1
|
Philip DT, Goins NM, Lazear HM. A fur plucking model to study herpes simplex virus reactivation and recurrent disease. mSphere 2024; 9:e0078323. [PMID: 39382285 PMCID: PMC11520289 DOI: 10.1128/msphere.00783-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
Herpes simplex viruses (HSV-1 and HSV-2) most commonly cause ulcerative epithelial lesions (cold sores and genital herpes). Importantly, HSV establishes life-long persistent (latent) infection in peripheral neurons. Reactivation from latency produces recurrent epithelial lesions, which constitute the greatest burden of HSV disease in people. The mechanisms that regulate latency and reactivation remain incompletely understood, in part due to limitations in the animal models available for studying HSV reactivation. We have developed a simple and tractable model to induce HSV-1 and HSV-2 reactivation from latency to cause recurrent skin disease. We infected C57BL/6 mice with HSV-1 (strains NS, F, SC16, 17syn+) or HSV-2 (strain 333) on flank skin depilated by manual plucking. After at least 35 days post-infection (dpi), we replucked the fur from the infected flank and observed recurrent lesions in the same dermatome as the primary infection. We detected HSV DNA in dermatome skin through 4 days post-replucking and observed viral antigen and reporter signal in skin lesions by histology, consistent with viral replication following reactivation. In addition to C57BL/6 mice, we were able to produce reactivation in Balb/c and SKH-1 mice. We found that shaving the ipsilateral flank or plucking the contralateral flank did not induce recurrent skin lesions, suggesting that fur plucking is a specific stimulus that induces HSV reactivation. Furthermore, we were able to induce multiple rounds of plucking-induced recurrent disease, providing a model to investigate the lifelong nature of HSV infection. This new model provides a tractable system for studying pathogenic mechanisms of and therapeutic interventions against HSV reactivation and recurrent disease. IMPORTANCE Herpes simplex viruses (HSV-1 and HSV-2) have infected over half of the US adult population to cause a lifelong, persistent infection; however, our understanding of the mechanisms that govern HSV reactivation and recurrent disease is incomplete. This is in part due to limitations in the animal models used to study recurrent disease, which are laborious and inefficient in mice. To address this technical gap, we developed a mouse model in which fur plucking after flank skin infection is sufficient to induce episodes of HSV reactivation and recurrent disease. Our work provides a model for the field to investigate the pathogenic mechanisms of HSV and immune responses during recurrent disease and provides an opportunity to investigate the neurobiology of HSV infection.
Collapse
Affiliation(s)
- Drake T. Philip
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nigel M. Goins
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Helen M. Lazear
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Cao S, Zhou M, Ji S, Ma D, Zhu S. Recent Advances in the Study of Alphaherpesvirus Latency and Reactivation: Novel Guidance for the Design of Herpesvirus Live Vector Vaccines. Pathogens 2024; 13:779. [PMID: 39338969 PMCID: PMC11435198 DOI: 10.3390/pathogens13090779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Alphaherpesviruses, including herpes simplex virus type 1 (HSV-1), herpes simplex virus type 2 (HSV-2), and varicella-zoster virus (VZV), infect a diverse array of hosts, spanning both humans and animals. Alphaherpesviruses have developed a well-adapted relationship with their hosts through long-term evolution. Some alphaherpesviruses exhibit a typical neurotropic characteristic, which has garnered widespread attention and in-depth research. Virus latency involves the retention of viral genomes without producing infectious viruses. However, under stress, this can be reversed, resulting in lytic infection. Such reactivation events can lead to recurrent infections, manifesting as diseases like herpes labialis, genital herpes, and herpes zoster. Reactivation is a complex process influenced by both viral and host factors, and identifying how latency and reactivation work is vital to developing new antiviral therapies. Recent research highlights a complex interaction among the virus, neurons, and the immune system in regulating alphaherpesvirus latency and reactivation. Neurotropic alphaherpesviruses can breach host barriers to infect neurons, proliferate extensively within their cell bodies, and establish latent infections or spread further. Whether infecting neurons or spreading further, the virus undergoes transmission along axons or dendrites, making this process an indispensable part of the viral life cycle and a critical factor influencing the virus's invasion of the nervous system. Research on the transmission process of neurotropic alphaherpesviruses within neurons can not only deepen our understanding of the virus but can also facilitate the targeted development of corresponding vaccines. This review concentrates on the relationship between the transmission, latency, and activation of alphaherpesviruses within neurons, summarizes recent advancements in the field, and discusses how these findings can inform the design of live virus vaccines for alphaherpesviruses.
Collapse
Affiliation(s)
- Shinuo Cao
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225306, China; (S.C.); (M.Z.)
| | - Mo Zhou
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225306, China; (S.C.); (M.Z.)
| | - Shengwei Ji
- Department of Veterinary Medicine, Agriculture College of Yanbian University, Yanji 133000, China;
| | - Dongxue Ma
- Department of Veterinary Medicine, Agriculture College of Yanbian University, Yanji 133000, China;
| | - Shanyuan Zhu
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225306, China; (S.C.); (M.Z.)
| |
Collapse
|
3
|
Singer M, Husseiny MI. Immunological Considerations for the Development of an Effective Herpes Vaccine. Microorganisms 2024; 12:1846. [PMID: 39338520 PMCID: PMC11434158 DOI: 10.3390/microorganisms12091846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Research is underway to develop a vaccine to prevent and cure infection from herpes simplex virus (HSV). It emphasizes the critical need for immunization to address public health issues and the shortcomings of existing treatment options. Furthermore, studies on the HSV vaccine advance the field of immunology and vaccine creation, which may help in the battle against other viral illnesses. The current lack of such a vaccine is, in part, due to herpes viral latency in sensory ganglions. Current vaccines rely on tissue-resident memory CD8+ T cells, which are known to provide protection against subsequent HSV reinfection and reactivation without correlating with other immune subsets. For that reason, there is no effective vaccine that can provide protection against latent or recurrent herpes infection. This review focuses on conventional methods for evaluating the efficacy of a herpes vaccine using differential CD8+ T cells and important unaccounted immune aspects for designing an effective vaccine against herpes.
Collapse
Affiliation(s)
- Mahmoud Singer
- School of Medicine, University of California Irvine, Irvine, CA 92617, USA
| | - Mohamed I. Husseiny
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
4
|
Korom M, Wang H, Bernier KM, Geiss BJ, Morrison LA. ICP8-vhs- HSV-2 Vaccine Expressing B7 Costimulation Molecules Optimizes Safety and Efficacy against HSV-2 Infection in Mice. Viruses 2023; 15:1570. [PMID: 37515256 PMCID: PMC10384616 DOI: 10.3390/v15071570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Herpes simplex virus 2 (HSV-2) causes most sexually transmitted genital ulcerative disease. No effective prophylactic vaccine is currently available. Replication-defective (ICP8-) HSV stimulates immune responses in animals without producing progeny virus, making it potentially useful as a safe form of a live vaccine against HSV. We previously demonstrated that mice generate a stronger response to ICP8- virus encoding B7-2 costimulation molecules than to the parental replication-defective virus. We have also demonstrated enhanced immunogenicity of an ICP8-, virion host shutoff (vhs)- virus which can no longer destabilize viral and host mRNAs. Here, we constructed a triple mutant, ICP8-vhs-B7-2+ strain, and compared it to both double mutant viruses. Immunization of mice with a single dose of ICP8-B7-2+ or ICP8-vhs-B7-2+ virus decreased challenge virus replication in the vaginal mucosa, genital disease, and mortality more effectively than immunization with the ICP8-vhs- virus. Immunization with ICP8-B7-2+ or ICP8-vhs-B7-2+ virus also effectively suppressed subsequent HSV-2 infection of the nervous system compared to immunization with the ICP8-vhs- virus. ICP8-B7-2+ and ICP8-vhs-B7-2+ strains induced more IFN gamma-producing CD8 T cells and memory CD8 T cells than did ICP8-vhs- virus, potentially explaining the enhanced protective effects. Thus, B7 costimulation molecules expressed from a replication-defective vaccine can enhance vaccine efficacy, even in an immunocompetent host.
