1
|
Sannigrahi MK, Rajagopalan P, Lai L, Liu X, Sahu V, Nakagawa H, Jalaly JB, Brody RM, Morgan IM, Windle BE, Wang X, Gimotty PA, Kelly DP, White EA, Basu D. HPV E6 regulates therapy responses in oropharyngeal cancer by repressing the PGC-1α/ERRα axis. JCI Insight 2022; 7:159600. [PMID: 36134662 PMCID: PMC9675449 DOI: 10.1172/jci.insight.159600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/10/2022] [Indexed: 01/25/2023] Open
Abstract
Therapy with radiation plus cisplatin kills HPV+ oropharyngeal squamous cell carcinomas (OPSCCs) by increasing reactive oxygen species beyond cellular antioxidant capacity. To explore why these standard treatments fail for some patients, we evaluated whether the variation in HPV oncoprotein levels among HPV+ OPSCCs affects mitochondrial metabolism, a source of antioxidant capacity. In cell line and patient-derived xenograft models, levels of HPV full-length E6 (fl-E6) inversely correlated with oxidative phosphorylation, antioxidant capacity, and therapy resistance, and fl-E6 was the only HPV oncoprotein to display such correlations. Ectopically expressing fl-E6 in models with low baseline levels reduced mitochondrial mass, depleted antioxidant capacity, and sensitized to therapy. In this setting, fl-E6 repressed the peroxisome proliferator-activated receptor gamma co-activator 1α/estrogen-related receptor α (PGC-1α/ERRα) pathway for mitochondrial biogenesis by reducing p53-dependent PGC-1α transcription. Concordant observations were made in 3 clinical cohorts, where expression of mitochondrial components was higher in tumors of patients with reduced survival. These tumors contained the lowest fl-E6 levels, the highest p53 target gene expression, and an activated PGC-1α/ERRα pathway. Our findings demonstrate that E6 can potentiate treatment responses by depleting mitochondrial antioxidant capacity and provide evidence for low E6 negatively affecting patient survival. E6's interaction with the PGC-1α/ERRα axis has implications for predicting and targeting treatment resistance in OPSCC.
Collapse
Affiliation(s)
| | | | - Ling Lai
- Cardiovascular Institute, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xinyi Liu
- Department of Pharmacology and Regenerative Medicine, University of Illinois, Chicago, Illinois, USA
| | - Varun Sahu
- Department of Medicine, Columbia University School of Medicine, New York, New York, USA
| | - Hiroshi Nakagawa
- Department of Medicine, Columbia University School of Medicine, New York, New York, USA
| | - Jalal B. Jalaly
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert M. Brody
- Department of Otorhinolaryngology — Head and Neck Surgery and
| | - Iain M. Morgan
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Bradford E. Windle
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Xiaowei Wang
- Department of Pharmacology and Regenerative Medicine, University of Illinois, Chicago, Illinois, USA
| | - Phyllis A. Gimotty
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel P. Kelly
- Cardiovascular Institute, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Devraj Basu
- Department of Otorhinolaryngology — Head and Neck Surgery and
| |
Collapse
|
2
|
Burman B, Drutman SB, Fury MG, Wong RJ, Katabi N, Ho AL, Pfister DG. Pharmacodynamic and therapeutic pilot studies of single-agent ribavirin in patients with human papillomavirus-related malignancies. Oral Oncol 2022; 128:105806. [PMID: 35339025 PMCID: PMC9788648 DOI: 10.1016/j.oraloncology.2022.105806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/08/2022] [Accepted: 03/01/2022] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Ribavirin inhibits eukaryotic translation initiation factor 4E (eIF4E), thereby decreasing cap-dependent translation. In this two-part study, we assessed the pharmacodynamic effects and therapeutic potential of ribavirin in human papillomavirus (HPV)-related malignancies. METHODS In the pharmacodynamic study, ribavirin (400 mg BID for 14 days) was evaluated in 8 patients with HPV-positive localized oropharyngeal carcinoma with phosphorylated-eIF4E (p-eIF4E) ≥ 30%. In the therapeutic study, ribavirin (1400 mg BID in 28-day cycles, continuously dosed) was evaluated in 12 patients with recurrent and/or metastatic HPV-related cancer. Dose interruptions or reductions were allowed according to prespecified criteria. Toxicities were assessed in accordance with National Cancer Institute Common Terminology Criteria for Adverse Events version 4; response was assessed using Response Evaluation Criteria in Solid Tumors version 1.1. Patients remained on study until disease progression or unacceptable toxicity. RESULTS Six patients were evaluable in the pharmacodynamic study: 4 had decreased p-eIF4E after 14 days of ribavirin. In the therapeutic study, 12 patients were evaluable for toxicity, and 9 were evaluable for response. Among these, median follow-up was 3.5 months, and best overall response was stable disease in 5 patients and progression of disease in 4 patients. Median progression-free survival was 1.8 months. The most common treatment-related adverse events (grade > 2) were anemia, dyspnea, and hyperbilirubinemia. All patients had anemia (grades 1-3), with 33% having at least 1 dose reduction. CONCLUSION Oral ribavirin decreases p-eIF4E levels and is well-tolerated. However, a clear signal of efficacy in patients with recurrent and/or metastatic HPV-related cancers was not observed. (NCT02308241, NCT01268579).
Collapse
Affiliation(s)
- Bharat Burman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Scott B. Drutman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Matthew G. Fury
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY,Weill Cornell Medical College, New York, NY
| | - Richard J. Wong
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY,Weill Cornell Medical College, New York, NY
| | - Nora Katabi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alan L. Ho
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY,Weill Cornell Medical College, New York, NY
| | - David G. Pfister
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY,Weill Cornell Medical College, New York, NY
| |
Collapse
|
3
|
Miyake K, Takano N, Kazama H, Kikuchi H, Hiramoto M, Tsukahara K, Miyazawa K. Ricolinostat enhances adavosertib‑induced mitotic catastrophe in TP53‑mutated head and neck squamous cell carcinoma cells. Int J Oncol 2022; 60:54. [PMID: 35348191 PMCID: PMC8997343 DOI: 10.3892/ijo.2022.5344] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/10/2022] [Indexed: 12/24/2022] Open
Abstract
TP53 mutation is one of the most frequent gene mutations in head and neck squamous cell carcinoma (HNSCC) and could be a potential therapeutic target. Recently, the WEE1 G2 checkpoint kinase (WEE1) inhibitor adavosertib (Adv) has attracted attention because of its selective cytotoxicity against TP53-mutated cells and has shown promising activity in early phase clinical trials. In the present study, it was demonstrated that combined treatment with Adv and a selective histone deacetylase 6 (HDAC6) inhibitor, ricolinostat (RCS), synergistically enhanced cell death induction in four out of five HNSCC cell lines with TP53 mutation (CAL27, SAS, HSC-3, and OSC-19), one HNSCC cell line with impaired TP53 function by HPV-infection (UPCI-SCC154), and TP53-knockout human lung cancer cell line (A549 TP53-KO), but not in TP53 wild-type A549 cells. Time-lapse imaging showed that RCS enhanced the Adv-induced mitotic catastrophe. Consistent with this, RCS treatment suppressed checkpoint kinase 1 (Chk1) (Ser345) phosphorylation and co-administration of RCS with Adv suppressed cyclin-dependent kinase 1 (Tyr15) phosphorylation along with increased expression of γ-H2A.X, a marker of DNA double-strand breaks in CAL27 cells. These data showed that RCS enhanced Adv-induced premature mitotic entry and cell death induction in the mitotic phase. However, although HDAC6 knockdown enhanced Adv-induced cell death with γ-H2A.X elevation, HDAC6 knockdown did not repress Chk1 phosphorylation in CAL27 cells. Our data demonstrated that the co-administration of RCS with Adv in HNSCC cells resulted in the suppression of Chk1 activity, leading to synergistically enhanced apoptosis via mitotic catastrophe in a p53-dependent manner. This enhanced cell death appeared to be partially mediated by the inhibition of HDAC6 activity by RCS.
