1
|
Ding H, Nguyen HT, Li W, Deshpande A, Zhang S, Jiang F, Zhang Z, Anang S, Mothes W, Sodroski J, Kappes JC. Inducible cell lines producing replication-defective human immunodeficiency virus particles containing envelope glycoproteins stabilized in a pretriggered conformation. J Virol 2024:e0172024. [PMID: 39508605 DOI: 10.1128/jvi.01720-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024] Open
Abstract
During the process by which human immunodeficiency virus (HIV-1) enters cells, the envelope glycoprotein (Env) trimer on the virion surface engages host cell receptors. Binding to the receptor CD4 induces Env to undergo transitions from a pretriggered, "closed" (State-1) conformation to more "open" (State 2/3) conformations. Most broadly neutralizing antibodies (bNAbs), which are difficult to elicit, recognize the pretriggered (State-1) conformation. More open Env conformations are recognized by poorly neutralizing antibodies (pNAbs), which are readily elicited during natural infection and vaccination with current Env immunogens. Env heterogeneity likely contributes to HIV-1 persistence by skewing antibody responses away from the pretriggered conformation. The conformationally flexible gp160 Env precursor on the infected cell or virion surface potentially presents multiple pNAb epitopes to the host immune system. Although proteolytic cleavage to produce the functional, mature Env trimer [(gp120/gp41)3] stabilizes State-1, many primary HIV-1 Envs spontaneously sample more open conformations. Here, we establish inducible cell lines that produce replication-defective HIV-1 particles with Env trimers stabilized in a pretriggered conformation. The mature Env is enriched on virus-like particles (VLPs). Using complementary approaches, we estimate an average of 25-50 Env trimers on each VLP. The stabilizing changes in Env limit the natural conformational heterogeneity of the VLP Env trimers, allowing recognition by bNAbs but not pNAbs. These defective VLPs provide a more homogeneous source of pretriggered Env trimers in a native membrane environment. Thus, these VLPs may facilitate the characterization of this functionally important Env conformation and its interaction with the immune system.IMPORTANCEA major impediment to the development of an effective HIV/AIDS vaccine is the inefficiency with which human immunodeficiency virus (HIV-1) envelope glycoproteins elicit antibodies that neutralize multiple virus strains. Neutralizing antibodies recognize a particular shape of the envelope glycoproteins that resides on the viral membrane before the virus engages the host cell. Here, we report the creation of stable cell lines that inducibly produce non-infectious HIV-like particles. The normally flexible envelope glycoprotein spikes on these virus-like particles have been stabilized in a conformation that is recognized by broadly neutralizing antibodies. These virus-like particles allow the study of the envelope glycoprotein conformation, its modification by sugars, and its ability to elicit desired neutralizing antibodies.
Collapse
Affiliation(s)
- Haitao Ding
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hanh T Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Wenwei Li
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, USA
| | - Ashlesha Deshpande
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Shijian Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Fan Jiang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Zhiqing Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Saumya Anang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - John C Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, Alabama, USA
| |
Collapse
|
2
|
Omar S, Woodman ZL. The evolution of envelope function during coinfection with phylogenetically distinct human immunodeficiency virus. BMC Infect Dis 2024; 24:934. [PMID: 39251948 PMCID: PMC11385138 DOI: 10.1186/s12879-024-09805-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/23/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Coinfection with two phylogenetically distinct Human Immunodeficiency Virus-1 (HIV-1) variants might provide an opportunity for rapid viral expansion and the emergence of fit variants that drive disease progression. However, autologous neutralising immune responses are known to drive Envelope (Env) diversity which can either enhance replicative capacity, have no effect, or reduce viral fitness. This study investigated whether in vivo outgrowth of coinfecting variants was linked to pseudovirus and infectious molecular clones' infectivity to determine whether diversification resulted in more fit virus with the potential to increase disease progression. RESULTS For most participants, emergent recombinants displaced the co-transmitted variants and comprised the major population at 52 weeks postinfection with significantly higher entry efficiency than other co-circulating viruses. Our findings suggest that recombination within gp41 might have enhanced Env fusogenicity which contributed to the increase in pseudovirus entry efficiency. Finally, there was a significant correlation between pseudovirus entry efficiency and CD4 + T cell count, suggesting that the enhanced replicative capacity of recombinant variants could result in more virulent viruses. CONCLUSION Coinfection provides variants with the opportunity to undergo rapid recombination that results in more infectious virus. This highlights the importance of monitoring the replicative fitness of emergent viruses.
Collapse
Affiliation(s)
- Shatha Omar
- Department of Integrative Biomedical Sciences (IBMS), Division of Medical Biochemistry and Structural Biology, University of Cape Town, Cape Town, South Africa
- Department of Biomedical Sciences, Division of Molecular Biology and Human Genetics, TB Genomics Group, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Zenda L Woodman
- Department of Integrative Biomedical Sciences (IBMS), Division of Medical Biochemistry and Structural Biology, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
3
|
Basu S, Gohain N, Kim J, Trinh HV, Choe M, Joyce MG, Rao M. Determination of Binding Affinity of Antibodies to HIV-1 Recombinant Envelope Glycoproteins, Pseudoviruses, Infectious Molecular Clones, and Cell-Expressed Trimeric gp160 Using Microscale Thermophoresis. Cells 2023; 13:33. [PMID: 38201237 PMCID: PMC10778174 DOI: 10.3390/cells13010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/27/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
Developing a preventative vaccine for HIV-1 has been a global priority. The elicitation of broadly neutralizing antibodies (bNAbs) against a broad range of HIV-1 envelopes (Envs) from various strains appears to be a critical requirement for an efficacious HIV-1 vaccine. To understand their ability to neutralize HIV-1, it is important to characterize the binding characteristics of bNAbs. Our work is the first to utilize microscale thermophoresis (MST), a rapid, economical, and flexible in-solution temperature gradient method to quantitatively determine the binding affinities of bNAbs and non-neutralizing monoclonal antibodies (mAbs) to HIV-1 recombinant envelope monomer and trimer proteins of different subtypes, pseudoviruses (PVs), infectious molecular clones (IMCs), and cells expressing the trimer. Our results demonstrate that the binding affinities were subtype-dependent. The bNAbs exhibited a higher affinity to IMCs compared to PVs and recombinant proteins. The bNAbs and mAbs bound with high affinity to native-like gp160 trimers expressed on the surface of CEM cells compared to soluble recombinant proteins. Interesting differences were seen with V2-specific mAbs. Although they recognize linear epitopes, one of the antibodies also bound to the Envs on PVs, IMCs, and a recombinant trimer protein, suggesting that the epitope was not occluded. The identification of epitopes on the envelope surface that can bind to high affinity mAbs could be useful for designing HIV-1 vaccines and for down-selecting vaccine candidates that can induce high affinity antibodies to the HIV-1 envelope in their native conformation.
