1
|
Mullon PJ, Maldonado-Luevano E, Mehta KPM, Mohni KN. The herpes simplex virus alkaline nuclease is required to maintain replication fork progression. J Virol 2024:e0183624. [PMID: 39508568 DOI: 10.1128/jvi.01836-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
Herpes simplex virus is a large double-strand DNA virus that replicates in the nucleus of the host cell and interacts with host DNA replication and repair proteins. The viral 5' to 3' alkaline nuclease, UL12, is required for production of DNA that can be packaged into infectious virus. The UL12-deleted virus, AN-1, exhibits near wild-type levels of viral DNA replication, but the DNA cannot be packaged into capsids, suggesting it is structurally aberrant. To better understand the DNA replication defect observed in AN-1, we utilized isolation of proteins on nascent DNA (iPOND), a powerful tool to study all the proteins at a DNA replication fork. Combining iPOND with stable isotope labeling of amino acids in cell culture (SILAC) allows for a quantitative assessment of protein abundance when comparing wild type to mutant replication forks. We performed five replicates of iPOND-SILAC comparing AN-1 to the wild-type virus, KOS. We observed 60 proteins that were significantly lost from AN-1 forks out of over 1,000 quantified proteins. These proteins largely represent host DNA replication proteins including MCM2-7, RFC1-5, MSH2/6, MRN, and proliferating cell nuclear antigen. These observations are reminiscent of how these proteins behave at stalled human replication forks. We also observed similar protein changes when we stalled KOS forks with hydroxyurea. Additionally, we observed a decrease in the rate of AN-1 replication fork progression at the single-molecule level. These data indicate that UL12 is required for DNA replication fork progression and that forks stall in the absence of UL12. IMPORTANCE Herpes simplex virus 1 (HSV-1) is a near-ubiquitous pathogen within the global population, causing a lifelong latent infection with sporadic reactivation throughout the life of the host. Within at-risk and immunocompromised communities, HSV-1 infection can cause serious morbidities including herpes keratitis and encephalitis. With the possibility of herpesviruses to evade established antiviral therapies and there being no approved HSV-1 vaccine, there comes a need to investigate potential targets for intervention against infection and subsequent disease. UL12 is the viral 5'-3' exonuclease, which is required for the production of infectious progeny. In this study, we show that in the absence of UL12, viral replication fork progression is abrogated. These data point to UL12 as an attractive target for intervention, which could lead to better clinical outcomes of HSV-1-associated disease in the future.
Collapse
Affiliation(s)
- Patrick J Mullon
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Kavi P M Mehta
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin, USA
| | - Kareem N Mohni
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
2
|
Whisnant AW, Dyck Dionisi O, Salazar Sanchez V, Rappold JM, Djakovic L, Grothey A, Marante AL, Fischer P, Peng S, Wolf K, Hennig T, Dölken L. Herpes simplex virus 1 inhibits phosphorylation of RNA polymerase II CTD serine-7. J Virol 2024; 98:e0117824. [PMID: 39316591 PMCID: PMC11494995 DOI: 10.1128/jvi.01178-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
Transcriptional activity of RNA polymerase II (Pol II) is influenced by post-translational modifications of the C-terminal domain (CTD) of the largest Pol II subunit, RPB1. Herpes simplex virus type 1 (HSV-1) usurps the cellular transcriptional machinery during lytic infection to efficiently express viral mRNA and shut down host gene expression. The viral immediate-early protein ICP22 interferes with serine 2 phosphorylation (pS2) by targeting CDK9 and other CDKs, but the full functional implications of this are not well understood. Using Western blotting, we report that HSV-1 also induces a loss of serine 7 phosphorylation (pS7) of the CTD during lytic infection, requiring expression of the two immediate-early proteins ICP22 and ICP27. ICP27 has also been proposed to target RPB1 for degradation, but we show that pS2/S7 loss precedes the drop in total protein levels. Cells with the RPB1 polyubiquitination site mutation K1268R, preventing proteasomal degradation during transcription-coupled DNA repair, displayed loss of pS2/S7 but retained higher overall RPB1 protein levels later in infection, indicating this pathway is not involved in early CTD dysregulation but may mediate bulk protein loss later. Using α-amanitin-resistant CTD mutants, we observed differential requirements for Ser2 and Ser7 for the production of viral proteins, with Ser2 facilitating viral immediate-early genes and Ser7 appearing dispensable. Despite dysregulation of CTD phosphorylation and different requirements for Ser2/7, all CTD modifications tested could be visualized in viral replication compartments with immunofluorescence. These data expand the known means that HSV employs to create pro-viral transcriptional environments at the expense of host responses.IMPORTANCECells rapidly induce changes in the transcription of RNA in response to stress and pathogens. Herpes simplex virus (HSV) disrupts many processes of host mRNA transcription, and it is necessary to separate the actions of viral proteins from cellular responses. Here, we demonstrate that viral proteins inhibit two key phosphorylation patterns on the C-terminal domain (CTD) of cellular RNA polymerase II and that this is separate from the degradation of polymerases later in infection. Furthermore, we show that viral genes do not require the full "CTD code." Together, these data distinguish multiple steps in the remodeling of RNA polymerase during infection and suggest that shared transcriptional phenotypes during stress responses do not revolve around a core disruption of CTD modifications.
Collapse
Affiliation(s)
- Adam W Whisnant
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
- Hannover Medical School, Institute of Virology, Hannover, Germany
| | - Oliver Dyck Dionisi
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Valeria Salazar Sanchez
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Julia M Rappold
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Lara Djakovic
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Arnhild Grothey
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
- Hannover Medical School, Institute of Virology, Hannover, Germany
| | - Ana Luiza Marante
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Patrick Fischer
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Shitao Peng
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Katharina Wolf
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Thomas Hennig
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
- Hannover Medical School, Institute of Virology, Hannover, Germany
| | - Lars Dölken
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
- Hannover Medical School, Institute of Virology, Hannover, Germany
| |
Collapse
|
3
|
Ripa I, Andreu S, Josa-Prado F, Fernández Gómez B, de Castro F, Arribas M, Bello-Morales R, López-Guerrero JA. Herpes Simplex Virus type 1 inhibits autophagy in glial cells but requires ATG5 for the success of viral replication. Front Microbiol 2024; 15:1411655. [PMID: 38915300 PMCID: PMC11194409 DOI: 10.3389/fmicb.2024.1411655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/21/2024] [Indexed: 06/26/2024] Open
Abstract
Herpes Simplex Virus type 1 (HSV-1) 1 is a neurotropic virus that has been associated with neurodegenerative disorders. The dysregulation of autophagy by HSV-1 has been proposed as a potential cause of neurodegeneration. While studies have extensively tackled the interaction between autophagy and HSV-1 in neurons, research in glial cells is currently limited. Our studies demonstrate that HSV-1 inhibits, but not completely blocks, the formation of autophagosomes in human oligodendroglioma- and astrocytoma- derived cell lines. These findings have been confirmed in murine oligodendrocyte precursor cells (OPCs). Finally, this study investigates the impact of autophagy on HSV-1 infection in glial cells. While the lack of basal autophagy in LC3B knockout glial cells does not have a significant effect on viral infection, cells without the autophagy-related protein ATG5 exhibit reduced viral production. The absence of ATG5 leads to a decrease in the transcription and replication of viral genes, as well as a delay in the initial stages of the formation of HSV-1 replication compartments. These findings indicate that while autophagy may not play a significant role in antiviral defense in glial cells, HSV-1 may be inhibiting autophagy to exploit non-canonical functions of certain components of the autophagic machinery, such as ATG5, to benefit its lifecycle.
Collapse
Affiliation(s)
- Inés Ripa
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Sabina Andreu
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Fernando Josa-Prado
- Grupo de Neurobiología del Desarrollo-GNDe, Instituto Cajal-CSIC, Madrid, Spain
| | | | - Fernando de Castro
- Grupo de Neurobiología del Desarrollo-GNDe, Instituto Cajal-CSIC, Madrid, Spain
| | - María Arribas
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Raquel Bello-Morales
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - José Antonio López-Guerrero
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| |
Collapse
|
4
|
Abstract
The majority of drug discovery efforts against herpesviruses have focused on nucleoside analogs that target viral DNA polymerases, agents that are associated with dose-limiting toxicity and/or a narrow spectrum of activity. We are pursuing a strategy based on targeting two-metal ion-dependent (TMID) viral enzymes. This family of enzymes consists of structurally related proteins that share common active sites containing conserved carboxylates predicted to coordinate divalent cations essential for catalysis. Compounds that target TMID enzymes, such as HIV integrase and influenza endoribonuclease, have been successfully developed for clinical use. HIV integrase inhibitors have been reported to inhibit replication of herpes simplex virus (HSV) and other herpesviruses; however, the molecular targets of their antiviral activities have not been identified. We employed a candidate-based approach utilizing several two-metal-directed chemotypes and the potential viral TMID enzymatic targets in an effort to correlate target-based activity with antiviral potency. The panel of compounds tested included integrase inhibitors, the anti-influenza agent baloxavir, three natural products previously shown to exhibit anti-HSV activity, and two 8-hydroxyquinolines (8-HQs), AK-157 and AK-166, from our in-house program. The integrase inhibitors exhibited weak overall anti-HSV-1 activity, while the 8-HQs were shown to inhibit both HSV-1 and cytomegalovirus (CMV). Target-based analysis demonstrated that none of the antiviral compounds acted by inhibiting ICP8, contradicting previous reports. On the other hand, baloxavir inhibited the proofreading exonuclease of HSV polymerase, while AK-157 and AK-166 inhibited the alkaline exonuclease UL12. In addition, AK-157 also inhibited the catalytic activity of the HSV polymerase, which provides an opportunity to potentially develop dual-targeting agents against herpesviruses. IMPORTANCE Human herpesviruses (HHVs) establish lifelong latent infections, which undergo periodic reactivation and remain a major cause of morbidity and mortality, especially in immunocompromised individuals. Currently, HHV infections are treated primarily with agents that target viral DNA polymerase, including nucleoside analogs; however, long-term treatment can be complicated by the development of drug resistance. New therapies with novel modes of action would be important not only for the treatment of resistant viruses but also for use in combination therapy to reduce dose-limiting toxicities and potentially eliminate infection. Since many essential HHV proteins are well conserved, inhibitors of novel targets would ideally exhibit broad-spectrum activity against multiple HHVs.