Collapse
Affiliation(s)
- Keitaro Miyake
- Department of Otorhinolaryngology, Head and Neck Surgery, Tokyo Medical University Hospital, Shinjuku‑ku, Tokyo 160‑0023, Japan
| | - Naoharu Takano
- Department of Biochemistry, Tokyo Medical University, Shinjuku‑ku, Tokyo 160‑8402, Japan
| | - Hiromi Kazama
- Department of Biochemistry, Tokyo Medical University, Shinjuku‑ku, Tokyo 160‑8402, Japan
| | - Hiroyuki Kikuchi
- Department of Preventive Medicine and Public Health, Tokyo Medical University, Shinjuku‑ku, Tokyo 160‑8402, Japan
| | - Masaki Hiramoto
- Department of Biochemistry, Tokyo Medical University, Shinjuku‑ku, Tokyo 160‑8402, Japan
| | - Kiyoaki Tsukahara
- Department of Otorhinolaryngology, Head and Neck Surgery, Tokyo Medical University Hospital, Shinjuku‑ku, Tokyo 160‑0023, Japan
| | - Keisuke Miyazawa
- Department of Biochemistry, Tokyo Medical University, Shinjuku‑ku, Tokyo 160‑8402, Japan
| |
Collapse
|
4
|
Wang Y, Liu R, Liao J, Jiang L, Jeong GH, Zhou L, Polite M, Duong D, Seyfried NT, Wang H, Kiyokawa H, Yin J. Orthogonal ubiquitin transfer reveals human papillomavirus E6 downregulates nuclear transport to disarm interferon-γ dependent apoptosis of cervical cancer cells. FASEB J 2021; 35:e21986. [PMID: 34662469 DOI: 10.1096/fj.202101232rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 02/05/2023]
Abstract
The E6 protein of the human papillomavirus (HPV) underpins important protein interaction networks between the virus and host to promote viral infection. Through its interaction with E6AP, a host E3 ubiquitin (UB) ligase, E6 stirs the protein ubiquitination pathways toward the oncogenic transformation of the infected cells. For a systematic measurement of E6 reprogramming of the substrate pool of E6AP, we performed a proteomic screen based on "orthogonal UB transfer (OUT)" that allowed us to identify the ubiquitination targets of E6AP dependent on the E6 protein of HPV-16, a high-risk viral subtype for the development of cervical cancer. The OUT screen identified more than 200 potential substrates of the E6-E6AP pair based on the transfer of UB from E6AP to the substrate proteins. Among them, we verified that E6 would induce E6AP-catalyzed ubiquitination of importin proteins KPNA1-3, protein phosphatase PGAM5, and arginine methyltransferases CARM1 to trigger their degradation by the proteasome. We further found that E6 could significantly reduce the cellular level of KPNA1 that resulted in the suppression of nuclear transport of phosphorylated STAT1 and the inhibition of interferon-γ-induced apoptosis in cervical cancer cells. Overall, our work demonstrates OUT as a powerful proteomic platform to probe the interaction of E6 and host cells through protein ubiquitination and reveals a new role of E6 in down-regulating nuclear transport proteins to attenuate tumor-suppressive signaling.
Collapse
Affiliation(s)
- Yiyang Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Ruochuan Liu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Jia Liao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Lucen Jiang
- Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Geon H Jeong
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Li Zhou
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Monica Polite
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Duc Duong
- Integrated Proteomics Core, Emory University, Atlanta, Georgia, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Huadong Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Hiroaki Kiyokawa
- Department of Pharmacology, Northwestern University, Chicago, Illinois, USA
| | - Jun Yin
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
5
|
High-risk human papillomavirus-18 uses an mRNA sequence to synthesize oncoprotein E6 in tumors. Proc Natl Acad Sci U S A 2021; 118:2108359118. [PMID: 34615711 DOI: 10.1073/pnas.2108359118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 01/20/2023] Open
Abstract
Cervical cancer is the fourth most common cause of cancer in women worldwide in terms of both incidence and mortality. Persistent infection with high-risk types of human papillomavirus (HPV), namely 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, and 68, constitute a necessary cause for the development of cervical cancer. Viral oncoproteins E6 and E7 play central roles in the carcinogenic process by virtue of their interactions with cell master proteins such as p53, retinoblastoma (Rb), mammalian target of rapamycin (mTOR), and c-MYC. For the synthesis of E6 and E7, HPVs use a bicistronic messenger RNA (mRNA) that has been studied in cultured cells. Here, we report that in cervical tumors, HPV-18, -39, and -45 transcribe E6/E7 mRNAs with extremely short 5' untranslated regions (UTRs) or even lacking a 5' UTR (i.e., zero to three nucleotides long) to express E6. We show that the translation of HPV-18 E6 cistron is regulated by the motif ACCaugGCGCG(C/A)UUU surrounding the AUG start codon, which we term Translation Initiation of Leaderless mRNAs (TILM). This motif is conserved in all HPV types of the phylogenetically coherent group forming genus alpha, species 7, which infect mucosal epithelia. We further show that the translation of HPV-18 E6 largely relies on the cap structure and eIF4E and eIF4AI, two key translation initiation factors linking translation and cancer but does not involve scanning. Our results support the notion that E6 forms the center of the positive oncogenic feedback loop node involving eIF4E, the mTOR cascade, and p53.
Collapse
|
6
|
Miyazaki M, Hiramoto M, Takano N, Kokuba H, Takemura J, Tokuhisa M, Hino H, Kazama H, Miyazawa K. Targeted disruption of GAK stagnates autophagic flux by disturbing lysosomal dynamics. Int J Mol Med 2021; 48:195. [PMID: 34468012 PMCID: PMC8416139 DOI: 10.3892/ijmm.2021.5028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/05/2021] [Indexed: 01/13/2023] Open
Abstract
The autophagy-lysosome system allows cells to adapt to environmental changes by regulating the degradation and recycling of cellular components, and to maintain homeostasis by removing aggregated proteins and defective organelles. Cyclin G-associated kinase (GAK) is involved in the regulation of clathrin-dependent endocytosis and cell cycle progression. In addition, a single nucleotide polymorphism at the GAK locus has been reported as a risk factor for Parkinson's disease. However, the roles of GAK in the autophagy-lysosome system are not completely understood, thus the present study aimed to clarify this. In the present study, under genetic disruption or chemical inhibition of GAK, analyzing autophagic flux and observing morphological changes of autophagosomes and autolysosomes revealed that GAK controlled lysosomal dynamics via actomyosin regulation, resulting in a steady progression of autophagy. GAK knockout (KO) in A549 cells impaired autophagosome-lysosome fusion and autophagic lysosome reformation, which resulted in the accumulation of enlarged autophagosomes and autolysosomes during prolonged starvation. The stagnation of autophagic flux accompanied by these phenomena was also observed with the addition of a GAK inhibitor. Furthermore, the addition of Rho-associated protein kinase (ROCK) inhibitor or ROCK1 knockdown mitigated GAK KO-mediated effects. The results suggested a vital role of GAK in controlling lysosomal dynamics via maintaining lysosomal homeostasis during autophagy.
Collapse
Affiliation(s)
- Masaya Miyazaki
- Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Masaki Hiramoto
- Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Naoharu Takano
- Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Hiroko Kokuba
- Laboratory of Electron Microscopy, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Jun Takemura
- Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Mayumi Tokuhisa
- Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Hirotsugu Hino
- Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Hiromi Kazama
- Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Keisuke Miyazawa
- Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan
| |
Collapse
|
7
|
BRCA1 degradation in response to mitochondrial damage in breast cancer cells. Sci Rep 2021; 11:8735. [PMID: 33888730 PMCID: PMC8062582 DOI: 10.1038/s41598-021-87698-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
BRCA1 is a well-studied tumor suppressor involved in the homologous repair of DNA damage, whereas PINK1, a mitochondrial serine/threonine kinase, is known to be involved in mitochondrial quality control. Genetic mutations of PINK1 and Parkin cause autosomal recessive early-onset Parkinson's disease. We found that in breast cancer cells, the mitochondrial targeting reagents, which all induce mitochondrial depolarization along with PINK1 upregulation, induced proteasomal BRCA1 degradation. This BRCA1 degradation was dependent on PINK1, and BRCA1 downregulation upon mitochondrial damage caused DNA double-strand breaks. BRCA1 degradation was mediated through the direct interaction with the E3 ligase Parkin. Strikingly, BRCA1 and PINK1/Parkin expression were inversely correlated in cancerous mammary glands from breast cancer patients. BRCA1 knockdown repressed cancer cell growth, and high BRCA1 expression predicted poor relapse-free survival in breast cancer patients. These observations indicate a novel mechanism by which mitochondrial damage is transmitted to the nucleus, leading to BRCA1 degradation.
