSHMT). In nearly all tested H. zea, cSHMT contained a 200 bp transposable element (TE) that was not found in cSHMT of the sister species H. armigera. No other virus has been found with host cSHMT, and the study of this shared copy, including possible interactions, may yield new insights into the function of this gene with possible applications to insect biological control, and gene editing.
Collapse
Affiliation(s)
- Luke R. Tembrock
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Frida A. Zink
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Todd M. Gilligan
- USDA-APHIS-PPQ-Science & Technology, Identification Technology Program, Fort Collins, CO 80526, USA
| |
Collapse
|
4
|
Duffield KR, Rosales AM, Muturi EJ, Behle RW, Ramirez JL. Increased Phenoloxidase Activity Constitutes the Main Defense Strategy of Trichoplusia ni Larvae against Fungal Entomopathogenic Infections. INSECTS 2023; 14:667. [PMID: 37623376 PMCID: PMC10455440 DOI: 10.3390/insects14080667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023]
Abstract
The cabbage looper Trichoplusia ni is an important agricultural pest worldwide and is frequently used as a model organism for assessing entomopathogenic fungi virulence, though few studies have measured the host response repertoire to fungal biocontrol agents. Here, we quantified the immune response of T. ni larvae following exposure to two entomopathogenic fungal species: Beauveria bassiana and Cordyceps javanica. Results from our study demonstrate that T. ni larvae exposed to fungal entomopathogens had higher total phenoloxidase activity compared to controls, indicating that the melanization cascade is one of the main immune components driving defense against fungal infection and contrasting observations from other insect-fungi interaction studies. We also observed differences in host response depending on the species of entomopathogenic fungi, with significantly higher induction observed during infections with B. bassiana than with C. javanica. Larvae exposed to B. bassiana had an increased expression of genes involved in prophenoloxidase response and the Imd, JNK, and Jak/STAT immune signaling pathways. Our results indicate a notable absence of Toll pathway-related responses, further contrasting results to other insect-fungi pathosystems. Important differences were also observed in the induction of antimicrobial effectors, with B. bassiana infections eliciting three antimicrobial effectors (lysozyme, gloverin, and cecropin), while C. javanica only induced cecropin expression. These results provide insight into the host response strategies employed by T. ni for protection against entomopathogenic fungi and increase our understanding of insect-fungal entomopathogen interactions, aiding in the design of more effective microbial control strategies for this important agricultural pest.
Collapse
Affiliation(s)
- Kristin R. Duffield
- USDA-ARS, National Center for Agricultural Utilization Research, Crop BioProtection Research Unit, 1815 N. University St., Peoria, IL 61604, USA; (E.J.M.)
| | | | - Ephantus J. Muturi
- USDA-ARS, National Center for Agricultural Utilization Research, Crop BioProtection Research Unit, 1815 N. University St., Peoria, IL 61604, USA; (E.J.M.)
| | - Robert W. Behle
- USDA-ARS, National Center for Agricultural Utilization Research, Crop BioProtection Research Unit, 1815 N. University St., Peoria, IL 61604, USA; (E.J.M.)
| | - José L. Ramirez
- USDA-ARS, National Center for Agricultural Utilization Research, Crop BioProtection Research Unit, 1815 N. University St., Peoria, IL 61604, USA; (E.J.M.)