Collapse
Affiliation(s)
- Shraddha Basu
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (S.B.); (N.G.); (J.K.); (H.V.T.); (M.C.); (M.G.J.)
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Neelakshi Gohain
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (S.B.); (N.G.); (J.K.); (H.V.T.); (M.C.); (M.G.J.)
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Jiae Kim
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (S.B.); (N.G.); (J.K.); (H.V.T.); (M.C.); (M.G.J.)
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Hung V. Trinh
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (S.B.); (N.G.); (J.K.); (H.V.T.); (M.C.); (M.G.J.)
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Misook Choe
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (S.B.); (N.G.); (J.K.); (H.V.T.); (M.C.); (M.G.J.)
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - M. Gordon Joyce
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (S.B.); (N.G.); (J.K.); (H.V.T.); (M.C.); (M.G.J.)
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Mangala Rao
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| |
Collapse
|
4
|
Nguyen HT, Wang Q, Anang S, Sodroski JG. Characterization of the Human Immunodeficiency Virus (HIV-1) Envelope Glycoprotein Conformational States on Infectious Virus Particles. J Virol 2023; 97:e0185722. [PMID: 36815832 PMCID: PMC10062176 DOI: 10.1128/jvi.01857-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Human immunodeficiency virus (HIV-1) entry into cells involves triggering of the viral envelope glycoprotein (Env) trimer ([gp120/gp41]3) by the primary receptor, CD4, and coreceptors, CCR5 or CXCR4. The pretriggered (State-1) conformation of the mature (cleaved) Env is targeted by broadly neutralizing antibodies (bNAbs), which are inefficiently elicited compared with poorly neutralizing antibodies (pNAbs). Here, we characterize variants of the moderately triggerable HIV-1AD8 Env on virions produced by an infectious molecular proviral clone; such virions contain more cleaved Env than pseudotyped viruses. We identified three types of cleaved wild-type AD8 Env trimers on virions: (i) State-1-like trimers preferentially recognized by bNAbs and exhibiting strong subunit association; (ii) trimers recognized by pNAbs directed against the gp120 coreceptor-binding region and exhibiting weak, detergent-sensitive subunit association; and (iii) a minor gp41-only population. The first Env population was enriched and the other Env populations reduced by introducing State-1-stabilizing changes in the AD8 Env or by treatment of the virions with crosslinker or the State-1-preferring entry inhibitor, BMS-806. These stabilized AD8 Envs were also more resistant to gp120 shedding induced by a CD4-mimetic compound or by incubation on ice. Conversely, a State-1-destabilized, CD4-independent AD8 Env variant exhibited weaker bNAb recognition and stronger pNAb recognition. Similar relationships between Env triggerability and antigenicity/shedding propensity on virions were observed for other HIV-1 strains. State-1 Envs on virions can be significantly enriched by minimizing the adventitious incorporation of uncleaved Env; stabilizing the pretriggered conformation by Env modification, crosslinking or BMS-806 treatment; strengthening Env subunit interactions; and using CD4-negative producer cells. IMPORTANCE Efforts to develop an effective HIV-1 vaccine have been frustrated by the inability to elicit broad neutralizing antibodies that recognize multiple virus strains. Such antibodies can bind a particular shape of the HIV-1 envelope glycoprotein trimer, as it exists on a viral membrane but before engaging receptors on the host cell. Here, we establish simple yet powerful assays to characterize the envelope glycoproteins in a natural context on virus particles. We find that, depending on the HIV-1 strain, some envelope glycoproteins change shape and fall apart, creating decoys that can potentially divert the host immune response. We identify requirements to keep the relevant envelope glycoprotein target for broad neutralizing antibodies intact on virus-like particles. These studies suggest strategies that should facilitate efforts to produce and use virus-like particles as vaccine immunogens.
Collapse
Affiliation(s)
- Hanh T. Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Qian Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Saumya Anang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph G. Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Identification of an Antiretroviral Small Molecule That Appears To Be a Host-Targeting Inhibitor of HIV-1 Assembly. J Virol 2021; 95:JVI.00883-20. [PMID: 33148797 PMCID: PMC7925099 DOI: 10.1128/jvi.00883-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/25/2020] [Indexed: 12/16/2022] Open
Abstract
Given the projected increase in multidrug-resistant HIV-1, there is an urgent need for development of antiretrovirals that act on virus life cycle stages not targeted by drugs currently in use. Host-targeting compounds are of particular interest because they can offer a high barrier to resistance. Here, we report identification of two related small molecules that inhibit HIV-1 late events, a part of the HIV-1 life cycle for which potent and specific inhibitors are lacking. This chemotype was discovered using cell-free protein synthesis and assembly systems that recapitulate intracellular host-catalyzed viral capsid assembly pathways. These compounds inhibit replication of HIV-1 in human T cell lines and peripheral blood mononuclear cells, and are effective against a primary isolate. They reduce virus production, likely by inhibiting a posttranslational step in HIV-1 Gag assembly. Notably, the compound colocalizes with HIV-1 Gag in situ; however, unexpectedly, selection experiments failed to identify compound-specific resistance mutations in gag or pol, even though known resistance mutations developed upon parallel nelfinavir selection. Thus, we hypothesized that instead of binding to Gag directly, these compounds localize to assembly intermediates, the intracellular multiprotein complexes containing Gag and host factors that form during immature HIV-1 capsid assembly. Indeed, imaging of infected cells shows compound colocalized with two host enzymes found in assembly intermediates, ABCE1 and DDX6, but not two host proteins found in other complexes. While the exact target and mechanism of action of this chemotype remain to be determined, our findings suggest that these compounds represent first-in-class, host-targeting inhibitors of intracellular events in HIV-1 assembly.IMPORTANCE The success of antiretroviral treatment for HIV-1 is at risk of being undermined by the growing problem of drug resistance. Thus, there is a need to identify antiretrovirals that act on viral life cycle stages not targeted by drugs in use, such as the events of HIV-1 Gag assembly. To address this gap, we developed a compound screen that recapitulates the intracellular events of HIV-1 assembly, including virus-host interactions that promote assembly. This effort led to the identification of a new chemotype that inhibits HIV-1 replication at nanomolar concentrations, likely by acting on assembly. This compound colocalized with Gag and two host enzymes that facilitate capsid assembly. However, resistance selection did not result in compound-specific mutations in gag, suggesting that the chemotype does not directly target Gag. We hypothesize that this chemotype represents a first-in-class inhibitor of virus production that acts by targeting a virus-host complex important for HIV-1 Gag assembly.
