1
|
Chen L, Ren Z, Zhang Y, Hou W, Li Y. Design, synthesis, and evaluation of novel stilbene derivatives that degrade acidic nucleoplasmic DNA-binding protein 1 (And1) and synergize with PARP1 inhibitor in NSCLC cells. J Enzyme Inhib Med Chem 2024; 39:2383886. [PMID: 39072709 PMCID: PMC11288208 DOI: 10.1080/14756366.2024.2383886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 07/30/2024] Open
Abstract
Specifically inducing the degradation of acidic nucleoplasmic DNA-binding protein 1 (And1) is a promising antitumor strategy. Our previous study identified Bazedoxifene (BZA) and CH3 as specific And1 degraders and validated their activity in reversing radiotherapy resistance in vitro and in vivo. However, unelucidated structure-activity relationships and moderate activity have limited their application. In this study, 27 novel CH3 derivatives were designed and synthesised based on the cavity topology of the WD40 domain of And1. Among them, A15 with a "V" conformation significantly induced And1 degradation in NSCLC cells. In addition, this study demonstrated a potential synthetic lethal effect of And1 degraders and PARP1 inhibitors. 1 µM of Olaparib in combination with 5 µM of A15 significantly inhibited the proliferation of A549 and H460 cells. Overall, these compounds are valuable tools for elucidating And1 biology, and their special spatial conformation make them promising candidates for future optimisation studies.
Collapse
Affiliation(s)
- Leyuan Chen
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, China
| | - Zhonghao Ren
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, China
| | - Yunze Zhang
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Wenbin Hou
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, China
| | - Yiliang Li
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, China
| |
Collapse
|
2
|
Cui Z, Zou F, Wang R, Wang L, Cheng F, Wang L, Pan R, Guan X, Zheng N, Wang W. Integrative bioinformatics analysis of WDHD1: a potential biomarker for pan-cancer prognosis, diagnosis, and immunotherapy. World J Surg Oncol 2023; 21:309. [PMID: 37759234 PMCID: PMC10523704 DOI: 10.1186/s12957-023-03187-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Although WD repeat and high-mobility group box DNA binding protein 1 (WDHD1) played an essential role in DNA replication, chromosome stability, and DNA damage repair, the panoramic picture of WDHD1 in human tumors remains unclear. Hence, this study aims to comprehensively characterize WDHD1 across 33 human cancers. METHODS Based on publicly available databases such as TCGA, GTEx, and HPA, we used a bioinformatics approach to systematically explore the genomic features and biological functions of WDHD1 in pan-cancer. RESULTS WDHD1 mRNA levels were significantly increased in more than 20 types of tumor tissues. Elevated WDHD1 expression was associated with significantly shorter overall survival (OS) in 10 tumors. Furthermore, in uterine corpus endometrial carcinoma (UCEC) and liver hepatocellular carcinoma (LIHC), WDHD1 expression was significantly associated with higher histological grades and pathological stages. In addition, WDHD1 had a high diagnostic value among 16 tumors (area under the ROC curve [AUC] > 0.9). Functional enrichment analyses suggested that WDHD1 probably participated in many oncogenic pathways such as E2F and MYC targets (false discovery rate [FDR] < 0.05), and it was involved in the processes of DNA replication and DNA damage repair (p.adjust < 0.05). WDHD1 expression also correlated with the half-maximal inhibitory concentrations (IC50) of rapamycin (4 out of 10 cancers) and paclitaxel (10 out of 10 cancers). Overall, WDHD1 was negatively associated with immune cell infiltration and might promote tumor immune escape. Our analysis of genomic alterations suggested that WDHD1 was altered in 1.5% of pan-cancer cohorts and the "mutation" was the predominant type of alteration. Finally, through correlation analysis, we found that WDHD1 might be closely associated with tumor heterogeneity, tumor stemness, mismatch repair (MMR), and RNA methylation modification, which were all processes associated with the tumor progression. CONCLUSIONS Our pan-cancer analysis of WDHD1 provides valuable insights into the genomic characterization and biological functions of WDHD1 in human cancers and offers some theoretical support for the future use of WDHD1-targeted therapies, immunotherapies, and chemotherapeutic combinations for the management of tumors.
Collapse
Affiliation(s)
- Zhiwei Cui
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fan Zou
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Rongli Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lijun Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Feiyan Cheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lihui Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rumeng Pan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Guan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Nini Zheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
3
|
Zhang Z, Zhu Q. WD Repeat and HMG Box DNA Binding Protein 1: An Oncoprotein at the Hub of Tumorigenesis and a Novel Therapeutic Target. Int J Mol Sci 2023; 24:12494. [PMID: 37569867 PMCID: PMC10420296 DOI: 10.3390/ijms241512494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
WD repeat and HMG-box DNA binding protein 1 (WDHD1) is a highly conserved gene from yeast to humans. It actively participates in DNA replication, playing a crucial role in DNA damage repair and the cell cycle, contributing to centromere formation and sister chromosome segregation. Notably, several studies have implicated WDHD1 in the development and progression of diverse tumor types, including esophageal carcinoma, pulmonary carcinoma, and breast carcinoma. Additionally, the inhibitor of WDHD1 has been found to enhance radiation sensitivity, improve drug resistance, and significantly decrease tumor cell proliferation. This comprehensive review aims to provide an overview of the molecular structure, biological functions, and regulatory mechanisms of WDHD1 in tumors, thereby establishing a foundation for future investigations and potential clinical applications of WDHD1.