Collapse
|
5
|
Sajewicz-Krukowska J, Jastrzębski JP, Grzybek M, Domańska-Blicharz K, Tarasiuk K, Marzec-Kotarska B. Transcriptome Sequencing of the Spleen Reveals Antiviral Response Genes in Chickens Infected with CAstV. Viruses 2021; 13:2374. [PMID: 34960643 PMCID: PMC8708055 DOI: 10.3390/v13122374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Astrovirus infections pose a significant problem in the poultry industry, leading to multiple adverse effects such as a decreased egg production, breeding disorders, poor weight gain, and even increased mortality. The commonly observed chicken astrovirus (CAstV) was recently reported to be responsible for the "white chicks syndrome" associated with an increased embryo/chick mortality. CAstV-mediated pathogenesis in chickens occurs due to complex interactions between the infectious pathogen and the immune system. Many aspects of CAstV-chicken interactions remain unclear, and there is no information available regarding possible changes in gene expression in the chicken spleen in response to CAstV infection. We aim to investigate changes in gene expression triggered by CAstV infection. Ten 21-day-old SPF White Leghorn chickens were divided into two groups of five birds each. One group was inoculated with CAstV, and the other used as the negative control. At 4 days post infection, spleen samples were collected and immediately frozen at -70 °C for RNA isolation. We analyzed the isolated RNA, using RNA-seq to generate transcriptional profiles of the chickens' spleens and identify differentially expressed genes (DEGs). The RNA-seq findings were verified by quantitative reverse-transcription PCR (qRT-PCR). A total of 31,959 genes was identified in response to CAstV infection. Eventually, 45 DEGs (p-value < 0.05; log2 fold change > 1) were recognized in the spleen after CAstV infection (26 upregulated DEGs and 19 downregulated DEGs). qRT-PCR performed on four genes (IFIT5, OASL, RASD1, and DDX60) confirmed the RNA-seq results. The most differentially expressed genes encode putative IFN-induced CAstV restriction factors. Most DEGs were associated with the RIG-I-like signaling pathway or more generally with an innate antiviral response (upregulated: BLEC3, CMPK2, IFIT5, OASL, DDX60, and IFI6; downregulated: SPIK5, SELENOP, HSPA2, TMEM158, RASD1, and YWHAB). The study provides a global analysis of host transcriptional changes that occur during CAstV infection in vivo and proves that, in the spleen, CAstV infection in chickens predominantly affects the cell cycle and immune signaling.
Collapse
Affiliation(s)
- Joanna Sajewicz-Krukowska
- Department of Poultry Diseases, National Veterinary Research Institute, 24-100 Puławy, Poland; (K.D.-B.); (K.T.)
| | - Jan Paweł Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Maciej Grzybek
- Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, 81-519 Gdynia, Poland;
| | - Katarzyna Domańska-Blicharz
- Department of Poultry Diseases, National Veterinary Research Institute, 24-100 Puławy, Poland; (K.D.-B.); (K.T.)
| | - Karolina Tarasiuk
- Department of Poultry Diseases, National Veterinary Research Institute, 24-100 Puławy, Poland; (K.D.-B.); (K.T.)
| | - Barbara Marzec-Kotarska
- Department of Clinical Pathomorphology, The Medical University of Lublin, 20-090 Lublin, Poland;
| |
Collapse
|
6
|
Hennig T, Djakovic L, Dölken L, Whisnant AW. A Review of the Multipronged Attack of Herpes Simplex Virus 1 on the Host Transcriptional Machinery. Viruses 2021; 13:1836. [PMID: 34578417 PMCID: PMC8473234 DOI: 10.3390/v13091836] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/31/2022] Open
Abstract
During lytic infection, herpes simplex virus (HSV) 1 induces a rapid shutoff of host RNA synthesis while redirecting transcriptional machinery to viral genes. In addition to being a major human pathogen, there is burgeoning clinical interest in HSV as a vector in gene delivery and oncolytic therapies, necessitating research into transcriptional control. This review summarizes the array of impacts that HSV has on RNA Polymerase (Pol) II, which transcribes all mRNA in infected cells. We discuss alterations in Pol II holoenzymes, post-translational modifications, and how viral proteins regulate specific activities such as promoter-proximal pausing, splicing, histone repositioning, and termination with respect to host genes. Recent technological innovations that have reshaped our understanding of previous observations are summarized in detail, along with specific research directions and technical considerations for future studies.
Collapse
Affiliation(s)
- Thomas Hennig
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, 97078 Würzburg, Germany; (T.H.); (L.D.)
| | - Lara Djakovic
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, 97078 Würzburg, Germany; (T.H.); (L.D.)
| | - Lars Dölken
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, 97078 Würzburg, Germany; (T.H.); (L.D.)
- Helmholtz Center for Infection Research (HZI), Helmholtz Institute for RNA-Based Infection Research (HIRI), 97080 Würzburg, Germany
| | - Adam W. Whisnant
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, 97078 Würzburg, Germany; (T.H.); (L.D.)
| |
Collapse
|
7
|
UBE1a Suppresses Herpes Simplex Virus-1 Replication. Viruses 2020; 12:v12121391. [PMID: 33291814 PMCID: PMC7762088 DOI: 10.3390/v12121391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/22/2022] Open
Abstract
Herpes simplex virus-1 (HSV-1) is the causative agent of cold sores, keratitis, meningitis, and encephalitis. HSV-1-encoded ICP5, the major capsid protein, is essential for capsid assembly during viral replication. Ubiquitination is a post-translational modification that plays a critical role in the regulation of cellular events such as proteasomal degradation, protein trafficking, and the antiviral response and viral events such as the establishment of infection and viral replication. Ub-activating enzyme (E1, also named UBE1) is involved in the first step in the ubiquitination. However, it is still unknown whether UBE1 contributes to viral infection or the cellular antiviral response. Here, we found that UBE1a suppressed HSV-1 replication and contributed to the antiviral response. The UBE1a inhibitor PYR-41 increased HSV-1 production. Immunofluorescence analysis revealed that UBE1a highly expressing cells presented low ICP5 expression, and vice versa. UBE1a inhibition by PYR-41 and shRNA increased ICP5 expression in HSV-1-infected cells. UBE1a reduced and retarded ICP5 protein expression, without affecting transcription of ICP5 mRNA or degradation of ICP5 protein. Additionally, UBE1a interacted with ICP27, and both partially co-localized at the Hsc70 foci/virus-induced chaperone-enriched (VICE) domains. PYR-41 reduced the co-localization of UBE1a and ICP27. Thus, our findings provide insights into the mechanism of UBE1a in the cellular response to viral infection.
Collapse
|
8
|
The Herpes Simplex Virus 1 Immediate Early Protein ICP22 Is a Functional Mimic of a Cellular J Protein. J Virol 2020; 94:JVI.01564-19. [PMID: 31748398 DOI: 10.1128/jvi.01564-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022] Open
Abstract
Molecular chaperones and cochaperones are the most abundant cellular effectors of protein homeostasis, assisting protein folding and preventing aggregation of misfolded proteins. We have previously shown that herpes simplex virus 1 (HSV-1) infection results in the drastic spatial reorganization of the cellular chaperone Hsc70 into nuclear domains called VICE (Virus Induced Chaperone Enriched) domains and that this recruitment is dependent on the viral immediate early protein ICP22. Here, we present several lines of evidence supporting the notion that ICP22 functions as a virally encoded cochaperone (J-protein/Hsp40) functioning together with its Hsc70 partner to recognize and manage aggregated and misfolded proteins. We show that ICP22 results in (i) nuclear sequestration of nonnative proteins, (ii) reduction of cytoplasmic aggresomes in cells expressing aggregation-prone proteins, and (iii) thermoprotection against heat inactivation of firefly luciferase, and (iv) sequence homology analysis indicated that ICP22 contains an N-terminal J domain and a C-terminal substrate binding domain, similar to type II cellular J proteins. ICP22 may thus be functionally similar to J-protein/Hsp40 cochaperones that function together with their HSP70 partners to prevent aggregation of nonnative proteins. This is not the first example of a virus hijacking a function of a cellular chaperone, since simian immunodeficiency virus T antigen was previously shown to contain a J domain; however, this the first known example of the acquisition of a functional J-like protein by a virus and suggests that HSV has taken advantage of the adaptable nature of J proteins to evolve a multifunctional cochaperone that functions with Hsc70 to promote lytic infection.IMPORTANCE Viruses have evolved a variety of strategies to succeed in a hostile environment. The herpes simplex virus 1 (HSV-1) immediate early protein ICP22 plays several roles in the virus life cycle, including downregulation of cellular gene expression, upregulation of late viral gene expression, inhibition of apoptosis, prevention of aggregation of nonnative proteins, and the recruitment of a cellular heat shock protein, Hsc70, to nuclear domains. We present evidence that ICP22 functionally resembles a cellular J-protein/HSP40 family cochaperone, interacting specifically with Hsc70. We suggest that HSV has taken advantage of the adaptable nature of J proteins to evolve a multifunctional cochaperone that functions with Hsc70 to promote lytic infection.
Collapse
|
9
|
Eliyahu E, Tirosh O, Dobesova M, Nachshon A, Schwartz M, Stern-Ginossar N. Rho-Associated Coiled-Coil Kinase 1 Translocates to the Nucleus and Inhibits Human Cytomegalovirus Propagation. J Virol 2019; 93:e00453-19. [PMID: 31292242 PMCID: PMC6744247 DOI: 10.1128/jvi.00453-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/29/2019] [Indexed: 01/04/2023] Open
Abstract
Rho-associated coiled-coil kinase (ROCK) protein is a central kinase that regulates numerous cellular functions, including cellular polarity, motility, proliferation, and apoptosis. Here, we demonstrate that ROCK has antiviral properties, and inhibition of its activity results in enhanced propagation of human cytomegalovirus (HCMV). We show that during HCMV infection, ROCK1 translocates to the nucleus and concentrates in the nucleolus, where it colocalizes with the stress-related chaperone heat shock cognate 71-kDa protein (Hsc70). Gene expression measurements show that inhibition of ROCK activity does not seem to affect the cellular stress response. We demonstrate that inhibition of myosin, one of the central targets of ROCK, also increases HCMV propagation, implying that the antiviral activity of ROCK might be mediated by activation of the actomyosin network. Finally, we demonstrate that inhibition of ROCK results in increased levels of the tegument protein UL32 and of viral DNA in the cytoplasm, suggesting ROCK activity hinders the efficient egress of HCMV particles out of the nucleus. Altogether, our findings illustrate ROCK activity restricts HCMV propagation and suggest this inhibitory effect may be mediated by suppression of capsid egress out of the nucleus.IMPORTANCE ROCK is a central kinase in cells that regulates numerous cellular functions, including cellular polarity, motility, proliferation, and apoptosis. Here we reveal a novel antiviral activity of ROCK during infection with HCMV, a prevalent pathogen infecting most of the population worldwide. We reveal ROCK1 is translocated to the nucleus, where it mainly localizes to the nucleolus. Our findings suggest that ROCK's antiviral activity may be related to activation of the actomyosin network and inhibition of capsid egress out of the nucleus.
