1
|
Traut CC, Jones JL, Sanders RA, Clark LR, Hamill MM, Stavrakis G, Sop J, Beckey TP, Keller SC, Gilliams EA, Cochran WV, Laeyendecker O, Manabe YC, Mostafa HH, Thomas DL, Hansoti B, Gebo KA, Blankson JN. Orthopoxvirus-Specific T-Cell Responses in Convalescent Mpox Patients. J Infect Dis 2024; 229:54-58. [PMID: 37380166 PMCID: PMC10786252 DOI: 10.1093/infdis/jiad245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/07/2023] [Accepted: 06/24/2023] [Indexed: 06/30/2023] Open
Abstract
Orthopoxvirus-specific T-cell responses were analyzed in 10 patients who had recovered from Mpox including 7 people with human immunodeficiency virus (PWH). Eight participants had detectable virus-specific T-cell responses, including a PWH who was not on antiretroviral therapy and a PWH on immunosuppressive therapy. These 2 participants had robust polyfunctional CD4+ T-cell responses to peptides from the 121L vaccinia virus (VACV) protein. T-cells from 4 of 5 HLA-A2-positive participants targeted at least 1 previously described HLA-A2-restricted VACV epitope, including an epitope targeted in 2 participants. These results advance our understanding of immunity in convalescent Mpox patients.
Collapse
Affiliation(s)
- Caroline C Traut
- Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Joyce L Jones
- Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Renata A Sanders
- Department of Pediatrics, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Laura R Clark
- Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Matthew M Hamill
- Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Georgia Stavrakis
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Joel Sop
- Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Tyler P Beckey
- Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Sara C Keller
- Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | | | - Willa V Cochran
- Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Oliver Laeyendecker
- Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
- Intramural Research Program, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Yukari C Manabe
- Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Heba H Mostafa
- Department of Pathology, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - David L Thomas
- Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Bhakti Hansoti
- Department of Emergency Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Kelly A Gebo
- Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Joel N Blankson
- Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Ballesteros-Sanabria L, Pelaez-Prestel HF, Reche PA, Lafuente EM. EPIPOX: A Resource Facilitating Epitope-Vaccine Design Against Human Pathogenic Orthopoxviruses. Methods Mol Biol 2023; 2673:175-185. [PMID: 37258914 DOI: 10.1007/978-1-0716-3239-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
EPIPOX is a specialized online resource intended to facilitate the design of epitope-based vaccines against orthopoxviruses. EPIPOX is built upon a collection of T cell epitopes that are shared by eight pathogenic orthopoxviruses, including variola minor and major strains, monkeypox, cowpox, and vaccinia viruses. In EPIPOX, users can select T cell epitopes attending to the predicted binding to distinct major histocompatibility molecules (MHC) and according to various features that may have an impact on epitope immunogenicity. Among others, EPIPOX allows to discern epitopes by their structural location in the virion and the temporal expression of the counterpart antigens. Overall, the annotations in EPIPOX are optimized to facilitate the rational design of T cell epitope-based vaccines. In this chapter, we describe the main features of EPIPOX and exemplify its use, retrieving orthopoxvirus-specific T cell epitopes with features set to enhance their immunogenicity. EPIPOX is available for free public use at http://bio.med.ucm.es/epipox/ .
Collapse
Affiliation(s)
| | - Hector F Pelaez-Prestel
- School of Medicine, Department of Immunology, Complutense University of Madrid, Madrid, Spain
| | - Pedro A Reche
- School of Medicine, Department of Immunology, Complutense University of Madrid, Madrid, Spain.
| | - Esther M Lafuente
- School of Medicine, Department of Immunology, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
3
|
Grifoni A, Zhang Y, Tarke A, Sidney J, Rubiro P, Reina-Campos M, Filaci G, Dan JM, Scheuermann RH, Sette A. Defining antigen targets to dissect vaccinia virus and monkeypox virus-specific T cell responses in humans. Cell Host Microbe 2022; 30:1662-1670.e4. [PMID: 36463861 PMCID: PMC9718645 DOI: 10.1016/j.chom.2022.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 12/04/2022]
Abstract
The monkeypox virus (MPXV) outbreak confirmed in May 2022 in non-endemic countries is raising concern about the pandemic potential of novel orthopoxviruses. Little is known regarding MPXV immunity in the context of MPXV infection or vaccination with vaccinia-based vaccines (VACV). As with vaccinia, T cells are likely to provide an important contribution to overall immunity to MPXV. Here, we leveraged the epitope information available in the Immune Epitope Database (IEDB) on VACV to predict potential MPXV targets recognized by CD4+ and CD8+ T cell responses. We found a high degree of conservation between VACV epitopes and MPXV and defined T cell immunodominant targets. These analyses enabled the design of peptide pools able to experimentally detect VACV-specific T cell responses and MPXV cross-reactive T cells in a cohort of vaccinated individuals. Our findings will facilitate the monitoring of cellular immunity following MPXV infection and vaccination.
Collapse
Affiliation(s)
- Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Yun Zhang
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Alison Tarke
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA,Center of Excellence for Biomedical Research, Department of Experimental Medicine, University of Genoa, Genoa 16132, Italy
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Paul Rubiro
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Maria Reina-Campos
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Gilberto Filaci
- Center of Excellence for Biomedical Research, Department of Internal Medicine, University of Genoa, Genoa 16132, Italy,Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, Genoa 16132, Italy
| | - Jennifer M. Dan
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA,Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Richard H. Scheuermann
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA,Department of Informatics, J. Craig Venter Institute, La Jolla, CA 92037, USA,Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA,Global Virus Network, Baltimore, MD 21201, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA,Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA,Corresponding author
| |
Collapse
|
4
|
Poland GA, Kennedy RB, Tosh PK. Prevention of monkeypox with vaccines: a rapid review. THE LANCET. INFECTIOUS DISEASES 2022; 22:e349-e358. [PMID: 36116460 PMCID: PMC9628950 DOI: 10.1016/s1473-3099(22)00574-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 01/09/2023]
Abstract
The largest outbreak of monkeypox in history began in May, 2022, and has rapidly spread across the globe ever since. The purpose of this Review is to briefly describe human immune responses to orthopoxviruses; provide an overview of the vaccines available to combat this outbreak; and discuss the various clinical data and animal studies evaluating protective immunity to monkeypox elicited by vaccinia virus-based smallpox vaccines, address ongoing concerns regarding the outbreak, and provide suggestions for the appropriate use of vaccines as an outbreak control measure. Data showing clinical effectiveness (~85%) of smallpox vaccines against monkeypox come from surveillance studies conducted in central Africa in the 1980s and later during outbreaks in the same area. These data are supported by a large number of animal studies (primarily in non-human primates) with live virus challenge by various inoculation routes. These studies uniformly showed a high degree of protection and immunity against monkeypox virus following vaccination with various smallpox vaccines. Smallpox vaccines represent an effective countermeasure that can be used to control monkeypox outbreaks. However, smallpox vaccines do cause side-effects and the replication-competent, second-generation vaccines have contraindications. Third-generation vaccines, although safer for use in immunocompromised populations, require two doses, which is an impediment to rapid outbreak response. Lessons learned from the COVID-19 pandemic should be used to inform our collective response to this monkeypox outbreak and to future outbreaks.
Collapse
Affiliation(s)
| | | | - Pritish K Tosh
- Mayo Vaccine Research Group, Mayo Clinic, Rochester, MN, USA,Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
5
|
Tao S, Tao R, Busch DH, Widera M, Schaal H, Drexler I. Sequestration of Late Antigens Within Viral Factories Impairs MVA Vector-Induced Protective Memory CTL Responses. Front Immunol 2019; 10:2850. [PMID: 31867011 PMCID: PMC6904312 DOI: 10.3389/fimmu.2019.02850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/20/2019] [Indexed: 01/22/2023] Open
Abstract
Cytotoxic CD8+ T cell (CTL) responses play an essential role in antiviral immunity. Here, we focused on the activation of CTL which recognize epitopes derived from viral or recombinant antigens with either early or late expression kinetics after infection with Modified Vaccinia Virus Ankara (MVA). Late antigens but not early antigens failed to efficiently stimulate murine CTL lines in vitro and were unable to activate and expand protective memory T cell responses in mice in vivo. The reduced or absent presentation of late antigens was not due to impaired antigen presentation or delayed protein synthesis, but was caused by sequestration of late antigens within viral factories (VFs). Additionally, the trapping of late antigens in VFs conflicts with antigen processing and presentation as proteasomal activity was strongly reduced or absent in VFs, suggesting inefficient antigen degradation. This study gives for the first time a mechanistic explanation for the weak immunogenicity of late viral antigens for memory CTL activation. Since MVA is preferentially used as a boost vector in heterologous prime/boost vaccinations, this is an important information for future vaccine design.
Collapse
Affiliation(s)
- Sha Tao
- Institute for Virology, Düsseldorf University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ronny Tao
- Institute for Virology, Düsseldorf University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Dirk H Busch
- Institute of Microbiology, Immunology and Hygiene, Technical University Munich, Munich, Germany
| | - Marek Widera
- Institute for Virology, Düsseldorf University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Heiner Schaal
- Institute for Virology, Düsseldorf University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ingo Drexler
- Institute for Virology, Düsseldorf University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
6
|
Genome-Wide Approach to the CD4 T-Cell Response to Human Herpesvirus 6B. J Virol 2019; 93:JVI.00321-19. [PMID: 31043533 DOI: 10.1128/jvi.00321-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023] Open
Abstract
Human herpesvirus 6 (HHV-6) and cytomegalovirus (CMV) are population-prevalent betaherpesviruses with intermittent lytic replication that can be pathogenic in immunocompromised hosts. Elucidation of the adaptive immune response is valuable for understanding pathogenesis and designing novel treatments. Knowledge of T-cell antigens has reached the genome-wide level for CMV and other human herpesviruses, but study of HHV-6 is at an earlier stage. Using rare-cell enrichment combined with an HLA-agnostic, proteome-wide approach, we queried HHV-6B-specific CD4 T cells from 18 healthy donors with each known HHV-6B protein. We detected a low abundance of HHV-6-specific CD4 T cells in blood; however, the within-person CD4 T-cell response is quite broad: the median number of open reading frame (ORF) products recognized was nine per person. Overall, the data expand the number of documented HHV-6B CD4 T-cell antigens from approximately 11 to 60. Epitopes in the proteins encoded by U14, U90, and U95 were mapped with synthetic peptides, and HLA restriction was defined for some responses. Intriguingly, CD4 T-cell antigens newly described in this report are among the most population prevalent, including U73, U72, U95, and U30. Our results indicate that selection of HHV-6B ORFs for immunotherapy should consider this expanded panel of HHV-6B antigens.IMPORTANCE Human herpesvirus 6 is highly prevalent and maintains chronic infection in immunocompetent individuals, with the potential to replicate widely in settings of immunosuppression, leading to clinical disease. Antiviral compounds may be ineffective and/or pose dose-limiting toxicity, and therefore, immune-based therapies have garnered increased interest in recent years. Attempts at addressing this unmet medical need begin with understanding the cellular response to HHV-6 at the individual and population levels. The present study provides a comprehensive assessment of HHV-6-specific T-cell responses that may inform the development of cell-based therapies directed at this virus.