Collapse
Affiliation(s)
| | - Qing Zhu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China;
| |
Collapse
|
4
|
Xian Q, Zhu D. The Involvement of WDHD1 in the Occurrence of Esophageal Cancer as a Downstream Target of PI3K/AKT Pathway. JOURNAL OF ONCOLOGY 2022; 2022:5871188. [PMID: 35422862 PMCID: PMC9005294 DOI: 10.1155/2022/5871188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/18/2022] [Indexed: 11/18/2022]
Abstract
Esophageal cancer is one of the most common malignant tumors in the world, which is characterized by high incidence, strong invasiveness, high mortality, and poor prognosis. At present, the therapies include surgery, endoscopic resection, radiotherapy and chemotherapy, targeted therapy, and immunotherapy. The five-year survival rate of esophageal cancer has not been significantly improved, although the medical level has been continuously improved and the management and application of different therapies have been improved day by day. At present, an abnormal gene expression is still regarded as an important factor in the occurrence and development of esophageal cancer. WD repeat and HMG-box DNA binding protein 1(WDHD1), as a key gene, plays an important role in the occurrence of esophageal cancer. It is known that the protein encoded by WDHD1 is the downstream target of the PI3K/AKT pathway. When PI3Ks is activated by extracellular signals, PI(4,5)P2 on the inner side of the plasma membrane will be converted into PI(3,4,5)P3. Then, PI(3,4,5)P3 can be converted into PI(3,4)P2,PI(4)P and PI(3)P by dephosphorylation of some regulatory factors. PI(3,4,5)P3 recruited AKT to the plasma membrane and combined with its pH domain, resulting in conformational change of AKT. Subsequently, AKT was completely activated by PDK1 and PDK2 and begins to move to the cytoplasm and nucleus. In this process, AKT continuously phosphorylates downstream substrates. WDHD1, as a downstream target of AKT, is also phosphorylated and induces DNA replication. Besides the abnormal regulation of cells by other downstream targets of AKT, it also becomes a potential pathway that may eventually lead to the occurrence of esophageal cancer.
Collapse
Affiliation(s)
- Qingying Xian
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Danxia Zhu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| |
Collapse
|
5
|
Wu JY, Lan XL, Yan DM, Fang YY, Peng YX, Liang FF, Jiang L, Huang SN, Mo M, Lin CX, Niu YT, Wu XW, Wei ZX. The clinical significance of transcription factor WD repeat and HMG-box DNA binding protein 1 in laryngeal squamous cell carcinoma and its potential molecular mechanism. Pathol Res Pract 2021; 230:153751. [PMID: 34999279 DOI: 10.1016/j.prp.2021.153751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND Currently, high expression of WD repeat and HMG-box DNA binding protein 1 (WDHD1) has been found in a variety of tumors; but there is no research has been conducted concerning the expression of WDHD1 in laryngeal squamous cell carcinoma (LSCC). Our purpose is to investigate the expression and the latent mechanism of WDHD1 in LSCC. METHODS Firstly, 9 data sets from the Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), and ArrayExpress were statistically analyzed to explore the expression of WDHD1 in LSCC; immunohistochemistry was performed in 79 LSCC tissues and 44 non-cancer tissues to further verify the result. In addition, the target gene of WDHD1 was predicted and immunohistochemistry was used to detect the expression of the target gene. The potential mechanism of WDHD1 in LSCC was investigated by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses and protein-protein interaction network (PPI). RESULTS The WDHD1 mRNA was expressed at higher levels in the LSCC tissue than in the normal tissue (SMD=1.90, 95% CI=1.50-2.30); and the results of immunohistochemistry were consistent with the conclusion. Using chip-seq analysis, we found that S-phase kinase-associated protein 2 (Skp2) had a significant binding peak with WDHD1, and the expression of these two genes was significantly positively correlated. Immunohistochemistry showed that Skp2 was also highly expressed in LSCC. In addition, GO and KEGG analysis revealed the WDHD1 positively correlated genes was closely related to cell cycle, and PPI analysis identified 10 hub genes: COL7A1, COL4A2, COL4A1, COL4A6, COL11A1, COL5A2, COL1A1, COL13A1, COL8A1 and COL10A1, which may be critical to the progression of LSCC. CONCLUSIONS WDHD1 was overexpressed in LSCC tissues. Meanwhile, WDHD1 and its target gene Skp2 for transcriptional regulation may play a role in the progression of LSCC by regulating the cell cycle.