Collapse
Affiliation(s)
| | | | | | | | - Lynda A. Morrison
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, MO 63104, USA; (M.K.); (H.W.); (K.M.B.); (B.J.G.)
| |
Collapse
|
5
|
Egan KP, Awasthi S, Tebaldi G, Hook LM, Naughton AM, Fowler BT, Beattie M, Alameh MG, Weissman D, Cohen GH, Friedman HM. A Trivalent HSV-2 gC2, gD2, gE2 Nucleoside-Modified mRNA-LNP Vaccine Provides Outstanding Protection in Mice against Genital and Non-Genital HSV-1 Infection, Comparable to the Same Antigens Derived from HSV-1. Viruses 2023; 15:1483. [PMID: 37515169 PMCID: PMC10384700 DOI: 10.3390/v15071483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/24/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
HSV-1 disease is a significant public health burden causing orofacial, genital, cornea, and brain infection. We previously reported that a trivalent HSV-2 gC2, gD2, gE2 nucleoside-modified mRNA-lipid nanoparticle (LNP) vaccine provides excellent protection against vaginal HSV-1 infection in mice. Here, we evaluated whether this HSV-2 gC2, gD2, gE2 vaccine is as effective as a similar HSV-1 mRNA LNP vaccine containing gC1, gD1, and gE1 in the murine lip and genital infection models. Mice were immunized twice with a total mRNA dose of 1 or 10 µg. The two vaccines produced comparable HSV-1 neutralizing antibody titers, and surprisingly, the HSV-2 vaccine stimulated more potent CD8+ T-cell responses to gE1 peptides than the HSV-1 vaccine. Both vaccines provided complete protection from clinical disease in the lip model, while in the genital model, both vaccines prevented death and genital disease, but the HSV-1 vaccine reduced day two vaginal titers slightly better at the 1 µg dose. Both vaccines prevented HSV-1 DNA from reaching the trigeminal or dorsal root ganglia to a similar extent. We conclude that the trivalent HSV-2 mRNA vaccine provides outstanding protection against HSV-1 challenge at two sites and may serve as a universal prophylactic vaccine for HSV-1 and HSV-2.
Collapse
Affiliation(s)
- Kevin P. Egan
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (K.P.E.); (S.A.); (G.T.); (L.M.H.); (A.M.N.); (B.T.F.); (M.-G.A.); (D.W.)
| | - Sita Awasthi
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (K.P.E.); (S.A.); (G.T.); (L.M.H.); (A.M.N.); (B.T.F.); (M.-G.A.); (D.W.)
| | - Giulia Tebaldi
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (K.P.E.); (S.A.); (G.T.); (L.M.H.); (A.M.N.); (B.T.F.); (M.-G.A.); (D.W.)
| | - Lauren M. Hook
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (K.P.E.); (S.A.); (G.T.); (L.M.H.); (A.M.N.); (B.T.F.); (M.-G.A.); (D.W.)
| | - Alexis M. Naughton
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (K.P.E.); (S.A.); (G.T.); (L.M.H.); (A.M.N.); (B.T.F.); (M.-G.A.); (D.W.)
| | - Bernard T. Fowler
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (K.P.E.); (S.A.); (G.T.); (L.M.H.); (A.M.N.); (B.T.F.); (M.-G.A.); (D.W.)
| | | | - Mohamad-Gabriel Alameh
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (K.P.E.); (S.A.); (G.T.); (L.M.H.); (A.M.N.); (B.T.F.); (M.-G.A.); (D.W.)
| | - Drew Weissman
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (K.P.E.); (S.A.); (G.T.); (L.M.H.); (A.M.N.); (B.T.F.); (M.-G.A.); (D.W.)
| | - Gary H. Cohen
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Harvey M. Friedman
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (K.P.E.); (S.A.); (G.T.); (L.M.H.); (A.M.N.); (B.T.F.); (M.-G.A.); (D.W.)
| |
Collapse
|
6
|
Role of Caspases and Gasdermin A during HSV-1 Infection in Mice. Viruses 2022; 14:v14092034. [PMID: 36146839 PMCID: PMC9504851 DOI: 10.3390/v14092034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) infection can manifest locally as mucocutaneous lesions or keratitis and can also spread to the central nervous system to cause encephalitis. HSV-1 establishes a lifelong latent infection and neither cure nor vaccine is currently available. The innate immune response is the first line of defense against infection. Caspases and gasdermins are important components of innate immunity. Caspases are a family of cysteine proteases, most of which mediate regulated cell death. Gasdermins are a family of pore-forming proteins that trigger lytic cell death. To determine whether caspases or gasdermins contribute to innate immune defenses against HSV-1, we screened mice deficient in specific cell death genes. Our results indicate a modest role for caspase-6 in defense against HSV-1. Further, Asc–/–Casp1/11–/– mice also had a modest increased susceptibility to HSV-1 infection. Caspase-7, -8, and -14 did not have a notable role in controlling HSV-1 infection. We generated Gsdma1-Gsdma2-Gsdma3 triple knockout mice, which also had normal susceptibility to HSV-1. We confirmed that the previously published importance of RIPK3 during systemic HSV-1 infection also holds true during skin infection. Overall, our data highlight that as a successful pathogen, HSV-1 has multiple ways to evade host innate immune responses.
Collapse
|
7
|
Chentoufi AA, Dhanushkodi NR, Srivastava R, Prakash S, Coulon PGA, Zayou L, Vahed H, Chentoufi HA, Hormi-Carver KK, BenMohamed L. Combinatorial Herpes Simplex Vaccine Strategies: From Bedside to Bench and Back. Front Immunol 2022; 13:849515. [PMID: 35547736 PMCID: PMC9082490 DOI: 10.3389/fimmu.2022.849515] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/18/2022] [Indexed: 12/19/2022] Open
Abstract
The development of vaccines against herpes simplex virus type 1 and type 2 (HSV1 and HSV-2) is an important goal for global health. In this review we reexamined (i) the status of ocular herpes vaccines in clinical trials; and (ii) discusses the recent scientific advances in the understanding of differential immune response between HSV infected asymptomatic and symptomatic individuals that form the basis for the new combinatorial vaccine strategies targeting HSV; and (iii) shed light on our novel "asymptomatic" herpes approach based on protective immune mechanisms in seropositive asymptomatic individuals who are "naturally" protected from recurrent herpetic diseases. We previously reported that phenotypically and functionally distinct HSV-specific memory CD8+ T cell subsets in asymptomatic and symptomatic HSV-infected individuals. Moreover, a better protection induced following a prime/pull vaccine approach that consists of first priming anti-viral effector memory T cells systemically and then pulling them to the sites of virus reactivation (e.g., sensory ganglia) and replication (e.g., eyes and vaginal mucosa), following mucosal administration of vectors expressing T cell-attracting chemokines. In addition, we reported that a combination of prime/pull vaccine approach with approaches to reverse T cell exhaustion led to even better protection against herpes infection and disease. Blocking PD-1, LAG-3, TIGIT and/or TIM-3 immune checkpoint pathways helped in restoring the function of antiviral HSV-specific CD8+ T cells in latently infected ganglia and increased efficacy and longevity of the prime/pull herpes vaccine. We discussed that a prime/pull vaccine strategy that use of asymptomatic epitopes, combined with immune checkpoint blockade would prove to be a successful herpes vaccine approach.