Collapse
|
7
|
Monette A, Mouland AJ. T Lymphocytes as Measurable Targets of Protection and Vaccination Against Viral Disorders. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 342:175-263. [PMID: 30635091 PMCID: PMC7104940 DOI: 10.1016/bs.ircmb.2018.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Continuous epidemiological surveillance of existing and emerging viruses and their associated disorders is gaining importance in light of their abilities to cause unpredictable outbreaks as a result of increased travel and vaccination choices by steadily growing and aging populations. Close surveillance of outbreaks and herd immunity are also at the forefront, even in industrialized countries, where previously eradicated viruses are now at risk of re-emergence due to instances of strain recombination, contractions in viral vector geographies, and from their potential use as agents of bioterrorism. There is a great need for the rational design of current and future vaccines targeting viruses, with a strong focus on vaccine targeting of adaptive immune effector memory T cells as the gold standard of immunity conferring long-lived protection against a wide variety of pathogens and malignancies. Here, we review viruses that have historically caused large outbreaks and severe lethal disorders, including respiratory, gastric, skin, hepatic, neurologic, and hemorrhagic fevers. To observe trends in vaccinology against these viral disorders, we describe viral genetic, replication, transmission, and tropism, host-immune evasion strategies, and the epidemiology and health risks of their associated syndromes. We focus on immunity generated against both natural infection and vaccination, where a steady shift in conferred vaccination immunogenicity is observed from quantifying activated and proliferating, long-lived effector memory T cell subsets, as the prominent biomarkers of long-term immunity against viruses and their associated disorders causing high morbidity and mortality rates.
Collapse
|
8
|
Hegde NR, Gauthami S, Sampath Kumar HM, Bayry J. The use of databases, data mining and immunoinformatics in vaccinology: where are we? Expert Opin Drug Discov 2017; 13:117-130. [PMID: 29226722 DOI: 10.1080/17460441.2018.1413088] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Vaccinology has evolved from a sub-discipline focussed on simplistic vaccine development based on antibody-mediated protection to a separate discipline involving epidemiology, host and pathogen biology, immunology, genomics, proteomics, structure biology, protein engineering, chemical biology, and delivery systems. Data mining in combination with bioinformatics has provided a scaffold linking all these disciplines to the design of vaccines and vaccine adjuvants. Areas covered: This review provides background knowledge on immunological aspects which have been exploited with informatics for the in silico analysis of immune responses and the design of vaccine antigens. Furthermore, the article presents various databases and bioinformatics tools, and discusses B and T cell epitope predictions, antigen design, adjuvant research and systems immunology, highlighting some important examples, and challenges for the future. Expert opinion: Informatics and data mining have not only reduced the time required for experimental immunology, but also contributed to the identification and design of novel vaccine candidates and the determination of biomarkers and pathways of vaccine response. However, more experimental data is required for benchmarking immunoinformatic tools. Nevertheless, developments in immunoinformatics and reverse vaccinology, which are nascent fields, are likely to hasten vaccine discovery, although the path to regulatory approval is likely to remain a necessary impediment.
Collapse
Affiliation(s)
| | - S Gauthami
- b Ella Foundation, Turkapally , Hyderabad , India
| | - H M Sampath Kumar
- c Council of Scientific and Industrial Research - Indian Institute of Chemical Technology , Hyderabad , India
| | - Jagadeesh Bayry
- d Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1138 , Centre de Recherche des Cordeliers, Paris , France
| |
Collapse
|
9
|
Molero-Abraham M, Glutting JP, Flower DR, Lafuente EM, Reche PA. EPIPOX: Immunoinformatic Characterization of the Shared T-Cell Epitome between Variola Virus and Related Pathogenic Orthopoxviruses. J Immunol Res 2015; 2015:738020. [PMID: 26605344 PMCID: PMC4641182 DOI: 10.1155/2015/738020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/08/2015] [Accepted: 10/01/2015] [Indexed: 11/26/2022] Open
Abstract
Concerns that variola viruses might be used as bioweapons have renewed the interest in developing new and safer smallpox vaccines. Variola virus genomes are now widely available, allowing computational characterization of the entire T-cell epitome and the use of such information to develop safe and yet effective vaccines. To this end, we identified 124 proteins shared between various species of pathogenic orthopoxviruses including variola minor and major, monkeypox, cowpox, and vaccinia viruses, and we targeted them for T-cell epitope prediction. We recognized 8,106, and 8,483 unique class I and class II MHC-restricted T-cell epitopes that are shared by all mentioned orthopoxviruses. Subsequently, we developed an immunological resource, EPIPOX, upon the predicted T-cell epitome. EPIPOX is freely available online and it has been designed to facilitate reverse vaccinology. Thus, EPIPOX includes key epitope-focused protein annotations: time point expression, presence of leader and transmembrane signals, and known location on outer membrane structures of the infective viruses. These features can be used to select specific T-cell epitopes suitable for experimental validation restricted by single MHC alleles, as combinations thereof, or by MHC supertypes.
Collapse
Affiliation(s)
- Magdalena Molero-Abraham
- School of Medicine, Unit of Immunology, Complutense University of Madrid, Pza. Ramón y Cajal, s/n, 28040 Madrid, Spain
| | - John-Paul Glutting
- School of Medicine, Unit of Immunology, Complutense University of Madrid, Pza. Ramón y Cajal, s/n, 28040 Madrid, Spain
| | - Darren R. Flower
- School of Life and Health Sciences, University of Aston, Aston Triangle, Birmingham B4 7ET, UK
| | - Esther M. Lafuente
- School of Medicine, Unit of Immunology, Complutense University of Madrid, Pza. Ramón y Cajal, s/n, 28040 Madrid, Spain
| | - Pedro A. Reche
- School of Medicine, Unit of Immunology, Complutense University of Madrid, Pza. Ramón y Cajal, s/n, 28040 Madrid, Spain
| |
Collapse
|
10
|
Pachnio A, Zuo J, Ryan GB, Begum J, Moss PAH. The Cellular Localization of Human Cytomegalovirus Glycoprotein Expression Greatly Influences the Frequency and Functional Phenotype of Specific CD4+ T Cell Responses. THE JOURNAL OF IMMUNOLOGY 2015; 195:3803-15. [PMID: 26363059 PMCID: PMC4592104 DOI: 10.4049/jimmunol.1500696] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 08/04/2015] [Indexed: 11/19/2022]
Abstract
CMV infection is a significant cause of morbidity and mortality in immunocompromised individuals, and the development of a vaccine is of high priority. Glycoprotein B (gB) is a leading vaccine candidate but the glycoprotein H (gH) pentameric complex is now recognized as the major target for neutralizing Abs. However, little is known about the T cell immune response against gH and glycoprotein L (gL) and this is likely to be an important attribute for vaccine immunogenicity. In this study, we examine and contrast the magnitude and phenotype of the T cell immune response against gB, gH, and gL within healthy donors. gB-specific CD4(+) T cells were found in 95% of donors, and 29 epitopes were defined with gB-specific response sizes ranging from 0.02 to 2.88% of the CD4(+) T cell pool. In contrast, only 20% of donors exhibited a T cell response against gH or gL. Additionally, gB-specific CD4(+) T cells exhibited a more cytotoxic phenotype, with high levels of granzyme B expression. Glycoproteins were effectively presented following delivery to APCs but only gB-derived epitopes were presented following endogenous synthesis. gB expression was observed exclusively within vesicular structures colocalizing with HLA-DM whereas gH was distributed evenly throughout the cytoplasm. Grafting of the C-terminal domain from gB onto gH could not transfer this pattern of presentation. These results reveal that gB is a uniquely immunogenic CMV glycoprotein and this is likely to reflect its unique pattern of endogenous Ag presentation. Consideration may be required toward mechanisms that boost cellular immunity to gH and gL within future subunit vaccines.
Collapse
Affiliation(s)
- Annette Pachnio
- School of Cancer Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| | - Jianmin Zuo
- School of Cancer Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| | - Gordon B Ryan
- School of Cancer Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| | - Jusnara Begum
- School of Cancer Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| | - Paul A H Moss
- School of Cancer Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, United Kingdom; and University Hospitals Birmingham National Health Service Foundation Trust, Birmingham B15 2TH, United Kingdom
| |
Collapse
|
11
|
Nayak K, Jing L, Russell RM, Davies DH, Hermanson G, Molina DM, Liang X, Sherman DR, Kwok WW, Yang J, Kenneth J, Ahamed SF, Chandele A, Murali-Krishna K, Koelle DM. Identification of novel Mycobacterium tuberculosis CD4 T-cell antigens via high throughput proteome screening. Tuberculosis (Edinb) 2015; 95:275-87. [PMID: 25857935 DOI: 10.1016/j.tube.2015.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/24/2015] [Accepted: 03/01/2015] [Indexed: 10/23/2022]
Abstract
Elicitation of CD4 IFN-gamma T cell responses to Mycobacterium tuberculosis (MTB) is a rational vaccine strategy to prevent clinical tuberculosis. Diagnosis of MTB infection is based on T-cell immune memory to MTB antigens. The MTB proteome contains over four thousand open reading frames (ORFs). We conducted a pilot antigen identification study using 164 MTB proteins and MTB-specific T-cells expanded in vitro from 12 persons with latent MTB infection. Enrichment of MTB-reactive T-cells from PBMC used cell sorting or an alternate system compatible with limited resources. MTB proteins were used as single antigens or combinatorial matrices in proliferation and cytokine secretion readouts. Overall, our study found that 44 MTB proteins were antigenic, including 27 not previously characterized as CD4 T-cell antigens. Antigen truncation, peptide, NTM homology, and HLA class II tetramer studies confirmed malate synthase G (encoded by gene Rv1837) as a CD4 T-cell antigen. This simple, scalable system has potential utility for the identification of candidate MTB vaccine and biomarker antigens.