Collapse
|
6
|
The development of HIV vaccines targeting gp41 membrane-proximal external region (MPER): challenges and prospects. Protein Cell 2018; 9:596-615. [PMID: 29667004 PMCID: PMC6019655 DOI: 10.1007/s13238-018-0534-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 03/05/2018] [Indexed: 10/31/2022] Open
Abstract
A human immunodeficiency virus type-1 (HIV-1) vaccine which is able to effectively prevent infection would be the most powerful method of extinguishing pandemic of the acquired immunodeficiency syndrome (AIDS). Yet, achieving such vaccine remains great challenges. The membrane-proximal external region (MPER) is a highly conserved region of the envelope glycoprotein (Env) gp41 subunit near the viral envelope surface, and it plays a key role in membrane fusion. It is also the target of some reported broadly neutralizing antibodies (bNAbs). Thus, MPER is deemed to be one of the most attractive vaccine targets. However, no one can induce these bNAbs by immunization with immunogens containing the MPER sequence(s). The few attempts at developing a vaccine have only resulted in the induction of neutralizing antibodies with quite low potency and limited breadth. Thus far, vaccine failure can be attributed to various characteristics of MPER, such as those involving structure and immunology; therefore, we will focus on these and review the recent progress in the field from the following perspectives: (1) MPER structure and its role in membrane fusion, (2) the epitopes and neutralization mechanisms of MPER-specific bNAbs, as well as the limitations in eliciting neutralizing antibodies, and (3) different strategies for MPER vaccine design and current harvests.
Collapse
|
7
|
Jan M, Upadhyay C, Alcami Pertejo J, Hioe CE, Arora SK. Heterogeneity in glycan composition on the surface of HIV-1 envelope determines virus sensitivity to lectins. PLoS One 2018; 13:e0194498. [PMID: 29579062 PMCID: PMC5868795 DOI: 10.1371/journal.pone.0194498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/05/2018] [Indexed: 01/08/2023] Open
Abstract
Lectins that target N-glycans on the surface of HIV-1 envelope (Env) glycoprotein have the potential for use as antiviral agents. Although progress has been made in deciphering the molecular details of lectin and Env glycan interaction, further studies are needed to better understand Env glycan heterogeneity among HIV-1 isolates and its influence on virus-neutralization sensitivity to lectins. This study evaluated a panel of lectins with fine specificity for distinct oligosaccharides and assessed their ability to inhibit infection of HIV-1 viruses known to have differing sensitivity to anti-HIV Env antibodies. The results showed that HIV-1 isolates have different sensitivity to lectins specific for α1-3Man, α1-6Man, and α1-2Man binding lectins. Considering that lectins exclusively recognize the oligosaccharide components of virus Env, these data suggest that glycan heterogeneity among HIV-1 isolates may explain this differential sensitivity. To evaluate this further, chronic and acute viruses were produced in the presence of different glycosidase inhibitors to express more homogenous glycans. Viruses enriched for α1-2Man terminating Man5-9GlcNAc2 glycans became similarly sensitive to α1-2Man-binding lectins. The α1-3Man- and α1-6Man-binding lectins also were more potent against viruses expressing predominantly Man5GlcNAc2 and hybrid type glycans with terminal α1-3Man and α1-6Man. Furthermore, lectin-mediated inhibition was competitively alleviated by mannan and this effect was augmented by enrichment of mannose-type glycans on the virus. In addition, while Env of viruses enriched with mannose-type glycans were sensitive to Endo-H deglycosylation, Env of untreated viruses were partially resistant, indicating that HIV-1 Env glycans are heterogeneously comprised of complex, hybrid, and mannose types. Overall, our data demonstrate that HIV-1 isolates display differential sensitivity to lectins, in part due to the microheterogeneity of N-linked glycans expressed on the surface of the virus Env glycoprotein.
Collapse
Affiliation(s)
- Muzafar Jan
- Department of Immunopathology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- James J. Peters VA Medical Center, Bronx, New York, United States of America
| | - Chitra Upadhyay
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - José Alcami Pertejo
- Imunopatologia Del SIDA, Centro Nacional De Microbiologia, Instituo De Salud Carlos III, Madrid, Spain
| | - Catarina E. Hioe
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- James J. Peters VA Medical Center, Bronx, New York, United States of America
| | - Sunil K. Arora
- Department of Immunopathology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
8
|
Molinos-Albert LM, Clotet B, Blanco J, Carrillo J. Immunologic Insights on the Membrane Proximal External Region: A Major Human Immunodeficiency Virus Type-1 Vaccine Target. Front Immunol 2017; 8:1154. [PMID: 28970835 PMCID: PMC5609547 DOI: 10.3389/fimmu.2017.01154] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/31/2017] [Indexed: 12/12/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs) targeting conserved regions within the human immunodeficiency virus type-1 (HIV-1) envelope glycoprotein (Env) can be generated by the human immune system and their elicitation by vaccination will be a key point to protect against the wide range of viral diversity. The membrane proximal external region (MPER) is a highly conserved region within the Env gp41 subunit, plays a major role in membrane fusion and is targeted by naturally induced bNAbs. Therefore, the MPER is considered as an attractive vaccine target. However, despite many attempts to design MPER-based immunogens, further study is still needed to understand its structural complexity, its amphiphilic feature, and its limited accessibility by steric hindrance. These particular features compromise the development of MPER-specific neutralizing responses during natural infection and limit the number of bNAbs isolated against this region, as compared with other HIV-1 vulnerability sites, and represent additional hurdles for immunogen development. Nevertheless, the analysis of MPER humoral responses elicited during natural infection as well as the MPER bNAbs isolated to date highlight that the human immune system is capable of generating MPER protective antibodies. Here, we discuss the recent advances describing the immunologic and biochemical features that make the MPER a unique HIV-1 vulnerability site, the different strategies to generate MPER-neutralizing antibodies in immunization protocols and point the importance of extending our knowledge toward new MPER epitopes by the isolation of novel monoclonal antibodies. This will be crucial for the redesign of immunogens able to skip non-neutralizing MPER determinants.