Collapse
Affiliation(s)
- Erez Eliyahu
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Osnat Tirosh
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Martina Dobesova
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Aharon Nachshon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Noam Stern-Ginossar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
10
|
Olson AT, Wang Z, Rico AB, Wiebe MS. A poxvirus pseudokinase represses viral DNA replication via a pathway antagonized by its paralog kinase. PLoS Pathog 2019; 15:e1007608. [PMID: 30768651 PMCID: PMC6395007 DOI: 10.1371/journal.ppat.1007608] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/28/2019] [Accepted: 01/31/2019] [Indexed: 12/26/2022] Open
Abstract
Poxviruses employ sophisticated, but incompletely understood, signaling pathways that engage cellular defense mechanisms and simultaneously ensure viral factors are modulated properly. For example, the vaccinia B1 protein kinase plays a vital role in inactivating the cellular antiviral factor BAF, and likely orchestrates other pathways as well. In this study, we utilized experimental evolution of a B1 deletion virus to perform an unbiased search for suppressor mutations and identify novel pathways involving B1. After several passages of the ΔB1 virus we observed a robust increase in viral titer of the adapted virus. Interestingly, our characterization of the adapted viruses reveals that mutations correlating with a loss of function of the vaccinia B12 pseudokinase provide a striking fitness enhancement to this virus. In support of predictions that reductive evolution is a driver of poxvirus adaptation, this is clear experimental evidence that gene loss can be of significant benefit. Next, we present multiple lines of evidence demonstrating that expression of full length B12 leads to a fitness reduction in viruses with a defect in B1, but has no apparent impact on wild-type virus or other mutant poxviruses. From these data we infer that B12 possesses a potent inhibitory activity that can be masked by the presence of the B1 kinase. Further investigation of B12 attributes revealed that it primarily localizes to the nucleus, a characteristic only rarely found among poxviral proteins. Surprisingly, BAF phosphorylation is reduced under conditions in which B12 is present in infected cells without B1, indicating that B12 may function in part by enhancing antiviral activity of BAF. Together, our studies of B1 and B12 present novel evidence that a paralogous kinase-pseudokinase pair can exhibit a unique epistatic relationship in a virus, perhaps serving to enhance B1 conservation during poxvirus evolution and to orchestrate yet-to-be-discovered nuclear events during infection.
Collapse
Affiliation(s)
- Annabel T. Olson
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE, United States of America
- School of Biological Sciences, University of Nebraska, Lincoln, NE, United States of America
| | - Zhigang Wang
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE, United States of America
| | - Amber B. Rico
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE, United States of America
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, United States of America
| | - Matthew S. Wiebe
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE, United States of America
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, United States of America
| |
Collapse
|
11
|
Su Hui Teo C, Serwa RA, O’Hare P. Spatial and Temporal Resolution of Global Protein Synthesis during HSV Infection Using Bioorthogonal Precursors and Click Chemistry. PLoS Pathog 2016; 12:e1005927. [PMID: 27706239 PMCID: PMC5051704 DOI: 10.1371/journal.ppat.1005927] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/12/2016] [Indexed: 12/04/2022] Open
Abstract
We used pulse-labeling with the methionine analogue homopropargylglycine (HPG) to investigate spatiotemporal aspects of protein synthesis during herpes simplex virus (HSV) infection. In vivo incorporation of HPG enables subsequent selective coupling of fluorochrome-capture reagents to newly synthesised proteins. We demonstrate that HPG labeling had no effect on cell viability, on accumulation of test early or late viral proteins, or on overall virus yields. HPG pulse-labeling followed by SDS-PAGE analysis confirmed incorporation into newly synthesised proteins, while parallel processing by in situ cycloaddition revealed new insight into spatiotemporal aspects of protein localisation during infection. A striking feature was the rapid accumulation of newly synthesised proteins not only in a general nuclear pattern but additionally in newly forming sub-compartments represented by small discrete foci. These newly synthesised protein domains (NPDs) were similar in size and morphology to PML domains but were more numerous, and whereas PML domains were progressively disrupted, NPDs were progressively induced and persisted. Immediate-early proteins ICP4 and ICP0 were excluded from NPDs, but using an ICP0 mutant defective in PML disruption, we show a clear spatial relationship between NPDs and PML domains with NPDs frequently forming immediately adjacent and co-joining persisting PML domains. Further analysis of location of the chaperone Hsc70 demonstrated that while NPDs formed early in infection without overt Hsc70 recruitment, later in infection Hsc70 showed pronounced recruitment frequently in a coat-like fashion around NPDs. Moreover, while ICP4 and ICP0 were excluded from NPDs, ICP22 showed selective recruitment. Our data indicate that NPDs represent early recruitment of host and viral de novo translated protein to distinct structural entities which are precursors to the previously described VICE domains involved in protein quality control in the nucleus, and reveal new features from which we propose spatially linked platforms of newly synthesised protein processing after nuclear import.
Collapse
Affiliation(s)
- Catherine Su Hui Teo
- Section of Virology, Faculty of Medicine, Imperial College London, St Mary’s Medical School, Norfolk Place, London, United Kingdom
| | - Remigiusz A. Serwa
- Department of Chemistry, Imperial College London, London, United Kingdom
| | - Peter O’Hare
- Section of Virology, Faculty of Medicine, Imperial College London, St Mary’s Medical School, Norfolk Place, London, United Kingdom
| |
Collapse
|
12
|
Dong S, Liu L, Wu W, Armstrong SD, Xia D, Nan H, Hiscox JA, Chen H. Determination of the interactome of non-structural protein12 from highly pathogenic porcine reproductive and respiratory syndrome virus with host cellular proteins using high throughput proteomics and identification of HSP70 as a cellular factor for virus replication. J Proteomics 2016; 146:58-69. [DOI: 10.1016/j.jprot.2016.06.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/07/2016] [Accepted: 06/14/2016] [Indexed: 12/16/2022]
|
13
|
Lou DI, Kim ET, Meyerson NR, Pancholi NJ, Mohni KN, Enard D, Petrov DA, Weller SK, Weitzman MD, Sawyer SL. An Intrinsically Disordered Region of the DNA Repair Protein Nbs1 Is a Species-Specific Barrier to Herpes Simplex Virus 1 in Primates. Cell Host Microbe 2016; 20:178-88. [PMID: 27512903 PMCID: PMC4982468 DOI: 10.1016/j.chom.2016.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/19/2016] [Accepted: 06/28/2016] [Indexed: 12/11/2022]
Abstract
Humans occasionally transmit herpes simplex virus 1 (HSV-1) to captive primates, who reciprocally harbor alphaherpesviruses poised for zoonotic transmission to humans. To understand the basis for the species-specific restriction of HSV-1 in primates, we simulated what might happen during the cross-species transmission of HSV-1 and found that the DNA repair protein Nbs1 from only some primate species is able to promote HSV-1 infection. The Nbs1 homologs that promote HSV-1 infection also interact with the HSV-1 ICP0 protein. ICP0 interaction mapped to a region of structural disorder in the Nbs1 protein. Chimeras reversing patterns of disorder in Nbs1 reversed titers of HSV-1 produced in the cell. By extending this analysis to 1,237 virus-interacting mammalian proteins, we show that proteins that interact with viruses are highly enriched in disorder, suggesting that viruses commonly interact with host proteins through intrinsically disordered domains.
Collapse
Affiliation(s)
- Dianne I Lou
- Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Eui Tae Kim
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at the University of Pennsylvania and the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nicholas R Meyerson
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Neha J Pancholi
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at the University of Pennsylvania and the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Program, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kareem N Mohni
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - David Enard
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Sandra K Weller
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Matthew D Weitzman
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at the University of Pennsylvania and the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Sara L Sawyer
- Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80303, USA.
| |
Collapse
|
14
|
ICP8 Filament Formation Is Essential for Replication Compartment Formation during Herpes Simplex Virus Infection. J Virol 2015; 90:2561-70. [PMID: 26676794 DOI: 10.1128/jvi.02854-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/11/2015] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED Herpes simplex virus (HSV) dramatically reorganizes the infected-cell nucleus, leading to the formation of prereplicative sites and replication compartments. This process is driven by the essential viral single-stranded DNA (ssDNA) binding protein ICP8, which can form double-helical filaments in the absence of DNA. In this paper, we show that two conserved motifs, FNF (F1142, N1143, and F1144) and FW (F843 and W844), are essential for ICP8 self-interactions, and we propose that the FNF motif docks into the FW region during filament formation. Mammalian expression plasmids bearing mutations in these motifs (FNF and FW) were unable to complement an ICP8-null mutant for growth and replication compartment formation. Furthermore, FNF and FW mutants were able to inhibit wild-type (WT) virus plaque formation and filament formation, whereas a double mutant (FNF-FW) was not. These results suggest that single mutant proteins are incorporated into nonproductive ICP8 filaments, while the double mutant is unable to interact with WT ICP8 and does not interfere with WT growth. Cells transfected with WT ICP8 and the helicase-primase (H/P) complex exhibited punctate nuclear structures that resemble prereplicative sites; however, the FNF and FW mutants failed to do so. Taken together, these results suggest that the FNF and FW motifs are required for ICP8 self-interactions and that these interactions may be important for the formation of prereplicative sites and replication compartments. We propose that filaments or other higher-order structures of ICP8 may provide a scaffold onto which other proteins can be recruited to form prereplicative sites and replication compartments. IMPORTANCE For nuclear viruses such as HSV, efficient DNA replication requires the formation of discrete compartments within the infected-cell nucleus in which replication proteins are concentrated and assembled into the HSV replisome. In this paper, we characterize the role of filament formation by the single-stranded DNA binding protein ICP8 in the formation of prereplicative sites and replication compartments. We propose that ICP8 protein filaments generate a protein scaffold for other cellular and viral proteins, resulting in a structure that concentrates both viral DNA and replication proteins. Replication compartments may be similar to other types of cellular membraneless compartments thought to be formed by phase separations caused by low-affinity, multivalent interactions involving proteins and nucleic acids within cells. ICP8 scaffolds could facilitate the formation of replication compartments by mediating interactions with other components of the replication machinery.