Collapse
|
8
|
Morales-Garcia V, Contreras-Paredes A, Martinez-Abundis E, Gomez-Crisostomo NP, Lizano M, Hernandez-Landero F, de la Cruz-Hernandez E. The high-risk HPV E6 proteins modify the activity of the eIF4E protein via the MEK/ERK and AKT/PKB pathways. FEBS Open Bio 2020; 10:2541-2552. [PMID: 32981220 PMCID: PMC7714072 DOI: 10.1002/2211-5463.12987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
Previous studies have proposed that the human papillomavirus (HPV) E6 oncoproteins modify the transcriptional activity of eIF4E through mechanisms dependent on p53 degradation. However, the effect of these oncoproteins on pathways regulating the activity of the eIF4E protein remains poorly understood. Hence, we investigated the mechanisms whereby E6 proteins regulate the activity of the eIF4E protein and its effect on target genes. Overexpression of E6 constructs (HPV-6, HPV-16, HPV-18, and HPV52) showed that E6 oncoproteins increased phosphorylation of the eIF4E protein (Serine-209). This result was mainly mediated by phosphorylation of the 4EBP1 protein via the PI3K/AKT pathway. Additionally, the pharmacological inhibition of eIF4E phosphorylation in cervical cancer cell lines substantially reduced the protein levels of CCND1 and ODC1, indicating that E6 of the high-risk genotypes may modify protein synthesis of the eIF4E target genes by increasing the activity of the AKT and ERK pathways.
Collapse
Affiliation(s)
- Vicente Morales-Garcia
- Division Academica Multidisciplinaria de Comalcalco, Universidad Juarez Autonoma de Tabasco, Comalcalco, Mexico
| | - Adriana Contreras-Paredes
- Unidad de Investigación Biomédica en Cancer, Instituto Nacional de Cancerología- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Eduardo Martinez-Abundis
- Division Academica Multidisciplinaria de Comalcalco, Universidad Juarez Autonoma de Tabasco, Comalcalco, Mexico
| | - Nancy P Gomez-Crisostomo
- Division Academica Multidisciplinaria de Comalcalco, Universidad Juarez Autonoma de Tabasco, Comalcalco, Mexico
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cancer, Instituto Nacional de Cancerología- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Fernanda Hernandez-Landero
- Division Academica Multidisciplinaria de Comalcalco, Universidad Juarez Autonoma de Tabasco, Comalcalco, Mexico
| | - Erick de la Cruz-Hernandez
- Division Academica Multidisciplinaria de Comalcalco, Universidad Juarez Autonoma de Tabasco, Comalcalco, Mexico
| |
Collapse
|
9
|
Yokota A, Hiramoto M, Hino H, Tokuhisa M, Miyazaki M, Kazama H, Takano N, Miyazawa K. Sequestosome 1 (p62) accumulation in breast cancer cells suppresses progesterone receptor expression via argonaute 2. Biochem Biophys Res Commun 2020; 531:256-263. [PMID: 32800344 DOI: 10.1016/j.bbrc.2020.07.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/13/2020] [Indexed: 12/22/2022]
Abstract
Sequestosome 1 (p62) is a multifunctional adapter protein involved in various physiological functions, such as selective autophagy and oxidative stress response. Hence, aberrant expression and defective regulation of p62 are thought to lead to the onset of various diseases, including cancer. The expression of p62 has been shown to be increased in breast cancer tissues, and is correlated with a poor prognosis. However, the role of p62 in the breast cancer pathophysiology is still unclear. Here, we aimed to analyze the effect of changes in p62 expression on breast cancer cell lines. DNA microarray analysis revealed that the expression of progesterone receptor (PR), which is one of the indices for the classification of breast cancer subtypes, was markedly suppressed by forced expression of p62. The protein expression of PR was also decreased by forced expression of p62, but increased by knockdown of p62. Moreover, we found that p62 knockdown induced the protein expression of argonaute 2 (AGO2). Luciferase reporter assay results showed that the gene expression of PR was promoted by AGO2. Furthermore, results revealed that overexpression of AGO2 partially rescued the decrease in PR expression induced by forced expression of p62. Collectively, our findings indicated that p62 accumulation suppressed the expression of AGO2, which in turn decreased the expression of PR, suggesting that p62 may serve as a marker of aggressive breast cancer and poor prognosis. Moreover, the p62-AGO2-PR axis was identified as a crucial signaling cascade in breast cancer progression.
Collapse
Affiliation(s)
- Ayuka Yokota
- Department of Biochemistry, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Masaki Hiramoto
- Department of Biochemistry, Tokyo Medical University, Tokyo, 160-8402, Japan.
| | - Hirotsugu Hino
- Department of Biochemistry, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Mayumi Tokuhisa
- Department of Biochemistry, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Masaya Miyazaki
- Department of Biochemistry, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Hiromi Kazama
- Department of Biochemistry, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Naoharu Takano
- Department of Biochemistry, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Keisuke Miyazawa
- Department of Biochemistry, Tokyo Medical University, Tokyo, 160-8402, Japan
| |
Collapse
|
10
|
Wang Q, Song R, Zhao C, Liu H, Yang Y, Gu S, Feng D, He J. HPV16 E6 promotes cervical cancer cell migration and invasion by downregulation of NHERF1. Int J Cancer 2018; 144:1619-1632. [PMID: 30230542 DOI: 10.1002/ijc.31876] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/29/2018] [Accepted: 09/03/2018] [Indexed: 12/21/2022]
Abstract
HPV16 is the predominant type of HPV causing invasive cervical cancer. However, the underlying molecular mechanism of the unparalleled carcinogenic power of HPV16 compared to other types of high-risk (HR)-HPV including HPV18 remains elusive. The PDZ binding motif (PBM) of high-risk HPV E6 plays an important role in neoplasia and progression of cervical cancer. HPV16 E6 rather than HPV18 E6, interacted with NHERF1 by its PBM region, and induced degradation of NHERF1. NHERF1 retarded the assembly of cytoskeleton by downregulation of ACTN4, thereby inhibited the migration and invasion of cervical cancer cells in both cell and mouse model. HPV16 E6 was confirmed to enhance actin polymerization with increased ACTN4 level by downregulation of NHERF1, and result in enhanced migration and invasion of cervical cancer cells. GSEA analysis of cervical cancer specimens also showed that HPV16 E6 rather than HPV18 E6, was significantly associated with actin cytoskeleton assembly. That downregulation of NHERF1 by HPV16 E6 promoted cytoskeleton assembly and cell invasion, was an important cause in cervical cancer carcinogenesis. These findings provided the differential mechanism between HPV16 E6 and HPV18 E6 in the development and progression of cervical cancer, which may partially explain the differences of carcinogenic power between these two types of HR-HPVs.
Collapse
Affiliation(s)
- Qiqi Wang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing, People's Republic of China
| | - Ran Song
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing, People's Republic of China
| | - Chunjuan Zhao
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing, People's Republic of China
| | - Hua Liu
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing, People's Republic of China
| | - Ying Yang
- Core Facilities Center, Capital Medical University, Beijing, People's Republic of China
| | - Siyu Gu
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing, People's Republic of China
| | - Duiping Feng
- Department of Interventional Radiology, First Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Junqi He
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
11
|
Liu H, Wang J, Liu Y, Hu L, Zhang C, Xing B, Du X. Human U3 protein14a is a novel type ubiquitin ligase that binds RB and promotes RB degradation depending on a leucine-rich region. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1611-1620. [DOI: 10.1016/j.bbamcr.2018.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 11/16/2022]
|
12
|
Martínez-Noël G, Luck K, Kühnle S, Desbuleux A, Szajner P, Galligan JT, Rodriguez D, Zheng L, Boyland K, Leclere F, Zhong Q, Hill DE, Vidal M, Howley PM. Network Analysis of UBE3A/E6AP-Associated Proteins Provides Connections to Several Distinct Cellular Processes. J Mol Biol 2018; 430:1024-1050. [PMID: 29426014 PMCID: PMC5866790 DOI: 10.1016/j.jmb.2018.01.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/28/2018] [Accepted: 01/30/2018] [Indexed: 12/18/2022]
Abstract
Perturbations in activity and dosage of the UBE3A ubiquitin-ligase have been linked to Angelman syndrome and autism spectrum disorders. UBE3A was initially identified as the cellular protein hijacked by the human papillomavirus E6 protein to mediate the ubiquitylation of p53, a function critical to the oncogenic potential of these viruses. Although a number of substrates have been identified, the normal cellular functions and pathways affected by UBE3A are largely unknown. Previously, we showed that UBE3A associates with HERC2, NEURL4, and MAPK6/ERK3 in a high-molecular-weight complex of unknown function that we refer to as the HUN complex (HERC2, UBE3A, and NEURL4). In this study, the combination of two complementary proteomic approaches with a rigorous network analysis revealed cellular functions and pathways in which UBE3A and the HUN complex are involved. In addition to finding new UBE3A-associated proteins, such as MCM6, SUGT1, EIF3C, and ASPP2, network analysis revealed that UBE3A-associated proteins are connected to several fundamental cellular processes including translation, DNA replication, intracellular trafficking, and centrosome regulation. Our analysis suggests that UBE3A could be involved in the control and/or integration of these cellular processes, in some cases as a component of the HUN complex, and also provides evidence for crosstalk between the HUN complex and CAMKII interaction networks. This study contributes to a deeper understanding of the cellular functions of UBE3A and its potential role in pathways that may be affected in Angelman syndrome, UBE3A-associated autism spectrum disorders, and human papillomavirus-associated cancers.