Collapse
Affiliation(s)
- Aziz A. Chentoufi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Nisha R. Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Pierre-Gregoire A. Coulon
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Hawa Vahed
- Department of Vaccines and Immunotherapies, TechImmune, Limited Liability Company (LLC), University Lab Partners, Irvine, CA, United States
| | | | - Kathy K. Hormi-Carver
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA, United States
- Biomedical Sciences, University of Ottawa, Ottawa, ON, Canada
- Department of Molecular Biology & Biochemistry, Institute for Immunology, School of Medicine, University of California Irvine, Irvine, CA, United States
| |
Collapse
|
8
|
Bernstein DI, Cardin RD, Smith GA, Pickard GE, Sollars PJ, Dixon DA, Pasula R, Bravo FJ. The R2 non-neuroinvasive HSV-1 vaccine affords protection from genital HSV-2 infections in a guinea pig model. NPJ Vaccines 2020; 5:104. [PMID: 33298966 PMCID: PMC7648054 DOI: 10.1038/s41541-020-00254-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 10/06/2020] [Indexed: 02/01/2023] Open
Abstract
Herpes simplex virus (HSV) infections are common and can cause severe illness but no vaccine is currently available. The recent failure of subunit HSV vaccines has highlighted the need for vaccines that present a diverse array of antigens, including the development of next-generation live-attenuated vaccines. However, most attenuated HSV strains propagate poorly, limiting their ability to elicit protective immune responses. A live-attenuated vaccine that replicates in non-neural tissue but is ablated for transmission into the nervous system may elicit protective immune responses without evoking neurologic complications or establishing life-long infections. Initial studies of R2, a live-attenuated vaccine that is engineered to be unable to invade the nervous system, used the guinea pig genital HSV model to evaluate the ability of R2 to replicate at the site of inoculation, cause disease and infect neural tissues. R2 was then evaluated as a vaccine using three routes of inoculation: intramuscular (IM), intradermal (ID) and intravaginal (IVag) and compared to IM administered gD2+MPL/Alum vaccine in the same model. R2 replicated in the genital tract but did not produce acute or recurrent disease and did not infect the neural tissue. The R2 vaccine-induced neutralizing antibody and decreased the severity of acute and recurrent HSV-2 disease as well as recurrent shedding. The ID route was the most effective. ID administered R2 was more effective than gD2+MPL/Alum at inducing neutralizing antibody, suppressing acute disease, and acute vaginal virus replication. R2 was especially more effective at reducing recurrent virus shedding, the most common source of HSV transmission. The live-attenuated prophylactic HSV vaccine, R2, was effective in the guinea pig model of genital HSV-2 especially when administered by the ID route. The use of live-attenuated HSV vaccines that robustly replicate in mucosal tissues but are ablated for neuroinvasion offers a promising approach for HSV vaccines.
Collapse
Affiliation(s)
- David I Bernstein
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA.
| | - Rhonda D Cardin
- School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Gregory A Smith
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Gary E Pickard
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, USA
| | - Patricia J Sollars
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, USA
| | - David A Dixon
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Rajamouli Pasula
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Fernando J Bravo
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
9
|
Egan KP, Hook LM, Naughton A, Pardi N, Awasthi S, Cohen GH, Weissman D, Friedman HM. An HSV-2 nucleoside-modified mRNA genital herpes vaccine containing glycoproteins gC, gD, and gE protects mice against HSV-1 genital lesions and latent infection. PLoS Pathog 2020; 16:e1008795. [PMID: 32716975 PMCID: PMC7410331 DOI: 10.1371/journal.ppat.1008795] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/06/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
HSV-1 causes 50% of first-time genital herpes infections in resource-rich countries and affects 190 million people worldwide. A prophylactic herpes vaccine is needed to protect against genital infections by both HSV-1 and HSV-2. Previously our laboratory developed a trivalent vaccine that targets glycoproteins C, D, and E present on the HSV-2 virion. We reported that this vaccine protects animals from genital disease and recurrent virus shedding following lethal HSV-2 challenge. Importantly the vaccine also generates cross-reactive antibodies that neutralize HSV-1, suggesting it may provide protection against HSV-1 infection. Here we compared the efficacy of this vaccine delivered as protein or nucleoside-modified mRNA immunogens against vaginal HSV-1 infection in mice. Both the protein and mRNA vaccines protected mice from HSV-1 disease; however, the mRNA vaccine provided better protection as measured by lower vaginal virus titers post-infection. In a second experiment, we compared protection provided by the mRNA vaccine against intravaginal challenge with HSV-1 or HSV-2. Vaccinated mice were totally protected against death, genital disease and infection of dorsal root ganglia caused by both viruses, but somewhat better protected against vaginal titers after HSV-2 infection. Overall, in the two experiments, the mRNA vaccine prevented death and genital disease in 54/54 (100%) mice infected with HSV-1 and 20/20 (100%) with HSV-2, and prevented HSV DNA from reaching the dorsal root ganglia, the site of virus latency, in 29/30 (97%) mice infected with HSV-1 and 10/10 (100%) with HSV-2. We consider the HSV-2 trivalent mRNA vaccine to be a promising candidate for clinical trials for prevention of both HSV-1 and HSV-2 genital herpes.
Collapse
Affiliation(s)
- Kevin P. Egan
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Lauren M. Hook
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alexis Naughton
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Norbert Pardi
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sita Awasthi
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gary H. Cohen
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Drew Weissman
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Harvey M. Friedman
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
10
|
Egan K, Hook LM, Naughton A, Friedman HM, Awasthi S. Herpes simplex virus type 2 trivalent protein vaccine containing glycoproteins C, D and E protects guinea pigs against HSV-1 genital infection. Hum Vaccin Immunother 2020; 16:2109-2113. [PMID: 32347775 PMCID: PMC7553673 DOI: 10.1080/21645515.2020.1749509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
A vaccine to prevent genital herpes is an unmet public health need. We previously reported that a trivalent vaccine containing herpes simplex virus type 2 (HSV-2) glycoproteins C, D, and E (gC2, gD2, gE2) produced in baculovirus and administered with CpG/alum as adjuvants blocks immune evasion mediated by gC2 and gE2 and virus entry by gD2. The vaccine protected guinea pigs against HSV-2 vaginal infection. We evaluated whether the HSV-2 vaccine cross-protects against HSV-1 because many first-time genital herpes infections are now caused by HSV-1. Guinea pigs were mock immunized or immunized with the trivalent vaccine and challenged intravaginally with a different HSV-1 isolate in two experiments. Guinea pigs immunized with the trivalent vaccine developed genital lesions on fewer days than the mock group: 2/477 (0.4%) days compared to 15/424 (3.5%) in experiment one, and 0/135 days compared to 17/135 (12.6%) in experiment two (both P < .001). No animal in the trivalent group had HSV-2 DNA detected in vaginal secretions: 0/180 days for trivalent compared to 4/160 (2.5%) for mock (P < .05) in experiment one, and 0/65 days for trivalent compared to 4/65 (6%) for mock in experiment two. Therefore, a vaccine designed to prevent HSV-2 also protects against HSV-1 genital infection.