Collapse
Affiliation(s)
- Kaustuv Nayak
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Lichen Jing
- Department of Medicine, Division of Infectious Diseases, University of Washington, Box 358061, Seattle, WA 98195, USA.
| | - Ronnie M Russell
- Department of Medicine, Division of Infectious Diseases, University of Washington, Box 358061, Seattle, WA 98195, USA.
| | - D Huw Davies
- Department of Medicine, Division of Infectious Diseases, University of California, Room 376D Med-Surg II, Irvine, CA 92697-4068, USA; Antigen Discovery, Inc., 1 Technology Drive Suite E309, Irvine, CA 92618, USA.
| | - Gary Hermanson
- Antigen Discovery, Inc., 1 Technology Drive Suite E309, Irvine, CA 92618, USA.
| | - Douglas M Molina
- Antigen Discovery, Inc., 1 Technology Drive Suite E309, Irvine, CA 92618, USA.
| | - Xiaowu Liang
- Antigen Discovery, Inc., 1 Technology Drive Suite E309, Irvine, CA 92618, USA.
| | - David R Sherman
- Seattle Biomedical Research Institute, 307 Westlake Ave. North, No. 500, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Box 359931, Seattle, WA 98195, USA.
| | - William W Kwok
- Benaroya Research Institute at Virginia Mason, 1201 9th Ave., Seattle, WA, 98101, USA.
| | - Junbao Yang
- Benaroya Research Institute at Virginia Mason, 1201 9th Ave., Seattle, WA, 98101, USA.
| | - John Kenneth
- Division of Infectious Diseases, St. John's Research Institute, St. John's National Academy of Health Sciences, Sarjapur Road, Koramangala 2 Block, Bangaluru, Karnataka 560034, India.
| | - Syed F Ahamed
- Division of Infectious Diseases, St. John's Research Institute, St. John's National Academy of Health Sciences, Sarjapur Road, Koramangala 2 Block, Bangaluru, Karnataka 560034, India.
| | - Anmol Chandele
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; Emory Vaccine Center, 1510 Clifton Road, Atlanta, GA 30329, USA.
| | - Kaja Murali-Krishna
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; Emory Vaccine Center, 1510 Clifton Road, Atlanta, GA 30329, USA; Department of Pediatrics, Emory University, 1760 Haygood Drive, Atlanta, GA 30322, USA.
| | - David M Koelle
- Department of Medicine, Division of Infectious Diseases, University of Washington, Box 358061, Seattle, WA 98195, USA; Department of Global Health, University of Washington, Box 359931, Seattle, WA 98195, USA; Benaroya Research Institute at Virginia Mason, 1201 9th Ave., Seattle, WA, 98101, USA; Department of Laboratory Medicine, University of Washington, Box 358070, Seattle, WA 98195, USA; Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, 1100 Eastlake Ave. East, Seattle, WA 98109, USA.
| |
Collapse
|
12
|
Davies DH, Chun S, Hermanson G, Tucker JA, Jain A, Nakajima R, Pablo J, Felgner PL, Liang X. T cell antigen discovery using soluble vaccinia proteome reveals recognition of antigens with both virion and nonvirion association. THE JOURNAL OF IMMUNOLOGY 2014; 193:1812-27. [PMID: 25024392 DOI: 10.4049/jimmunol.1400663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Vaccinia virus (VACV) is a useful model system for understanding the immune response to a complex pathogen. Proteome-wide Ab profiling studies reveal the humoral response to be strongly biased toward virion-associated Ags, and several membrane proteins induce Ab-mediated protection against VACV challenge in mice. Some studies have indicated that the CD4 response is also skewed toward proteins with virion association, whereas the CD8 response is more biased toward proteins with early expression. In this study, we have leveraged a VACV strain Western Reserve (VACV-WR) plasmid expression library, produced previously for proteome microarrays for Ab profiling, to make a solubilized full VACV-WR proteome for T cell Ag profiling. Splenocytes from VACV-WR-infected mice were assayed without prior expansion against the soluble proteome in assays for Th1 and Th2 signature cytokines. The response to infection was polarized toward a Th1 response, with the distribution of reactive T cell Ags comprising both early and late VACV proteins. Interestingly, the proportions of different functional subsets were similar to that present in the whole proteome. In contrast, the targets of Abs from the same mice were enriched for membrane and other virion components, as described previously. We conclude that a "nonbiasing" approach to T cell Ag discovery reveals a T cell Ag profile in VACV that is broader and less skewed to virion association than the Ab profile. The T cell Ag mapping method developed in the present study should be applicable to other organisms where expressible "ORFeome" libraries are also available, and it is readily scalable for larger pathogens.
Collapse
Affiliation(s)
- D Huw Davies
- Division of Infectious Diseases, School of Medicine, University of California, Irvine, Irvine, CA 92697; Antigen Discovery, Inc., Irvine, CA 92618; and
| | - Sookhee Chun
- Division of Infectious Diseases, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | | | - Jo Anne Tucker
- Division of Hematology and Oncology, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Aarti Jain
- Division of Infectious Diseases, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Rie Nakajima
- Division of Infectious Diseases, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Jozelyn Pablo
- Division of Infectious Diseases, School of Medicine, University of California, Irvine, Irvine, CA 92697; Antigen Discovery, Inc., Irvine, CA 92618; and
| | - Philip L Felgner
- Division of Infectious Diseases, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | | |
Collapse
|
13
|
Schussek S, Trieu A, Doolan DL. Genome- and proteome-wide screening strategies for antigen discovery and immunogen design. Biotechnol Adv 2014; 32:403-14. [DOI: 10.1016/j.biotechadv.2013.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 11/04/2013] [Accepted: 12/16/2013] [Indexed: 01/17/2023]
|
14
|
Discovery of a protective Rickettsia prowazekii antigen recognized by CD8+ T cells, RP884, using an in vivo screening platform. PLoS One 2013; 8:e76253. [PMID: 24146844 PMCID: PMC3797808 DOI: 10.1371/journal.pone.0076253] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/22/2013] [Indexed: 01/22/2023] Open
Abstract
Rickettsia prowazekii has been tested for biological warfare due to the high mortality that it produces after aerosol transmission of very low numbers of rickettsiae. Epidemic typhus, the infection caused by these obligately intracellular bacteria, continues to be a threat because it is difficult to diagnose due to initial non-specific symptoms and the lack of commercial diagnostic tests that are sensitive and specific during the initial clinical presentation. A vaccine to prevent epidemic typhus would constitute an effective deterrent to the weaponization of R. prowazekii; however, an effective and safe vaccine is not currently available. Due to the cytoplasmic niche of Rickettsia, CD8+ T-cells are critical effectors of immunity; however, the identification of antigens recognized by these cells has not been systematically addressed. To help close this gap, we designed an antigen discovery strategy that uses cell-based vaccination with antigen presenting cells expressing microbe's proteins targeted to the MHC class I presentation pathway. We report the use of this method to discover a protective T-cell rickettsial antigen, RP884, among a test subset of rickettsial proteins.
Collapse
|
15
|
Genome-wide analysis of T cell responses during acute and latent simian varicella virus infections in rhesus macaques. J Virol 2013; 87:11751-61. [PMID: 23986583 DOI: 10.1128/jvi.01809-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Varicella zoster virus (VZV) is the etiological agent of varicella (chickenpox) and herpes zoster (HZ [shingles]). Clinical observations suggest that VZV-specific T cell immunity plays a more critical role than humoral immunity in the prevention of VZV reactivation and development of herpes zoster. Although numerous studies have characterized T cell responses directed against select VZV open reading frames (ORFs), a comprehensive analysis of the T cell response to the entire VZV genome has not yet been conducted. We have recently shown that intrabronchial inoculation of young rhesus macaques with simian varicella virus (SVV), a homolog of VZV, recapitulates the hallmarks of acute and latent VZV infection in humans. In this study, we characterized the specificity of T cell responses during acute and latent SVV infection. Animals generated a robust and broad T cell response directed against both structural and nonstructural viral proteins during acute infection in bronchoalveolar lavage (BAL) fluid and peripheral blood. During latency, T cell responses were detected only in the BAL fluid and were lower and more restricted than those observed during acute infection. Interestingly, we identified a small set of ORFs that were immunogenic during both acute and latent infection in the BAL fluid. Given the close genome relatedness of SVV and VZV, our studies highlight immunogenic ORFs that may be further investigated as potential components of novel VZV vaccines that specifically boost T cell immunity.
Collapse
|
16
|
Yin L, Calvo-Calle JM, Cruz J, Newman FK, Frey SE, Ennis FA, Stern LJ. CD4+ T cells provide intermolecular help to generate robust antibody responses in vaccinia virus-vaccinated humans. THE JOURNAL OF IMMUNOLOGY 2013; 190:6023-33. [PMID: 23667112 DOI: 10.4049/jimmunol.1202523] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immunization with vaccinia virus elicits a protective Ab response that is almost completely CD4(+) T cell dependent. A recent study in a rodent model observed a deterministic linkage between Ab and CD4(+) T cell responses to particular vaccinia virus proteins suggesting that CD4(+) T cell help is preferentially provided to B cells with the same protein specificity (Sette et al. 2008. Immunity 28: 847-858). However, a causal linkage between Ab and CD4(+) T cell responses to vaccinia or any other large pathogen in humans has yet to be done. In this study, we measured the Ab and CD4(+) T cell responses against four vaccinia viral proteins (A27L, A33R, B5R, and L1R) known to be strongly targeted by humoral and cellular responses induced by vaccinia virus vaccination in 90 recently vaccinated and 7 long-term vaccinia-immunized human donors. Our data indicate that there is no direct linkage between Ab and CD4(+) T cell responses against each individual protein in both short-term and long-term immunized donors. Together with the observation that the presence of immune responses to these four proteins is linked together within donors, our data suggest that in vaccinia-immunized humans, individual viral proteins are not the primary recognition unit of CD4(+) T cell help for B cells. Therefore, we have for the first time, to our knowledge, shown evidence that CD4(+) T cells provide intermolecular (also known as noncognate or heterotypic) help to generate robust Ab responses against four vaccinia viral proteins in humans.