Collapse
Affiliation(s)
- Gustavo Martínez-Noël
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Katja Luck
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Simone Kühnle
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alice Desbuleux
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; GIGA-R, University of Liège, Liège 4000, Belgium
| | - Patricia Szajner
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey T Galligan
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Diana Rodriguez
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Leon Zheng
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Kathleen Boyland
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Flavian Leclere
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Quan Zhong
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - David E Hill
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Peter M Howley
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Chiang C, Pauli EK, Biryukov J, Feister KF, Meng M, White EA, Münger K, Howley PM, Meyers C, Gack MU. The Human Papillomavirus E6 Oncoprotein Targets USP15 and TRIM25 To Suppress RIG-I-Mediated Innate Immune Signaling. J Virol 2018; 92:e01737-17. [PMID: 29263274 PMCID: PMC5827370 DOI: 10.1128/jvi.01737-17] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 12/15/2017] [Indexed: 12/25/2022] Open
Abstract
Retinoic acid-inducible gene I (RIG-I) is a key pattern recognition receptor that senses viral RNA and interacts with the mitochondrial adaptor MAVS, triggering a signaling cascade that results in the production of type I interferons (IFNs). This signaling axis is initiated by K63-linked ubiquitination of RIG-I mediated by the E3 ubiquitin ligase TRIM25, which promotes the interaction of RIG-I with MAVS. USP15 was recently identified as an upstream regulator of TRIM25, stabilizing the enzyme through removal of degradative K48-linked polyubiquitin, ultimately promoting RIG-I-dependent cytokine responses. Here, we show that the E6 oncoprotein of human papillomavirus type 16 (HPV16) as well as of other HPV types form a complex with TRIM25 and USP15 in human cells. In the presence of E6, the K48-linked ubiquitination of TRIM25 was markedly increased, and in line with this, TRIM25 degradation was enhanced. Our results further showed that E6 inhibited the TRIM25-mediated K63-linked ubiquitination of RIG-I and its CARD-dependent interaction with MAVS. HPV16 E6, but not E7, suppressed the RIG-I-mediated induction of IFN-β, chemokines, and IFN-stimulated genes (ISGs). Finally, CRISPR-Cas9 gene targeting in human keratinocytes showed that the TRIM25-RIG-I-MAVS triad is important for eliciting an antiviral immune response to HPV16 infection. Our study thus identifies a novel immune escape mechanism that is conserved among different HPV strains and further indicates that the RIG-I signaling pathway plays an important role in the innate immune response to HPV infection.IMPORTANCE Persistent infection and tumorigenesis by HPVs are known to require viral manipulation of a variety of cellular processes, including those involved in innate immune responses. Here, we show that the HPV E6 oncoprotein antagonizes the activation of the cytoplasmic innate immune sensor RIG-I by targeting its upstream regulatory enzymes TRIM25 and USP15. We further show that the RIG-I signaling cascade is important for an antiviral innate immune response to HPV16 infection, providing evidence that RIG-I, whose role in sensing RNA virus infections has been well characterized, also plays a crucial role in the antiviral host response to small DNA viruses of the Papillomaviridae family.
Collapse
Affiliation(s)
- Cindy Chiang
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Eva-Katharina Pauli
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer Biryukov
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Katharina F Feister
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Melissa Meng
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Elizabeth A White
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Karl Münger
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Peter M Howley
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Craig Meyers
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Michaela U Gack
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Dunn LA, Fury MG, Sherman EJ, Ho AA, Katabi N, Haque SS, Pfister DG. Phase I study of induction chemotherapy with afatinib, ribavirin, and weekly carboplatin and paclitaxel for stage IVA/IVB human papillomavirus-associated oropharyngeal squamous cell cancer. Head Neck 2017; 40:233-241. [PMID: 28963790 DOI: 10.1002/hed.24938] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 07/12/2017] [Accepted: 07/27/2017] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The human papillomavirus (HPV) E6 oncoprotein enhances the oncogenic potential of ErbB proteins in HPV-related malignancies. This phase I study evaluates the addition of afatinib, an ErbB family inhibitor, and ribavirin to paclitaxel and carboplatin induction chemotherapy in HPV-associated, locally advanced oropharyngeal squamous cell carcinoma (SCC). METHODS This dose escalation study included 2 doses of oral afatinib: 30 and 40 mg daily. Ribavirin dosing was weight based. Paclitaxel (80 mg/m2 ) and carboplatin (area under the curve [AUC] 1.5) were administered on days 1 and 8 of each 21-day cycle. After 3 cycles, patients were removed from protocol to receive definitive treatment. RESULTS Among 10 patients, there were no dose-limiting toxicities. Six patients (67%) had unconfirmed objective partial responses. The 2-year progression-free survival rate was 75%. CONCLUSION Afatinib, ribavirin, paclitaxel, and carboplatin induction chemotherapy is safe and well tolerated. The phase II recommended dose of afatinib is 40 mg oral daily in this combination regimen.
Collapse
Affiliation(s)
- Lara A Dunn
- Department of Medicine, Head and Neck Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Matthew G Fury
- Department of Medicine, Head and Neck Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eric J Sherman
- Department of Medicine, Head and Neck Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alan A Ho
- Department of Medicine, Head and Neck Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nora Katabi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sofia S Haque
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David G Pfister
- Department of Medicine, Head and Neck Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
15
|
Cutaneous HPV8 and MmuPV1 E6 Proteins Target the NOTCH and TGF-β Tumor Suppressors to Inhibit Differentiation and Sustain Keratinocyte Proliferation. PLoS Pathog 2017; 13:e1006171. [PMID: 28107544 PMCID: PMC5287491 DOI: 10.1371/journal.ppat.1006171] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 02/01/2017] [Accepted: 01/06/2017] [Indexed: 12/12/2022] Open
Abstract
Cutaneous beta-papillomaviruses are associated with non-melanoma skin cancers that arise in patients who suffer from a rare genetic disorder, Epidermodysplasia verruciformis (EV) or after immunosuppression following organ transplantation. Recent studies have shown that the E6 proteins of the cancer associated beta human papillomavirus (HPV) 5 and HPV8 inhibit NOTCH and TGF-β signaling. However, it is unclear whether disruption of these pathways may contribute to cutaneous HPV pathogenesis and carcinogenesis. A recently identified papillomavirus, MmuPV1, infects laboratory mouse strains and causes cutaneous skin warts that can progress to squamous cell carcinoma. To determine whether MmuPV1 may be an appropriate model to mechanistically dissect the molecular contributions of cutaneous HPV infections to skin carcinogenesis, we investigated whether MmuPV1 E6 shares biological and biochemical activities with HPV8 E6. We report that the HPV8 and MmuPV1 E6 proteins share the ability to bind to the MAML1 and SMAD2/SMAD3 transcriptional cofactors of NOTCH and TGF-beta signaling, respectively. Moreover, we demonstrate that these cutaneous papillomavirus E6 proteins inhibit these two tumor suppressor pathways and that this ability is linked to delayed differentiation and sustained proliferation of differentiating keratinocytes. Furthermore, we demonstrate that the ability of MmuPV1 E6 to bind MAML1 is necessary for papilloma formation in experimentally infected mice. Our results, therefore, suggest that experimental MmuPV1 infection in mice will be a robust and useful experimental system to model key aspects of cutaneous HPV infection, pathogenesis and carcinogenesis.
