1
|
Chan SH, Molé CN, Nye D, Mitchell L, Dai N, Buss J, Kneller DW, Whipple JM, Robb GB. Biochemical characterization of mRNA capping enzyme from Faustovirus. RNA (NEW YORK, N.Y.) 2023; 29:1803-1817. [PMID: 37625853 PMCID: PMC10578482 DOI: 10.1261/rna.079738.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
The mammalian mRNA 5' cap structures play important roles in cellular processes such as nuclear export, efficient translation, and evading cellular innate immune surveillance and regulating 5'-mediated mRNA turnover. Hence, installation of the proper 5' cap is crucial in therapeutic applications of synthetic mRNA. The core 5' cap structure, Cap-0, is generated by three sequential enzymatic activities: RNA 5' triphosphatase, RNA guanylyltransferase, and cap N7-guanine methyltransferase. Vaccinia virus RNA capping enzyme (VCE) is a heterodimeric enzyme that has been widely used in synthetic mRNA research and manufacturing. The large subunit of VCE D1R exhibits a modular structure where each of the three structural domains possesses one of the three enzyme activities, whereas the small subunit D12L is required to activate the N7-guanine methyltransferase activity. Here, we report the characterization of a single-subunit RNA capping enzyme from an amoeba giant virus. Faustovirus RNA capping enzyme (FCE) exhibits a modular array of catalytic domains in common with VCE and is highly efficient in generating the Cap-0 structure without an activation subunit. Phylogenetic analysis suggests that FCE and VCE are descended from a common ancestral capping enzyme. We found that compared to VCE, FCE exhibits higher specific activity, higher activity toward RNA containing secondary structures and a free 5' end, and a broader temperature range, properties favorable for synthetic mRNA manufacturing workflows.
Collapse
Affiliation(s)
- S Hong Chan
- New England Biolabs, Inc., Ipswich, Massachusetts 01938, USA
| | - Christa N Molé
- New England Biolabs, Inc., Ipswich, Massachusetts 01938, USA
| | - Dillon Nye
- New England Biolabs, Inc., Ipswich, Massachusetts 01938, USA
| | - Lili Mitchell
- New England Biolabs, Inc., Ipswich, Massachusetts 01938, USA
| | - Nan Dai
- New England Biolabs, Inc., Ipswich, Massachusetts 01938, USA
| | - Jackson Buss
- New England Biolabs, Inc., Ipswich, Massachusetts 01938, USA
| | | | | | - G Brett Robb
- New England Biolabs, Inc., Ipswich, Massachusetts 01938, USA
| |
Collapse
|
2
|
Lobb B, Shapter A, Doxey AC, Nissimov JI. Functional Profiling and Evolutionary Analysis of a Marine Microalgal Virus Pangenome. Viruses 2023; 15:v15051116. [PMID: 37243202 DOI: 10.3390/v15051116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Phycodnaviridae are large double-stranded DNA viruses, which facilitate studies of host-virus interactions and co-evolution due to their prominence in algal infection and their role in the life cycle of algal blooms. However, the genomic interpretation of these viruses is hampered by a lack of functional information, stemming from the surprising number of hypothetical genes of unknown function. It is also unclear how many of these genes are widely shared within the clade. Using one of the most extensively characterized genera, Coccolithovirus, as a case study, we combined pangenome analysis, multiple functional annotation tools, AlphaFold structural modeling, and literature analysis to compare the core and accessory pangenome and assess support for novel functional predictions. We determined that the Coccolithovirus pangenome shares 30% of its genes with all 14 strains, making up the core. Notably, 34% of its genes were found in at most three strains. Core genes were enriched in early expression based on a transcriptomic dataset of Coccolithovirus EhV-201 algal infection, were more likely to be similar to host proteins than the non-core set, and were more likely to be involved in vital functions such as replication, recombination, and repair. In addition, we generated and collated annotations for the EhV representative EhV-86 from 12 different annotation sources, building up information for 142 previously hypothetical and putative membrane proteins. AlphaFold was further able to predict structures for 204 EhV-86 proteins with a modelling accuracy of good-high. These functional clues, combined with generated AlphaFold structures, provide a foundational framework for the future characterization of this model genus (and other giant viruses) and a further look into the evolution of the Coccolithovirus proteome.
Collapse
Affiliation(s)
- Briallen Lobb
- Department of Biology, University of Waterloo, 200 University Ave. West., Waterloo, ON N2L 3G1, Canada
| | - Anson Shapter
- Department of Biology, University of Waterloo, 200 University Ave. West., Waterloo, ON N2L 3G1, Canada
| | - Andrew C Doxey
- Department of Biology, University of Waterloo, 200 University Ave. West., Waterloo, ON N2L 3G1, Canada
| | - Jozef I Nissimov
- Department of Biology, University of Waterloo, 200 University Ave. West., Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
3
|
Marine viruses and climate change: Virioplankton, the carbon cycle, and our future ocean. Adv Virus Res 2022. [DOI: 10.1016/bs.aivir.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
4
|
Transcriptome view of a killer: African swine fever virus. Biochem Soc Trans 2021; 48:1569-1581. [PMID: 32725217 PMCID: PMC7458399 DOI: 10.1042/bst20191108] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023]
Abstract
African swine fever virus (ASFV) represents a severe threat to global agriculture with the world's domestic pig population reduced by a quarter following recent outbreaks in Europe and Asia. Like other nucleocytoplasmic large DNA viruses, ASFV encodes a transcription apparatus including a eukaryote-like RNA polymerase along with a combination of virus-specific, and host-related transcription factors homologous to the TATA-binding protein (TBP) and TFIIB. Despite its high impact, the molecular basis and temporal regulation of ASFV transcription is not well understood. Our lab recently applied deep sequencing approaches to characterise the viral transcriptome and gene expression during early and late ASFV infection. We have characterised the viral promoter elements and termination signatures, by mapping the RNA-5' and RNA-3' termini at single nucleotide resolution. In this review, we discuss the emerging field of ASFV transcripts, transcription, and transcriptomics.
Collapse
|
5
|
Zhang E, Wu S, Cai W, Zeng J, Li J, Li G, Liu J. Validation of superior reference genes for qRT-PCR and Western blot analyses in marine Emiliania huxleyi-virus model system. J Appl Microbiol 2020; 131:257-271. [PMID: 33275816 DOI: 10.1111/jam.14958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/19/2020] [Accepted: 11/29/2020] [Indexed: 11/30/2022]
Abstract
AIMS To search for a set of reference genes for reliable gene expression analysis in the globally important marine coccolithophore Emiliania huxleyi-virus model system. METHODS AND RESULTS Fifteen housekeeping genes (CDKA, CYP15, EFG3, POLAI, RPL30, RPL13, SAMS, COX1, GPB1-2, HSP90, TUA, TUB, UBA1, CAM3 and GAPDH) were evaluated for their stability as potential reference genes for qRT-PCR using ΔCt, geNorm, NormFinder, Bestkeeper and RefFinder software. CDKA, TUA and TUB genes were tested as loading controls for Western blot in the same sample panel. Additionally, target genes associated with cell apoptosis, that is metacaspase genes, were applied to validate the selection of reference genes. The analysis results demonstrated that putative housekeeping genes exhibited significant variations in both mRNA and protein content during virus infection. After a comprehensive analysis with all the algorithms, CDKA and GAPDH were recommended as the most stable reference genes for E huxleyi virus (EhV) infection treatments. For Western blot, significant variation was seen for TUA and TUB, whereas CDKA was stably expressed, consistent with the results of qRT-PCR. CONCLUSIONS CDKA and GAPDH are the best choice for gene and protein expression analysis than the other candidate reference genes under EhV infection conditions. SIGNIFICANCE AND IMPACT OF THE STUDY The stable internal control genes identified in this work will help to improve the accuracy and reliability of gene expression analysis and gain insight into complex E. huxleyi-EhV interaction regulatory networks.