Collapse
Affiliation(s)
- Liusong Yin
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Sant and McMichael discuss new advances in detecting CD4+ T cells at the right time and place during viral infection. Protective immunity to chronic and acute viral infection relies on both the innate and adaptive immune response. Although neutralizing antibody production by B cells and cytotoxic activity of CD8+ T cells are well-accepted components of the adaptive immune response to viruses, identification of the specific role of CD4+ T cells in protection has been more challenging to establish. Delineating the contribution of CD4+ T cells has been complicated by their functional heterogeneity, breadth in antigen specificity, transient appearance in circulation, and sequestration in tissue sites of infection. In this minireview, we discuss recent progress in identifying the multiple roles of CD4+ T cells in orchestrating and mediating the immune responses against viral pathogens. We highlight several recent reports, including one published in this issue, that have employed comprehensive and sophisticated approaches to provide new evidence for CD4+ T cells as direct effectors in antiviral immunity.
Collapse
Affiliation(s)
- Andrea J Sant
- David H. Smith Center for Vaccine Biology and the Immunology Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14623, USA.
| | | |
Collapse
|
18
|
|
19
|
CD4 T-cell memory responses to viral infections of humans show pronounced immunodominance independent of duration or viral persistence. J Virol 2012; 87:2617-27. [PMID: 23255792 DOI: 10.1128/jvi.03047-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Little is known concerning immunodominance within the CD4 T-cell response to viral infections and its persistence into long-term memory. We tested CD4 T-cell reactivity against each viral protein in persons immunized with vaccinia virus (VV), either recently or more than 40 years ago, as a model self-limited viral infection. Similar tests were done with persons with herpes simplex virus 1 (HSV-1) infection as a model chronic infection. We used an indirect method capable of counting the CD4 T cells in blood reactive with each individual viral protein. Each person had a clear CD4 T-cell dominance hierarchy. The top four open reading frames accounted for about 40% of CD4 virus-specific T cells. Early and long-term memory CD4 T-cell responses to vaccinia virus were mathematically indistinguishable for antigen breadth and immunodominance. Despite the chronic intermittent presence of HSV-1 antigen, the CD4 T-cell dominance and diversity patterns for HSV-1 were identical to those observed for vaccinia virus. The immunodominant CD4 T-cell antigens included both long proteins abundantly present in virions and shorter, nonstructural proteins. Limited epitope level and direct ex vivo data were also consistent with pronounced CD4 T-cell immunodominance. We conclude that human memory CD4 T-cell responses show a pattern of pronounced immunodominance for both chronic and self-limited viral infections and that this pattern can persist over several decades in the absence of antigen.
Collapse
|
20
|
Yin L, Calvo-Calle JM, Dominguez-Amorocho O, Stern LJ. HLA-DM constrains epitope selection in the human CD4 T cell response to vaccinia virus by favoring the presentation of peptides with longer HLA-DM-mediated half-lives. THE JOURNAL OF IMMUNOLOGY 2012; 189:3983-94. [PMID: 22966084 DOI: 10.4049/jimmunol.1200626] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
HLA-DM (DM) is a nonclassical MHC class II (MHC II) protein that acts as a peptide editor to mediate the exchange of peptides loaded onto MHC II during Ag presentation. Although the ability of DM to promote peptide exchange in vitro and in vivo is well established, the role of DM in epitope selection is still unclear, especially in human response to infectious disease. In this study, we addressed this question in the context of the human CD4 T cell response to vaccinia virus. We measured the IC(50), intrinsic dissociation t(1/2), and DM-mediated dissociation t(1/2) for a large set of peptides derived from the major core protein A10L and other known vaccinia epitopes bound to HLA-DR1 and compared these properties to the presence and magnitude of peptide-specific CD4(+) T cell responses. We found that MHC II-peptide complex kinetic stability in the presence of DM distinguishes T cell epitopes from nonrecognized peptides in A10L peptides and also in a set of predicted tight binders from the entire vaccinia genome. Taken together, these analyses demonstrate that DM-mediated dissociation t(1/2) is a strong and independent factor governing peptide immunogenicity by favoring the presentation of peptides with greater kinetic stability in the presence of DM.
Collapse
Affiliation(s)
- Liusong Yin
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | |
Collapse
|
21
|
Nnedu ON, O'Leary MP, Mutua D, Mutai B, Kalantari-Dehaghi M, Jasinskas A, Nakajima-Sasaki R, John-Stewart G, Otieno P, Liang X, Waitumbi J, Kimani F, Camerini D, Felgner PL, Walson JL, Vigil A. Humoral immune responses to Plasmodium falciparum among HIV-1-infected Kenyan adults. Proteomics Clin Appl 2012; 5:613-23. [PMID: 21956928 DOI: 10.1002/prca.201100021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Humoral immune responses play a pivotal role in naturally acquired immunity to malaria. Understanding which humoral responses are impaired among individuals at higher risk for malaria may improve our understanding of malaria immune control and contribute to vaccine development. METHODS We compared humoral responses with 483 Plasmodium falciparum antigens between adults in, Kisumu (high, year-long malaria transmission leading to partial immunity), and adults in Kisii (low, seasonal malaria transmission). Then within each site, we compared malaria-specific humoral responses between those at higher risk for malaria (CD4(+) ≤500) and those at lower risk for malaria (CD4(+) >500). A protein microarray chip containing 483 P. falciparum antigens and 71 HIV antigens was used. Benjamini-Hochberg adjustments were made to control for multiple comparisons. RESULTS Fifty-seven antigens including CSP, MSP1, LSA1 and AMA1 were identified as significantly more reactive in Kisumu than in Kisii. Ten of these antigens had been identified as protective in an earlier study. CD4(+) T-cell count did not significantly impact humoral responses. CONCLUSION Protein microarrays are a useful method to screen multiple humoral responses simultaneously. This study provides useful clues for potential vaccine candidates. Modest decreases in CD4 counts may not significantly impact malaria-specific humoral immunity.
Collapse
Affiliation(s)
- Obinna N Nnedu
- Department of Medicine, Section of Infectious Diseases, Tulane University, New Orleans, LO, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Following primary infection, human herpesvirus 6 (HHV-6) establishes a persistent infection for life. HHV-6 reactivation has been associated with transplant rejection, delayed engraftment, encephalitis, muscular dystrophy, and drug-induced hypersensitivity syndrome. The poor understanding of the targets and outcome of the cellular immune response to HHV-6 makes it difficult to outline the role of HHV-6 in human disease. To fill in this gap, we characterized CD4 T cell responses to HHV-6 using peripheral blood mononuclear cell (PBMC) and T cell lines generated from healthy donors. CD4(+) T cells responding to HHV-6 in peripheral blood were observed at frequencies below 0.1% of total T cells but could be expanded easily in vitro. Analysis of cytokines in supernatants of PBMC and T cell cultures challenged with HHV-6 preparations indicated that gamma interferon (IFN-γ) and interleukin-10 (IL-10) were appropriate markers of the HHV-6 cellular response. Eleven CD4(+) T cell epitopes, all but one derived from abundant virion components, were identified. The response was highly cross-reactive between HHV-6A and HHV-6B variants. Seven of the CD4(+) T cell epitopes do not share significant homologies with other known human pathogens, including the closely related human viruses human herpesvirus 7 (HHV-7) and human cytomegalovirus (HCMV). Major histocompatibility complex (MHC) tetramers generated with these epitopes were able to detect HHV-6-specific T cell populations. These findings provide a window into the immune response to HHV-6 and provide a basis for tracking HHV-6 cellular immune responses.
Collapse
|
23
|
Immunodominant "asymptomatic" herpes simplex virus 1 and 2 protein antigens identified by probing whole-ORFome microarrays with serum antibodies from seropositive asymptomatic versus symptomatic individuals. J Virol 2012; 86:4358-69. [PMID: 22318137 DOI: 10.1128/jvi.07107-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) and HSV-2 are medically significant pathogens. The development of an effective HSV vaccine remains a global public health priority. HSV-1 and HSV-2 immunodominant "asymptomatic" antigens (ID-A-Ags), which are strongly recognized by B and T cells from seropositive healthy asymptomatic individuals, may be critical to be included in an effective immunotherapeutic HSV vaccine. In contrast, immunodominant "symptomatic" antigens (ID-S-Ags) may exacerbate herpetic disease and therefore must be excluded from any HSV vaccine. In the present study, proteome microarrays of 88 HSV-1 and 84 HSV-2 open reading frames(ORFs) (ORFomes) were constructed and probed with sera from 32 HSV-1-, 6 HSV-2-, and 5 HSV-1/HSV-2-seropositive individuals and 47 seronegative healthy individuals (negative controls). The proteins detected in both HSV-1 and HSV-2 proteome microarrays were further classified according to their recognition by sera from HSV-seropositive clinically defined symptomatic (n = 10) and asymptomatic (n = 10) individuals. We found that (i) serum antibodies recognized an average of 6 ORFs per seropositive individual; (ii) the antibody responses to HSV antigens were diverse among HSV-1- and HSV-2-seropositive individuals; (iii) panels of 21 and 30 immunodominant antigens (ID-Ags) were identified from the HSV-1 and HSV-2 ORFomes, respectively, as being highly and frequently recognized by serum antibodies from seropositive individuals; and (iv) interestingly, four HSV-1 and HSV-2 cross-reactive asymptomatic ID-A-Ags, US4, US11, UL30, and UL42, were strongly and frequently recognized by sera from 10 of 10 asymptomatic patients but not by sera from 10 of 10 symptomatic patients (P < 0.001). In contrast, sera from symptomatic patients preferentially recognized the US10 ID-S-Ag (P < 0.001). We have identified previously unreported immunodominant HSV antigens, among which were 4 ID-A-Ags and 1 ID-S-Ag. These newly identified ID-A-Ags could lead to the development of an efficient "asymptomatic" vaccine against ocular, orofacial, and genital herpes.