Collapse
|
15
|
Genetic Confirmation that the H5 Protein Is Required for Vaccinia Virus DNA Replication. J Virol 2015; 89:6312-27. [PMID: 25855734 DOI: 10.1128/jvi.00445-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/28/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The duplication of the poxvirus double-stranded DNA genome occurs in cytoplasmic membrane-delimited factories. This physical autonomy from the host nucleus suggests that poxvirus genomes encode the full repertoire of proteins committed for genome replication. Biochemical and genetic analyses have confirmed that six viral proteins are required for efficient DNA synthesis; indirect evidence has suggested that the multifunctional H5 protein may also have a role. Here we show that H5 localizes to replication factories, as visualized by immunofluorescence and immunoelectron microscopy, and can be retrieved upon purification of the viral polymerase holoenzyme complex. The temperature-sensitive (ts) mutant Dts57, which was generated by chemical mutagenesis and has a lesion in H5, exhibits defects in DNA replication and morphogenesis under nonpermissive conditions, depending upon the experimental protocol. The H5 variant encoded by the genome of this mutant is ts for function but not stability. For a more precise investigation of how H5 contributes to DNA synthesis, we placed the ts57 H5 allele in an otherwise wild-type viral background and also performed small interfering RNA-mediated depletion of H5. Finally, we generated a complementing cell line, CV-1-H5, which allowed us to generate a viral recombinant in which the H5 open reading frame was deleted and replaced with mCherry (vΔH5). Analysis of vΔH5 allowed us to demonstrate conclusively that viral DNA replication is abrogated in the absence of H5. The loss of H5 does not compromise the accumulation of other early viral replication proteins or the uncoating of the virion core, suggesting that H5 plays a direct and essential role in facilitating DNA synthesis. IMPORTANCE Variola virus, the causative agent of smallpox, is the most notorious member of the Poxviridae family. Poxviruses are unique among DNA viruses that infect mammalian cells, in that their replication is restricted to the cytoplasm of the cell. This physical autonomy from the nucleus has both cell biological and genetic ramifications. Poxviruses must establish cytoplasmic niches that support replication, and the genomes must encode the repertoire of proteins necessary for genome synthesis. Here we focus on H5, a multifunctional and abundant viral protein. We confirm that H5 associates with the DNA polymerase holoenzyme and localizes to the sites of DNA synthesis. By generating an H5-expressing cell line, we were able to isolate a deletion virus that lacks the H5 gene and show definitively that genome synthesis does not occur in the absence of H5. These data support the hypothesis that H5 is a crucial participant in cytoplasmic poxvirus genome replication.
Collapse
|
16
|
Stutika C, Hüser D, Weger S, Rutz N, Heßler M, Heilbronn R. Definition of herpes simplex virus helper functions for the replication of adeno-associated virus type 5. J Gen Virol 2014; 96:840-850. [PMID: 25535322 DOI: 10.1099/vir.0.000034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adeno-associated virus (AAV) type 5 represents the genetically most distant AAV serotype and the only one isolated directly from human tissue. Seroepidemiological evidence suggests herpes simplex virus (HSV) as a helper virus for human AAV5 infections, underlining the in vivo relevance of the AAV-herpesvirus relationship. In this study we analysed, for the first time, HSV helper functions for productive AAV5 replication, and compared these to AAV2. Using a combination of HSV strains and plasmids for individual genes, the previously defined HSV helper functions for AAV2 replication were shown to induce AAV5 gene expression, DNA replication and production of infectious progeny. The helper functions comprise the replication genes for ICP8 (UL29), helicase-primase (UL5/8/52), and DNA polymerase (UL30/42). HSV immediate-early genes for ICP0 and ICP4 further enhanced AAV5 replication, mainly by induction of rep gene expression. In the presence of HSV helper functions, AAV5 Rep co-localized with ICP8 in nuclear replication compartments, and HSV alkaline exonuclease (UL12) enhanced AAV5 replication, similarly to AAV2. UL12, in combination with ICP8, was shown to induce DNA strand exchange on partially double-stranded templates to resolve and repair concatemeric HSV replication intermediates. Similarly, concatemeric AAV replication intermediates appeared to be processed to yield AAV unit-length molecules, ready for AAV packaging. Taken together, our findings show that productive AAV5 replication is promoted by the same combination of HSV helper functions as AAV2.
Collapse
Affiliation(s)
- Catrin Stutika
- Institute of Virology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany
| | - Daniela Hüser
- Institute of Virology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany
| | - Stefan Weger
- Institute of Virology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany
| | - Natalja Rutz
- Institute of Virology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany
| | - Melanie Heßler
- Institute of Virology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany
| | - Regine Heilbronn
- Institute of Virology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany
| |
Collapse
|
17
|
Structure of the herpes simplex virus 1 genome: manipulation of nicks and gaps can abrogate infectivity and alter the cellular DNA damage response. J Virol 2014; 88:10146-56. [PMID: 24965466 DOI: 10.1128/jvi.01723-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED The herpes simplex virus 1 (HSV-1) virion DNA contains nicks and gaps, and in this study a novel assay for estimating the size and number of gaps in virion DNA was developed. Consistent with previous reports, we estimate that there are approximately 15 gaps per genome, and we calculate the average gap length to be approximately 30 bases. Virion DNA was isolated and treated with DNA-modifying enzymes in order to fill in the gaps and modify the ends. Interestingly, filling in gaps, blunting the ends, or adding random sequences to the 3' ends of DNA, producing 3' flaps, did not impair the infectivity of treated DNA following transfection of Vero cells. On the other hand, the formation of 5' flaps in the DNA following treatment resulted in a dramatic reduction (95 to 100%) in infectivity. Virion DNA stimulated DNA-PKcs activity in transfected cells, and DNA with 5' flaps stimulated a higher level of DNA-PKcs activity than that observed in cells transfected with untreated virion DNA. The infectivity of 5'-flapped DNA was restored in cells that do not express DNA-PKcs and in cells cotransfected with the immediate early protein ICP0, which degrades DNA-PKcs. These results are consistent with previous reports that DNA-dependent protein kinase (DNA-PK) and the nonhomologous end joining (NHEJ) repair pathway are intrinsically antiviral and that ICP0 can counteract this effect. We suggest that HSV-1 DNA with 5' flaps may induce an antiviral state due to the induction of a DNA damage response, primarily mediated by NHEJ, that renders the HSV-1 genome less efficient for lytic infection. IMPORTANCE For productive lytic infection to occur, HSV-1 must counteract a variety of cellular intrinsic antiviral mechanisms, including the DNA damage response (DDR). DDR pathways have been associated with silencing of gene expression, cell cycle arrest, and induction of apoptosis. In addition, the fate of viral genomes is likely to play a role in whether viral genomes adopt a configuration suitable for lytic DNA replication. This study demonstrates that virion DNA activates the cellular DDR kinase, DNA-PK, and that this response is inhibitory to viral infection. Furthermore, we show that HSV-1 ubiquitin ligase, ICP0, plays an important role in counteracting the negative effects of DNA-PK activation. These findings support the notion that DNA-PK is antiviral and suggest that the fate of incoming viral DNA has important consequences for the progression of lytic infection. This study underscores the complex evolutionary relationships between HSV and its host.
Collapse
|
18
|
New Herpes Simplex Virus Replication Targets. Antiviral Res 2014. [DOI: 10.1128/9781555815493.ch20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Gao J, Xiao S, Liu X, Wang L, Ji Q, Mo D, Chen Y. Inhibition of HSP70 reduces porcine reproductive and respiratory syndrome virus replication in vitro. BMC Microbiol 2014; 14:64. [PMID: 24625230 PMCID: PMC3984673 DOI: 10.1186/1471-2180-14-64] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 03/07/2014] [Indexed: 12/31/2022] Open
Abstract
Background Successful viral infection requires the involvement of host cellular factors in their life cycle. Heat shock protein 70 (HSP70) can be recruited by numerous viruses to promote the folding, maturation, or assembly of viral proteins. We have previously shown that HSP70 is significantly elevated in porcine reproductive and respiratory syndrome virus (PRRSV)-infected lungs, suggesting HSP70 may play a potential role during PRRSV infection. In this study, we tried to investigate the role of HSP70 during PRRSV infection. Results In this study, we observed that PRRSV infection induced the expression of HSP70. The down-regulation of HSP70 using quercetin, a HSPs synthesis inhibitor, or small interfering RNAs (siRNA) reduced the viral protein level and viral production. Notably, these inhibitory effects on PRRSV infection could be attenuated by heat shock treatment. In addition, HSP70 was found to colocalize with the viral double-stranded RNA (dsRNA) and knockdown of HSP70 decreased the dsRNA levels, suggesting HSP70 is involved in the formation of viral replication and transcription complex (RTC) and thus affects the viral replication. Conclusions Our study revealed that HSP70 is an essential host factor required for the replication of PRRSV. The inhibition of HSP70 significantly reduced PRRSV replication, which may be applied as an effective antiviral strategy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, P, R, China.
| |
Collapse
|
20
|
Abstract
Viruses employ a variety of strategies to usurp and control cellular activities through the orchestrated recruitment of macromolecules to specific cytoplasmic or nuclear compartments. Formation of such specialized virus-induced cellular microenvironments, which have been termed viroplasms, virus factories, or virus replication centers, complexes, or compartments, depends on molecular interactions between viral and cellular factors that participate in viral genome expression and replication and are in some cases associated with sites of virion assembly. These virus-induced compartments function not only to recruit and concentrate factors required for essential steps of the viral replication cycle but also to control the cellular mechanisms of antiviral defense. In this review, we summarize characteristic features of viral replication compartments from different virus families and discuss similarities in the viral and cellular activities that are associated with their assembly and the functions they facilitate for viral replication.
Collapse
|
21
|
PNKP knockdown by RNA interference inhibits herpes simplex virus-1 replication in astrocytes. Virol Sin 2013; 28:345-51. [PMID: 24213989 DOI: 10.1007/s12250-013-3350-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 10/24/2013] [Indexed: 10/26/2022] Open
Abstract
Herpes simplex virus-1 (HSV-1) is a major pathogen that causes various central nervous system (CNS) diseases, including herpes simplex encephalitis and meningitis. According to recent studies, PNKP significantly affects the proliferation of HSV-1 in astrocytes. Here, we used viral proliferation curves to confirm the significant inhibitory effects of PNKP on HSV-1 proliferation. PNKP downregulation was also confirmed by analyzing the transcription of viral genes. We found that PNKP downregulation affects the viral DNA copy number. This study preliminarily confirms that PNKP affects viral proliferation by affecting HSV-1 genome cyclization. These results also suggest that astrocytes play a specific role in preventing HSV-1 infection.