| |
Collapse
|
5
|
Hu Z, Zhu F, Chen K. The Mechanisms of Silkworm Resistance to the Baculovirus and Antiviral Breeding. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:381-399. [PMID: 36689303 DOI: 10.1146/annurev-ento-120220-112317] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Silkworm (Bombyx mori) is not only an economic insect but also a model organism for life science research. Bombyx mori nucleopolyhedrovirus (BmNPV) disease is a major infectious disease in the world's sericulture industry. The cocoon loss caused by this disease accounts for more than 60% of the total loss caused by all silkworm diseases. To date, there has been no effective solution for preventing and treating this disease. The most effective measure is to breed disease-resistant varieties. The quickest way to breed disease-resistant varieties is to apply genetic modification. However, this requires that we obtain disease resistance genes and know the mechanism of disease resistance. Since the discovery of disease-resistant resources in 1989, scholars in the sericulture industry around the world have been inspired to search for resistance genes. In the past two decades, with the help of multi-omics technologies, screening of resistance genes, gene localization, protein modification, virus-host interactions, etc., researchers have found some candidate genes that have been proposed to function at the cellular or individual level. Several disease-resistant varieties have been obtained and used in production through hybrid breeding, RNA interference, and genetic modification. This article summarizes and reviews the discovery of and research advances related to silkworm resistance to BmNPV. It is anticipated that the review will inspire scientific researchers to continue searching for disease resistance genes, clarify the molecular mechanism of silkworm disease resistance, and promote disease-resistant silkworm breeding.
Collapse
Affiliation(s)
- Zhaoyang Hu
- School of Life Sciences, Jiangsu University, Zhenjiang, China;
| | - Feifei Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang, China;
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China;
| |
Collapse
|
6
|
Cheung YP, Park S, Pagtalunan J, Maringer K. The antiviral role of NF-κB-mediated immune responses and their antagonism by viruses in insects. J Gen Virol 2022; 103. [PMID: 35510990 DOI: 10.1099/jgv.0.001741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The antiviral role of innate immune responses mediated by the NF-κB family of transcription factors is well established in vertebrates but was for a long time less clear in insects. Insects encode two canonical NF-κB pathways, the Toll and Imd ('immunodeficiency') pathways, which are best characterised for their role in antibacterial and antifungal defence. An increasing body of evidence has also implicated NF-κB-mediated innate immunity in antiviral responses against some, but not all, viruses. Specific pattern recognition receptors (PRRs) and molecular events leading to NF-κB activation by viral pathogen-associated molecular patterns (PAMPs) have been elucidated for a number of viruses and insect species. Particularly interesting are recent findings indicating that the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway detects viral RNA to activate NF-κB-regulated gene expression. We summarise the literature on virus-NF-κB pathway interactions across the class Insecta, with a focus on the dipterans Drosophila melanogaster and Aedes aegypti. We discuss potential reasons for differences observed between different virus-host combinations, and highlight similarities and differences between cGAS-STING signalling in insects versus vertebrates. Finally, we summarise the increasing number of known molecular mechanisms by which viruses antagonise NF-κB responses, which suggest that NF-κB-mediated immunity exerts strong evolutionary pressures on viruses. These developments in our understanding of insect antiviral immunity have relevance to the large number of insect species that impact on humans through their transmission of human, livestock and plant diseases, exploitation as biotechnology platforms, and role as parasites, pollinators, livestock and pests.
Collapse
Affiliation(s)
- Yin P Cheung
- The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Sohyun Park
- The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Justine Pagtalunan
- The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Kevin Maringer
- The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK
| |
Collapse
|
7
|
Blasi G, Bortoletto E, Gasparotto M, Filippini F, Bai CM, Rosani U, Venier P. A glimpse on metazoan ZNFX1 helicases, ancient players of antiviral innate immunity. FISH & SHELLFISH IMMUNOLOGY 2022; 121:456-466. [PMID: 35063603 DOI: 10.1016/j.fsi.2022.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/03/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
The human zinc finger NFX1-type containing 1 (ZNFX1) is an interferon-stimulated protein associated to the outer mitochondrial membrane, able to bind dsRNAs and interact with MAVS proteins, promoting type I IFN response in the early stage of viral infection. An N-terminal Armadillo (ARM)-type fold and a large helicase core (P-loop) and zinc fingers confer RNA-binding and ATPase activities to ZNFX1. We studied the phylogenetic distribution of metazoan ZNFX1s, ZNFX1 gene expression trends and genomic and protein signatures during viral infection of invertebrates. Based on 221 ZNFX1 sequences, we obtained a polyphyletic tree with a taxonomy-consistent branching at the phylum-level only. In metazoan genomes, ZNFX1 genes were found either in single copy, with up to some tens of exons in vertebrates, or in multiple copies, with one or a few exons and one of them sometimes encompassing most of the coding sequence, in invertebrates like sponges, sea urchins and mollusks. Structural analyses of selected ZNFX1 proteins showed high conservation of the helicase region (P-loop), an overall conserved region and domain architecture, an ARM-fold mostly traceable, and the presence of intrinsically disordered regions of varying length and position. The remarkable over-expression of ZNFX1 in bivalve and gastropod mollusks infected with dsDNA viruses underscores the antiviral role of ZNFX1, whereas nothing similar was found in virus-infected nematodes and corals. Whether the functional diversification reported in the C. elegans ZNFX1 occurs in other metazoan proteins remains to be established.