Collapse
Affiliation(s)
- E Zhang
- College of Food and Bioengineering, Jimei University, Xiamen, China
| | - S Wu
- College of Food and Bioengineering, Jimei University, Xiamen, China
| | - W Cai
- College of Food and Bioengineering, Jimei University, Xiamen, China
| | - J Zeng
- College of Food and Bioengineering, Jimei University, Xiamen, China
| | - J Li
- College of Food and Bioengineering, Jimei University, Xiamen, China
| | - G Li
- College of Food and Bioengineering, Jimei University, Xiamen, China
| | - J Liu
- College of Food and Bioengineering, Jimei University, Xiamen, China
| |
Collapse
|
6
|
Ku C, Sheyn U, Sebé-Pedrós A, Ben-Dor S, Schatz D, Tanay A, Rosenwasser S, Vardi A. A single-cell view on alga-virus interactions reveals sequential transcriptional programs and infection states. SCIENCE ADVANCES 2020; 6:eaba4137. [PMID: 32490206 PMCID: PMC7239649 DOI: 10.1126/sciadv.aba4137] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/10/2020] [Indexed: 05/12/2023]
Abstract
The discovery of giant viruses infecting eukaryotes from diverse ecosystems has revolutionized our understanding of the evolution of viruses and their impact on protist biology, yet knowledge on their replication strategies and transcriptome regulation remains limited. Here, we profile single-cell transcriptomes of the globally distributed microalga Emiliania huxleyi and its specific giant virus during infection. We detected profound heterogeneity in viral transcript levels among individual cells. Clustering single cells based on viral expression profiles enabled reconstruction of the viral transcriptional trajectory. Reordering cells along this path unfolded highly resolved viral genetic programs composed of genes with distinct promoter elements that orchestrate sequential expression. Exploring host transcriptome dynamics across the viral infection states revealed rapid and selective shutdown of protein-encoding nuclear transcripts, while the plastid and mitochondrial transcriptomes persisted into later stages. Single-cell RNA-seq opens a new avenue to unravel the life cycle of giant viruses and their unique hijacking strategies.
Collapse
Affiliation(s)
- Chuan Ku
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Uri Sheyn
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Arnau Sebé-Pedrós
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Shifra Ben-Dor
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Daniella Schatz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Amos Tanay
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Shilo Rosenwasser
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
7
|
Zimmerman AE, Howard-Varona C, Needham DM, John SG, Worden AZ, Sullivan MB, Waldbauer JR, Coleman ML. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat Rev Microbiol 2019; 18:21-34. [PMID: 31690825 DOI: 10.1038/s41579-019-0270-x] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2019] [Indexed: 12/23/2022]
Abstract
Ecosystems are controlled by 'bottom-up' (resources) and 'top-down' (predation) forces. Viral infection is now recognized as a ubiquitous top-down control of microbial growth across ecosystems but, at the same time, cell death by viral predation influences, and is influenced by, resource availability. In this Review, we discuss recent advances in understanding the biogeochemical impact of viruses, focusing on how metabolic reprogramming of host cells during lytic viral infection alters the flow of energy and nutrients in aquatic ecosystems. Our synthesis revealed several emerging themes. First, viral infection transforms host metabolism, in part through virus-encoded metabolic genes; the functions performed by these genes appear to alleviate energetic and biosynthetic bottlenecks to viral production. Second, viral infection depends on the physiological state of the host cell and on environmental conditions, which are challenging to replicate in the laboratory. Last, metabolic reprogramming of infected cells and viral lysis alter nutrient cycling and carbon export in the oceans, although the net impacts remain uncertain. This Review highlights the need for understanding viral infection dynamics in realistic physiological and environmental contexts to better predict their biogeochemical consequences.
Collapse
Affiliation(s)
- Amy E Zimmerman
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA
| | | | - David M Needham
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Seth G John
- Department of Earth Science, University of Southern California, Los Angeles, CA, USA
| | - Alexandra Z Worden
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA.,Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Matthew B Sullivan
- Department of Microbiology, Ohio State University, Columbus, OH, USA.,Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH, USA
| | - Jacob R Waldbauer
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA
| | - Maureen L Coleman
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
8
|
Nissimov JI, Talmy D, Haramaty L, Fredricks HF, Zelzion E, Knowles B, Eren AM, Vandzura R, Laber CP, Schieler BM, Johns CT, More KD, Coolen MJL, Follows MJ, Bhattacharya D, Van Mooy BAS, Bidle KD. Biochemical diversity of glycosphingolipid biosynthesis as a driver of Coccolithovirus competitive ecology. Environ Microbiol 2019; 21:2182-2197. [PMID: 31001863 DOI: 10.1111/1462-2920.14633] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/15/2019] [Indexed: 11/29/2022]
Abstract
Coccolithoviruses (EhVs) are large, double-stranded DNA-containing viruses that infect the single-celled, marine coccolithophore Emiliania huxleyi. Given the cosmopolitan nature and global importance of E. huxleyi as a bloom-forming, calcifying, photoautotroph, E. huxleyi-EhV interactions play a key role in oceanic carbon biogeochemistry. Virally-encoded glycosphingolipids (vGSLs) are virulence factors that are produced by the activity of virus-encoded serine palmitoyltransferase (SPT). Here, we characterize the dynamics, diversity and catalytic production of vGSLs in an array of EhV strains in relation to their SPT sequence composition and explore the hypothesis that they are a determinant of infectivity and host demise. vGSL production and diversity was positively correlated with increased virulence, virus replication rate and lytic infection dynamics in laboratory experiments, but they do not explain the success of less-virulent EhVs in natural EhV communities. The majority of EhV-derived SPT amplicon sequences associated with infected cells in the North Atlantic derived from slower infecting, less virulent EhVs. Our lab-, field- and mathematical model-based data and simulations support ecological scenarios whereby slow-infecting, less-virulent EhVs successfully compete in North Atlantic populations of E. huxleyi, through either the preferential removal of fast-infecting, virulent EhVs during active infection or by having access to a broader host range.
Collapse
Affiliation(s)
- Jozef I Nissimov
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA.,Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, PA37 1QA, Scotland, UK
| | - David Talmy
- Department of Microbiology, University of Tennessee-Knoxville, Knoxville, TN, 37996, USA
| | - Liti Haramaty
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Helen F Fredricks
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Ehud Zelzion
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Ben Knowles
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - A Murat Eren
- Marine Biological Laboratory, Josephine Bay Paul Center, Woods Hole, Massachusetts, 02543, USA.,Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Rebecca Vandzura
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Christien P Laber
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Brittany M Schieler
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Christopher T Johns
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Kuldeep D More
- WA-Organic and Isotope Geochemistry Centre, School of Earth and Planetary Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Marco J L Coolen
- WA-Organic and Isotope Geochemistry Centre, School of Earth and Planetary Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Michael J Follows
- Department of Earth, Atmosphere and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Benjamin A S Van Mooy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Kay D Bidle
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| |
Collapse
|
9
|
Unmasking cellular response of a bloom-forming alga to viral infection by resolving expression profiles at a single-cell level. PLoS Pathog 2019; 15:e1007708. [PMID: 31017983 PMCID: PMC6502432 DOI: 10.1371/journal.ppat.1007708] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/06/2019] [Accepted: 03/15/2019] [Indexed: 12/31/2022] Open
Abstract
Infection by large dsDNA viruses can lead to a profound alteration of host transcriptome and metabolome in order to provide essential building blocks to support the high metabolic demand for viral assembly and egress. Host response to viral infection can typically lead to diverse phenotypic outcome that include shift in host life cycle and activation of anti-viral defense response. Nevertheless, there is a major bottleneck to discern between viral hijacking strategies and host defense responses when averaging bulk population response. Here we study the interaction between Emiliania huxleyi, a bloom-forming alga, and its specific virus (EhV), an ecologically important host-virus model system in the ocean. We quantified host and virus gene expression on a single-cell resolution during the course of infection, using automatic microfluidic setup that captures individual algal cells and multiplex quantitate PCR. We revealed high heterogeneity in viral gene expression among individual cells. Simultaneous measurements of expression profiles of host and virus genes at a single-cell level allowed mapping of infected cells into newly defined infection states and allowed detection specific host response in a subpopulation of infected cell which otherwise masked by the majority of the infected population. Intriguingly, resistant cells emerged during viral infection, showed unique expression profiles of metabolic genes which can provide the basis for discerning between viral resistant and susceptible cells within heterogeneous populations in the marine environment. We propose that resolving host-virus arms race at a single-cell level will provide important mechanistic insights into viral life cycles and will uncover host defense strategies. Almost all of our current understanding of the molecular mechanisms that govern host-pathogen interactions in the ocean is derived from experiments carried out at the population level, neglecting any heterogeneity. Here we used a single cell approach to unmask the phenotypic heterogeneity produced within infected populations of the cosmopolitan bloom-forming alga Emiliania huxleyi by its specific lytic virus. We found high variability in expression of viral genes among individual cells. This heterogeneity was used to map cells into their infection state and allowed to uncover a yet unrecognized host response. We also provide evidence that variability in host metabolic states provided a sensitive tool to decipher between susceptible and resistant cells.