Collapse
Affiliation(s)
- Kevin Egan
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA, USA
| | - Lauren M Hook
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA, USA
| | - Alexis Naughton
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA, USA
| | - Harvey M Friedman
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA, USA
| | - Sita Awasthi
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA, USA
| |
Collapse
|
11
|
Fan S, Xu X, Liao Y, Wang Y, Wang J, Feng M, Wang L, Zhang Y, He Z, Yang F, Fraser NW, Li Q. Attenuated Phenotype and Immunogenic Characteristics of a Mutated Herpes Simplex Virus 1 Strain in the Rhesus Macaque. Viruses 2018; 10:E234. [PMID: 29724057 PMCID: PMC5977227 DOI: 10.3390/v10050234] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/28/2018] [Accepted: 04/28/2018] [Indexed: 12/17/2022] Open
Abstract
Herpes simplex virus type 1(HSV-1) presents a conundrum to public health worldwide because of its specific pathogenicity and clinical features. Some experimental vaccines, such as the recombinant viral glycoproteins, exhibit the viral immunogenicity of a host-specific immune response, but none of these has achieved a valid epidemiological protective efficacy in the human population. In the present study, we constructed an attenuated HSV-1 strain M3 through the partial deletion of UL7, UL41, and the latency-associated transcript (LAT) using the CRISPR/Cas9 system. The mutant strain exhibited lowered infectivity and virulence in macaques. Neutralization testing and ELISpot detection of the specific T-cell responses confirmed the specific immunity induced by M3 immunization and this immunity defended against the challenges of the wild-type strain and restricted the entry of the wild-type strain into the trigeminal ganglion. These results in rhesus macaques demonstrated the potential of the attenuated vaccine for the prevention of HSV-1 in humans.
Collapse
Affiliation(s)
- Shengtao Fan
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China.
| | - Xingli Xu
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China.
| | - Yun Liao
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China.
| | - Yongrong Wang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China.
| | - Jianbin Wang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China.
| | - Min Feng
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China.
| | - Lichun Wang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China.
| | - Ying Zhang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China.
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China.
| | - Fengmei Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China.
| | - Nigel W Fraser
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Qihan Li
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China.
| |
Collapse
|
12
|
Richards AL, Sollars PJ, Pitts JD, Stults AM, Heldwein EE, Pickard GE, Smith GA. The pUL37 tegument protein guides alpha-herpesvirus retrograde axonal transport to promote neuroinvasion. PLoS Pathog 2017; 13:e1006741. [PMID: 29216315 PMCID: PMC5749899 DOI: 10.1371/journal.ppat.1006741] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/02/2018] [Accepted: 11/10/2017] [Indexed: 01/07/2023] Open
Abstract
A hallmark property of the neurotropic alpha-herpesvirinae is the dissemination of infection to sensory and autonomic ganglia of the peripheral nervous system following an initial exposure at mucosal surfaces. The peripheral ganglia serve as the latent virus reservoir and the source of recurrent infections such as cold sores (herpes simplex virus type I) and shingles (varicella zoster virus). However, the means by which these viruses routinely invade the nervous system is not fully understood. We report that an internal virion component, the pUL37 tegument protein, has a surface region that is an essential neuroinvasion effector. Mutation of this region rendered herpes simplex virus type 1 (HSV-1) and pseudorabies virus (PRV) incapable of spreading by retrograde axonal transport to peripheral ganglia both in culture and animals. By monitoring the axonal transport of individual viral particles by time-lapse fluorescence microscopy, the mutant viruses were determined to lack the characteristic sustained intracellular capsid motion along microtubules that normally traffics capsids to the neural soma. Consistent with the axonal transport deficit, the mutant viruses did not reach sites of latency in peripheral ganglia, and were avirulent. Despite this, viral propagation in peripheral tissues and in cultured epithelial cell lines remained robust. Selective elimination of retrograde delivery to the nervous system has long been sought after as a means to develop vaccines against these ubiquitous, and sometimes devastating viruses. In support of this potential, we find that HSV-1 and PRV mutated in the effector region of pUL37 evoked effective vaccination against subsequent nervous system challenges and encephalitic disease. These findings demonstrate that retrograde axonal transport of the herpesviruses occurs by a virus-directed mechanism that operates by coordinating opposing microtubule motors to favor sustained retrograde delivery of the virus to the peripheral ganglia. The ability to selectively eliminate the retrograde axonal transport mechanism from these viruses will be useful in trans-synaptic mapping studies of the mammalian nervous system, and affords a new vaccination paradigm for human and veterinary neurotropic herpesviruses.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Axonal Transport/genetics
- Axonal Transport/physiology
- Axons/virology
- Ganglia/virology
- Genes, Viral
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/pathogenicity
- Herpesvirus 1, Human/physiology
- Herpesvirus 1, Suid/genetics
- Herpesvirus 1, Suid/pathogenicity
- Herpesvirus 1, Suid/physiology
- Host-Pathogen Interactions/genetics
- Host-Pathogen Interactions/physiology
- Humans
- Male
- Mice
- Mice, Inbred DBA
- Models, Molecular
- Mutation
- Neurons/virology
- Rats
- Rats, Long-Evans
- Viral Structural Proteins/chemistry
- Viral Structural Proteins/genetics
- Viral Structural Proteins/physiology
- Viral Vaccines/genetics
- Virulence/genetics
- Virulence/physiology
- Virus Release/genetics
- Virus Release/physiology
Collapse
Affiliation(s)
- Alexsia L. Richards
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Patricia J. Sollars
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Jared D. Pitts
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Austin M. Stults
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Ekaterina E. Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Gary E. Pickard
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Gregory A. Smith
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
13
|
Stanfield B, Kousoulas KG. Herpes Simplex Vaccines: Prospects of Live-attenuated HSV Vaccines to Combat Genital and Ocular infections. CURRENT CLINICAL MICROBIOLOGY REPORTS 2015; 2:125-136. [PMID: 27114893 DOI: 10.1007/s40588-015-0020-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Herpes simplex virus type-1 (HSV-1) and its closely related type-2 (HSV-2) viruses cause important clinical manifestations in humans including acute ocular disease and genital infections. These viruses establish latency in the trigeminal ganglionic and dorsal root neurons, respectively. Both viruses are widespread among humans and can frequently reactivate from latency causing disease. Currently, there are no vaccines available against herpes simplex viral infections. However, a number of promising vaccine approaches are being explored in pre-clinical investigations with few progressing to early phase clinical trials. Consensus research findings suggest that robust humoral and cellular immune responses may partially control the frequency of reactivation episodes and reduce clinical symptoms. Live-attenuated viral vaccines have long been considered as a viable option for generating robust and protective immune responses against viral pathogens. Varicella zoster virus (VZV) belongs to the same alphaherpesvirus subfamily with herpes simplex viruses. A live-attenuated VZV vaccine has been extensively used in a prophylactic and therapeutic approach to combat primary and recurrent VZV infection indicating that a similar vaccine approach may be feasible for HSVs. In this review, we summarize pre-clinical approaches to HSV vaccine development and current efforts to test certain vaccine approaches in human clinical trials. Also, we discuss the potential advantages of using a safe, live-attenuated HSV-1 vaccine strain to protect against both HSV-1 and HSV-2 infections.