Collapse
Affiliation(s)
- Ji-Yun Wu
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Xiao-Lu Lan
- Department of Traditional Chinese Medicine, YiZhou District Hospital of Traditional Chinese Medicine, Jiulong Road, YiZhou, Hechi, Guangxi Zhuang Autonomous Region 546399, PR China
| | - Dong-Mei Yan
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Ye-Ying Fang
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Yun-Xi Peng
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Fei-Fei Liang
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Li Jiang
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Su-Ning Huang
- Department of Radiotherapy, Guangxi Medical University Cancer Hospital, No.71 Hedi Rd, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Miao Mo
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Cai-Xing Lin
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Yi-Tong Niu
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Xiao-Wei Wu
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Zhu-Xin Wei
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China.
| |
Collapse
|
6
|
Zhou Y, Chen JJ. STAT3 plays an important role in DNA replication by turning on WDHD1. Cell Biosci 2021; 11:10. [PMID: 33413624 PMCID: PMC7792067 DOI: 10.1186/s13578-020-00524-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Signal transducers and activators of transcription 3 (STAT3) is a transcription factor that plays a key role in many cellular processes such as cell growth and cancer. However, the functions and mechanisms by which STAT3 regulates cellular processes are not fully understood. RESULTS Here we describe a novel function of STAT3. We demonstrated that STAT3 plays an important role in DNA replication. Specifically, knockdown of STAT3 reduced DNA replication while activation and ectopic expression of STAT3 promoted DNA replication. We further identified the WD repeat and HMG-box DNA-binding protein 1 (WDHD1), which plays an important role in DNA replication initiation, as a novel STAT3 target gene that mediated the DNA replication function of STAT3. We showed that STAT3 bind the promoter/up regulatory region of WDHD1 gene. CONCLUSIONS These studies identified a novel function of STAT3 that is mediated by its newly identified target gene WDHD1 and have important implications.
Collapse
Affiliation(s)
- Yunying Zhou
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Medical Research & Laboratory Diagnostic Center, Central Hospital Affiliated To Shandong First Medical University, Jinan, China.,The Cancer Research Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jason J Chen
- Department of Microbiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China. .,The Cancer Research Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
7
|
Ertay A, Liu H, Liu D, Peng P, Hill C, Xiong H, Hancock D, Yuan X, Przewloka MR, Coldwell M, Howell M, Skipp P, Ewing RM, Downward J, Wang Y. WDHD1 is essential for the survival of PTEN-inactive triple-negative breast cancer. Cell Death Dis 2020; 11:1001. [PMID: 33221821 PMCID: PMC7680459 DOI: 10.1038/s41419-020-03210-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 12/24/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive type of breast cancer that lacks the oestrogen receptor, progesterone receptor and human epidermal growth factor receptor 2, making it difficult to target therapeutically. Targeting synthetic lethality is an alternative approach for cancer treatment. TNBC shows frequent loss of phosphatase and tensin homologue (PTEN) expression, which is associated with poor prognosis and treatment response. To identify PTEN synthetic lethal interactions, TCGA analysis coupled with a whole-genome siRNA screen in isogenic PTEN-negative and -positive cells were performed. Among the candidate genes essential for the survival of PTEN-inactive TNBC cells, WDHD1 (WD repeat and high-mobility group box DNA-binding protein 1) expression was increased in the low vs. high PTEN TNBC samples. It was also the top hit in the siRNA screen and its knockdown significantly inhibited cell viability in PTEN-negative cells, which was further validated in 2D and 3D cultures. Mechanistically, WDHD1 is important to mediate a high demand of protein translation in PTEN-inactive TNBC. Finally, the importance of WDHD1 in TNBC was confirmed in patient samples obtained from the TCGA and tissue microarrays with clinic-pathological information. Taken together, as an essential gene for the survival of PTEN-inactive TNBC cells, WDHD1 could be a potential biomarker or a therapeutic target for TNBC.
Collapse
Affiliation(s)
- Ayse Ertay
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Huiquan Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Dian Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Ping Peng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Charlotte Hill
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Hua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - David Hancock
- Oncogene Biology, The Francis Crick Institute, London, NW1 1AT, UK
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Marcin R Przewloka
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Mark Coldwell
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Michael Howell
- High-Throughput Screening, The Francis Crick Institute, London, NW1 1AT, UK
| | - Paul Skipp
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Rob M Ewing
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Julian Downward
- Oncogene Biology, The Francis Crick Institute, London, NW1 1AT, UK.
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, SO16 6YD, UK.
| |
Collapse
|
8
|
Zhou Y, Pei F, Ji M, Zhang F, Sun Y, Zhao Q, Wang X, Hong Y, Tian J, Wang Y, Chen JJ. WDHD1 facilitates G1 checkpoint abrogation in HPV E7 expressing cells by modulating GCN5. BMC Cancer 2020; 20:840. [PMID: 32883234 PMCID: PMC7469104 DOI: 10.1186/s12885-020-07287-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
Background Genomic instability is a hallmark of cancer. The G1 checkpoint allows cells to repair damaged DNA that may lead to genomic instability. The high-risk human papillomavirus (HPV) E7 gene can abrogate the G1 checkpoint, yet the mechanism is still not fully understood. Our recent study showed that WDHD1 (WD repeat and high mobility group [HMG]-box DNA-binding protein 1) plays a role in regulating G1 checkpoint of E7 expressing cells. In this study, we explored the mechanism by which WDHD1 regulates G1 checkpoint in HPV E7 expressing cells. Methods NIKS and RPE1 derived cell lines were used. Real-time PCR, Rescue experiment, FACS and BrdU labeling experiments were performed to examine role of GCN5 in G1 checkpoint abrogation in HPV-16 E7 expressing cells. Results In this study, we observed that WDHD1 facilitates G1 checkpoint abrogation by modulating GCN5 in HPV E7 expressing cells. Notably, depletion of WDHD1 caused G1 arrest while overexpression of GCN5 rescued the inhibitory effects of WDHD1 knockdown on G1/S progression. Furthermore, siWDHD1 significantly decreased cell cycle proliferation and DNA synthesis that was correlated with Akt phosphorylation (p-Akt), which was reversed by GCN5 overexpression in HPV E7 expressing cells. Conclusions In summary, our data identified a WDHD1/GCN5/Akt pathway leading to the abrogation of G1 checkpoint in the presence of damaged DNA, which may cause genomic instability and eventually HPV induced tumorigenesis.