Collapse
|
22
|
Mohni KN, Smith S, Dee AR, Schumacher AJ, Weller SK. Herpes simplex virus type 1 single strand DNA binding protein and helicase/primase complex disable cellular ATR signaling. PLoS Pathog 2013; 9:e1003652. [PMID: 24098119 PMCID: PMC3789782 DOI: 10.1371/journal.ppat.1003652] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 08/07/2013] [Indexed: 11/19/2022] Open
Abstract
Herpes Simplex Virus type 1 (HSV-1) has evolved to disable the cellular DNA damage response kinase, ATR. We have previously shown that HSV-1-infected cells are unable to phosphorylate the ATR substrate Chk1, even under conditions in which replication forks are stalled. Here we report that the HSV-1 single stranded DNA binding protein (ICP8), and the helicase/primase complex (UL8/UL5/UL52) form a nuclear complex in transfected cells that is necessary and sufficient to disable ATR signaling. This complex localizes to sites of DNA damage and colocalizes with ATR/ATRIP and RPA, but under these conditions, the Rad9-Rad1-Hus1 checkpoint clamp (9-1-1) do not. ATR is generally activated by substrates that contain ssDNA adjacent to dsDNA, and previous work from our laboratory has shown that ICP8 and helicase/primase also recognize this substrate. We suggest that these four viral proteins prevent ATR activation by binding to the DNA substrate and obstructing loading of the 9-1-1 checkpoint clamp. Exclusion of 9-1-1 prevents recruitment of TopBP1, the ATR kinase activator, and thus effectively disables ATR signaling. These data provide the first example of viral DNA replication proteins obscuring access to a DNA substrate that would normally trigger a DNA damage response and checkpoint signaling. This unusual mechanism used by HSV suggests that it may be possible to inhibit ATR signaling by preventing recruitment of the 9-1-1 clamp and TopBP1. DNA viruses that replicate in the nucleus have been shown to both activate and inactivate various components of the cellular DNA damage response (DDR). Previous reports from our laboratory and others have demonstrated that Herpes Simplex Virus (HSV) utilizes some aspects of the DDR while inactivating others. Paradoxically, HSV utilizes the DDR kinase ATR to complete its life cycle while at the same time disabling the kinase from activating DDR signaling. In this report we provide detail describing the mechanism of ATR inactivation. ATR is normally activated in response to single strand DNA (ssDNA), which serves as a scaffold to recruit several proteins required for complete ATR activation. In this paper we provide evidence that the HSV encoded ssDNA binding protein and helicase/primase complex function to mask the DNA substrate that recruits the ATR kinase activator. This represents the first example of viral DNA replication proteins masking a DNA substrate that could be sensed by the cell as damaged DNA and activate checkpoint signaling. It also explains how ATR can be recruited to sites of viral DNA replication in the absence of checkpoint signaling.
Collapse
Affiliation(s)
- Kareem N. Mohni
- Department of Molecular, Microbial and Structural Biology and the Molecular Biology and Biochemistry Graduate Program, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Samantha Smith
- Department of Molecular, Microbial and Structural Biology and the Molecular Biology and Biochemistry Graduate Program, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Alexander R. Dee
- Department of Molecular, Microbial and Structural Biology and the Molecular Biology and Biochemistry Graduate Program, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - April J. Schumacher
- Department of Molecular, Microbial and Structural Biology and the Molecular Biology and Biochemistry Graduate Program, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Sandra K. Weller
- Department of Molecular, Microbial and Structural Biology and the Molecular Biology and Biochemistry Graduate Program, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
23
|
Weller SK, Kuchta RD. The DNA helicase-primase complex as a target for herpes viral infection. Expert Opin Ther Targets 2013; 17:1119-32. [PMID: 23930666 DOI: 10.1517/14728222.2013.827663] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION The Herpesviridae are responsible for debilitating acute and chronic infections, and some members of this family are associated with human cancers. Conventional anti-herpesviral therapy targets the viral DNA polymerase and has been extremely successful; however, the emergence of drug-resistant virus strains, especially in neonates and immunocompromised patients, underscores the need for continued development of anti-herpes drugs. In this article, we explore an alternative target for antiviral therapy, the HSV helicase/primase complex. AREAS COVERED This review addresses the current state of knowledge of HSV DNA replication and the important roles played by the herpesvirus helicase- primase complex. In the last 10 years several helicase/primase inhibitors (HPIs) have been described, and in this article, we discuss and contrast these new agents with established inhibitors. EXPERT OPINION The outstanding safety profile of existing nucleoside analogues for α-herpesvirus infection make the development of new therapeutic agents a challenge. Currently used nucleoside analogues exhibit few side effects and have low occurrence of clinically relevant resistance. For HCMV, however, existing drugs have significant toxicity issues and the frequency of drug resistance is high, and no antiviral therapies are available for EBV and KSHV. The development of new anti-herpesvirus drugs is thus well worth pursuing especially for immunocompromised patients and those who develop drug-resistant infections. Although the HPIs are promising, limitations to their development into a successful drug strategy remain.
Collapse
Affiliation(s)
- Sandra K Weller
- University of Connecticut Health Center, Department of Molecular Microbial and Structural Biology , Farmington CT 06030 , USA +1 860 679 2310 ;
| | | |
Collapse
|
24
|
Mohni KN, Dee AR, Smith S, Schumacher AJ, Weller SK. Efficient herpes simplex virus 1 replication requires cellular ATR pathway proteins. J Virol 2013; 87:531-42. [PMID: 23097436 PMCID: PMC3536419 DOI: 10.1128/jvi.02504-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/15/2012] [Indexed: 02/02/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) is a double-stranded DNA virus that replicates in the nucleus of the host cell and is known to interact with several components of the cellular DNA-damage-signaling machinery. We have previously reported that the DNA damage response kinase, ATR, is specifically inactivated in HSV-1-infected cells. On the other hand, we have also shown that ATR and its scaffolding protein, ATRIP, are recruited to viral replication compartments, where they play beneficial roles during HSV-1 replication. In order to better understand this apparent discrepancy, we tested the hypothesis that some of the components of the ATR pathway may exert an antiviral effect on infection. In fact, we learned that all 10 of the canonical ATR pathway proteins are stable in HSV-infected cells and are recruited to viral replication compartments; furthermore, short hairpin RNA (shRNA) knockdown shows that several, including ATRIP, RPA70, TopBP1, Claspin, and CINP, are required for efficient HSV-1 replication. We also determined that activation of the ATR kinase prior to infection did not affect virus yield but did result in reduced levels of recombination between coinfecting viruses. Together, these data suggest that ATR pathway proteins are not antiviral per se but that activation of ATR signaling may have negative consequences during viral replication, such as inhibiting recombination.
Collapse
Affiliation(s)
- Kareem N Mohni
- Department of Molecular, Microbial and Structural Biology and the Molecular Biology and Biochemistry Graduate Program, University of Connecticut Health Center, Farmington, Connecticut, USA
| | | | | | | | | |
Collapse
|
25
|
Requirement of the N-terminal activation domain of herpes simplex virus ICP4 for viral gene expression. J Virol 2012; 87:1010-8. [PMID: 23135715 DOI: 10.1128/jvi.02844-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ICP4 is the major activator of herpes simplex virus (HSV) transcription. Previous studies have defined several regions of ICP4 that are important for viral gene expression, including a DNA binding domain and transactivation domains that are contained in the C-terminal and N-terminal 520 and 274 amino acids, respectively. Here we show that the N-terminal 210 amino acids of ICP4 are required for interactions with components of TFIID and mediator and, as a consequence, are necessary for the activation of viral genes. A mutant of ICP4 deleted for amino acids 30 to 210, d3-10, was unable to complement an ICP4 null virus at the level of viral replication. This was the result of a severe deficiency in viral gene and protein expression. The absence of viral gene expression coincided with a defect in the recruitment of RNA polymerase II to a representative early promoter (thymidine kinase [TK]). Affinity purification experiments demonstrated that d3-10 ICP4 was not found in complexes with components of TFIID and mediator, suggesting that the defect in RNA polymerase II (Pol II) recruitment was the result of ablated interactions between d3-10 and TFIID and mediator. Complementation assays suggested that the N-terminal and C-terminal regions of ICP4 cooperate to mediate gene expression. The complementation was the result of the formation of more functional heterodimers, which restored the ability of the d3-10-containing molecules to interact with TFIID. Together, these studies suggest that the N terminus contains a true activation domain, mediating interactions with TFIID, mediator, and perhaps other transcription factors, and that the C terminus of the molecule contains activities that augment the functions of the activation domain.
Collapse
|
26
|
Abstract
Herpes simplex virus (HSV) encodes seven proteins necessary for viral DNA synthesis-UL9 (origin-binding protein), ICP8 (single-strand DNA [ssDNA]-binding protein), UL30/UL42 (polymerase), and UL5/UL8/UL52 (helicase/primase). It is our intention to provide an up-to-date analysis of our understanding of the structures of these replication proteins and how they function during HSV replication. The potential roles of host repair and recombination proteins will also be discussed.
Collapse
Affiliation(s)
- Sandra K Weller
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, Connecticut 06030-3205, USA.
| | | |
Collapse
|
27
|
Nagel CH, Döhner K, Binz A, Bauerfeind R, Sodeik B. Improper tagging of the non-essential small capsid protein VP26 impairs nuclear capsid egress of herpes simplex virus. PLoS One 2012; 7:e44177. [PMID: 22952920 PMCID: PMC3432071 DOI: 10.1371/journal.pone.0044177] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 07/30/2012] [Indexed: 01/10/2023] Open
Abstract
To analyze the subcellular trafficking of herpesvirus capsids, the small capsid protein has been labeled with different fluorescent proteins. Here, we analyzed the infectivity of several HSV1(17(+)) strains in which the N-terminal region of the non-essential small capsid protein VP26 had been tagged at different positions. While some variants replicated with similar kinetics as their parental wild type strain, others were not infectious at all. Improper tagging resulted in the aggregation of VP26 in the nucleus, prevented efficient nuclear egress of viral capsids, and thus virion formation. Correlative fluorescence and electron microscopy showed that these aggregates had sequestered several other viral proteins, but often did not contain viral capsids. The propensity for aggregate formation was influenced by the type of the fluorescent protein domain, the position of the inserted tag, the cell type, and the progression of infection. Among the tags that we have tested, mRFPVP26 had the lowest tendency to induce nuclear aggregates, and showed the least reduction in replication when compared to wild type. Our data suggest that bona fide monomeric fluorescent protein tags have less impact on proper assembly of HSV1 capsids and nuclear capsid egress than tags that tend to dimerize. Small chemical compounds capable of inducing aggregate formation of VP26 may lead to new antiviral drugs against HSV infections.
Collapse
Affiliation(s)
| | - Katinka Döhner
- Institute of Virology, Hanover Medical School, Hanover, Germany
| | - Anne Binz
- Institute of Virology, Hanover Medical School, Hanover, Germany
| | | | - Beate Sodeik
- Institute of Virology, Hanover Medical School, Hanover, Germany
| |
Collapse
|
28
|
Comprehensive review on the HSC70 functions, interactions with related molecules and involvement in clinical diseases and therapeutic potential. Pharmacol Ther 2012; 136:354-74. [PMID: 22960394 DOI: 10.1016/j.pharmthera.2012.08.014] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 08/14/2012] [Indexed: 12/28/2022]
Abstract
Heat shock cognate protein 70 (HSC70) is a constitutively expressed molecular chaperone which belongs to the heat shock protein 70 (HSP70) family. HSC70 shares some of the structural and functional similarity with HSP70. HSC70 also has different properties compared with HSP70 and other heat shock family members. HSC70 performs its full functions by the cooperation of co-chaperones. It interacts with many other molecules as well and regulates various cellular functions. It is also involved in various diseases and may become a biomarker for diagnosis and potential therapeutic targets for design, discovery, and development of novel drugs to treat various diseases. In this article, we provide a comprehensive review on HSC70 from the literatures including the basic general information such as classification, structure and cellular location, genetics and function, as well as its protein association and interaction with other proteins. In addition, we also discussed the relationship of HSC70 and related clinical diseases such as cancer, cardiovascular, neurological, hepatic and many other diseases and possible therapeutic potential and highlight the progress and prospects of research in this field. Understanding the functions of HSC70 and its interaction with other molecules will help us to reveal other novel properties of this protein. Scientists may be able to utilize this protein as a biomarker and therapeutic target to make significant advancement in scientific research and clinical setting in the future.