Collapse
Affiliation(s)
- Luis M Molinos-Albert
- IrsiCaixa AIDS Research Institute, Institut de Recerca Germans Trias i Pujol (IGTP), Germans Trias i Pujol University Hospital, Barcelona, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Institut de Recerca Germans Trias i Pujol (IGTP), Germans Trias i Pujol University Hospital, Barcelona, Spain.,Universitat de Vic - Universitat Central de Catalunya, Barcelona, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Institut de Recerca Germans Trias i Pujol (IGTP), Germans Trias i Pujol University Hospital, Barcelona, Spain.,Universitat de Vic - Universitat Central de Catalunya, Barcelona, Spain
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Institut de Recerca Germans Trias i Pujol (IGTP), Germans Trias i Pujol University Hospital, Barcelona, Spain
| |
Collapse
|
9
|
Dingens AS, Haddox HK, Overbaugh J, Bloom JD. Comprehensive Mapping of HIV-1 Escape from a Broadly Neutralizing Antibody. Cell Host Microbe 2017; 21:777-787.e4. [PMID: 28579254 DOI: 10.1016/j.chom.2017.05.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/27/2017] [Accepted: 05/09/2017] [Indexed: 11/24/2022]
Abstract
Precisely defining how viral mutations affect HIV's sensitivity to antibodies is vital to develop and evaluate vaccines and antibody immunotherapeutics. Despite great effort, a full map of escape mutants has not been delineated for an anti-HIV antibody. We describe a massively parallel experimental approach to quantify how all single amino acid mutations to HIV Envelope (Env) affect neutralizing antibody sensitivity in the context of replication-competent virus. We apply this approach to PGT151, a broadly neutralizing antibody recognizing a combination of Env residues and glycans. We confirm sites previously defined by structural and functional studies and reveal additional sites of escape, such as positively charged mutations in the antibody-Env interface. Evaluating the effect of each amino acid at each site lends insight into biochemical mechanisms of escape throughout the epitope, highlighting roles for charge-charge repulsions. Thus, comprehensively mapping HIV antibody escape gives a quantitative, mutation-level view of Env evasion of neutralization.
Collapse
Affiliation(s)
- Adam S Dingens
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Division of Human Biology and Epidemiology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology PhD Program, University of Washington, Seattle, WA 98195, USA
| | - Hugh K Haddox
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology PhD Program, University of Washington, Seattle, WA 98195, USA
| | - Julie Overbaugh
- Division of Human Biology and Epidemiology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Jesse D Bloom
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
10
|
Musumeci G, Bon I, Lembo D, Cagno V, Re MC, Signoretto C, Diani E, Lopalco L, Pastori C, Martin L, Ponchel G, Gibellini D, Bouchemal K. M48U1 and Tenofovir combination synergistically inhibits HIV infection in activated PBMCs and human cervicovaginal histocultures. Sci Rep 2017; 7:41018. [PMID: 28145455 PMCID: PMC5286506 DOI: 10.1038/srep41018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/15/2016] [Indexed: 11/25/2022] Open
Abstract
Microbicides are considered a promising strategy for preventing human immunodeficiency virus (HIV-1) transmission and disease. In this report, we first analyzed the antiviral activity of the miniCD4 M48U1 peptide formulated in hydroxyethylcellulose (HEC) hydrogel in activated peripheral blood mononuclear cells (PBMCs) infected with R5- and X4–tropic HIV-1 strains. The results demonstrate that M48U1 prevented infection by several HIV-1 strains including laboratory strains, and HIV-1 subtype B and C strains isolated from the activated PBMCs of patients. M48U1 also inhibited infection by two HIV-1 transmitted/founder infectious molecular clones (pREJO.c/2864 and pTHRO.c/2626). In addition, M48U1 was administered in association with tenofovir, and these two antiretroviral drugs synergistically inhibited HIV-1 infection. In the next series of experiments, we tested M48U1 alone or in combination with tenofovir in HEC hydrogel with an organ-like structure mimicking human cervicovaginal tissue. We demonstrated a strong antiviral effect in absence of significant tissue toxicity. Together, these results indicate that co-treatment with M48U1 plus tenofovir is an effective antiviral strategy that may be used as a new topical microbicide to prevent HIV-1 transmission.
Collapse
Affiliation(s)
- Giuseppina Musumeci
- Department of Experimental, Diagnostics and Specialty Medicine (DIMES), Microbiology Section, University of Bologna, 40138 Bologna, Italy
| | - Isabella Bon
- Department of Experimental, Diagnostics and Specialty Medicine (DIMES), Microbiology Section, University of Bologna, 40138 Bologna, Italy
| | - David Lembo
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy
| | - Valeria Cagno
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy
| | - Maria Carla Re
- Department of Experimental, Diagnostics and Specialty Medicine (DIMES), Microbiology Section, University of Bologna, 40138 Bologna, Italy
| | - Caterina Signoretto
- Department of Diagnostics and Public Health, Microbiology and Virology Unit, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Erica Diani
- Department of Diagnostics and Public Health, Microbiology and Virology Unit, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Lucia Lopalco
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Claudia Pastori
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Loïc Martin
- CEA, iBiTecS, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), Gif sur Yvette, F-91191, France
| | - Gilles Ponchel
- Institut Galien Paris Sud, CNRS UMR 8612, Univ. Paris-Sud, Université Paris Saclay, 5 rue J-B. Clément, 92296, Châtenay-Malabry cedex, France
| | - Davide Gibellini
- Department of Diagnostics and Public Health, Microbiology and Virology Unit, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Kawthar Bouchemal
- Institut Galien Paris Sud, CNRS UMR 8612, Univ. Paris-Sud, Université Paris Saclay, 5 rue J-B. Clément, 92296, Châtenay-Malabry cedex, France
| |
Collapse
|
11
|
Del Prete GQ, Lifson JD, Keele BF. Nonhuman primate models for the evaluation of HIV-1 preventive vaccine strategies: model parameter considerations and consequences. Curr Opin HIV AIDS 2016; 11:546-554. [PMID: 27559710 PMCID: PMC5100008 DOI: 10.1097/coh.0000000000000311] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Nonhuman primate (NHP) models of AIDS are powerful systems for evaluating HIV vaccine approaches in vivo. Authentic features of HIV-1 transmission, dissemination, target cell tropism, and pathogenesis, and aspects of anti-HIV-1 immune responses, can be recapitulated in NHPs provided the appropriate, specific model parameters are considered. Here, we discuss key model parameter options and their implications for HIV-1 vaccine evaluation. RECENT FINDINGS With the availability of several different NHP host species/subspecies, different challenge viruses and challenge stock production methods, and various challenge routes and schemata, multiple NHP models of AIDS exist for HIV vaccine evaluation. The recent development of multiple new challenge viruses, including chimeric simian-human immunodeficiency viruses and simian immunodeficiency virus clones, improved characterization of challenge stocks and production methods, and increased insight into specific challenge parameters have resulted in an increase in the number of available models and a better understanding of the implications of specific study design choices. SUMMARY Recent progress and technical developments promise new insights into basic disease mechanisms and improved models for better preclinical evaluation of interventions to prevent HIV transmission.