Collapse
|
24
|
Discovery of potential diagnostic and vaccine antigens in herpes simplex virus 1 and 2 by proteome-wide antibody profiling. J Virol 2012; 86:4328-39. [PMID: 22318154 DOI: 10.1128/jvi.05194-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Routine serodiagnosis of herpes simplex virus (HSV) infections is currently performed using recombinant glycoprotein G (gG) antigens from herpes simplex virus 1 (HSV-1) and HSV-2. This is a single-antigen test and has only one diagnostic application. Relatively little is known about HSV antigenicity at the proteome-wide level, and the full potential of mining the antibody repertoire to identify antigens with other useful diagnostic properties and candidate vaccine antigens is yet to be realized. To this end we produced HSV-1 and -2 proteome microarrays in Escherichia coli and probed them against a panel of sera from patients serotyped using commercial gG-1 and gG-2 (gGs for HSV-1 and -2, respectively) enzyme-linked immunosorbent assays. We identified many reactive antigens in both HSV-1 and -2, some of which were type specific (i.e., recognized by HSV-1- or HSV-2-positive donors only) and others of which were nonspecific or cross-reactive (i.e., recognized by both HSV-1- and HSV-2-positive donors). Both membrane and nonmembrane virion proteins were antigenic, although type-specific antigens were enriched for membrane proteins, despite being expressed in E. coli.
Collapse
|
25
|
Failure of the smallpox vaccine to develop a skin lesion in vaccinia virus-naïve individuals is related to differences in antibody profiles before vaccination, not after. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:418-28. [PMID: 22258709 DOI: 10.1128/cvi.05521-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Successful vaccination against smallpox with conventional vaccinia virus is usually determined by the development of a vesicular skin lesion at the site of vaccinia inoculation, called a "take." Although previous vaccination is known to be associated with attenuation of the take, the immunology that underlies a no-take in vaccinia-naïve individuals is not well understood. We hypothesized that antibody profiling of individuals before and after receiving vaccinia virus would reveal differences between takes and no-takes that may help better explain the phenomenon. Using vaccinia virus proteome microarrays and recombinant protein enzyme-linked immunosorbent assays (ELISAs), we first examined the antibody response in vaccinia-naïve individuals that failed to take after receiving different doses of the replication-competent DryVax and Aventis Pasteur (APSV) smallpox vaccines. Most that received diluted vaccine failed to respond, although four no-takes receiving diluted vaccine and four receiving undiluted vaccine mounted an antibody response. Interestingly, their antibody profiles were not significantly different from those of controls that did show a take. However, we did find elevated antibody titers in no-takes prior to receiving DryVax that were significantly different from those of takes. Although the sample size studied was small, we conclude the failure to take in responders correlates with preexisting immunity of unknown etiology that may attenuate the skin reaction in a way similar to previous smallpox vaccination.
Collapse
|
26
|
Jing L, Haas J, Chong TM, Bruckner JJ, Dann GC, Dong L, Marshak JO, McClurkan CL, Yamamoto TN, Bailer SM, Laing KJ, Wald A, Verjans GMGM, Koelle DM. Cross-presentation and genome-wide screening reveal candidate T cells antigens for a herpes simplex virus type 1 vaccine. J Clin Invest 2012; 122:654-73. [PMID: 22214845 DOI: 10.1172/jci60556] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 11/09/2011] [Indexed: 11/17/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) not only causes painful recurrent oral-labial infections, it can also cause permanent brain damage and blindness. There is currently no HSV-1 vaccine. An effective vaccine must stimulate coordinated T cell responses, but the large size of the genome and the low frequency of HSV-1-specific T cells have hampered the search for the most effective T cell antigens for inclusion in a candidate vaccine. We have now developed what we believe to be novel methods to efficiently generate a genome-wide map of the responsiveness of HSV-1-specific T cells, and demonstrate the applicability of these methods to a second complex microbe, vaccinia virus. We used cross-presentation and CD137 activation-based FACS to enrich for polyclonal CD8+ T effector T cells. The HSV-1 proteome was prepared in a flexible format for analyzing both CD8+ and CD4+ T cells from study participants. Scans with participant-specific panels of artificial APCs identified an oligospecific response in each individual. Parallel CD137-based CD4+ T cell research showed discrete oligospecific recognition of HSV-1 antigens. Unexpectedly, the two HSV-1 proteins not previously considered as vaccine candidates elicited both CD8+ and CD4+ T cell responses in most HSV-1-infected individuals. In this era of microbial genomics, our methods - also demonstrated in principle for vaccinia virus for both CD8+ and CD4+ T cells - should be broadly applicable to the selection of T cell antigens for inclusion in candidate vaccines for many pathogens.
Collapse
Affiliation(s)
- Lichen Jing
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hermanson G, Chun S, Felgner J, Tan X, Pablo J, Nakajima-Sasaki R, Molina DM, Felgner PL, Liang X, Davies DH. Measurement of antibody responses to Modified Vaccinia virus Ankara (MVA) and Dryvax(®) using proteome microarrays and development of recombinant protein ELISAs. Vaccine 2011; 30:614-25. [PMID: 22100890 DOI: 10.1016/j.vaccine.2011.11.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 10/27/2011] [Accepted: 11/06/2011] [Indexed: 01/14/2023]
Abstract
Modified Vaccinia virus Ankara (MVA) is an attenuated strain of vaccinia virus that is being considered as a safer alternative to replicating vaccinia vaccine strains such as Dryvax(®) and ACAM2000. Its excellent safety profile and large genome also make it an attractive vector for the delivery of heterologous genes from other pathogens. MVA was attenuated by prolonged passage through chick embryonic fibroblasts in vitro. In human and most mammalian cells, production of infectious progeny is aborted in the late stage of infection. Despite this, MVA provides high-level gene expression and is immunogenic in humans and other animals. A key issue for vaccine developers is the ability to be able to monitor an immune response to MVA in both vaccinia naïve and previously vaccinated individuals. To this end we have used antibody profiling by proteome microarray to compare profiles before and after MVA and Dryvax vaccination to identify candidate serodiagnostic antigens. Six antigens with diagnostic utility, comprising three membrane and three non-membrane proteins from the intracellular mature virion, were purified and evaluated in ELISAs. The membrane protein WR113/D8L provided the best sensitivity and specificity of the six antigens tested for monitoring both MVA and Dryvax vaccination, whereas the A-type inclusion protein homolog, WR148, provided the best discrimination. The ratio of responses to membrane protein WR132/A13L and core protein WR070/I1L also provided good discrimination between primary and secondary responses to Dryvax, whereas membrane protein WR101/H3L and virion assembly protein WR118/D13L together provided the best sensitivity for detecting antibody in previously vaccinated individuals. These data will aid the development novel MVA-based vaccines.
Collapse
|
28
|
Cardoso FC, Roddick JS, Groves P, Doolan DL. Evaluation of approaches to identify the targets of cellular immunity on a proteome-wide scale. PLoS One 2011; 6:e27666. [PMID: 22096610 PMCID: PMC3214079 DOI: 10.1371/journal.pone.0027666] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 10/21/2011] [Indexed: 11/19/2022] Open
Abstract
Background Vaccine development against malaria and other complex diseases remains a challenge for the scientific community. The recent elucidation of the genome, proteome and transcriptome of many of these complex pathogens provides the basis for rational vaccine design by identifying, on a proteome-wide scale, novel target antigens that are recognized by T cells and antibodies from exposed individuals. However, there is currently no algorithm to effectively identify important target antigens from genome sequence data; this is especially challenging for T cell targets. Furthermore, for some of these pathogens, such as Plasmodium, protein expression using conventional platforms has been problematic but cell-free in vitro transcription translation (IVTT) strategies have recently proved successful. Herein, we report a novel approach for proteome-wide scale identification of the antigenic targets of T cell responses using IVTT products. Principal Findings We conducted a series of in vitro and in vivo experiments using IVTT proteins either unpurified, absorbed to carboxylated polybeads, or affinity purified through nickel resin or magnetic beads. In vitro studies in humans using CMV, EBV, and Influenza A virus proteins showed antigen-specific cytokine production in ELIspot and Cytometric Bead Array assays with cells stimulated with purified or unpurified IVTT antigens. In vitro and in vivo studies in mice immunized with the Plasmodium yoelii circumsporozoite DNA vaccine with or without IVTT protein boost showed antigen-specific cytokine production using purified IVTT antigens only. Overall, the nickel resin method of IVTT antigen purification proved optimal in both human and murine systems. Conclusions This work provides proof of concept for the potential of high-throughput approaches to identify T cell targets of complex parasitic, viral or bacterial pathogens from genomic sequence data, for rational vaccine development against emerging and re-emerging diseases that pose a threat to public health.
Collapse
Affiliation(s)
| | - Joanne S. Roddick
- Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Penny Groves
- Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Denise L. Doolan
- Queensland Institute of Medical Research, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
29
|
Judkowski V, Bunying A, Ge F, Appel JR, Law K, Sharma A, Raja- Gabaglia C, Norori P, Santos RG, Giulianotti MA, Slifka MK, Douek DC, Graham BS, Pinilla C. GM-CSF production allows the identification of immunoprevalent antigens recognized by human CD4+ T cells following smallpox vaccination. PLoS One 2011; 6:e24091. [PMID: 21931646 PMCID: PMC3170313 DOI: 10.1371/journal.pone.0024091] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 07/29/2011] [Indexed: 12/25/2022] Open
Abstract
The threat of bioterrorism with smallpox and the broad use of vaccinia vectors for other vaccines have led to the resurgence in the study of vaccinia immunological memory. The importance of the role of CD4+ T cells in the control of vaccinia infection is well known. However, more CD8+ than CD4+ T cell epitopes recognized by human subjects immunized with vaccinia virus have been reported. This could be, in part, due to the fact that most of the studies that have identified human CD4+ specific protein-derived fragments or peptides have used IFN-γ production to evaluate vaccinia specific T cell responses. Based on these findings, we reasoned that analyzing a large panel of cytokines would permit us to generate a more complete analysis of the CD4 T cell responses. The results presented provide clear evidence that TNF-α is an excellent readout of vaccinia specificity and that other cytokines such as GM-CSF can be used to evaluate the reactivity of CD4+ T cells in response to vaccinia antigens. Furthermore, using these cytokines as readout of vaccinia specificity, we present the identification of novel peptides from immunoprevalent vaccinia proteins recognized by CD4+ T cells derived from smallpox vaccinated human subjects. In conclusion, we describe a “T cell–driven” methodology that can be implemented to determine the specificity of the T cell response upon vaccination or infection. Together, the single pathogen in vitro stimulation, the selection of CD4+ T cells specific to the pathogen by limiting dilution, the evaluation of pathogen specificity by detecting multiple cytokines, and the screening of the clones with synthetic combinatorial libraries, constitutes a novel and valuable approach for the elucidation of human CD4+ T cell specificity in response to large pathogens.