Collapse
|
29
|
Schumacher AJ, Mohni KN, Kan Y, Hendrickson EA, Stark JM, Weller SK. The HSV-1 exonuclease, UL12, stimulates recombination by a single strand annealing mechanism. PLoS Pathog 2012; 8:e1002862. [PMID: 22912580 PMCID: PMC3415443 DOI: 10.1371/journal.ppat.1002862] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 07/01/2012] [Indexed: 11/19/2022] Open
Abstract
Production of concatemeric DNA is an essential step during HSV infection, as the packaging machinery must recognize longer-than-unit-length concatemers; however, the mechanism by which they are formed is poorly understood. Although it has been proposed that the viral genome circularizes and rolling circle replication leads to the formation of concatemers, several lines of evidence suggest that HSV DNA replication involves recombination-dependent replication reminiscent of bacteriophages λ and T4. Similar to λ, HSV-1 encodes a 5′-to-3′ exonuclease (UL12) and a single strand annealing protein [SSAP (ICP8)] that interact with each other and can perform strand exchange in vitro. By analogy with λ phage, HSV may utilize viral and/or cellular recombination proteins during DNA replication. At least four double strand break repair pathways are present in eukaryotic cells, and HSV-1 is known to manipulate several components of these pathways. Chromosomally integrated reporter assays were used to measure the repair of double strand breaks in HSV-infected cells. Single strand annealing (SSA) was increased in HSV-infected cells, while homologous recombination (HR), non-homologous end joining (NHEJ) and alternative non-homologous end joining (A-NHEJ) were decreased. The increase in SSA was abolished when cells were infected with a viral mutant lacking UL12. Moreover, expression of UL12 alone caused an increase in SSA, which was completely eliminated when a UL12 mutant lacking exonuclease activity was expressed. UL12-mediated stimulation of SSA was decreased in cells lacking the cellular SSAP, Rad52, and could be restored by coexpressing the viral SSAP, ICP8, indicating that an SSAP is also required. These results demonstrate that UL12 can specifically stimulate SSA and that either ICP8 or Rad52 can function as an SSAP. We suggest that SSA is the homology-mediated repair pathway utilized during HSV infection. The repair of DNA damage is essential to maintain genomic stability. Cells have at least four distinct DNA repair pathways, and defects in any of them can lead to tumor formation and cancer progression. Herpes Simplex Virus-1 (HSV-1) manipulates components of the host DNA repair pathways. In this paper we showed that DNA repair by the single strand annealing (SSA) pathway was increased during HSV infection and that other pathways were inhibited. We also show that a viral nuclease in conjunction with either a viral or cellular single strand annealing protein can stimulate the SSA pathway. We suggest that viral DNA synthesis occurs via an SSAdependent mechanism that is reminiscent of that used by bacterial viruses such as λ. Interestingly, λ has evolved an SSA-mediated repair mechanism to exchange genetic information that has also been used to enhance gene targeting in bacteria. It is thus possible that HSV proteins could be similarly used as tools to stimulate gene targeting in human cells leading to more effective strategies for gene therapy. Furthermore, the diversity of HSV reported in human populations, combined with the high rate of genetic exchange during infection, suggests that SSA may play a role in viral evolution and pathogenesis.
Collapse
Affiliation(s)
- April J. Schumacher
- Molecular, Microbial and Structural Biology Department, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Kareem N. Mohni
- Molecular, Microbial and Structural Biology Department, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Yinan Kan
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Eric A. Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Jeremy M. Stark
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Sandra K. Weller
- Molecular, Microbial and Structural Biology Department, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
30
|
Muylaert I, Zhao Z, Andersson T, Elias P. Identification of conserved amino acids in the herpes simplex virus type 1 UL8 protein required for DNA synthesis and UL52 primase interaction in the virus replisome. J Biol Chem 2012; 287:33142-52. [PMID: 22851167 DOI: 10.1074/jbc.m112.356782] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have used oriS-dependent transient replication assays to search for species-specific interactions within the herpes simplex virus replisome. Hybrid replisomes derived from herpes simplex virus type 1 (HSV-1) and equine herpesvirus type 1 (EHV-1) failed to support DNA replication in cells. Moreover, the replisomes showed a preference for their cognate origin of replication. The results demonstrate that the herpesvirus replisome behaves as a molecular machine relying on functionally important interactions. We then searched for functional interactions in the replisome context by subjecting HSV-1 UL8 protein to extensive mutagenesis. 52 mutants were made by replacing single or clustered charged amino acids with alanines. Four mutants showed severe replication defects. Mutant A23 exhibited a lethal phenotype, and mutants A49, A52 and A53 had temperature-sensitive phenotypes. Mutants A49 and A53 did not interact with UL52 primase as determined by co-immunoprecipitation experiments. Using GFP-tagged UL8, we demonstrate that all mutants were unable to support formation of ICP8-containing nuclear replication foci. Extended mutagenesis suggested that a highly conserved motif corresponding to mutant A49 serves an important role for establishing a physical contact between UL8 and UL52. The replication-defective mutations affected conserved amino acids, and similar phenotypes were observed when the corresponding mutations were introduced into EHV-1 UL8.
Collapse
Affiliation(s)
- Isabella Muylaert
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | | | | | | |
Collapse
|
31
|
Herpes simplex virus 1 VP22 regulates translocation of multiple viral and cellular proteins and promotes neurovirulence. J Virol 2012; 86:5264-77. [PMID: 22357273 DOI: 10.1128/jvi.06913-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) protein VP22, encoded by the UL49 gene, is a major virion tegument protein. In the present study, we showed that VP22 was required for efficient redistribution of viral proteins VP16, VP26, ICP0, ICP4, and ICP27 and of cellular protein Hsc-70 to the cytoplasm of infected cells. We found that two dileucine motifs in VP22, at amino acids 235 and 236 and amino acids 251 and 252, were necessary for VP22 regulation of the proper cytoplasmic localization of these viral and cellular proteins. The dileucine motifs were also required for proper cytoplasmic localization of VP22 itself and for optimal expression of viral proteins VP16, VP22, ICP0, UL41, and glycoprotein B. Interestingly, a recombinant mutant virus with alanines substituted for the dileucines at amino acids 251 and 252 had a 50% lethal dose (LD(50)) for neurovirulence in mice following intracerebral inoculation about 10(3)-fold lower than the LD(50) of the repaired virus. Furthermore, the replication and spread of this mutant virus in the brains of mice following intracerebral inoculation were significantly impaired relative to those of the repaired virus. The ability of VP22 to regulate the localization and expression of various viral and cellular proteins, as shown in this study, was correlated with an increase in viral replication and neurovirulence in the experimental murine model. Thus, HSV-1 VP22 is a significant neurovirulence factor in vivo.
Collapse
|
32
|
Duan F, Ni S, Nie Y, Huang Q, Wu K. Small interfering RNA targeting for infected-cell polypeptide 4 inhibits herpes simplex virus type 1 replication in retinal pigment epithelial cells. Clin Exp Ophthalmol 2011; 40:195-204. [PMID: 21883773 PMCID: PMC7162062 DOI: 10.1111/j.1442-9071.2011.02668.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background: This study sought to inhibit herpes simplex virus type 1 replication using small interfering RNA which targeting infected‐cell polypeptide 4 genes to mediate transcription of early and late viral genes in herpes simplex virus type 1 lytic (productive) infection in retina epithelial cells. Methods: After pre‐ or post‐infecting with herpes simplex virus type 1, small interfering RNAs were transfected into retina epithelial cells. The antiviral effects of small interfering RNA were evaluated by Western blot, plaque assays, indirect immunofluorescence and reverse transcription polymerase chain reaction. The viral titre was detected by the 50% tissue culture infective dose method. Results: Small interfering RNA decreased infected‐cell polypeptide 4 expression in retina epithelial cells that were infected with herpes simplex virus type 1 before or after small interfering RNA transfection. Compared with herpes simplex virus type 1 infection alone or transfection with negative control small interfering RNA, the viral titre and the retina epithelial cell cytopathic effect were significantly decreased in retina epithelial cells transfected with infected‐cell polypeptide 4‐targeting small interfering RNA (50 and 100 nM) (P < 0.05). The small interfering RNA effectively silenced herpes simplex virus type 1 infected‐cell polypeptide 4 expression on both mRNA and the protein levels (P < 0.05). The inhibition of infected‐cell polypeptide 4‐targeting small interfering RNA on infected‐cell polypeptide 4 protein expression was also verified by Western blot in herpes simplex virus type 1 infected human cornea epithelial cell, human trabecular meshwork cells and Vero cells. Conclusions: Infected‐cell polypeptide 4‐targeting small interfering RNA can inhibit herpes simplex virus type 1 replication in retina epithelial cells, providing a foundation for development of RNA interference as an antiviral therapy.
Collapse
Affiliation(s)
- Fang Duan
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | | | | | | | | |
Collapse
|
33
|
New insights into the induction of the heat shock proteins in baculovirus infected insect cells. Virology 2011; 421:34-41. [PMID: 21982219 DOI: 10.1016/j.virol.2011.09.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 08/29/2011] [Accepted: 09/02/2011] [Indexed: 01/03/2023]
Abstract
Eight members of the HSP/HSC70 family were identified in Spodoptera frugiperda Sf9 cells infected with Autographa californica multiple nucleopolyhedrovirus (AcMNPV) by 2D electrophoresis followed by mass spectrometry (MALDI/TOF) and a Mascot search. The family includes five HSP70s induced by AcMNPV-infection and three constitutive cognate HSC70s that remained abundant in infected cells. Confocal microscopy revealed dynamic changes in subcellular localization of HSP/HSC70s in the course of infection. At the early stages (4 to 10 hpi), a fraction of HSPs is localized in distinct speckles in cytoplasm. The speckles contained ubiquitinylated proteins suggesting that they may be aggresomes where proteins targeted by ubiquitin are sequestered or processed for proteolysis. S. frugiperda HSP90 was identified in the 2D gels by Western blotting. Its amount was unchanged during infection. A selective inhibitor of HSP90, 17-AAG, decreased the rate of viral DNA synthesis in infected cells suggesting a supportive role of HSP90 in virus replication.