Collapse
Affiliation(s)
- Giulia Blasi
- Department of Biology, University of Padova, 35121, Padova, Italy
| | | | | | | | - Chang-Ming Bai
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Yellow Sea Fisheries Research Institute, CAFS, Qingdao, 266237, China
| | - Umberto Rosani
- Department of Biology, University of Padova, 35121, Padova, Italy.
| | - Paola Venier
- Department of Biology, University of Padova, 35121, Padova, Italy.
| |
Collapse
|
8
|
Kuang W, Yan C, Zhan Z, Guan L, Wang J, Chen J, Li J, Ma G, Zhou X, Jin L. Transcriptional responses of Daphnis nerii larval midgut to oral infection by Daphnis nerii cypovirus-23. Virol J 2021; 18:250. [PMID: 34906167 PMCID: PMC8670114 DOI: 10.1186/s12985-021-01721-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Daphnis nerii cypovirus-23 (DnCPV-23) is a new type of cypovirus and has a lethal effect on the oleander hawk moth, Daphnis nerii which feeds on leave of Oleander and Catharanthus et al. After DnCPV-23 infection, the change of Daphnis nerii responses has not been reported. METHODS To better understand the pathogenic mechanism of DnCPV-23 infection, 3rd-instar Daphnis nerii larvae were orally infected with DnCPV-23 occlusion bodies and the transcriptional responses of the Daphnis nerii midgut were analyzed 72 h post-infection using RNA-seq. RESULTS The results showed that 1979 differentially expressed Daphnis nerii transcripts in the infected midgut had been identified. KEGG analysis showed that protein digestion and absorption, Toll and Imd signaling pathway were down-regulated. Based on the result, we speculated that food digestion and absorption in insect midgut might be impaired after virus infection. In addition, the down-regulation of the immune response may make D. nerii more susceptible to bacterial infections. Glycerophospholipid metabolism and xenobiotics metabolism were up-regulated. These two types of pathways may affect the viral replication and xenobiotic detoxification of insect, respectively. CONCLUSION These results may facilitate a better understanding of the changes in Daphnis nerii metabolism during cypovirus infection and serve as a basis for future research on the molecular mechanism of DnCPV-23 invasion.