Collapse
Affiliation(s)
- Brent Stanfield
- Division of Biotechnology & Molecular Medicine, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Konstantin Gus Kousoulas
- Division of Biotechnology & Molecular Medicine, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
14
|
Stanfield BA, Stahl J, Chouljenko VN, Subramanian R, Charles AS, Saied AA, Walker JD, Kousoulas KG. A single intramuscular vaccination of mice with the HSV-1 VC2 virus with mutations in the glycoprotein K and the membrane protein UL20 confers full protection against lethal intravaginal challenge with virulent HSV-1 and HSV-2 strains. PLoS One 2014; 9:e109890. [PMID: 25350288 PMCID: PMC4211657 DOI: 10.1371/journal.pone.0109890] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 09/11/2014] [Indexed: 01/01/2023] Open
Abstract
Herpes Simplex Virus type-1 (HSV-1) and type-2 (HSV-2) establish life-long infections and cause significant orofacial and genital infections in humans. HSV-1 is the leading cause of infectious blindness in the western world. Currently, there are no available vaccines to protect against herpes simplex infections. Recently, we showed that a single intramuscular immunization with an HSV-1(F) mutant virus lacking expression of the viral glycoprotein K (gK), which prevents the virus from entering into distal axons of ganglionic neurons, conferred significant protection against either virulent HSV-1(McKrae) or HSV-2(G) intravaginal challenge in mice. Specifically, 90% of the mice were protected against HSV-1(McKrae) challenge, while 70% of the mice were protected against HSV-2(G) challenge. We constructed the recombinant virus VC2 that contains specific mutations in gK and the membrane protein UL20 preventing virus entry into axonal compartments of neurons, while allowing efficient replication in cell culture, unlike the gK-null virus, which has a major defect in virus replication and spread. Intramuscular injection of mice with 107 VC2 plaque forming units did not cause any significant clinical disease in mice. A single intramuscular immunization with the VC2 virus protected 100% of mice against lethal intravaginal challenge with either HSV-1(McKrae) or HSV-2(G) viruses. Importantly, vaccination with VC2 produced robust cross protective humoral and cellular immunity that fully protected vaccinated mice against lethal disease. Quantitative PCR did not detect any viral DNA in ganglionic tissues of vaccinated mice, while unvaccinated mice contained high levels of viral DNA. The VC2 virus may serve as an efficient vaccine against both HSV-1 and HSV-2 infections, as well as a safe vector for the production of vaccines against other viral and bacterial pathogens.
Collapse
Affiliation(s)
- Brent A. Stanfield
- Division of Biotechnology & Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Jacque Stahl
- Division of Biotechnology & Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Vladimir N. Chouljenko
- Division of Biotechnology & Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Ramesh Subramanian
- Division of Biotechnology & Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Anu-Susan Charles
- Division of Biotechnology & Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Ahmad A. Saied
- Division of Biotechnology & Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Jason D. Walker
- Division of Biotechnology & Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Konstantin G. Kousoulas
- Division of Biotechnology & Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
15
|
Ghasemi M, Erturk M, Buruk K, Sonmez M. Induction of potent protection against acute and latent herpes simplex virus infection in mice vaccinated with dendritic cells. Cytotherapy 2013; 15:352-61. [PMID: 23579060 DOI: 10.1016/j.jcyt.2012.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 10/07/2012] [Accepted: 11/11/2012] [Indexed: 12/30/2022]
Abstract
BACKGROUND AIMS Dendritic cells (DCs) are the most potent antigen presenting cells of the immune system and have been under intense study with regard to their use in immunotherapy against cancer and infectious disease agents. In the present study, DCs were employed to assess their value in protection against live virus challenge in an experimental model using lethal and latent herpes simplex virus (HSV) infection in Balb/c mice. METHODS DCs obtained ex vivo in the presence of granulocyte-macrophage colony-stimulating factor and interleukin-4 were loaded with HSV-1 proteins (DC/HSV-1 vaccine). Groups of mice were vaccinated twice, 7 days apart, via subcutaneous, intraperitoneal or intramuscular routes with DC/HSV-1 and with mock (DC without virus protein) and positive (alum adjuvanted HSV-1 proteins [HSV-1/ALH]) control vaccines. After measuring anti-HSV-1 antibody levels in blood samples, mice were given live HSV-1 intraperitoneally or via ear pinna to assess the protection level of the vaccines with respect to lethal or latent infection challenge. RESULTS Intramuscular, but not subcutaneous or intraperitoneal, administration of DC/HSV-1 vaccine provided complete protection against lethal challenge and establishment of latent infection as assessed by death and virus recovery from the trigeminal ganglia. It was also shown that the immunity was not associated with antibody production because DC/HSV-1 vaccine, as opposed to HSV-1/ALH vaccine, produced very little, if any, HSV-1-specific antibody. CONCLUSIONS Overall, our results may have some impact on the design of vaccines against genital HSV as well as chronic viral infections such as hepatitis B virus, hepatitis C virus and human immunodeficiency virus.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Medical Microbiology Department, Medical School, Karadeniz Technical University, Trabzon, Turkey.
| | | | | | | |
Collapse
|
16
|
Single dose of glycoprotein K (gK)-deleted HSV-1 live-attenuated virus protects mice against lethal vaginal challenge with HSV-1 and HSV-2 and induces lasting T cell memory immune responses. Virol J 2013; 10:317. [PMID: 24165088 PMCID: PMC3826548 DOI: 10.1186/1743-422x-10-317] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/30/2013] [Indexed: 11/11/2022] Open
Abstract
Background Herpes simplex virus type-1(HSV-1) and HSV-2 are important human pathogens that cause significant ocular and urogenital complications, respectively. We have previously shown that HSV-1 virions lacking glycoprotein K (gK) are unable to enter into neurons via synaptic axonal membranes and be transported in either retrograde or anterograde manner. Here, we tested the ability of HSV-1 (F) gK-null to protect against lethal challenge with either highly virulent ocular HSV-1 (McKrae strain), or genital HSV-2 (G strain). The gK-null virus vaccine efficiently protected mice against lethal vaginal infection with either HSV-1(McKrae) or HSV-2 (G). Results Female mice were immunized via a single intramuscular injection with 106 PFU of the gK-null virus. Immunized mice were treated with Depo-Provera fourteen days after vaccination and were challenged via the vaginal route one week later. Ninety percent of mice vaccinated with the gK-null virus survived HSV-1 (McKrae) challenge, while 70% of these mice survived after HSV-2 (G) challenge. Moreover, all vaccinated mice exhibited substantially reduced disease symptoms irrespective of HSV-1 or HSV-2 challenge as compared to the mock vaccinated challenge group. T-cell memory immune responses to specific glycoprotein B (gB) and glycoprotein D (gD) peptide epitopes were detectable at 7 months post vaccination. Conclusions These results suggest that the highly attenuated, non-neurotropic gK-null virus may be used as an effective vaccine to protect against both virulent HSV-1 and HSV-2 genital infections and induce lasting immune responses.