Collapse
|
34
|
DNA mismatch repair proteins are required for efficient herpes simplex virus 1 replication. J Virol 2011; 85:12241-53. [PMID: 21957315 DOI: 10.1128/jvi.05487-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) is a double-stranded DNA virus that replicates in the nucleus of its human host cell and is known to interact with many cellular DNA repair proteins. In this study, we examined the role of cellular mismatch repair (MMR) proteins in the virus life cycle. Both MSH2 and MLH1 are required for efficient replication of HSV-1 in normal human cells and are localized to viral replication compartments. In addition, a previously reported interaction between MSH6 and ICP8 was confirmed by coimmunoprecipitation and extended to show that UL12 is also present in this complex. We also report for the first time that MLH1 associates with ND10 nuclear bodies and that like other ND10 proteins, MLH1 is recruited to the incoming genome. Knockdown of MLH1 inhibits immediate-early viral gene expression. MSH2, on the other hand, which is generally thought to play a role in mismatch repair at a step prior to that of MLH1, is not recruited to incoming genomes and appears to act at a later step in the viral life cycle. Silencing of MSH2 appears to inhibit early gene expression. Thus, both MLH1 and MSH2 are required but appear to participate in distinct events in the virus life cycle. The observation that MLH1 plays an earlier role in HSV-1 infection than does MSH2 is surprising and may indicate a novel function for MLH1 distinct from its known MSH2-dependent role in mismatch repair.
Collapse
|
35
|
Muylaert I, Tang KW, Elias P. Replication and recombination of herpes simplex virus DNA. J Biol Chem 2011; 286:15619-24. [PMID: 21362621 DOI: 10.1074/jbc.r111.233981] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Replication of herpes simplex virus takes place in the cell nucleus and is carried out by a replisome composed of six viral proteins: the UL30-UL42 DNA polymerase, the UL5-UL8-UL52 helicase-primase, and the UL29 single-stranded DNA-binding protein ICP8. The replisome is loaded on origins of replication by the UL9 initiator origin-binding protein. Virus replication is intimately coupled to recombination and repair, often performed by cellular proteins. Here, we review new significant developments: the three-dimensional structures for the DNA polymerase, the polymerase accessory factor, and the single-stranded DNA-binding protein; the reconstitution of a functional replisome in vitro; the elucidation of the mechanism for activation of origins of DNA replication; the identification of cellular proteins actively involved in or responding to viral DNA replication; and the elucidation of requirements for formation of replication foci in the nucleus and effects on protein localization.
Collapse
Affiliation(s)
- Isabella Muylaert
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | |
Collapse
|
36
|
Balasubramanian N, Bai P, Buchek G, Korza G, Weller SK. Physical interaction between the herpes simplex virus type 1 exonuclease, UL12, and the DNA double-strand break-sensing MRN complex. J Virol 2010; 84:12504-14. [PMID: 20943970 PMCID: PMC3004347 DOI: 10.1128/jvi.01506-10] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 10/05/2010] [Indexed: 12/16/2022] Open
Abstract
The herpes simplex virus type 1 (HSV-1) alkaline nuclease, encoded by the UL12 gene, plays an important role in HSV-1 replication, as a UL12 null mutant displays a severe growth defect. The HSV-1 alkaline exonuclease UL12 interacts with the viral single-stranded DNA binding protein ICP8 and promotes strand exchange in vitro in conjunction with ICP8. We proposed that UL12 and ICP8 form a two-subunit recombinase reminiscent of the phage lambda Red α/β recombination system and that the viral and cellular recombinases contribute to viral genome replication through a homologous recombination-dependent DNA replication mechanism. To test this hypothesis, we identified cellular interaction partners of UL12 by using coimmunoprecipitation. We report for the first time a specific interaction between UL12 and components of the cellular MRN complex, an important factor in the ATM-mediated homologous recombination repair (HRR) pathway. This interaction is detected early during infection and does not require viral DNA or other viral or cellular proteins. The region of UL12 responsible for the interaction has been mapped to the first 125 residues, and coimmunoprecipitation can be abolished by deletion of residues 100 to 126. These observations support the hypothesis that cellular and viral recombination factors work together to promote efficient HSV-1 growth.
Collapse
Affiliation(s)
- Nandakumar Balasubramanian
- Department of Molecular, Microbial and Structural Biology and The Molecular Biology and Biochemistry Graduate Program, The University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Ping Bai
- Department of Molecular, Microbial and Structural Biology and The Molecular Biology and Biochemistry Graduate Program, The University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Gregory Buchek
- Department of Molecular, Microbial and Structural Biology and The Molecular Biology and Biochemistry Graduate Program, The University of Connecticut Health Center, Farmington, Connecticut 06030
| | - George Korza
- Department of Molecular, Microbial and Structural Biology and The Molecular Biology and Biochemistry Graduate Program, The University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Sandra K. Weller
- Department of Molecular, Microbial and Structural Biology and The Molecular Biology and Biochemistry Graduate Program, The University of Connecticut Health Center, Farmington, Connecticut 06030
| |
Collapse
|
37
|
Affiliation(s)
- Sandra K Weller
- Department of Molecular, Microbial and Structural Biology, The University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
38
|
Herpes simplex virus type 1 helicase-primase: DNA binding and consequent protein oligomerization and primase activation. J Virol 2010; 85:968-78. [PMID: 21068246 DOI: 10.1128/jvi.01690-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The heterotrimeric helicase-primase complex of herpes simplex virus type I (HSV-1), consisting of UL5, UL8, and UL52, possesses 5' to 3' helicase, single-stranded DNA (ssDNA)-dependent ATPase, primase, and DNA binding activities. In this study we confirm that the UL5-UL8-UL52 complex has higher affinity for forked DNA than for ssDNA and fails to bind to fully annealed double-stranded DNA substrates. In addition, we show that a single-stranded overhang of greater than 6 nucleotides is required for efficient enzyme loading and unwinding. Electrophoretic mobility shift assays and surface plasmon resonance analysis provide additional quantitative information about how the UL5-UL8-UL52 complex associates with the replication fork. Although it has previously been reported that in the absence of DNA and nucleoside triphosphates the UL5-UL8-UL52 complex exists as a monomer in solution, we now present evidence that in the presence of forked DNA and AMP-PNP, higher-order complexes can form. Electrophoretic mobility shift assays reveal two discrete complexes with different mobilities only when helicase-primase is bound to DNA containing a single-stranded region, and surface plasmon resonance analysis confirms larger amounts of the complex bound to forked substrates than to single-overhang substrates. Furthermore, we show that primase activity exhibits a cooperative dependence on protein concentration while ATPase and helicase activities do not. Taken together, these data suggest that the primase activity of the helicase-primase requires formation of a dimer or higher-order structure while ATPase activity does not. Importantly, this provides a simple mechanism for generating a two-polymerase replisome at the replication fork.
Collapse
|
39
|
Lyupina YV, Dmitrieva SB, Timokhova AV, Beljelarskaya SN, Zatsepina OG, Evgen'ev MB, Mikhailov VS. An important role of the heat shock response in infected cells for replication of baculoviruses. Virology 2010; 406:336-41. [DOI: 10.1016/j.virol.2010.07.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 07/19/2010] [Accepted: 07/23/2010] [Indexed: 10/19/2022]
|
40
|
ATR and ATRIP are recruited to herpes simplex virus type 1 replication compartments even though ATR signaling is disabled. J Virol 2010; 84:12152-64. [PMID: 20861269 DOI: 10.1128/jvi.01643-10] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the herpes simplex virus type 1 (HSV-1) genome might be expected to induce a DNA damage response, the ATR kinase is not activated in infected cells. We previously proposed that spatial uncoupling of ATR from its interaction partner, ATRIP, could be the basis for inactivation of the ATR kinase in infected cells; however, we now show that ATR and ATRIP are in fact both recruited to HSV-1 replication compartments and can be coimmunoprecipitated from infected-cell lysates. ATRIP and replication protein A (RPA) are recruited to the earliest detectable prereplicative sites, stage II microfoci. In a normal cellular DNA damage response, ATR/ATRIP are recruited to stretches of RPA-coated single-stranded DNA in an RPA- and kinase-dependent manner, resulting in the phosphorylation of RPA by ATR in damage foci. In contrast, in HSV-1-infected cells, RPA is not phosphorylated, and endogenous phosphorylated RPA is excluded from stage II microfoci; in addition, the recruitment of ATR/ATRIP is independent of RPA and the kinase activity of ATR. Furthermore, we show that ATR/ATRIP play a beneficial role in viral gene expression and virus production. Although ICP0 has been shown to be important for partial inactivation of other cellular DNA repair pathways, we show that ICP0 is not responsible for the inactivation of ATR signaling and, furthermore, that neither ATR nor ATRIP is a target of ICP0 degradation. Thus, ATR and ATRIP may function outside the context of the canonical ATR damage signaling pathway during HSV-1 infection to participate in the viral life cycle.
Collapse
|
41
|
Mathew SS, Bryant PW, Burch AD. Accumulation of oxidized proteins in Herpesvirus infected cells. Free Radic Biol Med 2010; 49:383-91. [PMID: 20441790 PMCID: PMC3206308 DOI: 10.1016/j.freeradbiomed.2010.04.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 03/25/2010] [Accepted: 04/22/2010] [Indexed: 12/12/2022]
Abstract
Oxidative stress gives rise to an environment that can be highly damaging to proteins, lipids, and DNA. Previous studies indicate that Herpesvirus infections cause oxidative stress in cells and in tissues. The biological consequences of virus-induced oxidative stress have not been characterized. Studies from many groups indicate that proteins which have been damaged through oxidative imbalances are either degraded by the 20S proteasome in a ubiquitin-independent fashion or form aggregates that are resistant to proteolysis. We have previously shown that herpes simplex virus type 1 (HSV-1) replication was significantly enhanced in the presence of the cellular antioxidant chaperone Hsp27, indicating a possible role for this protein in managing virus-induced oxidative stress. Here we show that oxidized proteins accumulate during infections with two distantly related herpesviruses, HSV-1 and Rhesus Rhadinovirus (RRV), a close relative of the Kaposi's sarcoma-associated herpesvirus (KSHV). The presence of oxidized proteins was not entirely unexpected as oxidative stress during herpesvirus infection has been previously documented. Unexpectedly, some oxidized proteins are removed in a proteasome-dependent fashion throughout infection and others resist degradation. Oxidized proteins that resist proteolysis become sequestered in foci within the nucleus and are not associated with virus-induced chaperone enriched domains (VICE), active centers of protein quality control, but rather coincide with Hsp27-enriched foci that were previously described by our laboratory. Experiments also indicate that the accumulation of oxidized proteins is more pronounced in cells depleted for Hsp27. We propose that Hsp27 may facilitate oxidized protein turnover at VICE domains in the nucleus during infection. Hsp27 may also buffer toxic effects of highly-carbonylated, defective proteins that resist proteolysis by promoting their aggregation in the nucleus. These roles of Hsp27 during virus infection are most likely not mutually exclusive.