Collapse
Affiliation(s)
- Wendong Kuang
- Institute of Microbiology, Jiangxi Academy of Sciences, No. 7777 Changdong Road, Nanchang, 330096 China
| | - Chenghua Yan
- School of Life Sciences, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004 China
| | - Zhigao Zhan
- Institute of Microbiology, Jiangxi Academy of Sciences, No. 7777 Changdong Road, Nanchang, 330096 China
| | - Limei Guan
- Institute of Microbiology, Jiangxi Academy of Sciences, No. 7777 Changdong Road, Nanchang, 330096 China
| | - Jinchang Wang
- Institute of Microbiology, Jiangxi Academy of Sciences, No. 7777 Changdong Road, Nanchang, 330096 China
| | - Junhui Chen
- Institute of Microbiology, Jiangxi Academy of Sciences, No. 7777 Changdong Road, Nanchang, 330096 China
| | - Jianghuai Li
- Institute of Microbiology, Jiangxi Academy of Sciences, No. 7777 Changdong Road, Nanchang, 330096 China
| | - Guangqiang Ma
- School of Life Sciences, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004 China
| | - Xi Zhou
- Institute of Microbiology, Jiangxi Academy of Sciences, No. 7777 Changdong Road, Nanchang, 330096 China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences (CAS), Wuhan, 430071 China
| | - Liang Jin
- Institute of Microbiology, Jiangxi Academy of Sciences, No. 7777 Changdong Road, Nanchang, 330096 China
| |
Collapse
|
9
|
Yuan C, Xing L, Wang M, Hu Z, Zou Z. Microbiota modulates gut immunity and promotes baculovirus infection in Helicoverpa armigera. INSECT SCIENCE 2021; 28:1766-1779. [PMID: 33463036 DOI: 10.1111/1744-7917.12894] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/07/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Baculoviruses are natural enemies of agricultural and forest insect pests and play an important role in biological pest control. Oral infection by baculovirus in the insect midgut is necessary for establishing systemic infection and eventually killing the insect. Since the insect midgut continuously encounters microbiota, the gut microbiota could affect baculovirus infection. Here, we demonstrated that gut microbiota modulates immune responses and promotes baculovirus infection in the cotton bollworm, Helicoverpa armigera. After oral infection, numerous host immunity-related genes including genes encoding Toll and immune deficiency (IMD) pathway components were upregulated in the midgut. Elimination of the gut microbiota significantly increased the resistance to viral infection in H. armigera. Quantitative real-time reverse transcription polymerase chain reaction and proteomic analysis showed that downregulation of the antiviral factor prophenoloxidase (PPO) could be mediated by microbiota during infection. It implied that midgut microbiota diminishes the expression of PPO to facilitate viral infection in H. armigera. Our findings revealed that the microbiota plays an important role in modulating the resistance of H. armigera to baculovirus infection, providing new insights in applying biopesticide.
Collapse
Affiliation(s)
- Chuanfei Yuan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, 571199, China
| | - Longsheng Xing
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
10
|
Muller H, Loiseau V, Guillier S, Cordaux R, Gilbert C. Assessing the Impact of a Viral Infection on the Expression of Transposable Elements in the Cabbage Looper Moth (Trichoplusia ni). Genome Biol Evol 2021; 13:evab231. [PMID: 34613390 PMCID: PMC8634313 DOI: 10.1093/gbe/evab231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
Most studies of stress-induced transposable element (TE) expression have so far focused on abiotic sources of stress. Here, we analyzed the impact of an infection by the AcMNPV baculovirus on TE expression in a cell line (Tnms42) and midgut tissues of the cabbage looper moth (Trichoplusia ni). We find that a large fraction of TE families (576/636 in Tnms42 cells and 503/612 in midgut) is lowly expressed or not expressed at all [≤ 4 transcripts per million (TPM)] in the uninfected condition (median TPM of 0.37 in Tnms42 and 0.46 in midgut cells). In the infected condition, a total of 62 and 187 TE families were differentially expressed (DE) in midgut and Tnms42 cells, respectively, with more up- (46) than downregulated (16) TE families in the former and as many up- (91) as downregulated (96) TE families in the latter. Expression log2 fold changes of DE TE families varied from -4.95 to 9.11 in Tnms42 cells and from -4.28 to 7.66 in midgut. Large variations in expression profiles of DE TEs were observed depending on the type of cells and on time after infection. Overall, the impact of AcMNPV on TE expression in T. ni is moderate but potentially sufficient to affect TE activity and genome architecture. Interestingly, one host-derived TE integrated into AcMNPV genomes is highly expressed in infected Tnms42 cells. This result shows that virus-borne TEs can be expressed, further suggesting that they may be able to transpose and that viruses may act as vectors of horizontal transfer of TEs in insects.