Collapse
|
10
|
Koonin EV, Yutin N. Evolution of the Large Nucleocytoplasmic DNA Viruses of Eukaryotes and Convergent Origins of Viral Gigantism. Adv Virus Res 2019; 103:167-202. [PMID: 30635076 DOI: 10.1016/bs.aivir.2018.09.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Nucleocytoplasmic Large DNA Viruses (NCLDV) of eukaryotes (proposed order "Megavirales") comprise an expansive group of eukaryotic viruses that consists of the families Poxviridae, Asfarviridae, Iridoviridae, Ascoviridae, Phycodnaviridae, Marseilleviridae, Pithoviridae, and Mimiviridae, as well as Pandoraviruses, Molliviruses, and Faustoviruses that so far remain unaccounted by the official virus taxonomy. All these viruses have double-stranded DNA genomes that range in size from about 100 kilobases (kb) to more than 2.5 megabases. The viruses with genomes larger than 500kb are informally considered "giant," and the largest giant viruses surpass numerous bacteria and archaea in both particle and genome size. The discovery of giant viruses has been highly unexpected and has changed the perception of viral size and complexity, and even, arguably, the entire concept of a virus. Given that giant viruses encode multiple proteins that are universal among cellular life forms and are components of the translation system, the quintessential cellular molecular machinery, attempts have been made to incorporate these viruses in the evolutionary tree of cellular life. Moreover, evolutionary scenarios of the origin of giant viruses from a fourth, supposedly extinct domain of cellular life have been proposed. However, despite all the differences in the genome size and gene repertoire, the NCLDV can be confidently defined as monophyletic group, on the strength of the presence of about 40 genes that can be traced back to their last common ancestor. Using several most strongly conserved genes from this ancestral set, a well-resolved phylogenetic tree of the NCLDV was built and employed as the scaffold to reconstruct the history of gene gain and loss throughout the course of the evolution of this group of viruses. This reconstruction reveals extremely dynamic evolution that involved extensive gene gain and loss in many groups of viruses and indicates that giant viruses emerged independently in several clades of the NCLDV. Thus, these giants of the virus world evolved repeatedly from smaller and simpler viruses, rather than from a fourth domain of cellular life, and captured numerous genes, including those for translation system components, from eukaryotes, along with some bacterial genes. Even deeper evolutionary reconstructions reveal apparent links between the NCLDV and smaller viruses of eukaryotes, such as adenoviruses, and ultimately, derive all these viruses from tailless bacteriophages.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States.
| | - Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
11
|
Zhang QY, Gui JF. Diversity, evolutionary contribution and ecological roles of aquatic viruses. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1486-1502. [DOI: 10.1007/s11427-018-9414-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 09/26/2018] [Indexed: 01/21/2023]
|
12
|
Sheyn U, Rosenwasser S, Lehahn Y, Barak-Gavish N, Rotkopf R, Bidle KD, Koren I, Schatz D, Vardi A. Expression profiling of host and virus during a coccolithophore bloom provides insights into the role of viral infection in promoting carbon export. ISME JOURNAL 2018; 12:704-713. [PMID: 29335637 DOI: 10.1038/s41396-017-0004-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 09/19/2017] [Accepted: 10/08/2017] [Indexed: 11/09/2022]
Abstract
The cosmopolitan coccolithophore Emiliania huxleyi is a unicellular eukaryotic alga that forms vast blooms in the oceans impacting large biogeochemical cycles. These blooms are often terminated due to infection by the large dsDNA virus, E. huxleyi virus (EhV). It was recently established that EhV-induced modulation of E. huxleyi metabolism is a key factor for optimal viral infection cycle. Despite the huge ecological importance of this host-virus interaction, the ability to assess its spatial and temporal dynamics and its possible impact on nutrient fluxes is limited by current approaches that focus on quantification of viral abundance and biodiversity. Here, we applied a host and virus gene expression analysis as a sensitive tool to quantify the dynamics of this interaction during a natural E. huxleyi bloom in the North Atlantic. We used viral gene expression profiling as an index for the level of active infection and showed that the latter correlated with water column depth. Intriguingly, this suggests a possible sinking mechanism for removing infected cells as aggregates from the E. huxleyi population in the surface layer into deeper waters. Viral infection was also highly correlated with induction of host metabolic genes involved in host life cycle, sphingolipid, and antioxidant metabolism, providing evidence for modulation of host metabolism under natural conditions. The ability to track and quantify defined phases of infection by monitoring co-expression of viral and host genes, coupled with advance omics approaches, will enable a deeper understanding of the impact that viruses have on the environment.
Collapse
Affiliation(s)
- Uri Sheyn
- Departments of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Shilo Rosenwasser
- Departments of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.,The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University, Rehovot, 7610001, Israel
| | - Yoav Lehahn
- Departments of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Noa Barak-Gavish
- Departments of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ron Rotkopf
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Kay D Bidle
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Ilan Koren
- Departments of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Daniella Schatz
- Departments of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Assaf Vardi
- Departments of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
13
|
Mordecai GJ, Verret F, Highfield A, Schroeder DC. Schrödinger's Cheshire Cat: Are Haploid Emiliania huxleyi Cells Resistant to Viral Infection or Not? Viruses 2017; 9:v9030051. [PMID: 28335465 PMCID: PMC5371806 DOI: 10.3390/v9030051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/10/2017] [Accepted: 03/14/2017] [Indexed: 11/16/2022] Open
Abstract
Emiliania huxleyi is the main calcite producer on Earth and is routinely infected by a virus (EhV); a double stranded DNA (dsDNA) virus belonging to the family Phycodnaviridae. E. huxleyi exhibits a haplodiploid life cycle; the calcified diploid stage is non-motile and forms extensive blooms. The haploid phase is a non-calcified biflagellated cell bearing organic scales. Haploid cells are thought to resist infection, through a process deemed the “Cheshire Cat” escape strategy; however, a recent study detected the presence of viral lipids in the same haploid strain. Here we report on the application of an E. huxleyi CCMP1516 EhV-86 combined tiling array (TA) that further confirms an EhV infection in the RCC1217 haploid strain, which grew without any signs of cell lysis. Reverse transcription polymerase chain reaction (RT-PCR) and PCR verified the presence of viral RNA in the haploid cells, yet indicated an absence of viral DNA, respectively. These infected cells are an alternative stage of the virus life cycle deemed the haplococcolithovirocell. In this instance, the host is both resistant to and infected by EhV, i.e., the viral transcriptome is present in haploid cells whilst there is no evidence of viral lysis. This superimposed state is reminiscent of Schrödinger’s cat; of being simultaneously both dead and alive.