Collapse
Affiliation(s)
- Shomita S. Mathew
- The David Axelrod Institute Wadsworth Center New York State Department of Health 120 New Scotland Avenue
| | - Patrick W. Bryant
- The David Axelrod Institute Wadsworth Center New York State Department of Health 120 New Scotland Avenue
| | - April D. Burch
- The David Axelrod Institute Wadsworth Center New York State Department of Health 120 New Scotland Avenue
- Department of Biomedical Sciences School of Public Health University at Albany Albany, NY 12208, Phone: 518.402.2233 Fax: 518.474.9997
| |
Collapse
|
42
|
Wen KW, Damania B. Hsp90 and Hsp40/Erdj3 are required for the expression and anti-apoptotic function of KSHV K1. Oncogene 2010; 29:3532-44. [PMID: 20418907 PMCID: PMC2908282 DOI: 10.1038/onc.2010.124] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) is a member of the gammaherpesvirus family. It is the etiological agent of three different human cancers, Kaposi sarcoma (KS), primary effusion lymphoma (PEL) and multicentric Castleman disease. The far left end of the KSHV genome encodes a unique transmembrane glycoprotein called K1. K1 possesses the ability to transform rodent fibroblasts and block apoptosis. K1 has also been shown to activate the PI3K/Akt/mTOR pathway in different cells. Using tandem affinity purification, we identified heat shock protein 90beta (Hsp90beta) and endoplasmic reticulum-associated Hsp40 (Erdj3/DnaJB11), as cellular binding partners of K1. Interactions of K1 with Hsp90beta and Hsp40 were confirmed by co-immunoprecipitation in both directions. Furthermore, K1 also interacted with the Hsp90alpha isoform. We report that small-interfering RNAs directed against Hsp90 and Hsp40/Erdj3, as well as pharmacological inhibitors of Hsp90, dramatically reduced K1 expression, suggesting that K1 is a client protein of these chaperones. In addition, both Hsp90 and Hsp40/Erdj3 were essential for K1's anti-apoptotic function. Finally, we report that the Hsp90 inhibitors, 17-AAG and 17-DMAG, can suppress the proliferation of KSHV-positive PEL cell lines and exhibited IC(50) values of 50 nM and below.
Collapse
Affiliation(s)
- K W Wen
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
43
|
Proteasome subunits relocalize during human cytomegalovirus infection, and proteasome activity is necessary for efficient viral gene transcription. J Virol 2009; 84:3079-93. [PMID: 20042513 DOI: 10.1128/jvi.02236-09] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have continued studies to further understand the role of the ubiquitin-proteasome system (UPS) in human cytomegalovirus (HCMV) infection. With specific inhibitors of the proteasome, we show that ongoing proteasome activity is necessary for facilitating the various stages of the infection. Immediate-early protein 2 expression is modestly reduced with addition of proteasome inhibitors at the onset of infection; however, both early and late gene expression are significantly delayed, even if the inhibitor is removed at 12 h postinfection. Adding the inhibitor at later times during the infection blocks the further accumulation of viral early and late gene products, the severity of which is dependent on when the proteasome is inhibited. This can be attributed primarily to a block in viral RNA transcription, although DNA synthesis is also partially inhibited. Proteasome activity and expression increase as the infection progresses, and this coincides with the relocalization of active proteasomes to the periphery of the viral DNA replication center, where there is active RNA transcription. Interestingly, one 19S subunit, Rpn2, is specifically recruited into the viral DNA replication center. The relocalization of the subunits requires viral DNA replication, but their maintenance around or within the replication center is not dependent on continued viral DNA synthesis or the proteolytic activity of the proteasome. These studies highlight the importance of the UPS at all stages of the HCMV infection and support further studies into this pathway as a potential antiviral target.
Collapse
|
44
|
Herpes simplex virus type 1 immediate-early protein ICP22 is required for VICE domain formation during productive viral infection. J Virol 2009; 84:2384-94. [PMID: 20032172 DOI: 10.1128/jvi.01686-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During productive infection, herpes simplex virus type 1 (HSV-1) induces the formation of discrete nuclear foci containing cellular chaperone proteins, proteasomal components, and ubiquitinated proteins. These structures are known as VICE domains and are hypothesized to play an important role in protein turnover and nuclear remodeling in HSV-1-infected cells. Here we show that VICE domain formation in Vero and other cells requires the HSV-1 immediate-early protein ICP22. Since ICP22 null mutants replicate efficiently in Vero cells despite being unable to induce VICE domain formation, it can be concluded that VICE domain formation is not essential for HSV-1 productive infection. However, our findings do not exclude the possibility that VICE domain formation is required for viral replication in cells that are nonpermissive for ICP22 mutants. Our studies also show that ICP22 itself localizes to VICE domains, suggesting that it could play a role in forming these structures. Consistent with this, we found that ICP22 expression in transfected cells is sufficient to reorganize the VICE domain component Hsc70 into nuclear inclusion bodies that resemble VICE domains. An N-terminal segment of ICP22, corresponding to residues 1 to 146, is critical for VICE domain formation in infected cells and Hsc70 reorganization in transfected cells. We previously found that this portion of the protein is dispensable for ICP22's effects on RNA polymerase II phosphorylation. Thus, ICP22 mediates two distinct regulatory activities that both modify important components of the host cell nucleus.
Collapse
|
45
|
Virus-Induced Chaperone-Enriched (VICE) domains function as nuclear protein quality control centers during HSV-1 infection. PLoS Pathog 2009; 5:e1000619. [PMID: 19816571 PMCID: PMC2752995 DOI: 10.1371/journal.ppat.1000619] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 09/14/2009] [Indexed: 12/11/2022] Open
Abstract
Virus-Induced Chaperone-Enriched (VICE) domains form adjacent to nuclear viral replication compartments (RC) during the early stages of HSV-1 infection. Between 2 and 3 hours post infection at a MOI of 10, host protein quality control machinery such as molecular chaperones (e.g. Hsc70), the 20S proteasome and ubiquitin are reorganized from a diffuse nuclear distribution pattern to sequestration in VICE domains. The observation that VICE domains contain putative misfolded proteins suggests that they may be similar to nuclear inclusion bodies that form under conditions in which the protein quality control machinery is overwhelmed by the presence of misfolded proteins. The detection of Hsc70 in VICE domains, but not in nuclear inclusion bodies, indicates that Hsc70 is specifically reorganized by HSV-1 infection. We hypothesize that HSV-1 infection induces the formation of nuclear protein quality control centers to remodel or degrade aberrant nuclear proteins that would otherwise interfere with productive infection. Detection of proteolytic activity in VICE domains suggests that substrates may be degraded by the 20S proteasome in VICE domains. FRAP analysis reveals that GFP-Hsc70 is dynamically associated with VICE domains, suggesting a role for Hsc70 in scanning the infected nucleus for misfolded proteins. During 42°C heat shock, Hsc70 is redistributed from VICE domains into RC perhaps to remodel viral replication and regulatory proteins that have become insoluble in these compartments. The experiments presented in this paper suggest that VICE domains are nuclear protein quality control centers that are modified by HSV-1 to promote productive infection. Protein quality control is a protective cellular mechanism by which damaged proteins are refolded or degraded so that they cannot interfere with essential cellular processes. In the event that protein quality control machinery cannot refold or degrade damaged proteins, sequestration of misfolded protein is an alternative protective mechanism for reducing the toxic effects of misfolded protein. Several neurological diseases result from the accumulation of toxic misfolded proteins that cannot be efficiently refolded or degraded. In neurons from patients afflicted with Huntington's disease, misfolded huntingtin protein is sequestered in large aggregates in the nucleus called inclusion bodies. Inclusion bodies also contain protein quality control machinery including molecular chaperones, the proteasome and ubiquitin. Here we report that analogous structures called Virus-Induced Chaperone-Enriched (VICE) domains form in the nucleus of cells infected with Herpes Simplex Virus type 1 (HSV-1). VICE domains contain misfolded protein, chaperones and protein degradation activity. VICE domain formation is efficient in infected cells taxed with high levels of viral protein production. We hypothesize that misfolded proteins that arise in HSV-1-infected cells are sequestered in VICE domains to promote remodeling of misfolded proteins.
Collapse
|
46
|
The replication cycle of varicella-zoster virus: analysis of the kinetics of viral protein expression, genome synthesis, and virion assembly at the single-cell level. J Virol 2009; 83:3904-18. [PMID: 19193797 DOI: 10.1128/jvi.02137-08] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Varicella-zoster virus (VZV) is a human alphaherpesvirus that is highly cell associated in cell culture. Because cell-free virus yields are too low to permit the synchronous infections needed for time-resolved analyses, information is lacking about the sequence of events during the VZV replication cycle. To address this challenge, we differentially labeled VZV-infected inoculum cells (input) and uninfected (output) cells with fluorescent cell dyes or endocytosed nanogold particles and evaluated newly infected cells by confocal immunofluorescence or electron microscopy (EM) at the single-cell level at defined intervals. We demonstrated the spatiotemporal expression of six major VZV proteins, ORF61, IE62, IE63, ORF29, ORF23, and gE, representing all putative kinetic classes, for the first time. Newly synthesized ORF61, as well as IE62, the major VZV transactivator, appeared within 1 h, and they were targeted to different subnuclear compartments. The formation of VZV DNA replication compartments started between 4 and 6 h, involved recruitment of ORF29 to putative IE62 prereplication sites, and resulted in large globular nuclear compartments where newly synthesized viral DNA accumulated. Although considered a late protein, gE accumulated in the Golgi compartment at as early as 4 h. ORF23 capsid protein was present at 9 h. The assembly of viral nucleocapsids and mature enveloped VZ virions was detected by 9 to 12 h by time-resolved EM. Although syncytium formation is a hallmark of VZV infection, infection of neighboring cells did not require cell-cell fusion; its occurrence from 9 h is likely to amplify VZV replication. Our results define the productive cycle of VZV infection in a single cell as occurring in 9 to 12 h.
Collapse
|
47
|
Abstract
Viruses as obligate intracellular parasites use host cell proteins to ensure efficient replication and spread. Cellular proteins are required for several stages of a virus life cycle. Here, we identify BAG3, a co-chaperone, as a regulator of herpes virus immediate early gene expression. We report that a herpes simplex virus lacking the gene encoding a potent transcriptional activator, ICP0, is compromised for replication in cells silenced for BAG3 in a multiplicity of infection-dependent manner. We also show a requirement for BAG3 to augment virus gene expression and demonstrate that the co-chaperone acts independently of promyelocytic leukemia to increase herpes simplex virus replication.
Collapse
|