Collapse
Affiliation(s)
- Yunying Zhou
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Microbiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Microbiology Department, Jinan Central Hospital Affiliated to Shandong first medical university, Jinan, China.,Shandong LaiBo Biotechnology co., Ltd, Jinan, China
| | - Fengyan Pei
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Microbiology Department, Jinan Central Hospital Affiliated to Shandong first medical university, Jinan, China
| | - Mingyu Ji
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Microbiology Department, Jinan Central Hospital Affiliated to Shandong first medical university, Jinan, China
| | - Fang Zhang
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Microbiology Department, Jinan Central Hospital Affiliated to Shandong first medical university, Jinan, China
| | - Yingshuo Sun
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qianqian Zhao
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Microbiology Department, Jinan Central Hospital Affiliated to Shandong first medical university, Jinan, China
| | - Xiao Wang
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Microbiology Department, Jinan Central Hospital Affiliated to Shandong first medical university, Jinan, China
| | - Yatian Hong
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Microbiology Department, Jinan Central Hospital Affiliated to Shandong first medical university, Jinan, China
| | - Juanjuan Tian
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Microbiology Department, Jinan Central Hospital Affiliated to Shandong first medical university, Jinan, China
| | - Yunshan Wang
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China. .,Department of Microbiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,Microbiology Department, Jinan Central Hospital Affiliated to Shandong first medical university, Jinan, China.
| | - Jason J Chen
- Department of Microbiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
9
|
Chen S, Gao C, Wu Y, Huang Z. Identification of Prognostic miRNA Signature and Lymph Node Metastasis-Related Key Genes in Cervical Cancer. Front Pharmacol 2020; 11:544. [PMID: 32457603 PMCID: PMC7226536 DOI: 10.3389/fphar.2020.00544] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/09/2020] [Indexed: 12/14/2022] Open
Abstract
Background miRNAs and genes can serve as biomarkers for the prognosis and therapy of cervical tumors whose metastasis into lymph nodes is closely associated with disease progression and poor prognosis. Methods R software and Bioconductor packages were employed to identify differentially expressed miRNAs (DEMs) from The Cancer Genome Atlas (TCGA) database. GEO2R detected differentially expressed genes (DEGs) in the GSE7410 dataset originating from the Gene Expression Omnibus (GEO). A Cox proportional hazard regression model was established to select prognostic miRNA biomarkers. Online tools such as TargetScan and miRDB predicted target genes, and overlapping DEGs and target genes were defined as consensus genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and Gene Ontology (GO) function annotations were performed to discern the potential functions of consensus genes. STRING and Cytoscape screened key genes and constructed a regulatory network. Results A combination of four miRNAs (down-regulated miR-502 and miR-145, up-regulated miR-142 and miR-33b) was identified as an independent prognostic signature of cervical cancer. A total of 94 consensus genes were significantly enriched in 7 KEGG pathways and 19 GO function annotations including the cAMP signaling pathway, the plasma membrane, integral components of the plasma membrane, cell adhesion, etc. The module analysis suggested that CXCL12, IGF1, PTPRC CDH5, RAD51B, REV3L, and WDHD1 are key genes that significantly correlate with cervical cancer lymph node metastasis. Conclusions This study demonstrates that a four-miRNA signature can be a prognostic biomarker, and seven key genes are significantly associated with lymph node metastasis in cervical cancer patients. These miRNAs and key genes have the potential to be therapeutic targets for cervical cancer. Among them, two miRNAs (miR-502 and miR-33b) and two key genes (PTPRC and CDH5) were first reported to be potential novel biomarkers for cervical cancer. The current study further characterizes the progression of lymph node metastasis and mechanism of cervical tumors; therefore, it provides a novel diagnostic indicator and therapeutic targets for future clinical treatments.