Collapse
Affiliation(s)
- Gregory Q. Del Prete
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| |
Collapse
|
12
|
Strauss-Albee DM, Fukuyama J, Liang EC, Yao Y, Jarrell JA, Drake AL, Kinuthia J, Montgomery RR, John-Stewart G, Holmes S, Blish CA. Human NK cell repertoire diversity reflects immune experience and correlates with viral susceptibility. Sci Transl Med 2016. [PMID: 26203083 DOI: 10.1126/scitranslmed.aac5722] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Innate natural killer (NK) cells are diverse at the single-cell level because of variegated expressions of activating and inhibitory receptors, yet the developmental roots and functional consequences of this diversity remain unknown. Because NK cells are critical for antiviral and antitumor responses, a better understanding of their diversity could lead to an improved ability to harness them therapeutically. We found that NK diversity is lower at birth than in adults. During an antiviral response to either HIV-1 or West Nile virus, NK diversity increases, resulting in terminal differentiation and cytokine production at the cost of cell division and degranulation. In African women matched for HIV-1 exposure risk, high NK diversity is associated with increased risk of HIV-1 acquisition. Existing diversity may therefore decrease the flexibility of the antiviral response. Collectively, the data reveal that human NK diversity is a previously undefined metric of immune history and function that may be clinically useful in forecasting the outcomes of infection and malignancy.
Collapse
Affiliation(s)
- Dara M Strauss-Albee
- Stanford Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA. Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Julia Fukuyama
- Department of Statistics, Stanford University, Stanford, CA 94305, USA
| | - Emily C Liang
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yi Yao
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06519, USA
| | - Justin A Jarrell
- Stanford Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA. Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alison L Drake
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| | - John Kinuthia
- Department of Research and Programs, Kenyatta National Hospital, Nairobi 00202, Kenya
| | - Ruth R Montgomery
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06519, USA
| | - Grace John-Stewart
- Department of Global Health, University of Washington, Seattle, WA 98195, USA. Department of Epidemiology, University of Washington, Seattle, WA 98195, USA. Department of Medicine, University of Washington, Seattle, WA 98195, USA. Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Susan Holmes
- Department of Statistics, Stanford University, Stanford, CA 94305, USA
| | - Catherine A Blish
- Stanford Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA. Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
13
|
Exclusive Decoration of Simian Immunodeficiency Virus Env with High-Mannose Type N-Glycans Is Not Compatible with Mucosal Transmission in Rhesus Macaques. J Virol 2015; 89:11727-33. [PMID: 26355090 PMCID: PMC4645679 DOI: 10.1128/jvi.01358-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/02/2015] [Indexed: 11/22/2022] Open
Abstract
Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) envelope (Env) proteins are extensively decorated with N-glycans, predominantly of the high-mannose type. However, it is unclear how high-mannose N-glycans on Env impact viral spread. We show that exclusive modification of SIV Env with these N-glycans reduces viral infectivity and abrogates mucosal transmission, despite increasing viral capture by immune cell lectins. Thus, high-mannose N-glycans have opposed effects on SIV infectivity and lectin reactivity, and a balance might be required for efficient mucosal transmission.
Collapse
|
14
|
Miglietta R, Pastori C, Venuti A, Ochsenbauer C, Lopalco L. Synergy in monoclonal antibody neutralization of HIV-1 pseudoviruses and infectious molecular clones. J Transl Med 2014; 12:346. [PMID: 25496375 PMCID: PMC4274758 DOI: 10.1186/s12967-014-0346-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/26/2014] [Indexed: 12/26/2022] Open
Abstract
Background Early events in HIV infection are still poorly understood; virus derived from acute infections, the transmitted/founders IMCs, could provide more reliable information as they represent strains that established HIV infection in vivo, and therefore are investigated to elucidate potentially shared biological features. Methods This study examined synergy in neutralization by six monoclonal antibodies targeting different domains in gp120 and gp41 and assayed in pairwise combination against 11 HIV-1 clade B strains, either Env pseudoviruses (PV, n = 5) or transmitted/founder infectious molecular clones (T/F IMCs, n = 6). Three of the early-infection env tested as PV were juxtaposed with T/F viruses derived from the same three patients, respectively. Results All antibodies reaching IC50 were assayed pairwise (n = 50). T/F IMCs showed overall lower sensitivity to neutralization by single antibodies than PV, including within the three patient-matched pairs. Remarkably, combination index (CI) calculated using the Chow and Talalay method indicated synergy (CI < 0.9) in 42 data sets, and occurred in T/F IMC at similar proportions (15 of 17 antibody-T/F IMC combinations tested) as in pseudoviruses (27 of 33). CI values indicative of additivity and low-level antagonism were seen in 5 and 3 cases, respectively. Most pairs showed comparable synergic neutralizing effects on both virus groups, with the 4E10 + PG16 pair achieving the best synergic effects. Variability in neutralization was mostly observed on pseudovirus isolates, suggesting that factors other than virus isolation technology, such as env conformation, epitope accessibility and antibody concentration, are likely to affect polyclonal neutralization. Conclusions The findings from this study suggest that inhibitory activity of bNAbs can be further augmented through appropriate combination, even against viruses representing circulating strains, which are likely to exhibit a less sensitive Tier 2 neutralization phenotype. This notion has important implications for the design and development of anti-Env bNAb-inducing vaccines and polyclonal sera for passive immunization. Electronic supplementary material The online version of this article (doi:10.1186/s12967-014-0346-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Riccardo Miglietta
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy. .,Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Claudia Pastori
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy.
| | - Assunta Venuti
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy.
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA. .,CFAR, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Lucia Lopalco
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
15
|
Etemad B, Gonzalez OA, White L, Laeyendecker O, Kirk GD, Mehta S, Sagar M. Characterization of HIV-1 envelopes in acutely and chronically infected injection drug users. Retrovirology 2014; 11:106. [PMID: 25430652 PMCID: PMC4253609 DOI: 10.1186/s12977-014-0106-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 11/08/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Mucosally acquired human immunodeficiency virus type 1 (HIV-1) infection results from a limited number of variants, and these infecting strains potentially have unique properties, such as increased susceptibility to entry blockers, relative interferon-alpha (IFN-α) resistance, and replication differences in some primary cells. There is no data about the phenotypic properties of HIV-1 envelope variants found early after acquisition among subjects infected through injection drug use (IDU). For the first time, we compared the characteristics of virus envelopes among injection drug users sampled prior to seroconversion (HIV RNA+/Ab-), within 1 year (early), and more than 2 years (chronic) after estimated acquisition. RESULTS Virus envelopes from 7 HIV RNA+/Ab- subjects possessed lower genetic diversity and divergence compared to 7 unrelated individuals sampled during the chronic phase of disease. Replication competent recombinant viruses incorporating the HIV RNA+/Ab- as compared to the chronic phase envelopes were significantly more sensitive to a CCR5 receptor inhibitor and IFN-α and showed a statistical trend toward greater sensitivity to a fusion blocker. The early as compared to chronic infection envelopes also demonstrated a statistical trend or significantly greater sensitivity to CCR5 and fusion inhibitor and IFN- α. The HIV RNA+/Ab- as compared to chronic envelope viruses replicated to a lower extent in mature monocyte derived dendritic cells - CD4+ T cell co-cultures, but there were no significant replication differences in other primary cells among the viruses with envelopes from the 3 different stages of infection. CONCLUSIONS Similar to mucosal acquisition, HIV-1 envelope quasispecies present in injection drug users prior to seroconversion have unique phenotypic properties compared to those circulating during the chronic phase of disease.