Collapse
|
17
|
Fernandez MA, Yu U, Zhang G, White R, Sparwasser T, Alexander SI, Jones CA. Treg depletion attenuates the severity of skin disease from ganglionic spread after HSV-2 flank infection. Virology 2013; 447:9-20. [PMID: 24210095 DOI: 10.1016/j.virol.2013.08.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/03/2013] [Accepted: 08/22/2013] [Indexed: 10/26/2022]
Abstract
Regulatory T cells (Tregs) attenuate lesion severity and disease after HSV ocular or genital infection, but their role in cutaneous infection remains unclear. Treg depletion (anti-CD25 mAb in C57BL/6 mice or diphtheria toxin (DT) in DEREG mice) prior to tk-deficient HSV-2 flank infection significantly decreased skin lesion severity, granulocyte receptor-1(Gr-1(+)) cell number, and chemokine (KC) expression in the secondary skin, but significantly increased immune effectors and chemokine expression (MCP-1, KC, VEGF-A) in the draining LN, and activated, interferon-γ producing CD8(+)T cells in the ganglia. Treg depletion also significantly reduced HSV-2 DNA in the ganglia. Thus, Tregs increase the severity of recurrent skin lesions, and differentially alter chemokine expression and immune effector homing in the skin and LN after cutaneous infection, and limit CD8(+) T cell responses in the ganglia. Our data suggests that effects of Treg manipulation on recurrent herpes lesions should be considered when developing Treg mediated therapeutics.
Collapse
Affiliation(s)
- Marian A Fernandez
- Centres for Perinatal Infection Research and Kidney Research, The Children's Hospital at Westmead, Westmead, NSW, Australia; Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, Locked Bag 4001, Westmead, NSW 2145, Australia.
| | | | | | | | | | | | | |
Collapse
|
18
|
Pavlova S, Veits J, Mettenleiter TC, Fuchs W. Identification and functional analysis of membrane proteins gD, gE, gI, and pUS9 of Infectious laryngotracheitis virus. Avian Dis 2013; 57:416-26. [PMID: 23901755 DOI: 10.1637/10332-082612-reg.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Herpesvirus envelope proteins are of particular interest for development of attenuated live, marker, and subunit vaccines, as well as development of diagnostic tools. The unique short genome region of the chicken pathogen infectious laryngotracheitis virus (ILTV, Gallid herpesvirus 1) contains a cluster of six conserved alphaherpesvirus genes encoding membrane proteins, of which up to now only glycoproteins gG and gJ have been analyzed in detail. We have now prepared monospecific rabbit antisera against ILTV gD, gE, and gI, and the ILTV type II membrane protein pUS9, each of which showed specific immunofluorescence reactions, and detected proteins of approximately 65 and 70 kDa (gD), 62 kDa (gI), 75 kDa (gE), or 37 kDa (pUS9) in western blot analyses of infected chicken cells. The proteins gD, gI, and gE, but not pUS9, were identified as abundant virion proteins, and gE and gI were shown to be N-glycosylated. We also isolated gE-, gI-, and pUS9-deleted ILTV recombinants, whereas it was not possible to purify gD-negative ILTV to homogeneity, indicating that gD, like in other alphaherpesviruses, is essential for receptor binding and virus entry. The pUS9-deleted ILTV exhibited almost wild-type-like replication properties in cell culture. The gE- and gI-negative viruses showed significantly reduced plaque sizes, whereas virus titers were barely affected. Since homologous gene-deletion mutants of other alphaherpesviruses are in use as live vaccines, the generated ILTV recombinants might be also suitable for this application.
Collapse
Affiliation(s)
- Sophia Pavlova
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany
| | | | | | | |
Collapse
|
19
|
Pan-HSV-2 IgG antibody in vaccinated mice and guinea pigs correlates with protection against herpes simplex virus 2. PLoS One 2013; 8:e65523. [PMID: 23755244 PMCID: PMC3675040 DOI: 10.1371/journal.pone.0065523] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 04/29/2013] [Indexed: 12/27/2022] Open
Abstract
We lack a correlate of immunity to herpes simplex virus 2 (HSV-2) that may be used to differentiate whether a HSV-2 vaccine elicits robust or anemic protection against genital herpes. This gap in knowledge is often attributed to a failure to measure the correct component of the adaptive immune response to HSV-2. However, efforts to identify a correlate of immunity have focused on subunit vaccines that contain less than 3% of HSV-2's 40,000-amino-acid proteome. We were interested to determine if a correlate of immunity might be more readily identified if 1. animals were immunized with a polyvalent immunogen such as a live virus and/or 2. the magnitude of the vaccine-induced immune response was gauged in terms of the IgG antibody response to all of HSV-2's antigens (pan-HSV-2 IgG). Pre-challenge pan-HSV-2 IgG levels and protection against HSV-2 were compared in mice and/or guinea pigs immunized with a gD-2 subunit vaccine, wild-type HSV-2, or one of several attenuated HSV-2 ICP0− viruses (0Δ254, 0Δ810, 0ΔRING, or 0ΔNLS). These six HSV-2 immunogens elicited a wide range of pan-HSV-2 IgG levels spanning an ∼500-fold range. For 5 of the 6 immunogens tested, pre-challenge levels of pan-HSV-2 IgG quantitatively correlated with reductions in HSV-2 challenge virus shedding and increased survival frequency following HSV-2 challenge. Collectively, the results suggest that pan-HSV-2 IgG levels may provide a simple and useful screening tool for evaluating the potential of a HSV-2 vaccine candidate to elicit protection against HSV-2 genital herpes.
Collapse
|
20
|
Chung E, Sen J. The ongoing pursuit of a prophylactic HSV vaccine. Rev Med Virol 2012; 22:285-300. [PMID: 22396215 DOI: 10.1002/rmv.1709] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/12/2012] [Accepted: 01/18/2012] [Indexed: 12/27/2022]
Abstract
HSV is among the most common human pathogens in the world. It is known to cause painful, persistent skin lesions, while also being the most common cause of fatal non-epidemic encephalitis as well as the leading cause of corneal blindness. The development of prophylactic vaccines could substantially reduce global health problems associated with HSV. So far, HSV vaccine strategies have shown noticeable efficacy in early development during preclinical phases but remained unsuccessful or unproven in human trials. New understanding of how the immune system mounts a defence against HSV offers practical strategies for vaccine development. A number of promising vaccine candidates are currently awaiting clinical development or already undergoing clinical testing. Therefore, this is a suitable time to assess the progress of HSV vaccine development and consider existing challenges and future improvements needed to achieve an effective prophylactic HSV vaccine.
Collapse
Affiliation(s)
- Erin Chung
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, M5S 3M2, Canada.
| | | |
Collapse
|
21
|
Live attenuated herpes simplex virus 2 glycoprotein E deletion mutant as a vaccine candidate defective in neuronal spread. J Virol 2012; 86:4586-98. [PMID: 22318147 DOI: 10.1128/jvi.07203-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A herpes simplex virus 2 (HSV-2) glycoprotein E deletion mutant (gE2-del virus) was evaluated as a replication-competent, attenuated live virus vaccine candidate. The gE2-del virus is defective in epithelial cell-to-axon spread and in anterograde transport from the neuron cell body to the axon terminus. In BALB/c and SCID mice, the gE2-del virus caused no death or disease after vaginal, intravascular, or intramuscular inoculation and was 5 orders of magnitude less virulent than wild-type virus when inoculated directly into the brain. No infectious gE2-del virus was recovered from dorsal root ganglia (DRG) after multiple routes of inoculation; however, gE2-del DNA was detected by PCR in lumbosacral DRG at a low copy number in some mice. Importantly, no recurrent vaginal shedding of gE2-del DNA was detected in immunized guinea pigs. Intramuscular immunization outperformed subcutaneous immunization in all parameters evaluated, although individual differences were not significant, and two intramuscular immunizations were more protective than one. Immunized animals had reduced vaginal disease, vaginal titers, DRG infection, recurrent genital lesions, and recurrent vaginal shedding of HSV-2 DNA; however, protection was incomplete. A combined modality immunization using live virus and HSV-2 glycoprotein C and D subunit antigens in guinea pigs did not totally eliminate recurrent lesions or recurrent vaginal shedding of HSV-2 DNA. The gE2-del virus used as an immunotherapeutic vaccine in previously HSV-2-infected guinea pigs greatly reduced the frequency of recurrent genital lesions. Therefore, the gE2-del virus is safe, other than when injected at high titer into the brain, and is efficacious as a prophylactic and immunotherapeutic vaccine.