Collapse
Affiliation(s)
- Shuoling Chen
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Guangdong Medical University, Dongguan, China.,The Second School of Clinical Medicine, Guangdong Medical University, Dongguan, China
| | - Chang Gao
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Guangdong Medical University, Dongguan, China.,Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Yangyuan Wu
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Guangdong Medical University, Dongguan, China.,The Second School of Clinical Medicine, Guangdong Medical University, Dongguan, China
| | - Zunnan Huang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Guangdong Medical University, Dongguan, China.,Institute of Marine Biomedical Research, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
10
|
Yang HJ, Xue JM, Li J, Wan LH, Zhu YX. Identification of key genes and pathways of diagnosis and prognosis in cervical cancer by bioinformatics analysis. Mol Genet Genomic Med 2020; 8:e1200. [PMID: 32181600 PMCID: PMC7284022 DOI: 10.1002/mgg3.1200] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 02/09/2020] [Accepted: 02/21/2020] [Indexed: 12/24/2022] Open
Abstract
Background Cervical cancer as one of the most common malignant tumors lead to bad prognosis among women. Some researches already focus on the carcinogenesis and pathogenesis of cervical cancer, but it is still necessary to identify more key genes and pathways. Methods Differentially expressed genes were identified by GEO2R from the gene expression omnibus (GEO) website, then gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyzed by DAVID. Meanwhile, protein–protein interaction network was constructed by STRING, and both key genes and modules were found in visualizing network through Cytoscape. Besides, GEPIA did the differential expression of key genes and survival analysis. Finally, the expression of genes related to prognosis was further explored by UNLCAN, oncomine, and the human protein atlas. Results Totally 57 differentially expressed genes were founded, not only enriched in G1/S transition of mitotic cell cycle, mitotic nuclear division, and cell division but also participated in cytokine–cytokine receptor interaction, toll‐like receptor signaling pathway, and amoebiasis. Additionally, 12 hub genes and 3 key modules were screened in the Cytoscape visualization network. Further survival analysis showed that TYMS (OMIM accession number 188350), MCM2 (OMIM accession number 116945), HELLS (OMIM accession number 603946), TOP2A (OMIM accession number 126430), and CXCL8 (OMIM accession number 146930) were associated with the prognosis of cervical cancer. Conclusion This study aim to better understand the characteristics of some genes and signaling pathways about cervical cancer by bioinformatics, and could provide further research ideas to find new mechanism, more prognostic factors, and potential therapeutic targets for cervical cancer.
Collapse
Affiliation(s)
- Hua-Ju Yang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Oncology, Jinshan Hospital of The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Clinical Cancer Research Center, Chongqing, China
| | - Jin-Min Xue
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Oncology, Jinshan Hospital of The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Clinical Cancer Research Center, Chongqing, China
| | - Jie Li
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Oncology, Jinshan Hospital of The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Clinical Cancer Research Center, Chongqing, China
| | - Ling-Hong Wan
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Oncology, Jinshan Hospital of The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Clinical Cancer Research Center, Chongqing, China
| | - Yu-Xi Zhu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Oncology, Jinshan Hospital of The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Clinical Cancer Research Center, Chongqing, China
| |
Collapse
|
11
|
Human Papillomavirus 16 E5 Inhibits Interferon Signaling and Supports Episomal Viral Maintenance. J Virol 2020; 94:JVI.01582-19. [PMID: 31666385 DOI: 10.1128/jvi.01582-19] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023] Open
Abstract
Human papillomaviruses (HPVs) infect keratinocytes of stratified epithelia. Long-term persistence of infection is a critical risk factor for the development of HPV-induced malignancies. Through the actions of its oncogenes, HPV evades host immune responses to facilitate its productive life cycle. In this work, we discovered a previously unknown function of the HPV16 E5 oncoprotein in the suppression of interferon (IFN) responses. This suppression is focused on keratinocyte-specific IFN-κ and is mediated through E5-induced changes in growth factor signaling pathways, as identified through phosphoproteomics analysis. The loss of E5 in keratinocytes maintaining the complete HPV16 genome results in the derepression of IFNK transcription and subsequent JAK/STAT-dependent upregulation of several IFN-stimulated genes (ISGs) at both the mRNA and protein levels. We also established a link between the loss of E5 and the subsequent loss of genome maintenance and stability, resulting in increased genome integration.IMPORTANCE Persistent human papillomavirus infections can cause a variety of significant cancers. The ability of HPV to persist depends on evasion of the host immune system. In this study, we show that the HPV16 E5 protein can suppress an important aspect of the host immune response. In addition, we find that the E5 protein is important for helping the virus avoid integration into the host genome, which is a frequent step along the pathway to cancer development.
Collapse
|
12
|
Liu B, Hu Y, Qin L, Peng XB, Huang YX. MicroRNA-494-dependent WDHDI inhibition suppresses epithelial-mesenchymal transition, tumor growth and metastasis in cholangiocarcinoma. Dig Liver Dis 2019; 51:397-411. [PMID: 30314946 DOI: 10.1016/j.dld.2018.08.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/16/2018] [Accepted: 08/21/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) represents a devastating malignancy characterized by high mortality, and notoriously problematic to diagnose. Recently, microRNAs (miRs) have been intensively investigated due to their potential usefulness from a tumor treatment perspective. AIMS The current study was aimed to investigate whether miR-494 influences epithelial-mesenchymal transition (EMT), tumor growth and metastasis of CCA. METHODS The regulatory miRNAs of WDHD1 in CCA expression chip were predicted, followed by determination of the miR-494 and WDHD1 expression in normal cholangiocyte tissues and CCA tissues. The related protein levels were determined. CCA cell migration, invasion, viability, and cell cycle distribution and the dosage-dependent effect of miR-494 on CCA cell growth were subsequently detected. Finally, tumorigenicity and lymph node metastasis (LNM) were measured. RESULTS Initially, miR-194 affected the CCA development via negatively regulating WDHD1 and miR-494 which were downregulated while WDHD1 was upregulated in CCA. In addition, miR-494 overexpression elevated E-cadherin expression while decreased expressions of WDHD1, N-cadherin, Vimentin, Snail, Twist and MMP-9. Finally, overexpressed miR-494 was observed to suppress EMT, cell viability, migration, invasion, arrest cell cycle progression, tumor formation, and LNM while accelerating cell apoptosis in vivo. CONCLUSION This study indicated that miR-494 overexpression suppresses EMT, tumor formation and LNM while promoting CCA cell apoptosis through inhibiting WDHD1 in CCA.