Collapse
|
16
|
Proteomic analysis of the gamma human papillomavirus type 197 E6 and E7 associated cellular proteins. Virology 2016; 500:71-81. [PMID: 27771561 DOI: 10.1016/j.virol.2016.10.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/07/2016] [Accepted: 10/12/2016] [Indexed: 12/26/2022]
Abstract
Gamma HPV197 was the most frequently identified HPV when human skin cancer specimens were analyzed by deep sequencing (Arroyo Muhr et al., Int. J. Cancer 136: 2546-55, 2015). To gain insight into the biological activities of HPV197, we investigated the cellular interactomes of HPV197 E6 and E7. HPV197 E6 protein interacts with a broad spectrum of cellular LXXLL domain proteins, including UBE3A and MAML1. HPV197 E6 also binds and inhibits the TP53 tumor suppressor and interacts with the CCR4-NOT ubiquitin ligase and deadenylation complex. Despite lacking a canonical retinoblastoma (RB1) tumor suppressor binding site, HPV197 E7 binds RB1 and activates E2F transcription. Hence, HPV197 E6 and E7 proteins interact with a similar set of cellular proteins as E6 and E7 proteins encoded by HPVs that have been linked to human carcinogenesis and/or have transforming activities in vitro.
Collapse
|
17
|
Gao S, Fang L, Phan LM, Qdaisat A, Yeung SCJ, Lee MH. COP9 signalosome subunit 6 (CSN6) regulates E6AP/UBE3A in cervical cancer. Oncotarget 2016; 6:28026-41. [PMID: 26318036 PMCID: PMC4695042 DOI: 10.18632/oncotarget.4731] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 07/23/2015] [Indexed: 02/03/2023] Open
Abstract
Cervical cancer is one of the leading causes of cancer death in women. Human papillomaviruses (HPVs) are the major cause in almost 99.7% of cervical cancer. E6 oncoprotein of HPV and E6-associated protein (E6AP) are critical in causing p53 degradation and malignancy. Understanding the E6AP regulation is critical to develop treating strategy for cervical cancer patients. The COP9 signalosome subunit 6 (CSN6) is involved in ubiquitin-mediated protein degradation. We found that both CSN6 and E6AP are overexpressed in cervical cancer. We characterized that CSN6 associated with E6AP and stabilized E6AP expression by reducing E6AP poly-ubiquitination, thereby regulating p53 activity in cell proliferation and apoptosis. Mechanistic studies revealed that CSN6-E6AP axis can be regulated by EGF/Akt signaling. Furthermore, inhibition of CSN6-E6AP axis hinders cervical cancer growth in mice. Taken together, our results indicate that CSN6 is a positive regulator of E6AP and is important for cervical cancer development.
Collapse
Affiliation(s)
- Shujun Gao
- Obstetrics and Gynecology Hospital Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Lekun Fang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Colorectal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
| | - Liem Minh Phan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Aiham Qdaisat
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Sai-Ching J Yeung
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Mong-Hong Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Colorectal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China.,Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.,Program in Genes and Development, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| |
Collapse
|
18
|
The Human Papillomavirus 16 E7 Oncoprotein Attenuates AKT Signaling To Promote Internal Ribosome Entry Site-Dependent Translation and Expression of c-MYC. J Virol 2016; 90:5611-5621. [PMID: 27030265 DOI: 10.1128/jvi.00411-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 03/23/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED While the role of high-risk human papillomavirus (HPV) oncoproteins E6 and E7 in targeting p53 and retinoblastoma (Rb) has been intensively studied, how E6 and E7 manipulate cellular signaling cascades to promote the viral life cycle and cancer development is less understood. Keratinocytes containing the episomal HPV-16 genome had decreased activation of AKT, which was phenocopied by HPV-16 E7 expression alone. Attenuation of phosphorylated AKT (pAKT) by E7 was independent of the Rb degradation function of E7 but could be ablated by a missense mutation in the E7 carboxy terminus, H73E, thereby defining a novel structure-function phenotype for E7. Downstream of AKT, reduced phosphorylation of p70 S6K and 4E-BP1 was also observed in E7-expressing keratinocytes, which coincided with an increase in internal ribosomal entry site (IRES)-dependent translation that enhanced the expression of several cellular proteins, including MYC, Bax, and the insulin receptor. The decrease in pAKT mediated by E7 is in contrast to the widely observed increase of pAKT in invasive cervical cancers, suggesting that the activation of AKT signaling could be acquired during the progression from initial productive infections to invasive carcinomas. IMPORTANCE HPV causes invasive cervical cancers through the dysregulation of the cell cycle regulators p53 and Rb, which are degraded by the viral oncoproteins E6 and E7, respectively. Signaling cascades contribute to cancer progression and cellular differentiation, and how E6 and E7 manipulate those pathways remains unclear. The phosphoinositol 3-kinase (PI3K)/AKT pathway regulates cellular processes, including proliferation, cell survival, and cell differentiation. Surprisingly, we found that HPV-16 decreased the phosphorylation of AKT (pAKT) and that this is a function of E7 that is independent of the Rb degradation function. This is in contrast to the observed increase in AKT signaling in nearly 80% of cervical cancers, which typically show an acquired mutation within the PI3K/AKT cascade leading to constitutive activation of the pathway. Our observations suggest that multiple changes in the activation and effects of AKT signaling occur in the progression from productive HPV infections to invasive cervical cancers.
Collapse
|
19
|
The high-risk HPV E6 target scribble (hScrib) is required for HPV E6 expression in cervical tumour-derived cell lines. PAPILLOMAVIRUS RESEARCH 2016; 2:70-77. [PMID: 29074188 PMCID: PMC5886876 DOI: 10.1016/j.pvr.2016.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/08/2016] [Accepted: 04/05/2016] [Indexed: 11/21/2022]
Abstract
The ability of high-risk HPV E6 oncoproteins to target cellular proteins which harbor PDZ domains is believed to play an important role in the virus life cycle and to influence the ability of these viruses to bring about malignant transformation. Whilst many of these PDZ proteins are potential tumour suppressors, involved in the control of cell polarity and cell-contact, recent studies suggest that mislocalisation or overexpression might result in the emergence of oncogenic functions. This has been shown most clearly for two E6 targets, hDlg and hScrib. In this study we show that hScrib plays such a role in HeLa cells, where its expression is required for maintaining high levels of HPV-18 E6 protein. Loss of hScrib has no effect on E6 stability but results in lower levels of E6 transcription and a reduced rate of E6 translation. We further show that, in the context of cervical tumour-derived cell lines, both hScrib and E6 cooperate in the activation of the S6 kinase signaling pathway, and thereby contribute towards maintaining high rates of protein translation. These results indicate that the residual hScrib that is present within HPV transformed cells is pro-oncogenic, and highlights the dual functions of E6 cell polarity targets.
Collapse
|
20
|
Sobhy H. A Review of Functional Motifs Utilized by Viruses. Proteomes 2016; 4:proteomes4010003. [PMID: 28248213 PMCID: PMC5217368 DOI: 10.3390/proteomes4010003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/07/2016] [Accepted: 01/13/2016] [Indexed: 01/05/2023] Open
Abstract
Short linear motifs (SLiM) are short peptides that facilitate protein function and protein-protein interactions. Viruses utilize these motifs to enter into the host, interact with cellular proteins, or egress from host cells. Studying functional motifs may help to predict protein characteristics, interactions, or the putative cellular role of a protein. In virology, it may reveal aspects of the virus tropism and help find antiviral therapeutics. This review highlights the recent understanding of functional motifs utilized by viruses. Special attention was paid to the function of proteins harboring these motifs, and viruses encoding these proteins. The review highlights motifs involved in (i) immune response and post-translational modifications (e.g., ubiquitylation, SUMOylation or ISGylation); (ii) virus-host cell interactions, including virus attachment, entry, fusion, egress and nuclear trafficking; (iii) virulence and antiviral activities; (iv) virion structure; and (v) low-complexity regions (LCRs) or motifs enriched with residues (Xaa-rich motifs).