Collapse
Affiliation(s)
- Héloïse Muller
- Universite Paris Saclay, CNRS, IRD, UMR Evolution, Genomes, Comportement et Ecologie, Gif-sur-Yvette, France
| | - Vincent Loiseau
- Universite Paris Saclay, CNRS, IRD, UMR Evolution, Genomes, Comportement et Ecologie, Gif-sur-Yvette, France
| | - Sandra Guillier
- Universite Paris Saclay, CNRS, IRD, UMR Evolution, Genomes, Comportement et Ecologie, Gif-sur-Yvette, France
| | - Richard Cordaux
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Universite de Poitiers, CNRS, France
| | - Clément Gilbert
- Universite Paris Saclay, CNRS, IRD, UMR Evolution, Genomes, Comportement et Ecologie, Gif-sur-Yvette, France
| |
Collapse
|
11
|
Zaghloul HAH, Hice RH, Arensburger P, Bideshi DK, Federici BA. Extended in vivo transcriptomes of two ascoviruses with different tissue tropisms reveal alternative mechanisms for enhancing virus reproduction in hemolymph. Sci Rep 2021; 11:16402. [PMID: 34385487 PMCID: PMC8361023 DOI: 10.1038/s41598-021-95553-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Ascoviruses are large dsDNA viruses characterized by the extraordinary changes they induce in cellular pathogenesis and architecture whereby after nuclear lysis and extensive hypertrophy, each cell is cleaved into numerous vesicles for virion reproduction. However, the level of viral replication and transcription in vesicles compared to other host tissues remains uncertain. Therefore, we applied RNA-Sequencing to compare the temporal transcriptome of Spodoptera frugiperda ascovirus (SfAV) and Trichoplusia ni ascovirus (TnAV) at 7, 14, and 21 days post-infection (dpi). We found most transcription occurred in viral vesicles, not in initial tissues infected, a remarkably novel reproduction mechanism compared to all other viruses and most other intracellular pathogens. Specifically, the highest level of viral gene expression occurred in hemolymph, for TnAV at 7 dpi, and SfAV at 14 dpi. Moreover, we found that host immune genes were partially down-regulated in hemolymph, where most viral replication occurred in highly dense accumulations of vesicles.
Collapse
Affiliation(s)
- Heba A H Zaghloul
- Interdepartmental Graduate Program in Microbiology and Institute for Integrative Genome Biology, Riverside, USA.,Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Robert H Hice
- Interdepartmental Graduate Program in Microbiology and Institute for Integrative Genome Biology, Riverside, USA
| | - Peter Arensburger
- Department of Biological Sciences, California State Polytechnic University, Pomona, Pomona, CA, 91768, USA
| | - Dennis K Bideshi
- Department of Biological Sciences, California Baptist University, Riverside, CA, 92504, USA
| | - Brian A Federici
- Interdepartmental Graduate Program in Microbiology and Institute for Integrative Genome Biology, Riverside, USA. .,Department of Entomology, University of California, Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
12
|
Sheng S, Wang J, Chu J, Ding J, Liu ZX, Jiang D, Liang X, Shao Z, Wang J, Wu FA. Analysis of the Glyphodes pyloalis larvae immune transcriptome in response to parasitization by its endoparasitoid, Aulacococentrum confusum. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 38:100803. [DOI: 10.1016/j.cbd.2021.100803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 01/22/2023]
|
13
|
Pantha P, Chalivendra S, Oh DH, Elderd BD, Dassanayake M. A Tale of Two Transcriptomic Responses in Agricultural Pests via Host Defenses and Viral Replication. Int J Mol Sci 2021; 22:3568. [PMID: 33808210 PMCID: PMC8037200 DOI: 10.3390/ijms22073568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 01/02/2023] Open
Abstract
Autographa californica Multiple Nucleopolyhedrovirus (AcMNPV) is a baculovirus that causes systemic infections in many arthropod pests. The specific molecular processes underlying the biocidal activity of AcMNPV on its insect hosts are largely unknown. We describe the transcriptional responses in two major pests, Spodoptera frugiperda (fall armyworm) and Trichoplusia ni (cabbage looper), to determine the host-pathogen responses during systemic infection, concurrently with the viral response to the host. We assembled species-specific transcriptomes of the hemolymph to identify host transcriptional responses during systemic infection and assessed the viral transcript abundance in infected hemolymph from both species. We found transcriptional suppression of chitin metabolism and tracheal development in infected hosts. Synergistic transcriptional support was observed to suggest suppression of immune responses and induction of oxidative stress indicating disease progression in the host. The entire AcMNPV core genome was expressed in the infected host hemolymph with a proportional high abundance detected for viral transcripts associated with replication, structure, and movement. Interestingly, several of the host genes that were targeted by AcMNPV as revealed by our study are also targets of chemical insecticides currently used commercially to control arthropod pests. Our results reveal an extensive overlap between biological processes represented by transcriptional responses in both hosts, as well as convergence on highly abundant viral genes expressed in the two hosts, providing an overview of the host-pathogen transcriptomic landscape during systemic infection.