Collapse
Affiliation(s)
- Bo Liu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Yu Hu
- Center for Experimental Medical Research, Third Xiangya Hospital, Central South University, Changsha, PR China
| | - Lu Qin
- Department of Intestinal Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Xu-Bin Peng
- Department of Neurosurgery, The Cancer Hospital Affiliated to Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Ya-Xun Huang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, PR China.
| |
Collapse
|
13
|
Qiao L, Zhang Q, Zhang W, Chen JJ. The lysine acetyltransferase GCN5 contributes to human papillomavirus oncoprotein E7-induced cell proliferation via up-regulating E2F1. J Cell Mol Med 2018; 22:5333-5345. [PMID: 30079588 PMCID: PMC6201343 DOI: 10.1111/jcmm.13806] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/25/2018] [Accepted: 06/29/2018] [Indexed: 02/06/2023] Open
Abstract
General control nondepressible 5 (GCN5), the first identified transcription-related lysine acetyltransferase (KAT), is an important catalytic component of a transcriptional regulatory SAGA (Spt-Ada-GCN5-Acetyltransferase) and ATAC (ADA2A-containing) complex. While GCN5 has been implicated in cancer development, its role in cervical cancer is not known. The human papillomavirus (HPV) oncoprotein E7 abrogates the G1 cell cycle checkpoint and induces genomic instability, which plays a central role in cervical carcinogenesis. In this study, we observed that GCN5 was up-regulated in HPV E7-expressing cells, knockdown of GCN5 inhibited cell cycle progression and DNA synthesis in HPV E7-expressing cells. Notably, GCN5 knockdown reduced the steady-state levels of transcription factor E2F1. Depletion of E2F1 caused G1 arrest while overexpression of E2F1 rescued the inhibitory effects of GCN5 knockdown on G1/S progression in HPV E7-expressing cells. Results from chromatin immunoprecipitation (ChIP) assays demonstrated that GCN5 bound to the E2F1 promoter and increased the extent of histone acetylation within these regions. GCN5 also acetylated c-Myc and increased its ability to bind to the E2F1 promoter. Knockdown of c-Myc reduced the steady-state levels of E2F1 and caused G1 arrest. These results revealed a novel mechanism of E7 function whereby elevated GCN5 acetylates histones and c-Myc to regulate E2F1 expression and cell cycle progression.
Collapse
Affiliation(s)
- Lijun Qiao
- The Cancer Research Center and Department of Microbiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Qishu Zhang
- The Cancer Research Center and Department of Microbiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Weifang Zhang
- Department of Microbiology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Jason J Chen
- The Cancer Research Center and Department of Microbiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| |
Collapse
|
14
|
Qiao L, Zheng J, Tian Y, Zhang Q, Wang X, Chen JJ, Zhang W. Regulator of chromatin condensation 1 abrogates the G1 cell cycle checkpoint via Cdk1 in human papillomavirus E7-expressing epithelium and cervical cancer cells. Cell Death Dis 2018; 9:583. [PMID: 29789527 PMCID: PMC5964113 DOI: 10.1038/s41419-018-0584-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/31/2018] [Accepted: 04/06/2018] [Indexed: 01/01/2023]
Abstract
Regulator of chromatin condensation 1 (RCC1) is a major guanine-nucleotide exchange factor for Ran GTPase and plays key roles in nucleo-cytoplasmic transport, mitosis, and nuclear envelope assembly. RCC1 is known to be a critical cell cycle regulator whose loss causes G1 phase arrest, but the molecular basis for this regulation is poorly understood. Furthermore, little is known about the relationship between RCC1 and carcinomas. Human papillomavirus (HPV) infection is highly associated with the development of cervical cancer. The expression and function of RCC1 in HPV-related cervical cancer and cell cycle regulation have not yet been explored. In this study, we first observed that RCC1 immunostaining was mildly increased in cervical cancer tissues and significantly upregulated in HPV E7-expressing cells; this localization was primarily nuclear. We showed that the transcription factor c-Jun transcriptionally upregulates RCC1 via a direct interaction with the RCC1 promoter. Moreover, siRNA-mediated knockdown of RCC1 inhibited G1/S cell cycle progression and DNA synthesis, while overexpression of RCC1 abrogated the G1 checkpoint. RCC1 knockdown downregulated the protein levels of the transcription factor E2F1, especially nuclear E2F1, by promoting its degradation in HPV E7-expressing cells. Overexpression of E2F1 rescued RCC1 knockdown-mediated inhibition of G1/S progression. Additionally, we showed that cyclin-dependent kinase 1 (Cdk1), a known target of E2F1, is involved in G1 checkpoint regulation, as Cdk1 knockdown hindered G1/S progression, while Cdk1 overexpression rescued RCC1 knockdown-mediated effect on G1 cell cycle progression. Furthermore, RCC1 knockdown reduced HPV E7 protein levels, which may in turn downregulate E2F1. Our study explores the function of RCC1 in G1/S cell cycle progression and suggests that RCC1 may be involved in HPV E7-mediated genomic instability.