Collapse
Affiliation(s)
- Haitham Sobhy
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
21
|
James CD, Roberts S. Viral Interactions with PDZ Domain-Containing Proteins-An Oncogenic Trait? Pathogens 2016; 5:pathogens5010008. [PMID: 26797638 PMCID: PMC4810129 DOI: 10.3390/pathogens5010008] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 02/06/2023] Open
Abstract
Many of the human viruses with oncogenic capabilities, either in their natural host or in experimental systems (hepatitis B and C, human T cell leukaemia virus type 1, Kaposi sarcoma herpesvirus, human immunodeficiency virus, high-risk human papillomaviruses and adenovirus type 9), encode in their limited genome the ability to target cellular proteins containing PSD95/ DLG/ZO-1 (PDZ) interaction modules. In many cases (but not always), the viruses have evolved to bind the PDZ domains using the same short linear peptide motifs found in host protein-PDZ interactions, and in some cases regulate the interactions in a similar fashion by phosphorylation. What is striking is that the diverse viruses target a common subset of PDZ proteins that are intimately involved in controlling cell polarity and the structure and function of intercellular junctions, including tight junctions. Cell polarity is fundamental to the control of cell proliferation and cell survival and disruption of polarity and the signal transduction pathways involved is a key event in tumourigenesis. This review focuses on the oncogenic viruses and the role of targeting PDZ proteins in the virus life cycle and the contribution of virus-PDZ protein interactions to virus-mediated oncogenesis. We highlight how many of the viral associations with PDZ proteins lead to deregulation of PI3K/AKT signalling, benefitting virus replication but as a consequence also contributing to oncogenesis.
Collapse
Affiliation(s)
- Claire D James
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham B15 2TT, UK.
- Present address; Virginia Commonwealth University, School of Dentistry, W. Baxter Perkinson Jr. Building, 521 North 11th Street, P.O. Box 980566, Richmond, VA 23298-0566, USA.
| | - Sally Roberts
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham B15 2TT, UK.
| |
Collapse
|
22
|
Stutz C, Reinz E, Honegger A, Bulkescher J, Schweizer J, Zanier K, Travé G, Lohrey C, Hoppe-Seyler K, Hoppe-Seyler F. Intracellular Analysis of the Interaction between the Human Papillomavirus Type 16 E6 Oncoprotein and Inhibitory Peptides. PLoS One 2015; 10:e0132339. [PMID: 26151636 PMCID: PMC4495056 DOI: 10.1371/journal.pone.0132339] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/12/2015] [Indexed: 12/13/2022] Open
Abstract
Oncogenic types of human papillomaviruses (HPVs) cause cervical cancer and other malignancies in humans. The HPV E6 oncoprotein is considered to be an attractive therapeutic target since its inhibition can lead to the apoptotic cell death of HPV-positive cancer cells. The HPV type 16 (HPV16) E6-binding peptide pep11, and variants thereof, induce cell death specifically in HPV16-positive cancer cells. Although they do not encompass the LxxLL binding motif found in cellular HPV16 E6 interaction partners, such as E6AP, the pep11 variants strongly bind to HPV16 E6 by contacting the recently identified E6AP binding pocket. Thus, these peptides can serve as prototype E6-inhibitory molecules which target the E6AP pocket. We here analyzed their intracellular interaction with HPV16 E6. By comprehensive intracellular binding studies and GST pull-down assays, we show that E6-binding competent pep11 variants induce the formation of a trimeric complex, consisting of pep11, HPV16 E6 and p53. These findings indicate that peptides, which do not contain the LxxLL motif, can reshape E6 to enable its interaction with p53. The formation of the trimeric HPV16 E6 / peptide / p53 complex was associated with an increase of endogenous HPV16 E6 protein amounts. Yet, total cellular p53 amounts were also increased, indicating that the E6 / E6AP-mediated degradation of p53 is blocked. These findings suggest that inhibition of oncogenic activities by targeting the E6AP pocket on HPV16 E6 could be a strategy for therapeutic intervention.
Collapse
Affiliation(s)
- Christina Stutz
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Eileen Reinz
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Anja Honegger
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Julia Bulkescher
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | | | - Katia Zanier
- Institut de Recherche de l’École de Biotechnologie de Strasbourg (IREBS), 67412 Illkirch, France
| | - Gilles Travé
- Institut de Recherche de l’École de Biotechnologie de Strasbourg (IREBS), 67412 Illkirch, France
| | - Claudia Lohrey
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Karin Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Felix Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- * E-mail:
| |
Collapse
|
23
|
Ravenda PS, Zampino MG, Fazio N, Barberis M, Bottiglieri L, Chiocca S. Human papillomavirus in anal squamous cell carcinoma: an angel rather than a devil? Ecancermedicalscience 2015; 9:529. [PMID: 25987898 PMCID: PMC4431401 DOI: 10.3332/ecancer.2015.529] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Indexed: 01/15/2023] Open
Abstract
Anal cancer is a rare disease with an increasing incidence worldwide but, unfortunately, even today the scientific community still has a limited knowledge and limited options of treatment. More than 50% of patients with anal cancer presenting at diagnosis with locoregional disease have good chances of cure with chemoradiotherapy (CT-RT). However, once patients develop metastatic spread, the prognosis is very poor. Human papillomavirus (HPV) is present in more than 80% of anal cancers and while multiple etiologic connections between HPV infection and anal cancer have already been well elucidated, its prognostic and/or predictive role is currently under investigation, especially among immunocompetent patients affected by this disease. In a single-institutional set, we have retrospectively analysed clinical data of 50 consecutive cases homogeneously treated with CT-RT for stage I-III anal squamous cell carcinoma. We found that HPV-positive anal cancers had a statistically significant improved five-year disease-free survival (DFS) compared to HPV-negative group. These findings could be explained by an increased chemo/radiosensitivity of HPV-positive tumours. Further efforts should be directed towards a better understanding of HPV-related oncogenesis and towards designing novel tailored strategies for the management of this disease both in terms of prevention and treatment.
Collapse
Affiliation(s)
- Paola Simona Ravenda
- Unit of Gastrointestinal and Neuroendocrine Tumours, European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy
| | - Maria Giulia Zampino
- Unit of Gastrointestinal and Neuroendocrine Tumours, European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy
| | - Nicola Fazio
- Unit of Gastrointestinal and Neuroendocrine Tumours, European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy
| | - Massimo Barberis
- Division of Histopathology and Molecular Diagnostics, European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy
| | - Luca Bottiglieri
- Division of Histopathology and Molecular Diagnostics, European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy
| | - Susanna Chiocca
- Department of Experimental Oncology, European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy
| |
Collapse
|
24
|
Zhang L, Wu J, Ling MT, Zhao L, Zhao KN. The role of the PI3K/Akt/mTOR signalling pathway in human cancers induced by infection with human papillomaviruses. Mol Cancer 2015; 14:87. [PMID: 26022660 PMCID: PMC4498560 DOI: 10.1186/s12943-015-0361-x] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 04/06/2015] [Indexed: 01/08/2023] Open
Abstract
Infection with Human papillomaviruses (HPVs) leads to the development of a wide-range of cancers, accounting for 5% of all human cancers. A prominent example is cervical cancer, one of the leading causes of cancer death in women worldwide. It has been well established that tumor development and progression induced by HPV infection is driven by the sustained expression of two oncogenes E6 and E7. The expression of E6 and E7 not only inhibits the tumor suppressors p53 and Rb, but also alters additional signalling pathways that may be equally important for transformation. Among these pathways, the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signalling cascade plays a very important role in HPV-induced carcinogenesis by acting through multiple cellular and molecular events. In this review, we summarize the frequent amplification of PI3K/Akt/mTOR signals in HPV-induced cancers and discuss how HPV oncogenes E6/E7/E5 activate the PI3K/Akt/mTOR signalling pathway to modulate tumor initiation and progression and affect patient outcome. Improvement of our understanding of the mechanism by which the PI3K/Akt/mTOR signalling pathway contributes to the immortalization and carcinogenesis of HPV-transduced cells will assist in devising novel strategies for preventing and treating HPV-induced cancers.