Collapse
Affiliation(s)
- Gideon J Mordecai
- Marine Biological Association of the UK, Citadel Hill, Plymouth PL1 2PB, UK.
| | - Frederic Verret
- Marine Biological Association of the UK, Citadel Hill, Plymouth PL1 2PB, UK.
| | - Andrea Highfield
- Marine Biological Association of the UK, Citadel Hill, Plymouth PL1 2PB, UK.
| | - Declan C Schroeder
- Marine Biological Association of the UK, Citadel Hill, Plymouth PL1 2PB, UK.
| |
Collapse
|
14
|
Ziv C, Malitsky S, Othman A, Ben-Dor S, Wei Y, Zheng S, Aharoni A, Hornemann T, Vardi A. Viral serine palmitoyltransferase induces metabolic switch in sphingolipid biosynthesis and is required for infection of a marine alga. Proc Natl Acad Sci U S A 2016; 113:E1907-16. [PMID: 26984500 PMCID: PMC4822627 DOI: 10.1073/pnas.1523168113] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Marine viruses are the most abundant biological entities in the oceans shaping community structure and nutrient cycling. The interaction between the bloom-forming alga Emiliania huxleyi and its specific large dsDNA virus (EhV) is a major factor determining the fate of carbon in the ocean, thus serving as a key host-pathogen model system. The EhV genome encodes for a set of genes involved in the de novo sphingolipid biosynthesis, not reported in any viral genome to date. We combined detailed lipidomic and biochemical analyses to characterize the functional role of this virus-encoded pathway during lytic viral infection. We identified a major metabolic shift, mediated by differential substrate specificity of virus-encoded serine palmitoyltransferase, a key enzyme of sphingolipid biosynthesis. Consequently, unique viral glycosphingolipids, composed of unusual hydroxylated C17 sphingoid bases (t17:0) were highly enriched in the infected cells, and their synthesis was found to be essential for viral assembly. These findings uncover the biochemical bases of the virus-induced metabolic rewiring of the host sphingolipid biosynthesis during the chemical "arms race" in the ocean.
Collapse
Affiliation(s)
- Carmit Ziv
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sergey Malitsky
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alaa Othman
- Institute for Clinical Chemistry, University Hospital Zurich, 8091 Zurich, Switzerland; Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, 23562 Lübeck, Germany
| | - Shifra Ben-Dor
- Biological Services Unit, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yu Wei
- Institute for Clinical Chemistry, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Shuning Zheng
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Thorsten Hornemann
- Institute for Clinical Chemistry, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel;
| |
Collapse
|
15
|
Nissimov JI, Napier JA, Allen MJ, Kimmance SA. Intragenus competition between coccolithoviruses: an insight on how a select few can come to dominate many. Environ Microbiol 2015; 18:133-45. [PMID: 25970076 DOI: 10.1111/1462-2920.12902] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 03/20/2015] [Accepted: 05/04/2015] [Indexed: 11/27/2022]
Abstract
Viruses are a major cause of coccolithophore bloom demise in both temperate and sub-temperate oceanic regions. Most infection studies on coccolithoviruses have been conducted with a single virus strain, and the effect of intragenus competition by closely related coccolithoviruses has been ignored. Here we conducted combined infection experiments, infecting Emiliania huxleyi CCMP 2090 with two coccolithoviruses: EhV-86 and EhV-207 both simultaneously and independently. EhV-207 displayed a shorter lytic cycle and increased production potential than EhV-86 and was remarkably superior under competitive conditions. Although the viruses displayed identical adsorption kinetics in the first 2 h post infection, EhV-207 gained a numerical advantage as early as 8 h post infection. Quantitative polymerase chain reaction (PCR) revealed that when infecting in combination, EhV-207 was not affected by the presence of EhV-86, whereas EhV-86 was quickly out-competed, and a significant reduction in free and cell-associated EhV-86 was seen as early as 2 days after the initial infection. The observation of such clear phenotypic differences between genetically distinct, yet similar, coccolithovirus strains, by flow cytometry and quantitative real-time PCR allowed tentative links to the burgeoning genomic, transcriptomic and metabolic data to be made and the factors driving their selection, in particular to the de novo coccolithovirus-encoded sphingolipid biosynthesis pathway. This work illustrates that, even within a family, not all viruses are created equally, and the potential exists for relatively small genetic changes to infer disproportionately large competitive advantages for one coccolithovirus over another, ultimately leading to a few viruses dominating the many.
Collapse
Affiliation(s)
- Jozef I Nissimov
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, UK
| | - Johnathan A Napier
- Department of Biological Chemistry, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| | - Michael J Allen
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, UK
| | - Susan A Kimmance
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, UK
| |
Collapse
|
16
|
Pagarete A, Kusonmano K, Petersen K, Kimmance SA, Martínez Martínez J, Wilson WH, Hehemann JH, Allen MJ, Sandaa RA. Dip in the gene pool: metagenomic survey of natural coccolithovirus communities. Virology 2014; 466-467:129-37. [PMID: 24947907 DOI: 10.1016/j.virol.2014.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 04/23/2014] [Accepted: 05/18/2014] [Indexed: 11/30/2022]
Abstract
Despite the global oceanic distribution and recognised biogeochemical impact of coccolithoviruses (EhV), their diversity remains poorly understood. Here we employed a metagenomic approach to study the occurrence and progression of natural EhV community genomic variability. Analysis of EhV metagenomes from the early and late stages of an induced bloom led to three main discoveries. First, we observed resilient and specific genomic signatures in the EhV community associated with the Norwegian coast, which reinforce the existence of limitations to the capacity of dispersal and genomic exchange among EhV populations. Second, we identified a hyper-variable region (approximately 21kbp long) in the coccolithovirus genome. Third, we observed a clear trend for EhV relative amino-acid diversity to reduce from early to late stages of the bloom. This study validated two new methodological combinations, and proved very useful in the discovery of new genomic features associated with coccolithovirus natural communities.
Collapse
Affiliation(s)
| | | | - Kjell Petersen
- Computational Biology Unit, University of Bergen, Norway
| | | | | | - William H Wilson
- Plymouth Marine Laboratory, Plymouth, UK; Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| | - Jan-Hendrik Hehemann
- Department of Civil & Environmental Engineering, Massachusetts Institute of Technology, USA
| | | | | |
Collapse
|
17
|
Rosenwasser S, Mausz MA, Schatz D, Sheyn U, Malitsky S, Aharoni A, Weinstock E, Tzfadia O, Ben-Dor S, Feldmesser E, Pohnert G, Vardi A. Rewiring Host Lipid Metabolism by Large Viruses Determines the Fate of Emiliania huxleyi, a Bloom-Forming Alga in the Ocean. THE PLANT CELL 2014; 26:2689-2707. [PMID: 24920329 PMCID: PMC4114960 DOI: 10.1105/tpc.114.125641] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/07/2014] [Accepted: 05/26/2014] [Indexed: 05/21/2023]
Abstract
Marine viruses are major ecological and evolutionary drivers of microbial food webs regulating the fate of carbon in the ocean. We combined transcriptomic and metabolomic analyses to explore the cellular pathways mediating the interaction between the bloom-forming coccolithophore Emiliania huxleyi and its specific coccolithoviruses (E. huxleyi virus [EhV]). We show that EhV induces profound transcriptome remodeling targeted toward fatty acid synthesis to support viral assembly. A metabolic shift toward production of viral-derived sphingolipids was detected during infection and coincided with downregulation of host de novo sphingolipid genes and induction of the viral-encoded homologous pathway. The depletion of host-specific sterols during lytic infection and their detection in purified virions revealed their novel role in viral life cycle. We identify an essential function of the mevalonate-isoprenoid branch of sterol biosynthesis during infection and propose its downregulation as an antiviral mechanism. We demonstrate how viral replication depends on the hijacking of host lipid metabolism during the chemical "arms race" in the ocean.