Collapse
Affiliation(s)
| | | | | | - Bret D. Elderd
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (P.P.); (S.C.); (D.-H.O.)
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (P.P.); (S.C.); (D.-H.O.)
| |
Collapse
|
14
|
Dong Z, Zheng N, Hu C, Huang X, Chen P, Wu Q, Deng B, Lu C, Pan M. Genetic bioengineering of overexpressed guanylate binding protein family BmAtlastin-n enhances silkworm resistance to Nosema bombycis. Int J Biol Macromol 2021; 172:223-230. [PMID: 33453252 DOI: 10.1016/j.ijbiomac.2021.01.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/25/2020] [Accepted: 01/04/2021] [Indexed: 11/15/2022]
Abstract
Microsporidia are obligate single-celled eukaryote parasites. Microsporidian infection can cause large economic losses to beneficial insects such as silkworms and honey bees. Identification of resistance biomacromolecules and breeding of transgenic lines resistant to the microsporidian Nosema bombycis are important for disease management. We previously used transcriptome analysis to identify a guanylate binding protein family BmAtlastin-n gene that was significantly upregulated after Nosema bombycis infection, and we determined that the molecule was highly expressed in resistance-related tissues such as the midgut, fat body and the epidermis. The transgenic silkworm line overexpressing BmAtlastin-n biomolecules had economic characters similar to those of non-transgenic lines. The transgenic OE-BmAtlastin-n lines had significantly improved survival after microspore infection. We used RT-PCR and H&E staining to show that the number of spores in the transgenic lines was significantly lower than in the control lines. In this study, we identified a BmAtlastin-n macromolecule with resistance to N. bombycis and developed a transgenic line. The results improved understanding of the GBP protein family and provided biomacromolecule material for the treatment and prevention of microsporidia.
Collapse
Affiliation(s)
- Zhanqi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
| | - Ning Zheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Congwu Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Xuhua Huang
- The General Extension Station of Sericulture Technology of Guangxi Zhuang Autonomous Region, Nanning 530007, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
| | - Qin Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Boyuan Deng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China.
| | - Minhui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China.
| |
Collapse
|
15
|
Eaglesham JB, McCarty KL, Kranzusch PJ. Structures of diverse poxin cGAMP nucleases reveal a widespread role for cGAS-STING evasion in host-pathogen conflict. eLife 2020; 9:e59753. [PMID: 33191912 PMCID: PMC7688311 DOI: 10.7554/elife.59753] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
DNA viruses in the family Poxviridae encode poxin enzymes that degrade the immune second messenger 2'3'-cGAMP to inhibit cGAS-STING immunity in mammalian cells. The closest homologs of poxin exist in the genomes of insect viruses suggesting a key mechanism of cGAS-STING evasion may have evolved outside of mammalian biology. Here we use a biochemical and structural approach to discover a broad family of 369 poxins encoded in diverse viral and animal genomes and define a prominent role for 2'3'-cGAMP cleavage in metazoan host-pathogen conflict. Structures of insect poxins reveal unexpected homology to flavivirus proteases and enable identification of functional self-cleaving poxins in RNA-virus polyproteins. Our data suggest widespread 2'3'-cGAMP signaling in insect antiviral immunity and explain how a family of cGAS-STING evasion enzymes evolved from viral proteases through gain of secondary nuclease activity. Poxin acquisition by poxviruses demonstrates the importance of environmental connections in shaping evolution of mammalian pathogens.