Collapse
Affiliation(s)
- Lifang Zhang
- Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, 325035 , Zhejiang, PR China.
| | - Jianhong Wu
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, 37 Kent Street, Woolloongabba, Brisbane, 4102, QLD, Australia.
- Current address: Department of Gastric Cancer and Soft Tissue Sarcomas Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China.
| | - Ming Tat Ling
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, 37 Kent Street, Woolloongabba, Brisbane, 4102, QLD, Australia.
| | - Liang Zhao
- The University of Queensland, Brisbane, 4072, QLD, Australia.
| | - Kong-Nan Zhao
- Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, 325035 , Zhejiang, PR China.
- Centre for Kidney Disease Research-Venomics Research, The University of Queensland School of Medicine, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane, 4102, QLD, Australia.
| |
Collapse
|
25
|
Galligan J, Martinez-Noël G, Arndt V, Hayes S, Chittenden TW, Harper JW, Howley PM. Proteomic analysis and identification of cellular interactors of the giant ubiquitin ligase HERC2. J Proteome Res 2015; 14:953-66. [PMID: 25476789 PMCID: PMC4324439 DOI: 10.1021/pr501005v] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Indexed: 01/10/2023]
Abstract
HERC2 is a large E3 ubiquitin ligase with multiple structural domains that has been implicated in an array of cellular processes. Mutations in HERC2 are linked to developmental delays and impairment caused by nervous system dysfunction, such as Angelman Syndrome and autism-spectrum disorders. However, HERC2 cellular activity and regulation remain poorly understood. We used a broad proteomic approach to survey the landscape of cellular proteins that interact with HERC2. We identified nearly 300 potential interactors, a subset of which we validated binding to HERC2. The potential HERC2 interactors included the eukaryotic translation initiation factor 3 complex, the intracellular transport COPI coatomer complex, the glycogen regulator phosphorylase kinase, beta-catenin, PI3 kinase, and proteins involved in fatty acid transport and iron homeostasis. Through a complex bioinformatic analysis of potential interactors, we linked HERC2 to cellular processes including intracellular protein trafficking and transport, metabolism of cellular energy, and protein translation. Given its size, multidomain structure, and association with various cellular activities, HERC2 may function as a scaffold to integrate protein complexes and bridge critical cellular pathways. This work provides a significant resource with which to interrogate HERC2 function more deeply and evaluate its contributions to mechanisms governing cellular homeostasis and disease.
Collapse
Affiliation(s)
- Jeffrey
T. Galligan
- Department
of Microbiology and Immunobiology, Harvard
Medical School, 77 Avenue
Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Gustavo Martinez-Noël
- Department
of Microbiology and Immunobiology, Harvard
Medical School, 77 Avenue
Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Verena Arndt
- Department
of Microbiology and Immunobiology, Harvard
Medical School, 77 Avenue
Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Sebastian Hayes
- Department
of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Thomas W. Chittenden
- Research
Computing Group, Harvard Medical School, 25 Shattuck Street #500, Boston, Massachusetts 02115, United States
- Complex Biological
Systems Alliance, 17 Peterson Road, North Andover, Massachusetts 01845, United States
| | - J. Wade Harper
- Department
of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Peter M. Howley
- Department
of Microbiology and Immunobiology, Harvard
Medical School, 77 Avenue
Louis Pasteur, Boston, Massachusetts 02115, United States
| |
Collapse
|
26
|
Pfister DG, Fury MG. New chapter in our understanding of human papillomavirus-related head and neck cancer. J Clin Oncol 2014; 32:3349-52. [PMID: 25225434 DOI: 10.1200/jco.2014.56.5754] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- David G Pfister
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY
| | - Matthew G Fury
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY
| |
Collapse
|
27
|
The human adenovirus E4-ORF1 protein subverts discs large 1 to mediate membrane recruitment and dysregulation of phosphatidylinositol 3-kinase. PLoS Pathog 2014; 10:e1004102. [PMID: 24788832 PMCID: PMC4006922 DOI: 10.1371/journal.ppat.1004102] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 03/18/2014] [Indexed: 12/19/2022] Open
Abstract
Adenoviruses infect epithelial cells lining mucous membranes to cause acute diseases in people. They are also utilized as vectors for vaccination and for gene and cancer therapy, as well as tools to discover mechanisms of cancer due to their tumorigenic potential in experimental animals. The adenovirus E4-ORF1 gene encodes an oncoprotein that promotes viral replication, cell survival, and transformation by activating phosphatidylinositol 3-kinase (PI3K). While the mechanism of activation is not understood, this function depends on a complex formed between E4-ORF1 and the membrane-associated cellular PDZ protein Discs Large 1 (Dlg1), a common viral target having both tumor suppressor and oncogenic functions. Here, we report that in human epithelial cells, E4-ORF1 interacts with the regulatory and catalytic subunits of PI3K and elevates their levels. Like PI3K activation, PI3K protein elevation by E4-ORF1 requires Dlg1. We further show that Dlg1, E4-ORF1, and PI3K form a ternary complex at the plasma membrane. At this site, Dlg1 also co-localizes with the activated PI3K effector protein Akt, indicating that the ternary complex mediates PI3K signaling. Signifying the functional importance of the ternary complex, the capacity of E4-ORF1 to induce soft agar growth and focus formation in cells is ablated either by a mutation that prevents E4-ORF1 binding to Dlg1 or by a PI3K inhibitor drug. These results demonstrate that E4-ORF1 interacts with Dlg1 and PI3K to assemble a ternary complex where E4-ORF1 hijacks the Dlg1 oncogenic function to relocate cytoplasmic PI3K to the membrane for constitutive activation. This novel mechanism of Dlg1 subversion by adenovirus to dysregulate PI3K could be used by other pathogenic viruses, such as human papillomavirus, human T-cell leukemia virus type 1, and influenza A virus, which also target Dlg1 and activate PI3K in cells. Adenoviruses cause acute illnesses in people, and are additionally utilized both as vehicles to cure genetic diseases, fight cancer, and deliver vaccines, and as tools to discover how cancers develop due to a capacity to generate tumors in experimental animals. The adenovirus E4-ORF1 protein reprograms cell metabolism to enhance virus production in infected cells and promotes cell survival and tumors by activating the important cellular protein phosphatidylinositol 3-kinase (PI3K). How E4-ORF1 activates PI3K is not known, though this function depends on E4-ORF1 binding to the membrane-associated cellular protein Discs Large 1 (Dlg1), which many different viruses evolved to target. In this study, we identify PI3K as a new direct target of E4-ORF1. Results further show that E4-ORF1 binds to PI3K in the cytoplasm and delivers it to Dlg1 at the membrane where the three proteins form a complex that activates PI3K and induces oncogenic growth in cells. This novel molecular mechanism in which adenovirus subverts Dlg1 to dysregulate PI3K may serve as a paradigm to understand PI3K activation mediated by other important pathogenic viruses, such as human papillomavirus, human T-cell leukemia virus type 1, and influenza A virus, which also target Dlg1 in infected cells.