Collapse
Affiliation(s)
- Behzad Etemad
- Boston University School of Medicine, Boston, MA, USA.
| | | | - Laura White
- Boston University School of Public Health, Boston, MA, USA.
| | - Oliver Laeyendecker
- Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Gregory D Kirk
- Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Shruti Mehta
- Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Manish Sagar
- Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
16
|
Mutations in HIV-1 envelope that enhance entry with the macaque CD4 receptor alter antibody recognition by disrupting quaternary interactions within the trimer. J Virol 2014; 89:894-907. [PMID: 25378497 DOI: 10.1128/jvi.02680-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Chimeric simian immunodeficiency virus (SIV)/human immunodeficiency virus (HIV) (SHIV) infection of macaques is commonly used to model HIV type 1 (HIV-1) transmission and pathogenesis in humans. Despite the fact that SHIVs encode SIV antagonists of the known macaque host restriction factors, these viruses require additional adaptation for replication in macaques to establish a persistent infection. Additional adaptation may be required in part because macaque CD4 (mCD4) is a suboptimal receptor for most HIV-1 envelope glycoprotein (Env) variants. This requirement raises the possibility that adaptation of HIV-1 Env to the macaque host leads to selection of variants that lack important biological and antigenic properties of the viruses responsible for the HIV-1 pandemic in humans. Here, we investigated whether this adaptation process leads to changes in the antigenicity and structure of HIV-1 Env. For this purpose, we examined how two independent mutations that enhance mCD4-mediated entry, A204E and G312V, impact antibody recognition in the context of seven different parental HIV-1 Env proteins from diverse subtypes. We also examined HIV-1 Env variants from three SHIVs that had been adapted for increased replication in macaques. Our results indicate that these different macaque-adapted variants had features in common, including resistance to antibodies directed to quaternary epitopes and sensitivity to antibodies directed to epitopes in the variable domains (V2 and V3) that are buried in the parental, unadapted Env proteins. Collectively, these findings suggest that adaptation to mCD4 results in conformational changes that expose epitopes in the variable domains and disrupt quaternary epitopes in the native Env trimer. IMPORTANCE These findings indicate the antigenic consequences of adapting HIV-1 Env to mCD4. They also suggest that to best mimic HIV-1 infection in humans when using the SHIV/macaque model, HIV-1 Env proteins should be identified that use mCD4 as a functional receptor and preserve quaternary epitopes characteristic of HIV-1 Env.
Collapse
|
17
|
Pena-Cruz V, Etemad B, Chatziandreou N, Nyein PH, Stock S, Reynolds SJ, Laeyendecker O, Gray RH, Serwadda D, Lee SJ, Quinn TC, Sagar M. HIV-1 envelope replication and α4β7 utilization among newly infected subjects and their corresponding heterosexual partners. Retrovirology 2013; 10:162. [PMID: 24369910 PMCID: PMC3883469 DOI: 10.1186/1742-4690-10-162] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/10/2013] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Previous studies suggest that active selection limits the number of HIV-1 variants acquired by a newly infected individual from the diverse variants circulating in the transmitting partner. We compared HIV-1 envelopes from 9 newly infected subjects and their linked transmitting partner to explore potential mechanisms for selection. RESULTS Recipient virus envelopes had significant genotypic differences compared to those present in the transmitting partner. Recombinant viruses incorporating pools of recipient and transmitter envelopes showed no significant difference in their sensitivity to receptor and fusion inhibitors, suggesting they had relatively similar entry capacity in the presence of low CD4 and CCR5 levels. Aggregate results in primary cells from up to 4 different blood or skin donors showed that viruses with envelopes from the transmitting partner as compared to recipient envelopes replicated more efficiently in CD4+ T cells, monocyte derived dendritic cell (MDDC) - CD4+ T cell co-cultures, Langerhans cells (LCs) - CD4+ T cell co-cultures and CD4+ T cells expressing high levels of the gut homing receptor, α4β7, and demonstrated greater binding to α4β7 high / CD8+ T cells. These transmitter versus recipient envelope virus phenotypic differences, however, were not always consistent among the primary cells from all the different blood or skin donation volunteers. CONCLUSION Although genotypically unique variants are present in newly infected individuals compared to the diverse swarm circulating in the chronically infected transmitting partner, replication in potential early target cells and receptor utilization either do not completely dictate this genetic selection, or these potential transmission phenotypes are lost very soon after HIV-1 acquisition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Manish Sagar
- Department of Medicine, Division of Infectious Diseases, Boston University, Boston, MA, USA.
| |
Collapse
|
18
|
HIV-1 autologous antibody neutralization associates with mother to child transmission. PLoS One 2013; 8:e69274. [PMID: 23874931 PMCID: PMC3714266 DOI: 10.1371/journal.pone.0069274] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/06/2013] [Indexed: 01/07/2023] Open
Abstract
The HIV-1 characteristics associated with mother to child transmission (MTCT) are still poorly understood and if known would indicate where intervention strategies should be targeted. In contrast to horizontally infected individuals, exposed infants possess inherited antibodies (Abs) from their mother with the potential to protect against infection. We investigated the HIV-1 gp160 envelope proteins from seven transmitting mothers (TM) whose children were infected either during gestation or soon after delivery and from four non-transmitting mothers (NTM) with similar viral loads and CD4 counts. Using pseudo-typed viruses we tested gp160 envelope glycoproteins for TZM-bl infectivity, CD4 and CCR5 interactions, DC-SIGN capture and transfer and neutralization with an array of common neutralizing Abs (NAbs) (2F5, 2G12, 4E10 and b12) as well as mother and infant plasma. We found no viral correlates associated with HIV-1 MTCT nor did we find differences in neutralization with the panel of NAbs. We did, however, find that TM possessed significantly higher plasma neutralization capacities than NTM (P = 0.002). Furthermore, we found that in utero (IU) TM had a higher neutralization capacity than mothers transmitting either peri-partum (PP) or via breastfeeding (BF) (P = 0.002). Plasma from children infected IU neutralized viruses carrying autologous gp160 viral envelopes as well as those from their corresponding mothers whilst plasma from children infected PP and/or BF demonstrated poor neutralizing capacity. Our results demonstrate heightened autologous NAb responses against gp120/gp41 can associate with a greater risk of HIV-1 MTCT and more specifically in those infants infected IU. Although the number of HIV-1 transmitting pairs is low our results indicate that autologous NAb responses in mothers and infants do not protect against MTCT and may in fact be detrimental when considering IU HIV-1 transmissions.