Collapse
Affiliation(s)
- James B Eaglesham
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
- Department of Cancer Immunology and Virology, Dana-Farber Cancer InstituteBostonUnited States
- Harvard PhD Program in Virology, Division of Medical Sciences, Harvard UniversityBostonUnited States
| | - Kacie L McCarty
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
- Department of Cancer Immunology and Virology, Dana-Farber Cancer InstituteBostonUnited States
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
- Department of Cancer Immunology and Virology, Dana-Farber Cancer InstituteBostonUnited States
- Harvard PhD Program in Virology, Division of Medical Sciences, Harvard UniversityBostonUnited States
- Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer InstituteBostonUnited States
| |
Collapse
|
16
|
Roberts KE, Meaden S, Sharpe S, Kay S, Doyle T, Wilson D, Bartlett LJ, Paterson S, Boots M. Resource quality determines the evolution of resistance and its genetic basis. Mol Ecol 2020; 29:4128-4142. [PMID: 32860314 DOI: 10.1111/mec.15621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 10/23/2022]
Abstract
Parasites impose strong selection on their hosts, but the level of any evolved resistance may be constrained by the availability of resources. However, studies identifying the genomic basis of such resource-mediated selection are rare, particularly in nonmodel organisms. Here, we investigated the role of nutrition in the evolution of resistance to a DNA virus (PiGV), and any associated trade-offs in a lepidopteran pest species (Plodia interpunctella). Through selection experiments and whole-genome resequencing, we identify genetic markers of resistance that vary between the nutritional environments during selection. We do not find consistent evolution of resistance in the presence of virus but rather see substantial variation among replicate populations. Resistance in a low-nutrition environment is negatively correlated with growth rate, consistent with an established trade-off between immunity and development, but this relationship is highly context dependent. Whole-genome resequencing of the host shows that resistance mechanisms are likely to be highly polygenic and although the underlying genetic architecture may differ between high and low-nutrition environments, similar mechanisms are commonly used. As a whole, our results emphasize the importance of the resource environment on influencing the evolution of resistance.
Collapse
Affiliation(s)
- Katherine E Roberts
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, UK
| | - Sean Meaden
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, UK
| | - Stephen Sharpe
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, UK
| | - Suzanne Kay
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, UK
| | - Toby Doyle
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, UK
| | - Drew Wilson
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, UK
| | | | - Steve Paterson
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Mike Boots
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, UK.,Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
17
|
Kong X, Wei G, Chen N, Zhao S, Shen Y, Zhang J, Li Y, Zeng X, Wu X. Dynamic chromatin accessibility profiling reveals changes in host genome organization in response to baculovirus infection. PLoS Pathog 2020; 16:e1008633. [PMID: 32511266 PMCID: PMC7326278 DOI: 10.1371/journal.ppat.1008633] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/30/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022] Open
Abstract
DNA viruses can hijack and manipulate the host chromatin state to facilitate their infection. Multiple lines of evidences reveal that DNA virus infection results in the host chromatin relocation, yet there is little known about the effects of viral infection on the architecture of host chromatin. Here, a combination of epigenomic, transcriptomic and biochemical assays were conducted to investigate the temporal dynamics of chromatin accessibility in response to Bombyx mori nucleopolyhedrovirus (BmNPV) infection. The high-quality ATAC-seq data indicated that progressive chromatin remodeling took place following BmNPV infection. Viral infection resulted in a more open chromatin architecture, along with the marginalization of host genome and nucleosome disassembly. Moreover, our results revealed that chromatin accessibility in uninfected cells was regulated by euchromatic modifications, whereas the viral-induced highly accessible chromatin regions were originally associated with facultative heterochromatic modification. Overall, our findings illustrate for the first time the organization and accessibility of host chromatin in BmNPV-infected cells, which lay the foundation for future studies on epigenomic regulation mediated by DNA viruses. As a well-studied arthropod-specific double-stranded DNA virus, Bombyx mori nucleopolyhedrovirus (BmNPV) is a representative member of baculoviruses. BmNPV infection results in significant host chromatin marginalization, which has also been found in most DNA viruses. However, the effects of baculovirus infection on the organization and accessibility of host chromatin are poorly understood. Here, by using ATAC-seq, we show that DNA virus BmNPV infection gradually remodels the accessibility of host chromatin. ATAC-seq data reveal that the marginalized host chromatin is a more accessible architecture along with the depletion of multi-nucleosome depositions. Moreover, our findings suggest the increased accessibility regions are regulated by the facultative heterochromatic modification. Overall, we provide a novel understanding of molecular mechanisms by which baculovirus and DNA viruses alter the organization of host chromatin in epigenomic regulation.