Collapse
|
22
|
Abstract
Herpes simplex virus type 2 (HSV-2) is one of the most prevalent sexually transmitted infections worldwide. In addition to recurrent genital ulcers, HSV-2 causes neonatal herpes, and it is associated with a 3-fold increased risk for HIV acquisition. Although many HSV-2 vaccines have been studied in animal models, few have reached clinical trials, and those that have been tested in humans were not consistently effective. Here, we review HSV-2 pathogenesis, with a focus on novel understanding of mucosal immunobiology of HSV-2, and vaccine efforts to date, in an attempt to stimulate thinking about future directions for development of effective prophylactic and therapeutic HSV-2 vaccines.
Collapse
Affiliation(s)
- Christine Johnston
- Department of Medicine, University of Washington, Seattle, Washington, USA.
| | | | | |
Collapse
|
23
|
Immunization with a vaccine combining herpes simplex virus 2 (HSV-2) glycoprotein C (gC) and gD subunits improves the protection of dorsal root ganglia in mice and reduces the frequency of recurrent vaginal shedding of HSV-2 DNA in guinea pigs compared to immunization with gD alone. J Virol 2011; 85:10472-86. [PMID: 21813597 DOI: 10.1128/jvi.00849-11] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Attempts to develop a vaccine to prevent genital herpes simplex virus 2 (HSV-2) disease have been only marginally successful, suggesting that novel strategies are needed. Immunization with HSV-2 glycoprotein C (gC-2) and gD-2 was evaluated in mice and guinea pigs to determine whether adding gC-2 to a gD-2 subunit vaccine would improve protection by producing antibodies that block gC-2 immune evasion from complement. Antibodies produced by gC-2 immunization blocked the interaction between gC-2 and complement C3b, and passive transfer of gC-2 antibody protected complement-intact mice but not C3 knockout mice against HSV-2 challenge, indicating that gC-2 antibody is effective, at least in part, because it prevents HSV-2 evasion from complement. Immunization with gC-2 also produced neutralizing antibodies that were active in the absence of complement; however, the neutralizing titers were higher when complement was present, with the highest titers in animals immunized with both antigens. Animals immunized with the gC-2-plus-gD-2 combination had robust CD4+ T-cell responses to each immunogen. Multiple disease parameters were evaluated in mice and guinea pigs immunized with gC-2 alone, gD-2 alone, or both antigens. In general, gD-2 outperformed gC-2; however, the gC-2-plus-gD-2 combination outperformed gD-2 alone, particularly in protecting dorsal root ganglia in mice and reducing recurrent vaginal shedding of HSV-2 DNA in guinea pigs. Therefore, the gC-2 subunit antigen enhances a gD-2 subunit vaccine by stimulating a CD4+ T-cell response, by producing neutralizing antibodies that are effective in the absence and presence of complement, and by blocking immune evasion domains that inhibit complement activation.
Collapse
|
24
|
Halford WP, Püschel R, Gershburg E, Wilber A, Gershburg S, Rakowski B. A live-attenuated HSV-2 ICP0 virus elicits 10 to 100 times greater protection against genital herpes than a glycoprotein D subunit vaccine. PLoS One 2011; 6:e17748. [PMID: 21412438 PMCID: PMC3055896 DOI: 10.1371/journal.pone.0017748] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 02/09/2011] [Indexed: 11/19/2022] Open
Abstract
Glycoprotein D (gD-2) is the entry receptor of herpes simplex virus 2 (HSV-2), and is the immunogen in the pharmaceutical industry's lead HSV-2 vaccine candidate. Efforts to prevent genital herpes using gD-2 subunit vaccines have been ongoing for 20 years at a cost in excess of $100 million. To date, gD-2 vaccines have yielded equivocal protection in clinical trials. Therefore, using a small animal model, we sought to determine if a live-attenuated HSV-2 ICP0− virus would elicit better protection against genital herpes than a gD-2 subunit vaccine. Mice immunized with gD-2 and a potent adjuvant (alum+monophosphoryl lipid A) produced high titers of gD-2 antibody. While gD-2-immunized mice possessed significant resistance to HSV-2, only 3 of 45 gD-2-immunized mice survived an overwhelming challenge of the vagina or eyes with wild-type HSV-2 (MS strain). In contrast, 114 of 115 mice immunized with a live HSV-2 ICP0− virus, 0ΔNLS, survived the same HSV-2 MS challenges. Likewise, 0ΔNLS-immunized mice shed an average 125-fold less HSV-2 MS challenge virus per vagina relative to gD-2-immunized mice. In vivo imaging demonstrated that a luciferase-expressing HSV-2 challenge virus failed to establish a detectable infection in 0ΔNLS-immunized mice, whereas the same virus readily infected naïve and gD-2-immunized mice. Collectively, these results suggest that a HSV-2 vaccine might be more likely to prevent genital herpes if it contained a live-attenuated HSV-2 virus rather than a single HSV-2 protein.
Collapse
Affiliation(s)
- William P Halford
- Department of Microbiology and Immunology, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America.
| | | | | | | | | | | |
Collapse
|
25
|
The herpes simplex virus 1 IgG fc receptor blocks antibody-mediated complement activation and antibody-dependent cellular cytotoxicity in vivo. J Virol 2011; 85:3239-49. [PMID: 21228231 DOI: 10.1128/jvi.02509-10] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) glycoprotein E (gE) mediates cell-to-cell spread and functions as an IgG Fc receptor (FcγR) that blocks the Fc domain of antibody targeting the virus or infected cell. Efforts to assess the functions of the HSV-1 FcγR in vivo have been hampered by difficulties in preparing an FcγR-negative strain that is relatively intact for spread. Here we report the FcγR and spread phenotypes of NS-gE264, which is a mutant strain that has four amino acids inserted after gE residue 264. The virus is defective in IgG Fc binding yet causes zosteriform disease in the mouse flank model that is only minimally reduced compared with wild-type and the rescue strains. The presence of zosteriform disease suggests that NS-gE264 spread functions are well maintained. The HSV-1 FcγR binds the Fc domain of human, but not murine IgG; therefore, to assess FcγR functions in vivo, mice were passively immunized with human IgG antibody to HSV. When antibody was inoculated intraperitoneally 20 h prior to infection or shortly after virus reached the dorsal root ganglia, disease severity was significantly reduced in mice infected with NS-gE264, but not in mice infected with wild-type or rescue virus. Studies of C3 knockout mice and natural killer cell-depleted mice demonstrated that the HSV-1 FcγR blocked both IgG Fc-mediated complement activation and antibody-dependent cellular cytotoxicity. Therefore, the HSV-1 FcγR promotes immune evasion from IgG Fc-mediated activities and likely contributes to virulence at times when antibody is present, such as during recurrent infections.