Collapse
Affiliation(s)
- Valeria Judkowski
- Torrey Pines Institute for Molecular Studies, San Diego, California, United States of America
| | - Alcinette Bunying
- Torrey Pines Institute for Molecular Studies, San Diego, California, United States of America
| | - Feng Ge
- Torrey Pines Institute for Molecular Studies, San Diego, California, United States of America
| | - Jon R. Appel
- Torrey Pines Institute for Molecular Studies, San Diego, California, United States of America
| | - Kingyee Law
- Torrey Pines Institute for Molecular Studies, San Diego, California, United States of America
| | - Atima Sharma
- Torrey Pines Institute for Molecular Studies, San Diego, California, United States of America
| | - Claudia Raja- Gabaglia
- Torrey Pines Institute for Molecular Studies, San Diego, California, United States of America
| | - Patricia Norori
- Torrey Pines Institute for Molecular Studies, San Diego, California, United States of America
| | - Radleigh G. Santos
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida, United States of America
| | - Marc A. Giulianotti
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida, United States of America
| | - Mark K. Slifka
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Daniel C. Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Barney S. Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Clemencia Pinilla
- Torrey Pines Institute for Molecular Studies, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
30
|
Suwannasaen D, Mahawantung J, Chaowagul W, Limmathurotsakul D, Felgner PL, Davies H, Bancroft GJ, Titball RW, Lertmemongkolchai G. Human immune responses to Burkholderia pseudomallei characterized by protein microarray analysis. J Infect Dis 2011; 203:1002-11. [PMID: 21300673 DOI: 10.1093/infdis/jiq142] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND We aimed to determine the antibody and T cell responses to Burkholderia pseudomallei of humans to select candidate vaccine antigens. METHODS For antibody profiling, a protein microarray of 154 B. pseudomallei proteins was probed with plasma from 108 healthy individuals and 72 recovered patients. Blood from 20 of the healthy and 30 of the recovered individuals was also obtained for T cell assays. RESULTS Twenty-seven proteins distinctively reacted with human plasma following environmental exposure or clinical melioidosis. We compared the responses according to the patient's history of subsequent relapse, and antibody response to BPSL2765 was higher in plasma from individuals who had only 1 episode of disease than in those with recurrent melioidosis. A comparison of antibody and T cell responses to 5 B. pseudomallei proteins revealed that BimA and flagellin-induced responses were similar but that BPSS0530 could induce T cell responses in healthy controls more than in recovered patients. CONCLUSIONS By combining large-scale antibody microarrays and assays of T cell-mediated immunity, we identified a panel of novel B. pseudomallei proteins that show distinct patterns of reactivity in different stages of human melioidosis. These proteins may be useful candidates for development of subunit-based vaccines and in monitoring the risks of treatment failure and relapse.
Collapse
Affiliation(s)
- Duangchan Suwannasaen
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen,Thailand
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The eradication of smallpox, one of the great triumphs of medicine, was accomplished through the prophylactic administration of live vaccinia virus, a comparatively benign relative of variola virus, the causative agent of smallpox. Nevertheless, recent fears that variola virus may be used as a biological weapon together with the present susceptibility of unimmunized populations have spurred the development of new-generation vaccines that are safer than the original and can be produced by modern methods. Predicting the efficacy of such vaccines in the absence of human smallpox, however, depends on understanding the correlates of protection. This review outlines the biology of poxviruses with particular relevance to vaccine development, describes protein targets of humoral and cellular immunity, compares animal models of orthopoxvirus disease with human smallpox, and considers the status of second- and third-generation smallpox vaccines.
Collapse
Affiliation(s)
- Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-3210, USA.
| |
Collapse
|
32
|
Moise L, Buller RM, Schriewer J, Lee J, Frey SE, Weiner DB, Martin W, De Groot AS. VennVax, a DNA-prime, peptide-boost multi-T-cell epitope poxvirus vaccine, induces protective immunity against vaccinia infection by T cell response alone. Vaccine 2010; 29:501-11. [PMID: 21055490 DOI: 10.1016/j.vaccine.2010.10.064] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 10/12/2010] [Accepted: 10/24/2010] [Indexed: 12/12/2022]
Abstract
The potential for smallpox to be disseminated in a bioterror attack has prompted development of new, safer smallpox vaccination strategies. We designed and evaluated immunogenicity and efficacy of a T-cell epitope vaccine based on conserved and antigenic vaccinia/variola sequences, identified using bioinformatics and immunological methods. Vaccination in HLA transgenic mice using a DNA-prime/peptide-boost strategy elicited significant T cell responses to multiple epitopes. No antibody response pre-challenge was observed, neither against whole vaccinia antigens nor vaccine epitope peptides. Remarkably, 100% of vaccinated mice survived lethal vaccinia challenge, demonstrating that protective immunity to vaccinia does not require B cell priming.
Collapse
|
33
|
Sette A, Rappuoli R. Reverse vaccinology: developing vaccines in the era of genomics. Immunity 2010; 33:530-41. [PMID: 21029963 PMCID: PMC3320742 DOI: 10.1016/j.immuni.2010.09.017] [Citation(s) in RCA: 343] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 08/20/2010] [Accepted: 09/23/2010] [Indexed: 02/08/2023]
Abstract
The sequence of microbial genomes made all potential antigens of each pathogen available for vaccine development. This increased by orders of magnitude potential vaccine targets in bacteria, parasites, and large viruses and revealed virtually all their CD4(+) and CD8(+) T cell epitopes. The genomic information was first used for the development of a vaccine against serogroup B meningococcus, and it is now being used for several other bacterial vaccines. In this review, we will first summarize the impact that genome sequencing has had on vaccine development, and then we will analyze how the genomic information can help further our understanding of immunity to infection or vaccination and lead to the design of better vaccines by diving into the world of T cell immunity.
Collapse
Affiliation(s)
- Alessandro Sette
- La Jolla Institute for Allergy and Immunology, San Diego, CA 92130, USA
| | | |
Collapse
|
34
|
Kennedy RB, Poland GA. The identification of HLA class II-restricted T cell epitopes to vaccinia virus membrane proteins. Virology 2010; 408:232-40. [PMID: 20961593 PMCID: PMC2975829 DOI: 10.1016/j.virol.2010.09.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 09/13/2010] [Accepted: 09/15/2010] [Indexed: 12/12/2022]
Abstract
Three decades after the eradication of smallpox, the threat of bioterrorism and outbreaks of emerging diseases such as monkeypox have renewed interest in the development of safe and effective next-generation poxvirus vaccines and biodefense research. Current smallpox vaccines contain live virus and are contraindicated for a large percentage of the population. Safer, yet still effective inactivated and subunit vaccines are needed, and epitope identification is an essential step in the development of these subunit vaccines. In this study we focused on 4 vaccinia membrane proteins known to be targeted by humoral responses in vaccinees. In spite of the narrow focus of the study we identified 36 T cell epitopes, and provide additional support for the physical linkage between T and B epitopes. This information may prove useful in peptide and protein-based subunit vaccine development as well as in the study of CD4 responses to poxviruses.
Collapse
|
35
|
Abstract
The Plasmodium parasite, the causative agent of malaria, is an excellent model for immunomic-based approaches to vaccine development. The Plasmodium parasite has a complex life cycle with multiple stages and stage-specific expression of ∼5300 putative proteins. No malaria vaccine has yet been licensed. Many believe that an effective vaccine will need to target several antigens and multiple stages, and will require the generation of both antibody and cellular immune responses. Vaccine efforts to date have been stage-specific and based on only a very limited number of proteins representing <0.5% of the genome. The recent availability of comprehensive genomic, proteomic and transcriptomic datasets from human and selected non-human primate and rodent malarias provide a foundation to exploit for vaccine development. This information can be mined to identify promising vaccine candidate antigens, by proteome-wide screening of antibody and T cell reactivity using specimens from individuals exposed to malaria and technology platforms such as protein arrays, high throughput protein production and epitope prediction algorithms. Such antigens could be incorporated into a rational vaccine development process that targets specific stages of the Plasmodium parasite life cycle with immune responses implicated in parasite elimination and control. Immunomic approaches which enable the selection of the best possible targets by prioritising antigens according to clinically relevant criteria may overcome the problem of poorly immunogenic, poorly protective vaccines that has plagued malaria vaccine developers for the past 25 years. Herein, current progress and perspectives regarding Plasmodium immunomics are reviewed.
Collapse
Affiliation(s)
- Denise L Doolan
- Division of Immunology, Queensland Institute of Medical Research, The Bancroft Centre, 300 Herston Road, P.O. Royal Brisbane Hospital, Brisbane, QLD 4029, Australia.
| |
Collapse
|
36
|
Vigil A, Davies DH, Felgner PL. Defining the humoral immune response to infectious agents using high-density protein microarrays. Future Microbiol 2010; 5:241-51. [PMID: 20143947 DOI: 10.2217/fmb.09.127] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A major component of the adaptive immune response to infection is the generation of protective and long-lasting humoral immunity. Traditional approaches to understanding the host's humoral immune response are unable to provide an integrated understanding of the antibody repertoire generated in response to infection. By studying multiple antigenic responses in parallel, we can learn more about the breadth and dynamics of the antibody response to infection. Measurement of antibody production following vaccination is also a gauge for efficacy, as generation of antibodies can protect from future infections and limit disease. Protein microarrays are well suited to identify, quantify and compare individual antigenic responses following exposure to infectious agents. This technology can be applied to the development of improved serodiagnostic tests, discovery of subunit vaccine antigen candidates, epidemiologic research and vaccine development, as well as providing novel insights into infectious disease and the immune system. In this review, we will discuss the use of protein microarrays as a powerful tool to define the humoral immune response to bacteria and viruses.