Collapse
Affiliation(s)
- Shilo Rosenwasser
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michaela A Mausz
- Institute of Inorganic and Analytical Chemistry/Bioorganic Analytics, Friedrich Schiller University Jena, 07743 Jena, Germany Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Daniella Schatz
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Uri Sheyn
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sergey Malitsky
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Asaph Aharoni
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Eyal Weinstock
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Oren Tzfadia
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shifra Ben-Dor
- Bioinformatics and Biological Computing Unit, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ester Feldmesser
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Georg Pohnert
- Institute of Inorganic and Analytical Chemistry/Bioorganic Analytics, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Assaf Vardi
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
18
|
Rose SL, Fulton JM, Brown CM, Natale F, Van Mooy BAS, Bidle KD. Isolation and characterization of lipid rafts inEmiliania huxleyi: a role for membrane microdomains in host-virus interactions. Environ Microbiol 2014; 16:1150-66. [DOI: 10.1111/1462-2920.12357] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 12/05/2013] [Indexed: 01/21/2023]
Affiliation(s)
- Suzanne L. Rose
- Institute of Marine and Coastal Sciences; Rutgers University; New Brunswick NJ USA
| | - James M. Fulton
- Department of Marine Chemistry and Geochemistry; Woods Hole Oceanographic Institution; Woods Hole MA USA
| | - Christopher M. Brown
- Institute of Marine and Coastal Sciences; Rutgers University; New Brunswick NJ USA
| | - Frank Natale
- Institute of Marine and Coastal Sciences; Rutgers University; New Brunswick NJ USA
| | - Benjamin A. S. Van Mooy
- Department of Marine Chemistry and Geochemistry; Woods Hole Oceanographic Institution; Woods Hole MA USA
| | - Kay D. Bidle
- Institute of Marine and Coastal Sciences; Rutgers University; New Brunswick NJ USA
| |
Collapse
|
19
|
Nissimov JI, Jones M, Napier JA, Munn CB, Kimmance SA, Allen MJ. Functional inferences of environmental coccolithovirus biodiversity. Virol Sin 2013; 28:291-302. [PMID: 24006045 DOI: 10.1007/s12250-013-3362-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 08/12/2013] [Indexed: 11/25/2022] Open
Abstract
The cosmopolitan calcifying alga Emiliania huxleyi is one of the most abundant bloom forming coccolithophore species in the oceans and plays an important role in global biogeochemical cycling. Coccolithoviruses are a major cause of coccolithophore bloom termination and have been studied in laboratory, mesocosm and open ocean studies. However, little is known about the dynamic interactions between the host and its viruses, and less is known about the natural diversity and role of functionally important genes within natural coccolithovirus communities. Here, we investigate the temporal and spatial distribution of coccolithoviruses by the use of molecular fingerprinting techniques PCR, DGGE and genomic sequencing. The natural biodiversity of the virus genes encoding the major capsid protein (MCP) and serine palmitoyltransferase (SPT) were analysed in samples obtained from the Atlantic Meridional Transect (AMT), the North Sea and the L4 site in the Western Channel Observatory. We discovered nine new coccolithovirus genotypes across the AMT and L4 site, with the majority of MCP sequences observed at the deep chlorophyll maximum layer of the sampled sites on the transect. We also found four new SPT gene variations in the North Sea and at L4. Their translated fragments and the full protein sequence of SPT from laboratory strains EhV-86 and EhV-99B1 were modelled and revealed that the theoretical fold differs among strains. Variation identified in the structural distance between the two domains of the SPT protein may have an impact on the catalytic capabilities of its active site. In summary, the combined use of 'standard' markers (i.e. MCP), in combination with metabolically relevant markers (i.e. SPT) are useful in the study of the phylogeny and functional biodiversity of coccolithoviruses, and can provide an interesting intracellular insight into the evolution of these viruses and their ability to infect and replicate within their algal hosts.
Collapse
Affiliation(s)
- Jozef I Nissimov
- Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK
| | | | | | | | | | | |
Collapse
|
20
|
Gledhill M, Devez A, Highfield A, Singleton C, Achterberg EP, Schroeder D. Effect of Metals on the Lytic Cycle of the Coccolithovirus, EhV86. Front Microbiol 2012; 3:155. [PMID: 22536202 PMCID: PMC3333479 DOI: 10.3389/fmicb.2012.00155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 04/04/2012] [Indexed: 01/30/2023] Open
Abstract
In this study we show that metals, and in particular copper (Cu), can disrupt the lytic cycle in the Emiliania huxleyi - EhV86 host-virus system. E. huxleyi lysis rates were reduced at high total Cu concentrations (> approximately 500 nM) in the presence and absence of EDTA (ethylenediaminetetraacetic acid) in acute short term exposure experiments. Zinc (Zn), cadmium (Cd), and cobalt (Co) were not observed to affect the lysis rate of EhV86 in these experiments. The cellular glutathione (GSH) content increased in virus infected cells, but not as a result of metal exposure. In contrast, the cellular content of phytochelatins (PCs) increased only in response to metal exposure. The increase in glutathione content is consistent with increases in the production of reactive oxygen species (ROS) on viral lysis, while increases in PC content are likely linked to metal homeostasis and indicate that metal toxicity to the host was not affected by viral infection. We propose that Cu prevents lytic production of EhV86 by interfering with virus DNA (deoxyribonucleic acid) synthesis through a transcriptional block, which ultimately suppresses the formation of ROS.
Collapse
Affiliation(s)
- Martha Gledhill
- School of Ocean and Earth Science, University of Southampton, National Oceanography CentreSouthampton, UK
| | - Aurélie Devez
- School of Ocean and Earth Science, University of Southampton, National Oceanography CentreSouthampton, UK
| | - Andrea Highfield
- Marine Biological Association of the UKCitadel Hill, Plymouth, UK
| | - Chloe Singleton
- Marine Biological Association of the UKCitadel Hill, Plymouth, UK
| | - Eric P. Achterberg
- School of Ocean and Earth Science, University of Southampton, National Oceanography CentreSouthampton, UK
| | - Declan Schroeder
- Marine Biological Association of the UKCitadel Hill, Plymouth, UK
| |
Collapse
|
21
|
Nissimov JI, Worthy CA, Rooks P, Napier JA, Kimmance SA, Henn MR, Ogata H, Allen MJ. Draft genome sequence of the coccolithovirus EhV-84. Stand Genomic Sci 2011; 5:1-11. [PMID: 22180805 PMCID: PMC3236045 DOI: 10.4056/sigs.1884581] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Coccolithoviridae is a recently discovered group of viruses that infect the marine coccolithophorid Emiliania huxleyi. Emiliania huxleyi virus 84 (EhV-84) has a 160 -180 nm diameter icosahedral structure and a genome of approximately 400 kbp. Here we describe the structural and genomic features of this virus, together with a near complete draft genome sequence (~99%) and its annotation. This is the fourth genome sequence of a member of the coccolithovirus family.