Collapse
|
19
|
Heterogeneity in neutralization sensitivities of viruses comprising the simian immunodeficiency virus SIVsmE660 isolate and vaccine challenge stock. J Virol 2013; 87:5477-92. [PMID: 23468494 DOI: 10.1128/jvi.03419-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sooty mangabey-derived simian immunodeficiency virus (SIV) strain E660 (SIVsmE660) is a genetically heterogeneous, pathogenic isolate that is commonly used as a vaccine challenge strain in the nonhuman primate (NHP) model of human immunodeficiency virus type 1 (HIV-1) infection. Though it is often employed to assess antibody-based vaccine strategies, its sensitivity to antibody-mediated neutralization has not been well characterized. Here, we utilize single-genome sequencing and infectivity assays to analyze the neutralization sensitivity of the uncloned SIVsmE660 isolate, individual viruses comprising the isolate, and transmitted/founder (T/F) viruses arising from low-dose mucosal inoculation of macaques with the isolate. We found that the SIVsmE660 isolate overall was highly sensitive to neutralization by SIV-infected macaque plasma samples (50% inhibitory concentration [IC50] < 10(-5)) and monoclonal antibodies targeting V3 (IC50 < 0.01 μg/ml), CD4-induced (IC50 < 0.1 μg/ml), CD4 binding site (IC50 ~ 1 μg/ml), and V4 (IC50, ~5 μg/ml) epitopes. In comparison, SIVmac251 and SIVmac239 were highly resistant to neutralization by these same antibodies. Differences in neutralization sensitivity between SIVsmE660 and SIVmac251/239 were not dependent on the cell type in which virus was produced or tested. These findings indicate that in comparison to SIVmac251/239 and primary HIV-1 viruses, SIVsmE660 generally exhibits substantially less masking of antigenically conserved Env epitopes. Interestingly, we identified a minor population of viruses (~10%) in both the SIVsmE660 isolate and T/F viruses arising from it that were substantially more resistant (>1,000-fold) to antibody neutralization and another fraction (~20%) that was intermediate in neutralization resistance. These findings may explain the variable natural history and variable protection afforded by heterologous Env-based vaccines in rhesus macaques challenged by high-dose versus low-dose SIVsmE660 inoculation regimens.
Collapse
|
20
|
The neutralization sensitivity of viruses representing human immunodeficiency virus type 1 variants of diverse subtypes from early in infection is dependent on producer cell, as well as characteristics of the specific antibody and envelope variant. Virology 2012; 427:25-33. [PMID: 22369748 DOI: 10.1016/j.virol.2012.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/22/2011] [Accepted: 02/03/2012] [Indexed: 12/27/2022]
Abstract
Neutralization properties of human immunodeficiency virus (HIV-1) are often defined using pseudoviruses grown in transformed cells, which are not biologically relevant HIV-1 producer cells. Little information exists on how these viruses compare to viruses produced in primary lymphocytes, particularly for globally relevant HIV-1 strains. Therefore, replication-competent chimeras encoding envelope variants from the dominant HIV-1 subtypes (A, C, and D) obtained early after infection were generated and the neutralization properties explored. Pseudoviruses generated in 293T cells were the most sensitive to antibody neutralization. Replicating viruses generated in primary lymphocytes were most resistant to neutralization by plasma antibodies and most monoclonal antibodies (b12, 4E10, 2F5, VRC01). These differences were not associated with differences in envelope content. Surprisingly, the virus source did not impact neutralization sensitivity of most viruses to PG9. These findings suggest that producer cell type has a major effect on neutralization sensitivity, but in an antibody dependent manner.
Collapse
|
21
|
Bonomelli C, Doores KJ, Dunlop DC, Thaney V, Dwek RA, Burton DR, Crispin M, Scanlan CN. The glycan shield of HIV is predominantly oligomannose independently of production system or viral clade. PLoS One 2011; 6:e23521. [PMID: 21858152 PMCID: PMC3156772 DOI: 10.1371/journal.pone.0023521] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 07/19/2011] [Indexed: 01/04/2023] Open
Abstract
The N-linked oligomannose glycans of HIV gp120 are a target for both microbicide and vaccine design. The extent of cross-clade conservation of HIV oligomannose glycans is therefore a critical consideration for the development of HIV prophylaxes. We measured the oligomannose content of virion-associated gp120 from primary virus from PBMCs for a range of viral isolates and showed cross-clade elevation (62–79%) of these glycans relative to recombinant, monomeric gp120 (∼30%). We also confirmed that pseudoviral production systems can give rise to notably elevated gp120 oligomannose levels (∼98%), compared to gp120 derived from a single-plasmid viral system using the HIVLAI backbone (56%). This study highlights differences in glycosylation between virion-associated and recombinant gp120.
Collapse
Affiliation(s)
- Camille Bonomelli
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, United Kingdom
| | - Katie J. Doores
- Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | - D. Cameron Dunlop
- Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
| | - Victoria Thaney
- Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
| | - Raymond A. Dwek
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, United Kingdom
| | - Dennis R. Burton
- Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | - Max Crispin
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, United Kingdom
| | - Christopher N. Scanlan
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
22
|
Enzyme digests eliminate nonfunctional Env from HIV-1 particle surfaces, leaving native Env trimers intact and viral infectivity unaffected. J Virol 2011; 85:5825-39. [PMID: 21471242 DOI: 10.1128/jvi.00154-11] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV-1 viruses and virus-like particles (VLPs) bear nonnative "junk" forms of envelope (Env) glycoprotein that may undermine the development of antibody responses against functional gp120/gp41 trimers, thereby blunting the ability of particles to elicit neutralizing antibodies. Here, we sought to better understand the nature of junk Env with a view to devising strategies for its removal. Initial studies revealed that native trimers were surprisingly stable in the face of harsh conditions, suggesting that junk Env is unlikely to arise by trimer dissociation or gp120 shedding. Furthermore, the limited gp120 shedding that occurs immediately after synthesis of primary HIV-1 isolate Envs is not caused by aberrant cleavage at the tandem gp120/gp41 cleavage sites, which were found to cleave in a codependent manner. A major VLP contaminant was found to consist of an early, monomeric form of gp160 that is glycosylated in the endoplasmic reticulum (gp160ER) and then bypasses protein maturation and traffics directly into particles. gp160ER was found to bind two copies of monoclonal antibody (MAb) 2G12, consistent with its exclusively high-mannose glycan profile. These findings prompted us to evaluate enzyme digests as a way to remove aberrant Env. Remarkably, sequential glycosidase-protease digests led to a complete or near-complete removal of junk Env from many viral strains, leaving trimers and viral infectivity largely intact. "Trimer VLPs" may be useful neutralizing antibody immunogens.