Collapse
Affiliation(s)
- Lijun Qiao
- Cancer Research Center and Department of Microbiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Jingyi Zheng
- Department of Microbiology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Yonghao Tian
- Department of Orthopedic Surgery, Qilu Hospital Affiliated Shandong University, Jinan, Shandong, China
| | - Qishu Zhang
- Cancer Research Center and Department of Microbiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Xiao Wang
- Institute of Pathobiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Jason J Chen
- Cancer Research Center and Department of Microbiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Weifang Zhang
- Department of Microbiology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
15
|
Zhang Q, Qiao L, Wang X, Ding C, Chen JJ. UHRF1 epigenetically down-regulates UbcH8 to inhibit apoptosis in cervical cancer cells. Cell Cycle 2018; 17:300-308. [PMID: 29157076 DOI: 10.1080/15384101.2017.1403686] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
UHRF1 (ubiquitin-like, containing PHD and RING finger domains 1) is an important epigenetic regulator that plays a part in DNA methylation, protein methylation and ubiquitination. It is also frequently overexpressed in many types of cancers, including cervical cancer, which is caused by human papillomavirus (HPV). In this study, we showed that UHRF1 was up-regulated in HPV oncogene E7 expressing cells and HPV-positive cervical cancer cells. We demonstrated that UHRF1 down-regulated the expression of UBE2L6 gene that encodes the ISG15-conjugating enzyme UbcH8. Overexpression of UHRF1 reduced UBE2L6 while knockdown UHRF1 elevated the expression of UBE2L6. We showed that UHRF1 regulated UBE2L6 gene by promoter hypermethylation in cervical cancer cells. Consistent with the functions of UHRF1, restored expression of UbcH8 induced apoptosis. These findings establish UBE2L6 as a novel target of UHRF1 that regulates the apoptosis function of UHRF1. Our studies suggest that UHRF1/ UbcH8 can be manipulated for therapy in cervical cancer.
Collapse
Affiliation(s)
- Qishu Zhang
- a Cancer Research Center , Shandong University School of Basic Medical Sciences , Jinan , Shandong 250012 , China
| | - Lijun Qiao
- a Cancer Research Center , Shandong University School of Basic Medical Sciences , Jinan , Shandong 250012 , China
| | - Xiao Wang
- b Department of Pathology , Shandong University School of Basic Medicine , Jinan , Shandong 250012 , China
| | - Changkuan Ding
- a Cancer Research Center , Shandong University School of Basic Medical Sciences , Jinan , Shandong 250012 , China
| | - Jason J Chen
- a Cancer Research Center , Shandong University School of Basic Medical Sciences , Jinan , Shandong 250012 , China
| |
Collapse
|
16
|
Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM. Cell Death Differ 2017; 25:114-132. [PMID: 29125603 PMCID: PMC5729532 DOI: 10.1038/cdd.2017.172] [Citation(s) in RCA: 442] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/10/2017] [Accepted: 09/13/2017] [Indexed: 12/22/2022] Open
Abstract
Activation of the p53 tumor suppressor can lead to cell cycle arrest. The key mechanism of p53-mediated arrest is transcriptional downregulation of many cell cycle genes. In recent years it has become evident that p53-dependent repression is controlled by the p53–p21–DREAM–E2F/CHR pathway (p53–DREAM pathway). DREAM is a transcriptional repressor that binds to E2F or CHR promoter sites. Gene regulation and deregulation by DREAM shares many mechanistic characteristics with the retinoblastoma pRB tumor suppressor that acts through E2F elements. However, because of its binding to E2F and CHR elements, DREAM regulates a larger set of target genes leading to regulatory functions distinct from pRB/E2F. The p53–DREAM pathway controls more than 250 mostly cell cycle-associated genes. The functional spectrum of these pathway targets spans from the G1 phase to the end of mitosis. Consequently, through downregulating the expression of gene products which are essential for progression through the cell cycle, the p53–DREAM pathway participates in the control of all checkpoints from DNA synthesis to cytokinesis including G1/S, G2/M and spindle assembly checkpoints. Therefore, defects in the p53–DREAM pathway contribute to a general loss of checkpoint control. Furthermore, deregulation of DREAM target genes promotes chromosomal instability and aneuploidy of cancer cells. Also, DREAM regulation is abrogated by the human papilloma virus HPV E7 protein linking the p53–DREAM pathway to carcinogenesis by HPV. Another feature of the pathway is that it downregulates many genes involved in DNA repair and telomere maintenance as well as Fanconi anemia. Importantly, when DREAM function is lost, CDK inhibitor drugs employed in cancer treatment such as Palbociclib, Abemaciclib and Ribociclib can compensate for defects in early steps in the pathway upstream from cyclin/CDK complexes. In summary, the p53–p21–DREAM–E2F/CHR pathway controls a plethora of cell cycle genes, can contribute to cell cycle arrest and is a target for cancer therapy.