Collapse
Affiliation(s)
- Jozef I. Nissimov
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, UK
| | - Charlotte A. Worthy
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, UK
- Department of Biological Chemistry, Rothamsted Research, Harpenden, Herts AL5
| | - Paul Rooks
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, UK
| | - Johnathan A. Napier
- Department of Biological Chemistry, Rothamsted Research, Harpenden, Herts AL5
| | - Susan A. Kimmance
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, UK
| | - Matthew R Henn
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States
| | - Hiroyuki Ogata
- Structural and Genomic Information Laboratory, CNRS-UPR2589, Mediterranean Institute of Microbiology (IFR-88), Aix-Marseille University, 163 avenue de Luminy Case 934, FR-13288 Marseille, France
| | - Michael J. Allen
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, UK
- Corresponding author: Michael J. Allen ()
| |
Collapse
|
22
|
Santos F, Moreno-Paz M, Meseguer I, López C, Rosselló-Mora R, Parro V, Antón J. Metatranscriptomic analysis of extremely halophilic viral communities. THE ISME JOURNAL 2011; 5:1621-33. [PMID: 21490689 PMCID: PMC3176508 DOI: 10.1038/ismej.2011.34] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 01/04/2011] [Accepted: 02/21/2011] [Indexed: 11/09/2022]
Abstract
Hypersaline environments harbour the highest number of viruses reported for aquatic environments. In crystallizer ponds from solar salterns, haloviruses coexist with extremely halophilic Archaea and Bacteria and present a high diversity although little is known about their activity. In this work, we analyzed the viral expression in one crystallizer using a metatranscriptomic approach in which clones from a metaviromic library were immobilized in a microarray and used as probes against total mRNA extracted from the hypersaline community. This approach has two advantages: (i) it overcomes the fact that there is no straightforward, unambiguous way to extract viral mRNA from bulk mRNAs and (ii) it makes the sequencing of all mRNAs unnecessary. Transcriptomic data indicated that the halovirus assemblage was highly active at the time of sampling and the viral groups with the highest expression levels were those related to high GC content haloarchaea and Salinibacter representatives, which are minor components in the environment. Moreover, the changes in the viral expression pattern and in the numbers of free viral particles were analyzed after submitting the samples to two stress conditions: ultraviolet-radiation and dilution. Results showed that Archaea were more sensitive than Bacteria to these stress conditions. The overexpression in the predicted archaeal virus fraction raised and the total numbers of free viruses increased. Furthermore, we identified some very closely related viral clones, displaying single-nucleotide polymorphisms, which were expressed only under certain conditions. These clones could be part of very closely related virus genomes for which we propose the term 'ecoviriotypes'.
Collapse
Affiliation(s)
- Fernando Santos
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Mercedes Moreno-Paz
- Departamento de Evolución Molecular, Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz, Madrid, Spain
| | - Inmaculada Meseguer
- Departamento de Producción vegetal y Microbiología, Universidad Miguel Hernández, Elche, Spain
| | - Cristina López
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Ramon Rosselló-Mora
- Marine Microbiology Group, Institut Mediterrani d'Estudis Avançats (CSIC-UIB), Esporles (Mallorca), Spain
| | - Víctor Parro
- Departamento de Evolución Molecular, Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz, Madrid, Spain
| | - Josefa Antón
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
- Instituto Multidisciplinar para el Estudio del Medio Ramón Margalef, Universidad de Alicante, Alicante, Spain
| |
Collapse
|
23
|
Pagarete A, Corguillé G, Tiwari B, Ogata H, Vargas C, Wilson WH, Allen MJ. Unveiling the transcriptional features associated with coccolithovirus infection of natural Emiliania huxleyi blooms. FEMS Microbiol Ecol 2011; 78:555-64. [PMID: 22066669 DOI: 10.1111/j.1574-6941.2011.01191.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 08/01/2011] [Accepted: 08/12/2011] [Indexed: 11/27/2022] Open
Affiliation(s)
| | - Gildas Corguillé
- CNRS/UMPC, FR2424; Service Informatique et Génomique; Station Biologique; Roscoff; France
| | - Bela Tiwari
- NERC Environmental Bioinformatics Centre; Centre for Ecology and Hydrology; Wallingford; UK
| | - Hiroyuki Ogata
- Structural and Genomic Information Laboratory; CNRS-UPR2589; Mediterranean Institute of Microbiology (IFR-88); Aix-Marseille University; Marseille; France
| | - Colomban Vargas
- Equipe EPPO-Evolution du Plancton et PaléoOcéans; CNRS-UMR7144; Université Pierre et Marie Curie; Station Biologique; Roscoff; France
| | - William H. Wilson
- Bigelow Laboratory for Ocean Sciences; West Boothbay Harbor; ME; USA
| | | |
Collapse
|
24
|
Coccolithophores: functional biodiversity, enzymes and bioprospecting. Mar Drugs 2011; 9:586-602. [PMID: 21731551 PMCID: PMC3124974 DOI: 10.3390/md9040586] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 04/01/2011] [Accepted: 04/07/2011] [Indexed: 12/31/2022] Open
Abstract
Emiliania huxleyi is a single celled, marine phytoplankton with global distribution. As a key species for global biogeochemical cycling, a variety of strains have been amassed in various culture collections. Using a library consisting of 52 strains of E. huxleyi and an 'in house' enzyme screening program, we have assessed the functional biodiversity within this species of fundamental importance to global biogeochemical cycling, whilst at the same time determining their potential for exploitation in biocatalytic applications. Here, we describe the screening of E. huxleyi strains, as well as a coccolithovirus infected strain, for commercially relevant biocatalytic enzymes such as acid/alkali phosphodiesterase, acid/alkali phosphomonoesterase, EC1.1.1-type dehydrogenase, EC1.3.1-type dehydrogenase and carboxylesterase.
Collapse
|
25
|
Allen MJ, Lanzén A, Bratbak G. Characterisation of the coccolithovirus intein. Mar Genomics 2010; 4:1-7. [PMID: 21429459 DOI: 10.1016/j.margen.2010.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 11/01/2010] [Accepted: 11/02/2010] [Indexed: 11/17/2022]
Abstract
The identification of inteins in viral genomes is becoming increasingly common. Inteins are selfish DNA elements found within coding regions of host proteins. Following translation, they catalyse their own excision and the formation of a peptide bond between the flanking protein regions. Many inteins also display homing endonuclease function. Here, the newly identified coccolithovirus intein is described and is predicted to have both self-splicing and homing endonuclease activity. The biochemical mechanism of its protein splicing activity is hypothesised, and the prevalence of the intein among natural coccolithovirus isolates is tested.
Collapse
Affiliation(s)
- Michael J Allen
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, UK.
| | | | | |
Collapse
|
26
|
|
27
|
Vardi A, Van Mooy BAS, Fredricks HF, Popendorf KJ, Ossolinski JE, Haramaty L, Bidle KD. Viral glycosphingolipids induce lytic infection and cell death in marine phytoplankton. Science 2009; 326:861-5. [PMID: 19892986 DOI: 10.1126/science.1177322] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Marine viruses that infect phytoplankton are recognized as a major ecological and evolutionary driving force, shaping community structure and nutrient cycling in the marine environment. Little is known about the signal transduction pathways mediating viral infection. We show that viral glycosphingolipids regulate infection of Emiliania huxleyi, a cosmopolitan coccolithophore that plays a major role in the global carbon cycle. These sphingolipids derive from an unprecedented cluster of biosynthetic genes in Coccolithovirus genomes, are synthesized de novo during lytic infection, and are enriched in virion membranes. Purified glycosphingolipids induced biochemical hallmarks of programmed cell death in an uninfected host. These lipids were detected in coccolithophore populations in the North Atlantic, which highlights their potential as biomarkers for viral infection in the oceans.