Collapse
Affiliation(s)
- Xiangshuo Kong
- Institute of Sericulture and Apiculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | | | - Nan Chen
- Institute of Sericulture and Apiculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Shudi Zhao
- Institute of Sericulture and Apiculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yunwang Shen
- Institute of Sericulture and Apiculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Jianjia Zhang
- Institute of Sericulture and Apiculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yang Li
- Institute of Sericulture and Apiculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Xiaoqun Zeng
- Institute of Sericulture and Apiculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Xiaofeng Wu
- Institute of Sericulture and Apiculture, College of Animal Science, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
18
|
Sosa-Gómez DR, Morgado FS, Corrêa RFT, Silva LA, Ardisson-Araújo DMP, Rodrigues BMP, Oliveira EE, Aguiar RWS, Ribeiro BM. Entomopathogenic Viruses in the Neotropics: Current Status and Recently Discovered Species. NEOTROPICAL ENTOMOLOGY 2020; 49:315-331. [PMID: 32358711 DOI: 10.1007/s13744-020-00770-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/03/2020] [Indexed: 06/11/2023]
Abstract
The market for biological control of insect pests in the world and in Brazil has grown in recent years due to the unwanted ecological and human health impacts of chemical insecticides. Therefore, research on biological control agents for pest management has also increased. For instance, insect viruses have been used to protect crops and forests around the world for decades. Among insect viruses, the baculoviruses are the most studied and used viral biocontrol agent. More than 700 species of insects have been found to be naturally infected by baculoviruses, with 90% isolated from lepidopteran insects. In this review, some basic aspects of baculovirus infection in vivo and in vitro infection, gene content, viral replication will be discussed. Furthermore, we provide examples of the use of insect viruses for biological pest control and recently characterized baculoviruses in Brazil.
Collapse
Affiliation(s)
- D R Sosa-Gómez
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Soja, Londrina, PR, Brasil
| | - F S Morgado
- Depto de Biologia Celular, Univ of Brasília, Brasília, DF, Brasil
| | - R F T Corrêa
- Depto de Biotecnologia, Univ Federal de Tocantins, Gurupi, TO, Brasil
| | - L A Silva
- Depto de Biologia Celular, Univ of Brasília, Brasília, DF, Brasil
| | - D M P Ardisson-Araújo
- Depto de Bioquímica e Biologia Molecular, Univ Federal de Santa Maria, Santa Maria, RS, Brasil
| | - B M P Rodrigues
- Depto de Biologia Celular, Univ of Brasília, Brasília, DF, Brasil
| | - E E Oliveira
- Depto de Entomologia, Univ Federal de Viçosa, Viçosa, MG, Brasil
| | - R W S Aguiar
- Depto de Biotecnologia, Univ Federal de Tocantins, Gurupi, TO, Brasil
| | - B M Ribeiro
- Depto de Biologia Celular, Univ of Brasília, Brasília, DF, Brasil.
| |
Collapse
|