Collapse
|
17
|
Chen H, Zhang Q, Qiao L, Fan X, Zhang W, Zhao W, Chen JJ. Cdc6 contributes to abrogating the G1 checkpoint under hypoxic conditions in HPV E7 expressing cells. Sci Rep 2017; 7:2927. [PMID: 28592805 PMCID: PMC5462782 DOI: 10.1038/s41598-017-03060-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/21/2017] [Indexed: 01/11/2023] Open
Abstract
The human papillomavirus (HPV) plays a central role in cervical carcinogenesis and its oncogene E7 is essential in this process. We showed here that E7 abrogated the G1 cell cycle checkpoint under hypoxia and analyzed key cell cycle related proteins for their potential role in this process. To further explore the mechanism by which E7 bypasses hypoxia-induced G1 arrest, we applied a proteomic approach and used mass spectrometry to search for proteins that are differentially expressed in E7 expressing cells under hypoxia. Among differentially expressed proteins identified, Cdc6 is a DNA replication initiation factor and exhibits oncogenic activities when overexpressed. We have recently demonstrated that Cdc6 was required for E7-induced re-replication. Significantly, here we showed that Cdc6 played a role in E7-mediated G1 checkpoint abrogation under hypoxic condition, and the function could possibly be independent from its role in DNA replication initiation. This study uncovered a new function of Cdc6 in regulating cell cycle progression and has important implications in HPV-associated cancers.
Collapse
Affiliation(s)
- Hanxiang Chen
- Department of Pathogenic Biology and Key Laboratory of Infection and Immunity of Shandong Province, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, China
| | - Qishu Zhang
- The Cancer Research Center, Shandong University School of Medicine, Jinan, Shandong, 250012, China
| | - Lijun Qiao
- The Cancer Research Center, Shandong University School of Medicine, Jinan, Shandong, 250012, China
| | - Xueli Fan
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01532, USA.,Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xian, Shanxi, 710032, China
| | - Weifang Zhang
- Department of Pathogenic Biology and Key Laboratory of Infection and Immunity of Shandong Province, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, China
| | - Weiming Zhao
- Department of Pathogenic Biology and Key Laboratory of Infection and Immunity of Shandong Province, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, China.
| | - Jason J Chen
- The Cancer Research Center, Shandong University School of Medicine, Jinan, Shandong, 250012, China.
| |
Collapse
|
18
|
Fischer M, Uxa S, Stanko C, Magin TM, Engeland K. Human papilloma virus E7 oncoprotein abrogates the p53-p21-DREAM pathway. Sci Rep 2017; 7:2603. [PMID: 28572607 PMCID: PMC5453983 DOI: 10.1038/s41598-017-02831-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/18/2017] [Indexed: 12/12/2022] Open
Abstract
High risk human papilloma viruses cause several types of cancer. The HPV oncoproteins E6 and E7 are essential for oncogenic cell transformation. E6 mediates the degradation of the tumor suppressor p53, and E7 can form complexes with the retinoblastoma pRB tumor suppressor. Recently, it has been shown that HPV E7 can also interfere with the function of the DREAM transcriptional repressor complex. Disruption of DREAM-dependent transcriptional repression leads to untimely early expression of central cell cycle regulators. The p53-p21-DREAM pathway represents one important means of cell cycle checkpoint activation by p53. By activating this pathway, p53 can downregulate transcription of genes controlled by DREAM. Here, we present a genome-wide ranked list of genes deregulated by HPV E7 expression and relate it to datasets of cell cycle genes and DREAM targets. We find that DREAM targets are generally deregulated after E7 expression. Furthermore, our analysis shows that p53-dependent downregulation of DREAM targets is abrogated when HPV E7 is expressed. Thus, p53 checkpoint control is impaired by HPV E7 independently of E6. In summary, our analysis reveals that disruption of DREAM through the HPV E7 oncoprotein upregulates most, if not all, cell cycle genes and impairs p53's control of cell cycle checkpoints.
Collapse
Affiliation(s)
- Martin Fischer
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany.
| | - Sigrid Uxa
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
| | - Clara Stanko
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
| | - Thomas M Magin
- Institute of Biology and Translational Center for Regenerative Medicine, University of Leipzig, Leipzig, Germany
| | - Kurt Engeland
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
19
|
Songock WK, Kim SM, Bodily JM. The human papillomavirus E7 oncoprotein as a regulator of transcription. Virus Res 2016; 231:56-75. [PMID: 27818212 DOI: 10.1016/j.virusres.2016.10.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 12/12/2022]
Abstract
High-risk human papillomaviruses (HPVs) encode oncoproteins which manipulate gene expression patterns in the host keratinocytes to facilitate viral replication, regulate viral transcription, and promote immune evasion and persistence. In some cases, oncoprotein-induced changes in host cell behavior can cause progression to cancer, but a complete picture of the functions of the viral oncoproteins in the productive HPV life cycle remains elusive. E7 is the HPV-encoded factor most responsible for maintaining cell cycle competence in differentiating keratinocytes. Through interactions with dozens of host factors, E7 has an enormous impact on host gene expression patterns. In this review, we will examine the role of E7 specifically as a regulator of transcription. We will discuss mechanisms of regulation of cell cycle-related genes by E7 as well as genes involved in immune regulation, growth factor signaling, DNA damage responses, microRNAs, and others pathways. We will also discuss some unanswered questions about how transcriptional regulation by E7 impacts the biology of HPV in both benign and malignant conditions.
Collapse
Affiliation(s)
- William K Songock
- Department of Microbiology and Immunology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Seong-Man Kim
- Department of Microbiology and Immunology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Jason M Bodily
- Department of Microbiology and Immunology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| |
Collapse
|