Collapse
Affiliation(s)
- Assaf Vardi
- Environmental Biophysics and Molecular Ecology Group, Institute of Marine and Coastal Sciences, Rutgers University, 71 Dudley Road, New Brunswick, NJ 08901, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Pagarete A, Allen MJ, Wilson WH, Kimmance SA, de Vargas C. Host-virus shift of the sphingolipid pathway along anEmiliania huxleyibloom: survival of the fattest. Environ Microbiol 2009; 11:2840-8. [PMID: 19638172 DOI: 10.1111/j.1462-2920.2009.02006.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- António Pagarete
- UPMC Univ. Paris 06, UMR 7144, Equipe EPPO: Evolution du Plancton et PaléoOcéans, Station Biologique de Roscoff, 29682 Roscoff, France
| | | | | | | | | |
Collapse
|
29
|
Mackinder LCM, Worthy CA, Biggi G, Hall M, Ryan KP, Varsani A, Harper GM, Wilson WH, Brownlee C, Schroeder DC. A unicellular algal virus, Emiliania huxleyi virus 86, exploits an animal-like infection strategy. J Gen Virol 2009; 90:2306-16. [DOI: 10.1099/vir.0.011635-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
30
|
Monier A, Pagarete A, de Vargas C, Allen MJ, Read B, Claverie JM, Ogata H. Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus. Genome Res 2009; 19:1441-9. [PMID: 19451591 DOI: 10.1101/gr.091686.109] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Interactions between viruses and phytoplankton, the main primary producers in the oceans, affect global biogeochemical cycles and climate. Recent studies are increasingly revealing possible cases of gene transfers between cyanobacteria and phages, which might have played significant roles in the evolution of cyanobacteria/phage systems. However, little has been documented about the occurrence of horizontal gene transfer in eukaryotic phytoplankton/virus systems. Here we report phylogenetic evidence for the transfer of seven genes involved in the sphingolipid biosynthesis pathway between the cosmopolitan eukaryotic microalga Emiliania huxleyi and its large DNA virus EhV. PCR assays indicate that these genes are prevalent in E. huxleyi and EhV strains isolated from different geographic locations. Patterns of protein and gene sequence conservation support that these genes are functional in both E. huxleyi and EhV. This is the first clear case of horizontal gene transfer of multiple functionally linked enzymes in a eukaryotic phytoplankton-virus system. We examine arguments for the possible direction of the gene transfer. The virus-to-host direction suggests the existence of ancient viruses that controlled the complex metabolic pathway in order to infect primitive eukaryotic cells. In contrast, the host-to-virus direction suggests that the serial acquisition of genes involved in the same metabolic pathway might have been a strategy for the ancestor of EhVs to stay ahead of their closest relatives in the great evolutionary race for survival.
Collapse
Affiliation(s)
- Adam Monier
- Structural and Genomic Information Laboratory, CNRS-UPR2589, Mediterranean Institute of Microbiology (IFR-88), Université de la Méditerranée, Parc Scientifique de Luminy, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Wilson WH, Van Etten JL, Allen MJ. The Phycodnaviridae: the story of how tiny giants rule the world. Curr Top Microbiol Immunol 2009; 328:1-42. [PMID: 19216434 DOI: 10.1007/978-3-540-68618-7_1] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The family Phycodnaviridae encompasses a diverse and rapidly expanding collection of large icosahedral, dsDNA viruses that infect algae. These lytic and lysogenic viruses have genomes ranging from 160 to 560 kb. The family consists of six genera based initially on host range and supported by sequence comparisons. The family is monophyletic with branches for each genus, but the phycodnaviruses have evolutionary roots that connect them with several other families of large DNA viruses, referred to as the nucleocytoplasmic large DNA viruses (NCLDV). The phycodnaviruses have diverse genome structures, some with large regions of noncoding sequence and others with regions of ssDNA. The genomes of members in three genera in the Phycodnaviridae have been sequenced. The genome analyses have revealed more than 1000 unique genes, with only 14 homologous genes in common among the three genera of phycodnaviruses sequenced to date. Thus, their gene diversity far exceeds the number of so-called core genes. Not much is known about the replication of these viruses, but the consequences of these infections on phytoplankton have global affects, including influencing geochemical cycling and weather patterns.
Collapse
Affiliation(s)
- W H Wilson
- Bigelow Laboratory for Ocean Sciences, 180 McKown Point, P.O. Box 475, West Boothbay Harbor, ME 04575-0475, USA.
| | | | | |
Collapse
|
32
|
Affiliation(s)
- Hiroyuki Ogata
- Structural and Genomic Information Laboratory, CNRSUPR 2589, IFR-88, Université de la Méditerranée, Parc Scientifique de Luminy, FR-13288 Marseille, France
| | - Jean-Michel Claverie
- Structural and Genomic Information Laboratory, CNRSUPR 2589, IFR-88, Université de la Méditerranée, Parc Scientifique de Luminy, FR-13288 Marseille, France
| |
Collapse
|
33
|
Allen MJ, Howard JA, Lilley KS, Wilson WH. Proteomic analysis of the EhV-86 virion. Proteome Sci 2008; 6:11. [PMID: 18346272 PMCID: PMC2322966 DOI: 10.1186/1477-5956-6-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 03/17/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Emiliania huxleyi virus 86 (EhV-86) is the type species of the genus Coccolithovirus within the family Phycodnaviridae. The fully sequenced 407,339 bp genome is predicted to encode 473 protein coding sequences (CDSs) and is the largest Phycodnaviridae sequenced to date. The majority of EhV-86 CDSs exhibit no similarity to proteins in the public databases. RESULTS Proteomic analysis by 1-DE and then LC-MS/MS determined that the virion of EhV-86 is composed of at least 28 proteins, 23 of which are predicted to be membrane proteins. Besides the major capsid protein, putative function can be assigned to 4 other components of the virion: two lectin proteins, a thioredoxin and a serine/threonine protein kinase. CONCLUSION This study represents the first steps toward the identification of the protein components that make up the EhV-86 virion. Aside from the major capsid protein, whose function in the virion is well known and defined, the nature of the other proteins suggest roles involved with viral budding, caspase activation, signalling, anti-oxidation, virus adsorption and host range determination.
Collapse
Affiliation(s)
- Michael J Allen
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, UK.
| | | | | | | |
Collapse
|
34
|
Monier A, Claverie JM, Ogata H. Horizontal gene transfer and nucleotide compositional anomaly in large DNA viruses. BMC Genomics 2007; 8:456. [PMID: 18070355 PMCID: PMC2211322 DOI: 10.1186/1471-2164-8-456] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 12/10/2007] [Indexed: 12/02/2022] Open
Abstract
Background DNA viruses have a wide range of genome sizes (5 kb up to 1.2 Mb, compared to 0.16 Mb to 1.5 Mb for obligate parasitic bacteria) that do not correlate with their virulence or the taxonomic distribution of their hosts. The reasons for such large variation are unclear. According to the traditional view of viruses as gifted "gene pickpockets", large viral genome sizes could originate from numerous gene acquisitions from their hosts. We investigated this hypothesis by studying 67 large DNA viruses with genome sizes larger than 150 kb, including the recently characterized giant mimivirus. Given that horizontally transferred DNA often have anomalous nucleotide compositions differing from the rest of the genome, we conducted a detailed analysis of the inter- and intra-genome compositional properties of these viruses. We then interpreted their compositional heterogeneity in terms of possible causes, including strand asymmetry, gene function/expression, and horizontal transfer. Results We first show that the global nucleotide composition and nucleotide word usage of viral genomes are species-specific and distinct from those of their hosts. Next, we identified compositionally anomalous (cA) genes in viral genomes, using a method based on Bayesian inference. The proportion of cA genes is highly variable across viruses and does not exhibit a significant correlation with genome size. The vast majority of the cA genes were of unknown function, lacking homologs in the databases. For genes with known homologs, we found a substantial enrichment of cA genes in specific functional classes for some of the viruses. No significant association was found between cA genes and compositional strand asymmetry. A possible exogenous origin for a small fraction of the cA genes could be confirmed by phylogenetic reconstruction. Conclusion At odds with the traditional dogma, our results argue against frequent genetic transfers to large DNA viruses from their modern hosts. The large genome sizes of these viruses are not simply explained by an increased propensity to acquire foreign genes. This study also confirms that the anomalous nucleotide compositions of the cA genes is sometimes linked to particular biological functions or expression patterns, possibly leading to an overestimation of recent horizontal gene transfers.