Collapse
Affiliation(s)
- Adam Vigil
- University of California Irvine, Department of Medicine, Division of Infectious Diseases, 3501 Hewitt Hall, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
37
|
Moutaftsi M, Tscharke DC, Vaughan K, Koelle DM, Stern L, Calvo-Calle M, Ennis F, Terajima M, Sutter G, Crotty S, Drexler I, Franchini G, Yewdell JW, Head SR, Blum J, Peters B, Sette A. Uncovering the interplay between CD8, CD4 and antibody responses to complex pathogens. Future Microbiol 2010; 5:221-39. [PMID: 20143946 DOI: 10.2217/fmb.09.110] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Vaccinia virus (VACV) was used as the vaccine strain to eradicate smallpox. VACV is still administered to healthcare workers or researchers who are at risk of contracting the virus, and to military personnel. Thus, VACV represents a weapon against outbreaks, both natural (e.g., monkeypox) or man-made (bioterror). This virus is also used as a vector for experimental vaccine development (cancer/infectious disease). As a prototypic poxvirus, VACV is a model system for studying host-pathogen interactions. Until recently, little was known about the targets of host immune responses, which was likely owing to VACVs large genome (>200 open reading frames). However, the last few years have witnessed an explosion of data, and VACV has quickly become a useful model to study adaptive immune responses. This review summarizes and highlights key findings based on identification of VACV antigens targeted by the immune system (CD4, CD8 and antibodies) and the complex interplay between responses.
Collapse
Affiliation(s)
- Magdalini Moutaftsi
- Vaccine Discovery, La Jolla Institute for Allergy & Immunology, La Jolla, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Walker JM, Slifka MK. Longevity of T-cell memory following acute viral infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 684:96-107. [PMID: 20795543 DOI: 10.1007/978-1-4419-6451-9_8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Investigation of T-cell-mediated immunity following acute viral infection represents an area of research with broad implications for both fundamental immunology research as well as vaccine development. Here, we review techniques that are used to assess T-cell memory including limiting dilution analysis, enzyme-linked immunospot (ELISPOT) assays, intracellular cytokine staining (ICCS) and peptide-MHC Class I tetramer staining. The durability of T-cell memory is explored in the context of several acute viral infections including vaccinia virus (VV), measles virus (MV) and yellow fever virus (YFV). Following acute infection, different virus-specific T-cell subpopulations exhibit distinct cytokine profiles and these profiles change over the course of infection. Differential regulation of the cytotoxic proteins, granzyme A, granzyme B and perforin are also observed in virus-specific T cells following infection. As a result of this work, we have gained a broader understanding of the kinetics and magnitude of antiviral T-cell immunity as well as new insight into the patterns of immunodominance and differential regulation of cytokines and cytotoxicity-associated molecules. This information may eventually lead to the generation of more effective vaccines that elicit T-cell memory with the optimal combination of functional characteristics required for providing protective immunity against infectious disease.
Collapse
Affiliation(s)
- Joshua M Walker
- Vaccine and Gene Therapy Institute Oregon Health and Sciences University, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA
| | | |
Collapse
|
39
|
Walsh SR, Gillis J, Peters B, Mothé BR, Sidney J, Sette A, Johnson RP. Diverse recognition of conserved orthopoxvirus CD8+ T cell epitopes in vaccinated rhesus macaques. Vaccine 2009; 27:4990-5000. [PMID: 19531389 PMCID: PMC2765250 DOI: 10.1016/j.vaccine.2009.05.077] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Revised: 05/08/2009] [Accepted: 05/28/2009] [Indexed: 10/20/2022]
Abstract
Vaccinia virus (VACV) induces a vigorous virus-specific CD8+ T cell response that plays an important role in control of poxvirus infection. To identify immunodominant poxvirus proteins and to facilitate future testing of smallpox vaccines in non-human primates, we used an algorithm for the prediction of VACV peptides able to bind to the common macaque MHC class I molecule Mamu-A*01. We synthesized 294 peptides derived from 97 VACV ORFs; 100 of these peptides did not contain the canonical proline at position three of the Mamu-A*01 binding motif. Cellular immune responses in PBMC from two vaccinia-vaccinated Mamu-A*01+ macaques were assessed by IFNgamma ELISPOT assays. Vaccinated macaques recognized 17 peptides from 16 different ORFs with 6 peptides recognized by both macaques. Comparison with other orthopoxvirus sequences revealed that 12 of these epitopes are strictly conserved between VACV, variola, and monkeypoxvirus. ELISPOT responses were also observed to eight epitopes that did not contain the canonical P3 proline. These results suggest that the virus-specific CD8+ T cell response is broadly directed against multiple VACV proteins and that a subset of these T cell epitopes is highly conserved among orthopoxviruses.
Collapse
Affiliation(s)
- Stephen R Walsh
- Division of Infectious Diseases, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, United States
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Vaccination remains a crucial component of any initiative to control or eradicate malaria. With increasing reports of insecticide resistance in mosquitoes, and malaria parasite resistance to first-line drugs, it is clear that the development of an effective malaria vaccine is an urgent requirement for the improvement of global human health. This article highlights malaria vaccine research-related discoveries from 2008/9 to suggest that the time is now ripe for researchers to develop malaria vaccines that target many antigens from multiple stages of the parasite’s lifecycle. We also call for greater bidirectional information transfer between preclinical and clinical trials, to facilitate more efficient improvement of malaria vaccine candidates.
Collapse
Affiliation(s)
- Ashraful Haque
- Queensland Institute of Medical Research, 300 Herston Road, Herston, Brisbane, QLD 4006, Australia
| | - Michael F Good
- Queensland Institute of Medical Research, 300 Herston Road, Herston, Brisbane, QLD 4006, Australia
| |
Collapse
|
41
|
Moise L, McMurry JA, Buus S, Frey S, Martin WD, De Groot AS. In silico-accelerated identification of conserved and immunogenic variola/vaccinia T-cell epitopes. Vaccine 2009; 27:6471-9. [PMID: 19559119 DOI: 10.1016/j.vaccine.2009.06.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Epitopes shared by the vaccinia and variola viruses underlie the protective effect of vaccinia immunization against variola infection. We set out to identify a subset of cross-reactive epitopes using bioinformatics and immunological methods. Putative T-cell epitopes were computationally predicted from highly conserved open reading frames from seven complete vaccinia and variola genomes using EpiMatrix. Over 100 epitopes bearing low human sequence homology were selected and assessed in HLA binding assays and in T-cell antigenicity assays using PBMCs isolated from Dryvax-immunized subjects. This experimental validation of computational predictions illustrates the potential for immunoinformatics methods to identify candidate immunogens for a new, safer smallpox vaccine.
Collapse
|
42
|
ORFeome approach to the clonal, HLA allele-specific CD4 T-cell response to a complex pathogen in humans. J Immunol Methods 2009; 347:36-45. [PMID: 19520082 DOI: 10.1016/j.jim.2009.05.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 05/26/2009] [Accepted: 05/28/2009] [Indexed: 11/21/2022]
Abstract
The CD4 T-cell response to vaccinia promotes antibody and long-term CD8 responses. HLA class II molecules present microbial epitopes to CD4 T-cells. In humans, at least 3 loci encode cell-surface peptide-binding HLA class II heterodimers. Using intracellular cytokine cytometry (ICC) assays, we determined that HLA DR had the strongest contribution to vaccinia antigen presentation. Among panels of vaccinia-restricted T-cell clones, most were DR-restricted but rare DQ-restricted clones were also recovered. Vaccinia has over 200 open reading frames (ORFs), providing a significant bottleneck to assigning fine specificity. To overcome this, we expressed each predicted vaccinia ORF using in vitro transcription and translation. Array-based pool proteins were used to rapidly assign fine specificity to each DQ-restricted clone and to a sample of HLA DR-restricted clones. Reactivity was confirmed using synthetic peptides for selected CD4 T-cell clones. This method should be broadly applicable to the study of large-genome, sequenced pathogens, and could also be used to investigate T-cell responses to cDNAs expressed in neoplastic and autoimmune disorders in which CD4 responses might be adaptive or harmful.
Collapse
|
43
|
Kennedy RB, Ovsyannikova IG, Jacobson RM, Poland GA. The immunology of smallpox vaccines. Curr Opin Immunol 2009; 21:314-20. [PMID: 19524427 PMCID: PMC2826713 DOI: 10.1016/j.coi.2009.04.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 04/21/2009] [Indexed: 02/01/2023]
Abstract
In spite of the eradication of smallpox over 30 years ago; orthopox viruses such as smallpox and monkeypox remain serious public health threats both through the possibility of bioterrorism and the intentional release of smallpox and through natural outbreaks of emerging infectious diseases such as monkeypox. The eradication effort was largely made possible by the availability of an effective vaccine based on the immunologically cross-protective vaccinia virus. Although the concept of vaccination dates back to the late 1800s with Edward Jenner, it is only in the past decade that modern immunologic tools have been applied toward deciphering poxvirus immunity. Smallpox vaccines containing vaccinia virus elicit strong humoral and cellular immune responses that confer cross-protective immunity against variola virus for decades after immunization. Recent studies have focused on: establishing the longevity of poxvirus-specific immunity, defining key immune epitopes targeted by T and B cells, developing subunit-based vaccines, and developing genotypic and phenotypic immune response profiles that predict either vaccine response or adverse events following immunization.