Collapse
|
23
|
Adaptation of subtype a human immunodeficiency virus type 1 envelope to pig-tailed macaque cells. J Virol 2011; 85:4409-20. [PMID: 21325401 DOI: 10.1128/jvi.02244-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The relevance of simian/human immunodeficiency virus (SHIV) infection of macaques to HIV-1 infection in humans depends on how closely SHIVs mimic HIV-1 transmission, pathogenesis, and diversity. Circulating HIV-1 strains are predominantly subtypes C and A and overwhelmingly require CCR5 for entry, yet most SHIVs incorporate CXCR4-using subtype B envelopes (Envs). While pathogenic subtype C-based SHIVs have been constructed, the subtype A-based SHIVs (SHIV-As) constructed to date have been unable to replicate in macaque cells. To understand the barriers to SHIV-A replication in macaque cells, HIVA(Q23)/SIV(vif) was constructed by engineering a CCR5-tropic subtype A provirus to express SIV vif, which counters the macaque APOBEC3G restriction. HIVA(Q23)/SIV(vif) replicated poorly in pig-tailed macaque (Ptm) lymphocytes, but viruses were adapted to Ptm lymphocytes. Two independent mutations in gp120, G312V (V3 loop) and A204E (C2 region), were identified that increased peak virus levels by >100-fold. Introduction of G312V and A204E to multiple subtype A Envs and substitution of G312 and A204 with other residues increased entry into Ptm cells by 10- to 100-fold. G312V and A204E Env variants continued to require CCR5 for entry but were up to 50- and 200-fold more sensitive to neutralization by IgG1b12 and soluble CD4 and had a 5- to 50-fold increase in their ability to utilize Ptm CD4 compared to their wild-type counterparts. These findings identify the inefficient use of Ptm CD4 as an unappreciated restriction to subtype A HIV-1 replication in Ptm cells and reveal amino acid changes to gp120 that can overcome this barrier.
Collapse
|
24
|
Cavrois M, Neidleman J, Galloway N, Derdeyn CA, Hunter E, Greene WC. Measuring HIV fusion mediated by envelopes from primary viral isolates. Methods 2010; 53:34-8. [PMID: 20554044 DOI: 10.1016/j.ymeth.2010.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 05/19/2010] [Accepted: 05/26/2010] [Indexed: 11/19/2022] Open
Abstract
Over the course of infection, the human immunodeficiency virus type 1 (HIV-1) continuously adapts in part to evade the host's neutralizing antibody response. Antibodies often target the HIV envelope proteins that mediate HIV fusion to its cellular targets. HIV virions pseudotyped with primary envelopes have often been used to explore the fusogenic properties of these envelopes. Unfortunately, these pseudotyped virions fuse with greatly reduced efficiency to primary cells. Here, we describe a relatively simple strategy to clone primary envelopes into a provirus and increase the sensitivity of the virion-based fusion assay.
Collapse
Affiliation(s)
- Marielle Cavrois
- Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Leaman DP, Kinkead H, Zwick MB. In-solution virus capture assay helps deconstruct heterogeneous antibody recognition of human immunodeficiency virus type 1. J Virol 2010; 84:3382-95. [PMID: 20089658 PMCID: PMC2838137 DOI: 10.1128/jvi.02363-09] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 01/06/2010] [Indexed: 01/27/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) on whole virions is heterogeneous, so molecular analysis of Env with monoclonal antibodies (MAbs) is challenging. Virus capture assays (VCAs) involving immobilized MAbs are typically used, but these assays suffer from immobilization artifacts and do not provide binding constants. Furthermore, we show here that certain HIV-1 neutralizing MAbs, including 2G12, 4E10, 2F5, Z13e1, and D5, will capture virion particles completely devoid of Env. We modified the VCA such that MAbs and virions are incubated in solution, and unbound MAbs are removed prior to the capture step. This modification nearly eliminated evidence of Env-independent binding by MAbs to virions and allowed determination of apparent affinity constants in solution. Three important qualitative observations were further revealed. First, neutralizing MAbs 2F5, 4E10, and Z13e1 against the membrane-proximal external region (MPER) of HIV-1 gp41 were found to capture virions efficiently only if a significant amount of uncleaved gp160 or synthetic MPER peptide was present. Second, we show how non-native forms of Env vary by Env genotype and that Env from HIV-1(JR-FL) is more homogeneously trimeric than that from HIV-1(JR-CSF). Third, we determined that Env containing all or parts of gp41, including uncleaved gp160, binds spontaneously to free virions. This exogenous Env is an indiscriminate molecular "bridge" between Env-specific Ab and virions and can affect VCA analyses, particularly using pseudotyped virions. Heterogeneity in Env from endogenous and exogenous sources might also subvert humoral immunity to HIV-1, so in-solution VCAs may help to dissect this heterogeneity for vaccine design purposes.
Collapse
Affiliation(s)
- Daniel P. Leaman
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037
| | - Heather Kinkead
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037
| | - Michael B. Zwick
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
26
|
Kraus MH, Parrish NF, Shaw KS, Decker JM, Keele BF, Salazar-Gonzalez JF, Grayson T, McPherson DT, Ping LH, Anderson JA, Swanstrom R, Williamson C, Shaw GM, Hahn BH. A rev1-vpu polymorphism unique to HIV-1 subtype A and C strains impairs envelope glycoprotein expression from rev-vpu-env cassettes and reduces virion infectivity in pseudotyping assays. Virology 2009; 397:346-57. [PMID: 20003995 DOI: 10.1016/j.virol.2009.11.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 11/05/2009] [Accepted: 11/10/2009] [Indexed: 11/24/2022]
Abstract
Functional studies of HIV-1 envelope glycoproteins (Envs) commonly include the generation of pseudoviruses, which are produced by co-transfection of rev-vpu-env cassettes with an env-deficient provirus. Here, we describe six Env constructs from transmitted/founder HIV-1 that were defective in the pseudotyping assay, although two produced infectious virions when expressed from their cognate proviruses. All of these constructs exhibited an unusual gene arrangement in which the first exon of rev (rev1) and vpu were in the same reading frame without an intervening stop codon. Disruption of the rev1-vpu fusion gene by frameshift mutation, stop codon, or abrogation of the rev initiation codon restored pseudovirion infectivity. Introduction of the fusion gene into wildtype Env cassettes severely compromised their function. The defect was not due to altered env and rev transcription or a dominant negative effect of the expressed fusion protein, but seemed to be caused by inefficient translation at the env initiation codon. Although the rev1-vpu polymorphism affects Env expression only in vitro, it can cause problems in studies requiring Env complementation, such as analyses of co-receptor usage and neutralization properties, since 3% of subtype A, 20% of subtype C and 5% of CRF01_A/E viruses encode the fusion gene. A solution is to eliminate the rev initiation codon when amplifying rev-vpu-env cassettes since this increases Env expression irrespective of the presence of the polymorphism.
Collapse
Affiliation(s)
- Matthias H Kraus
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|