Collapse
Affiliation(s)
- Adam Monier
- Structural and Genomic Information Laboratory, CNRS - UPR 2589, Institute for Structural Biology and Microbiology, Parc Scientifique de Luminy, 163 avenue de Luminy, FR-13288, Marseille cedex 09, France.
| | | | | |
Collapse
|
35
|
Ikushiro H, Islam MM, Tojo H, Hayashi H. Molecular characterization of membrane-associated soluble serine palmitoyltransferases from Sphingobacterium multivorum and Bdellovibrio stolpii. J Bacteriol 2007; 189:5749-61. [PMID: 17557831 PMCID: PMC1951810 DOI: 10.1128/jb.00194-07] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Accepted: 05/10/2007] [Indexed: 11/20/2022] Open
Abstract
Serine palmitoyltransferase (SPT) is a key enzyme in sphingolipid biosynthesis and catalyzes the decarboxylative condensation of l-serine and palmitoyl coenzyme A (CoA) to form 3-ketodihydrosphingosine (KDS). Eukaryotic SPTs comprise tightly membrane-associated heterodimers belonging to the pyridoxal 5'-phosphate (PLP)-dependent alpha-oxamine synthase family. Sphingomonas paucimobilis, a sphingolipid-containing bacterium, contains an abundant water-soluble homodimeric SPT of the same family (H. Ikushiro et al., J. Biol. Chem. 276:18249-18256, 2001). This enzyme is suitable for the detailed mechanistic studies of SPT, although single crystals appropriate for high-resolution crystallography have not yet been obtained. We have now isolated three novel SPT genes from Sphingobacterium multivorum, Sphingobacterium spiritivorum, and Bdellovibrio stolpii, respectively. Each gene product exhibits an approximately 30% sequence identity to both eukaryotic subunits, and the putative catalytic amino acid residues are conserved. All bacterial SPTs were successfully overproduced in Escherichia coli and purified as water-soluble active homodimers. The spectroscopic properties of the purified SPTs are characteristic of PLP-dependent enzymes. The KDS formation by the bacterial SPTs was confirmed by high-performance liquid chromatography/mass spectrometry. The Sphingobacterium SPTs obeyed normal steady-state ordered Bi-Bi kinetics, while the Bdellovibrio SPT underwent a remarkable substrate inhibition at palmitoyl CoA concentrations higher than 100 microM, as does the eukaryotic enzyme. Immunoelectron microscopy showed that unlike the cytosolic Sphingomonas SPT, S. multivorum and Bdellovibrio SPTs were bound to the inner membrane of cells as peripheral membrane proteins, indicating that these enzymes can be a prokaryotic model mimicking the membrane-associated eukaryotic SPT.
Collapse
Affiliation(s)
- Hiroko Ikushiro
- Department of Biochemistry, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan.
| | | | | | | |
Collapse
|
36
|
Allen MJ, Martinez-Martinez J, Schroeder DC, Somerfield PJ, Wilson WH. Use of microarrays to assess viral diversity: from genotype to phenotype. Environ Microbiol 2007; 9:971-82. [PMID: 17359269 DOI: 10.1111/j.1462-2920.2006.01219.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The diversity among the coccolithovirus strains held in the Plymouth Virus Collection (PVC) was assessed using three complementary techniques: phylogeny based on DNA polymerase and major capsid protein gene sequence; host range; and a new, microarray-based genome-wide approach. The PVC is composed of three groups of strains that are geographically and temporally distinct. Virus strains clustered according to these groups in all three diversity assessments. Furthermore, the microarray approach based on genomic content showed that two strains, previously considered as identical to others in the PVC, are actually distinct. These results show the importance of genome-wide surveys for assessing strain diversity. Not only has the microarray provided an alternative to the phylogeny-derived pattern for virus evolution, it has also begun to provide some clues to the genes that may be responsible for the different phenotypes displayed by these viruses.
Collapse
Affiliation(s)
- Michael J Allen
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, UK
| | | | | | | | | |
Collapse
|
37
|
Bidle KD, Haramaty L, Barcelos E Ramos J, Falkowski P. Viral activation and recruitment of metacaspases in the unicellular coccolithophore, Emiliania huxleyi. Proc Natl Acad Sci U S A 2007; 104:6049-54. [PMID: 17392426 PMCID: PMC1838821 DOI: 10.1073/pnas.0701240104] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lytic viral infection and programmed cell death (PCD) are thought to represent two distinct death mechanisms in phytoplankton, unicellular photoautotrophs that drift with ocean currents. Here, we demonstrate an interaction between autocatalytic PCD and lytic viral infection in the cosmopolitan coccolithophorid, Emiliania huxleyi. Successful infection of E. huxleyi strain 374 with a lytic virus, EhV1, resulted in rapid internal degradation of cellular components, a dramatic reduction in the photosynthetic efficiency (F(v)/F(m)), and an up-regulation of metacaspase protein expression, concomitant with induction of caspase-like activity. Caspase activation was confirmed through in vitro cleavage in cell extracts of the fluorogenic peptide substrate, IETD-AFC, and direct, in vivo staining of cells with the fluorescently labeled irreversible caspase inhibitor, FITC-VAD-FMK. Direct addition of z-VAD-FMK to infected cultures abolished cellular caspase activity and protein expression and severely impaired viral production. The absence of metacaspase protein expression in resistant E. huxleyi strain 373 during EhV1 infection further demonstrated the critical role of these proteases in facilitating viral lysis. Together with the presence of caspase cleavage recognition sequences within virally encoded proteins, we provide experimental evidence that coccolithoviruses induce and actively recruit host metacaspases as part of their replication strategy. These findings reveal a critical role for metacaspases in the turnover of phytoplankton biomass upon infection with viruses and point to coevolution of host-virus interactions in the activation and maintenance of these enzymes in planktonic, unicellular protists.
Collapse
Affiliation(s)
- Kay D Bidle
- Environmental Biophysics and Molecular Ecology Group, Institute of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, 71 Dudley Road, New Brunswick, NJ 08901, USA.
| | | | | | | |
Collapse
|
38
|
Han G, Gable K, Yan L, Allen MJ, Wilson WH, Moitra P, Harmon JM, Dunn TM. Expression of a novel marine viral single-chain serine palmitoyltransferase and construction of yeast and mammalian single-chain chimera. J Biol Chem 2006; 281:39935-42. [PMID: 17090526 DOI: 10.1074/jbc.m609365200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The genus Coccolithovirus is a recently discovered group of viruses that infect the globally important marine calcifying microalga Emiliania huxleyi. Surprisingly, the viral genome contains a cluster of putative sphingolipid biosynthetic genes not found in other viral genus. To address the role of these genes in viral pathogenesis, the ehv050 gene predicted to encode a serine palmitoyltransferase (SPT), the first and rate-limiting enzyme of sphingolipid biosynthesis, was expressed and characterized in Saccharomyces cerevisiae. We show that the encoded protein is indeed a fully functional, endoplasmic reticulum-localized, single-chain SPT. In eukaryotes SPT is a heterodimer comprised of long chain base 1 (LCB1) and LCB2 subunits. Sequence alignment and mutational analysis showed that the N-terminal domain of the viral protein most closely resembled the LCB2 subunit and the C-terminal domain most closely resembled the LCB1 subunit. Regardless of whether the viral protein was expressed as a single polypeptide or as two independent domains, it exhibited an unusual preference for myristoyl-CoA rather than palmitoyl-CoA. This preference was reflected by the increased presence of C16-sphingoid bases in yeast cells expressing the viral protein. The occurrence of a single-chain SPT suggested to us that it might be possible to create other fusion SPTs with unique properties. Remarkably, when the two subunits of the yeast SPT were thus expressed, the single-chain chimera was functional and displayed a novel substrate preference. This suggests that expression of other multisubunit membrane proteins as single-chain chimera could provide a powerful approach to the characterization of integral membrane proteins.
Collapse
Affiliation(s)
- Gongshe Han
- Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20184, USA
| | | | | | | | | | | | | | | |
Collapse
|