Collapse
Affiliation(s)
- Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Guggenheim 611C, 200 First Street SW, Rochester, MN 55905, United States,Department of Internal Medicine, Guggenheim 611C, 200 First Street SW, Rochester, MN 55905, United States
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Guggenheim 611C, 200 First Street SW, Rochester, MN 55905, United States,Department of Internal Medicine, Guggenheim 611C, 200 First Street SW, Rochester, MN 55905, United States,Program in Translational Immunovirology and Biodefense, Guggenheim 611C, 200 First Street SW, Rochester, MN 55905, United States
| | - Robert M Jacobson
- Mayo Clinic Vaccine Research Group, Guggenheim 611C, 200 First Street SW, Rochester, MN 55905, United States,Department of Pediatric and Adolescent Medicine, Mayo Clinic, Guggenheim 611C, 200 First Street SW, Rochester, MN 55905 United States
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Guggenheim 611C, 200 First Street SW, Rochester, MN 55905, United States,Department of Internal Medicine, Guggenheim 611C, 200 First Street SW, Rochester, MN 55905, United States,Program in Translational Immunovirology and Biodefense, Guggenheim 611C, 200 First Street SW, Rochester, MN 55905, United States
| |
Collapse
|
44
|
Tippayawat P, Saenwongsa W, Mahawantung J, Suwannasaen D, Chetchotisakd P, Limmathurotsakul D, Peacock SJ, Felgner PL, Atkins HS, Titball RW, Bancroft GJ, Lertmemongkolchai G. Phenotypic and functional characterization of human memory T cell responses to Burkholderia pseudomallei. PLoS Negl Trop Dis 2009; 3:e407. [PMID: 19352426 PMCID: PMC2660609 DOI: 10.1371/journal.pntd.0000407] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 03/06/2009] [Indexed: 11/26/2022] Open
Abstract
Background Infection with the Gram-negative bacterium Burkholderia pseudomallei is an important cause of community-acquired lethal sepsis in endemic regions in southeast Asia and northern Australia and is increasingly reported in other tropical areas. In animal models, production of interferon-gamma (IFN-γ) is critical for resistance, but in humans the characteristics of IFN-γ production and the bacterial antigens that are recognized by the cell-mediated immune response have not been defined. Methods Peripheral blood from 133 healthy individuals who lived in the endemic area and had no history of melioidosis, 60 patients who had recovered from melioidosis, and 31 other patient control subjects were stimulated by whole bacteria or purified bacterial proteins in vitro, and IFN-γ responses were analyzed by ELISPOT and flow cytometry. Findings B. pseudomallei was a potent activator of human peripheral blood NK cells for innate production of IFN-γ. In addition, healthy individuals with serological evidence of exposure to B. pseudomallei and patients recovered from active melioidosis developed CD4+ (and CD8+) T cells that recognized whole bacteria and purified proteins LolC, OppA, and PotF, members of the B. pseudomallei ABC transporter family. This response was primarily mediated by terminally differentiated T cells of the effector–memory (TEMRA) phenotype and correlated with the titer of anti-B. pseudomallei antibodies in the serum. Conclusions Individuals living in a melioidosis-endemic region show clear evidence of T cell priming for the ability to make IFN-γ that correlates with their serological status. The ability to detect T cell responses to defined B. pseudomallei proteins in large numbers of individuals now provides the opportunity to screen candidate antigens for inclusion in protein or polysaccharide–conjugate subunit vaccines against this important but neglected disease. The Gram-negative bacterium, Burkholderia pseudomallei, is a public health problem in southeast Asia and northern Australia and a Centers for Disease Control and Prevention listed Category B potential bioterrorism agent. It is the causative agent of melioidosis, and clinical manifestations vary from acute sepsis to chronic localized and latent infection, which can reactivate decades later. B. pseudomallei is the major cause of community-acquired pneumonia and septicemia in northeast Thailand. In spite of the medical importance of B. pseudomallei, little is known about the mechanisms of pathogenicity and the immunological pathways of host defense. There is no available vaccine, and the mortality rate in acute cases can exceed 40% with 10–15% of survivors relapsing or being reinfected despite prolonged and complete treatments. In this article, we describe cell-mediated immune responses to B. pseudomallei in humans living in northeast Thailand and demonstrate clear evidence of T cell priming in healthy seropositive individuals and patients who recovered from melioidosis. This is the most detailed study yet performed on the cell types that produce interferon-gamma to B. pseudomallei in humans and the antigens that they recognize and the first to study large sample numbers in the primary endemic focus of melioidosis in the world.
Collapse
Affiliation(s)
- Patcharaporn Tippayawat
- The Centre for Research & Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Wipawee Saenwongsa
- The Centre for Research & Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Jirawan Mahawantung
- The Centre for Research & Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Duangchan Suwannasaen
- The Centre for Research & Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | | | - Direk Limmathurotsakul
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sharon J. Peacock
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Philip L. Felgner
- Department of Medicine/Division of Infectious Diseases, University of California Irvine, Irvine, California, United States of America
| | - Helen S. Atkins
- Defence Science and Technology Laboratory, Porton Down, United Kingdom
| | | | - Gregory J. Bancroft
- Immunology Unit, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ganjana Lertmemongkolchai
- The Centre for Research & Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
- * E-mail:
| |
Collapse
|
45
|
Doolan DL, Mu Y, Unal B, Sundaresh S, Hirst S, Valdez C, Randall A, Molina D, Liang X, Freilich DA, Oloo JA, Blair PL, Aguiar JC, Baldi P, Davies DH, Felgner PL. Profiling humoral immune responses to P. falciparum infection with protein microarrays. Proteomics 2009; 8:4680-94. [PMID: 18937256 DOI: 10.1002/pmic.200800194] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A complete description of the serological response following exposure of humans to complex pathogens is lacking and approaches suitable for accomplishing this are limited. Here we report, using malaria as a model, a method which elucidates the profile of antibodies that develop after natural or experimental infection or after vaccination with attenuated organisms, and which identifies immunoreactive antigens of interest for vaccine development or other applications. Expression vectors encoding 250 Plasmodium falciparum (Pf) proteins were generated by PCR/recombination cloning; the proteins were individually expressed with >90% efficiency in Escherichia coli cell-free in vitro transcription and translation reactions, and printed directly without purification onto microarray slides. The protein microarrays were probed with human sera from one of four groups which differed in immune status: sterile immunity or no immunity against experimental challenge following vaccination with radiation-attenuated Pf sporozoites, partial immunity acquired by natural exposure, and no previous exposure to Pf. Overall, 72 highly reactive Pf antigens were identified. Proteomic features associated with immunoreactivity were identified. Importantly, antibody profiles were distinct for each donor group. Information obtained from such analyses will facilitate identifying antigens for vaccine development, dissecting the molecular basis of immunity, monitoring the outcome of whole-organism vaccine trials, and identifying immune correlates of protection.
Collapse
|
46
|
Assarsson E, Bui HH, Sidney J, Zhang Q, Glenn J, Oseroff C, Mbawuike IN, Alexander J, Newman MJ, Grey H, Sette A. Immunomic analysis of the repertoire of T-cell specificities for influenza A virus in humans. J Virol 2008; 82:12241-51. [PMID: 18842709 PMCID: PMC2593359 DOI: 10.1128/jvi.01563-08] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 09/22/2008] [Indexed: 02/06/2023] Open
Abstract
Continuing antigenic drift allows influenza viruses to escape antibody-mediated recognition, and as a consequence, the vaccine currently in use needs to be altered annually. Highly conserved epitopes recognized by effector T cells may represent an alternative approach for the generation of a more universal influenza virus vaccine. Relatively few highly conserved epitopes are currently known in humans, and relatively few epitopes have been identified from proteins other than hemagglutinin and nucleoprotein. This prompted us to perform a study aimed at identifying a set of human T-cell epitopes that would provide broad coverage against different virus strains and subtypes. To provide coverage across different ethnicities, seven different HLA supertypes were considered. More than 4,000 peptides were selected from a panel of 23 influenza A virus strains based on predicted high-affinity binding to HLA class I or class II and high conservancy levels. Peripheral blood mononuclear cells from 44 healthy human blood donors were tested for reactivity against HLA-matched peptides by using gamma interferon enzyme-linked immunospot assays. Interestingly, we found that PB1 was the major target for both CD4(+) and CD8(+) T-cell responses. The 54 nonredundant epitopes (38 class I and 16 class II) identified herein provided high coverage among different ethnicities, were conserved in the majority of the strains analyzed, and were consistently recognized in multiple individuals. These results enable further functional studies of T-cell responses during influenza virus infection and provide a potential base for the development of a universal influenza vaccine.
Collapse
Affiliation(s)
- Erika Assarsson
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Candidate antigens for Q fever serodiagnosis revealed by immunoscreening of a Coxiella burnetii protein microarray. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:1771-9. [PMID: 18845831 DOI: 10.1128/cvi.00300-08] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Q fever is a widespread zoonosis caused by Coxiella burnetii. Diagnosis of Q fever is usually based on serological testing of patient serum. The diagnostic antigen of test kits is formalin-fixed phase I and phase II organisms of the Nine Mile reference strain. Deficiencies of this antigen include (i) potential for cross-reactivity with other pathogens; (ii) an inability to distinguish between C. burnetii strains; and (iii) a need to propagate and purify C. burnetii, a difficult and potentially hazardous process. Consequently, there is a need for sensitive and specific serodiagnostic tests utilizing defined antigens, such as recombinant C. burnetii protein(s). Here we describe the use of a C. burnetii protein microarray to comprehensively identify immunodominant antigens recognized by antibody in the context of human C. burnetii infection or vaccination. Transcriptionally active PCR products corresponding to 1,988 C. burnetii open reading frames (ORFs) were generated. Full-length proteins were successfully synthesized from 75% of the ORFs by using an Escherichia coli-based in vitro transcription and translation system (IVTT). Nitrocellulose microarrays were spotted with crude IVTT lysates and probed with sera from acute Q fever patients and individuals vaccinated with Q-Vax. Immune sera strongly reacted with approximately 50 C. burnetii proteins, including previously identified immunogens, an ankyrin repeat-domain containing protein, and multiple hypothetical proteins. Recombinant protein corresponding to selected array-reactive antigens was generated, and the immunoreactivity was confirmed by enzyme-linked immunosorbent assay. This sensitive and high-throughput method for identifying immunoreactive C. burnetii proteins will aid in the development of Q fever serodiagnostic tests based on recombinant antigen.
Collapse
|