Collapse
|
28
|
Leitz J, Reuschenbach M, Lohrey C, Honegger A, Accardi R, Tommasino M, Llano M, von Knebel Doeberitz M, Hoppe-Seyler K, Hoppe-Seyler F. Oncogenic human papillomaviruses activate the tumor-associated lens epithelial-derived growth factor (LEDGF) gene. PLoS Pathog 2014; 10:e1003957. [PMID: 24604027 PMCID: PMC3946365 DOI: 10.1371/journal.ppat.1003957] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/13/2014] [Indexed: 12/20/2022] Open
Abstract
The expression of the human papillomavirus (HPV) E6/E7 oncogenes is crucial for HPV-induced malignant cell transformation. The identification of cellular targets attacked by the HPV oncogenes is critical for our understanding of the molecular mechanisms of HPV-associated carcinogenesis and may open novel therapeutic opportunities. Here, we identify the Lens Epithelial-Derived Growth Factor (LEDGF) gene as a novel cellular target gene for the HPV oncogenes. Elevated LEDGF expression has been recently linked to human carcinogenesis and can protect tumor cells towards different forms of cellular stress. We show that intracellular LEDGF mRNA and protein levels in HPV-positive cancer cells are critically dependent on the maintenance of viral oncogene expression. Ectopic E6/E7 expression stimulates LEDGF transcription in primary keratinocytes, at least in part via activation of the LEDGF promoter. Repression of endogenous LEDGF expression by RNA interference results in an increased sensitivity of HPV-positive cancer cells towards genotoxic agents. Immunohistochemical analyses of cervical tissue specimens reveal a highly significant increase of LEDGF protein levels in HPV-positive lesions compared to histologically normal cervical epithelium. Taken together, these results indicate that the E6/E7-dependent maintenance of intracellular LEDGF expression is critical for protecting HPV-positive cancer cells against various forms of cellular stress, including DNA damage. This could support tumor cell survival and contribute to the therapeutic resistance of cervical cancers towards genotoxic treatment strategies in the clinic. Specific types of human papillomaviruses (HPVs) are closely linked to the development of malignant tumors, such as cervical cancer. Virtually all cervical cancers contain HPV DNA and the tumorigenic growth behavior of cervical cancer cells is dependent on the activity of two viral oncogenes, called E6 and E7. It is important to study the activities by which the HPV oncogenes can support the growth of tumor cells. This should allow new insights into the molecular mechanisms of virus-induced carcinogenesis and could also be useful for developing novel approaches for cancer therapy. We here show that the HPV oncogenes stimulate and maintain expression of the cellular LEDGF gene in HPV-positive cancer cells. Consistently, pre-malignant and malignant lesions of the cervix exhibit significantly increased LEDGF protein levels. LEDGF is crucial for the protection of tumor cells against various forms of cellular stress, including DNA damage. LEDGF stimulation by the viral oncogenes could be a critical survival mechanism by which HPVs support the growth of cervical cancer cells and provide resistance towards chemo- and radiotherapy in the clinic.
Collapse
Affiliation(s)
- Jenny Leitz
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Miriam Reuschenbach
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Claudia Lohrey
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anja Honegger
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rosita Accardi
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Massimo Tommasino
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Manuel Llano
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | | | - Karin Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail: (KHS); (FHS)
| | - Felix Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail: (KHS); (FHS)
| |
Collapse
|
29
|
Vande Pol SB, Klingelhutz AJ. Papillomavirus E6 oncoproteins. Virology 2013; 445:115-37. [PMID: 23711382 DOI: 10.1016/j.virol.2013.04.026] [Citation(s) in RCA: 248] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/22/2013] [Accepted: 04/25/2013] [Indexed: 02/07/2023]
Abstract
Papillomaviruses induce benign and malignant epithelial tumors, and the viral E6 oncoprotein is essential for full transformation. E6 contributes to transformation by associating with cellular proteins, docking on specific acidic LXXLL peptide motifs found on these proteins. This review examines insights from recent studies of human and animal E6 proteins that determine the three-dimensional structure of E6 when bound to acidic LXXLL peptides. The structure of E6 is related to recent advances in the purification and identification of E6 associated protein complexes. These E6 protein-complexes, together with other proteins that bind to E6, alter a broad array of biological outcomes including modulation of cell survival, cellular transcription, host cell differentiation, growth factor dependence, DNA damage responses, and cell cycle progression.
Collapse
Affiliation(s)
- Scott B Vande Pol
- Department of Pathology, University of Virginia, Charlottesville, VA 22901, USA.
| | | |
Collapse
|
30
|
Spangle JM, Munger K. The HPV16 E6 oncoprotein causes prolonged receptor protein tyrosine kinase signaling and enhances internalization of phosphorylated receptor species. PLoS Pathog 2013; 9:e1003237. [PMID: 23516367 PMCID: PMC3597533 DOI: 10.1371/journal.ppat.1003237] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 01/28/2013] [Indexed: 01/13/2023] Open
Abstract
The high-risk human papillomavirus (HPV) E6 proteins are consistently expressed in HPV-associated lesions and cancers. HPV16 E6 sustains the activity of the mTORC1 and mTORC2 signaling cascades under conditions of growth factor deprivation. Here we report that HPV16 E6 activated mTORC1 by enhanced signaling through receptor protein tyrosine kinases, including epidermal growth factor receptor and insulin receptor and insulin-like growth factor receptors. This is evidenced by sustained signaling through these receptors for several hours after growth factor withdrawal. HPV16 E6 increased the internalization of activated receptor species, and the signaling adaptor protein GRB2 was shown to be critical for HPV16 E6 mediated enhanced EGFR internalization and mTORC1 activation. As a consequence of receptor protein kinase mediated mTORC1 activation, HPV16 E6 expression increased cellular migration of primary human epithelial cells. This study identifies a previously unappreciated mechanism by which HPV E6 proteins perturb host-signaling pathways presumably to sustain protein synthesis during the viral life cycle that may also contribute to cellular transforming activities of high-risk HPV E6 proteins. High-risk human papillomavirus infections are associated with nearly all cases of cervical cancer. HPVs infect basal epithelial cells but virion production is restricted to the outer, terminally differentiated layers of the infected epithelia where supply of nutrients and growth factors may be limited. High-risk HPV E6 proteins have been shown to activate mTORC1 signaling and increase cap dependent translation. Here we show that HPV16 E6 activates the mTORC1 and MAP kinase signaling pathways through activating receptor protein tyrosine kinases (RPTKs) and increases EGFR internalization, even after growth factor withdrawal. The signaling adaptor protein GRB2 is a critical mediator of HPV16 E6 mediated EGFR internalization and mTORC1 activation. Lastly, we demonstrate that HPV16 E6 mediated activation of RPTK and mTORC1 signaling causes increased cellular migration even after growth factor withdrawal. These results suggest a previously unappreciated mechanism by which HPV E6 proteins may support the viral life cycle and that may contribute to the transforming activities of high-risk HPV E6 proteins. Hence, inhibition of RPTK signaling networks may be evaluated as a therapeutic strategy for HPV-associated lesions and cancers.
Collapse
Affiliation(s)
- Jennifer M. Spangle
- Division of Infectious Diseases, Brigham and Women's Hospital, Department of Medicine and Committee on Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Karl Munger
- Division of Infectious Diseases, Brigham and Women's Hospital, Department of Medicine and Committee on Virology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
31
|
Fury MG, Sherman E, Ho AL, Xiao H, Tsai F, Nwankwo O, Sima C, Heguy A, Katabi N, Haque S, Pfister DG. A phase 1 study of everolimus plus docetaxel plus cisplatin as induction chemotherapy for patients with locally and/or regionally advanced head and neck cancer. Cancer 2013; 119:1823-31. [PMID: 23408298 DOI: 10.1002/cncr.27986] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 12/21/2012] [Accepted: 01/04/2013] [Indexed: 11/07/2022]
Abstract
BACKGROUND Activation of the phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway is common in head and neck cancers, and it has been demonstrated that inhibition of mTOR complex 1 sensitizes cell lines to platinum and taxane chemotherapy. The authors conducted a phase 1 study to evaluate the addition of oral everolimus to cisplatin and docetaxel as induction chemotherapy for head and neck cancer. METHODS In this single-institution phase 1 study, 3 doses of daily everolimus were explored: 5 mg daily, 7.5 mg daily (administered as 5 mg daily alternating with 10 mg daily), and 10 mg daily of each 21-day cycle. Cisplatin and docetaxel doses were fixed (both were 75 mg/m(2) on day 1 of 21-day cycle) at each dose level with pegfilgrastim support. A standard 3 + 3 dose-escalation plan was used. After induction, patients were removed from protocol. RESULTS Eighteen patients were enrolled (15 men, 3 women), and their median Karnofsky performance status was 90. The most common toxicities were hyperglycemia, low hemoglobin, fatigue, and thrombocytopenia. Dose-limiting toxicities (DLTs) were neutropenic fever (1 event at dose level 2, 2 events at dose level 3), and all patients recovered fully from these DLTs. The maximum tolerated dose was exceeded at dose level 3. The progression-free survival rate at 1 year was 87.5% (95% confidence interval, 56.8%-96.7%); and, at 2 years, it was 76.6% (95% confidence interval, 41.2%-92.3%). Activating PI3K catalytic subunit α (PIK3CA) gene mutations were identified in 2 human papillomavirus-associated oropharyngeal cancers. CONCLUSIONS The phase 2 recommended dose was 7.5 mg daily for everolimus plus cisplatin and docetaxel (both at 75 mg/m(2) on day 1 of a 21-day cycle) given with pegfilgrastim support.
Collapse
Affiliation(s)
- Matthew G Fury
- Department of Medicine, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|