Collapse
|
26
|
Wang F, Zumbrun EE, Huang J, Si H, Makaroun L, Friedman HM. Herpes simplex virus type 2 glycoprotein E is required for efficient virus spread from epithelial cells to neurons and for targeting viral proteins from the neuron cell body into axons. Virology 2010; 405:269-79. [PMID: 20598729 DOI: 10.1016/j.virol.2010.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Revised: 05/16/2010] [Accepted: 06/02/2010] [Indexed: 12/17/2022]
Abstract
The HSV-2 lifecycle involves virus spread in a circuit from the inoculation site to dorsal root ganglia and return. We evaluated the role of gE-2 in the virus lifecycle by deleting amino acids 124-495 (gE2-del virus). In the mouse retina infection model, gE2-del virus does not spread to nuclei in the brain, indicating a defect in anterograde (pre-synaptic to post-synaptic neurons) and retrograde (post-synaptic to pre-synaptic neurons) spread. Infection of neuronal cells in vitro demonstrates that gE-2 is required for targeting viral proteins from neuron cell bodies into axons, and for efficient virus spread from epithelial cells to axons. The mouse flank model confirms that gE2-del virus is defective in spread from epithelial cells to neurons. Therefore, we defined two steps in the virus lifecycle that involve gE-2, including efficient spread from epithelial cells to axons and targeting viral components from neuron cell bodies into axons.
Collapse
Affiliation(s)
- Fushan Wang
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6073, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
The very deep knowledge acquired on the genetics and molecular biology of herpes simplex virus (HSV), has allowed the development of potential replication-competent and replication-defective vectors for several applications in human healthcare. These include delivery and expression of human genes to cells of the nervous systems, selective destruction of cancer cells, prophylaxis against infection with HSV or other infectious diseases, and targeted infection to specific tissues or organs. Replication-defective recombinant vectors are non-toxic gene transfer tools that preserve most of the neurotropic features of wild type HSV-1, particularly the ability to express genes after having established latent infections, and are thus proficient candidates for therapeutic gene transfer settings in neurons. A replication-defective HSV vector for the treatment of pain has recently entered in phase 1 clinical trial. Replication-competent (oncolytic) vectors are becoming a suitable and powerful tool to eradicate brain tumours due to their ability to replicate and spread only within the tumour mass, and have reached phase II/III clinical trials in some cases. The progress in understanding the host immune response induced by the vector is also improving the use of HSV as a vaccine vector against both HSV infection and other pathogens. This review briefly summarizes the obstacle encountered in the delivery of HSV vectors and examines the various strategies developed or proposed to overcome such challenges.
Collapse
Affiliation(s)
- Roberto Manservigi
- Department of Experimental and Diagnostic Medicine - Section of Microbiology, University of Ferrara, Via Luigi Borsari 46, 44100 Ferrara, Italy
| | | | | |
Collapse
|
28
|
Manservigi R, Argnani R, Marconi P. HSV Recombinant Vectors for Gene Therapy. Open Virol J 2010; 4:123-56. [PMID: 20835362 DOI: 10.2174/1874357901004030123] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 03/13/2010] [Accepted: 03/31/2010] [Indexed: 12/16/2022] Open
Abstract
The very deep knowledge acquired on the genetics and molecular biology of herpes simplex virus (HSV), has allowed the development of potential replication-competent and replication-defective vectors for several applications in human healthcare. These include delivery and expression of human genes to cells of the nervous systems, selective destruction of cancer cells, prophylaxis against infection with HSV or other infectious diseases, and targeted infection to specific tissues or organs. Replication-defective recombinant vectors are non-toxic gene transfer tools that preserve most of the neurotropic features of wild type HSV-1, particularly the ability to express genes after having established latent infections, and are thus proficient candidates for therapeutic gene transfer settings in neurons. A replication-defective HSV vector for the treatment of pain has recently entered in phase 1 clinical trial. Replication-competent (oncolytic) vectors are becoming a suitable and powerful tool to eradicate brain tumours due to their ability to replicate and spread only within the tumour mass, and have reached phase II/III clinical trials in some cases. The progress in understanding the host immune response induced by the vector is also improving the use of HSV as a vaccine vector against both HSV infection and other pathogens. This review briefly summarizes the obstacle encountered in the delivery of HSV vectors and examines the various strategies developed or proposed to overcome such challenges.
Collapse
Affiliation(s)
- Roberto Manservigi
- Department of Experimental and Diagnostic Medicine - Section of Microbiology, University of Ferrara, Via Luigi Borsari 46, 44100 Ferrara, Italy
| | | | | |
Collapse
|
29
|
Awasthi S, Lubinski JM, Friedman HM. Immunization with HSV-1 glycoprotein C prevents immune evasion from complement and enhances the efficacy of an HSV-1 glycoprotein D subunit vaccine. Vaccine 2009; 27:6845-53. [PMID: 19761834 DOI: 10.1016/j.vaccine.2009.09.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 09/01/2009] [Accepted: 09/02/2009] [Indexed: 11/19/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) glycoprotein C (gC-1) binds complement component C3b and inhibits complement-mediated immunity. HSV-1 glycoprotein D (gD-1) is a potent immunogen and a candidate antigen for a subunit vaccine. We evaluated whether combined immunization with gD-1 and gC-1 provides better protection against challenge than gD-1 alone based on antibodies to gC-1 preventing HSV-1-mediated immune evasion. IgG purified from mice immunized with gC-1 blocked C3b binding to gC-1 and greatly increased neutralization by gD-1 IgG in the presence of complement. Passive transfer of gC-1 IgG protected complement intact mice against HSV-1 challenge but not C3 knockout mice, indicating that gC-1 antibody activity in vivo is complement-dependent. Immunizing mice with gD-1 and gC-1 provided better protection than gD-1 alone in preventing zosteriform disease and infection of dorsal root ganglia. Therefore, gC-1 immunization prevents HSV-1 evasion from complement and enhances the protection provided by gD-1 immunization.
Collapse
Affiliation(s)
- Sita Awasthi
- Infectious Disease Division, Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, United States.
| | | | | |
Collapse
|
30
|
Anterograde spread of herpes simplex virus type 1 requires glycoprotein E and glycoprotein I but not Us9. J Virol 2009; 83:8315-26. [PMID: 19570876 DOI: 10.1128/jvi.00633-09] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anterograde neuronal spread (i.e., spread from the neuron cell body toward the axon terminus) is a critical component of the alphaherpesvirus life cycle. Three viral proteins, gE, gI, and Us9, have been implicated in alphaherpesvirus anterograde spread in several animal models and neuron culture systems. We sought to better define the roles of gE, gI, and Us9 in herpes simplex virus type 1 (HSV-1) anterograde spread using a compartmentalized primary neuron culture system. We found that no anterograde spread occurred in the absence of gE or gI, indicating that these proteins are essential for HSV-1 anterograde spread. However, we did detect anterograde spread in the absence of Us9 using two independent Us9-deleted viruses. We confirmed the Us9 finding in different murine models of neuronal spread. We examined viral transport into the optic nerve and spread to the brain after retinal infection; the production of zosteriform disease after flank inoculation; and viral spread to the spinal cord after flank inoculation. In all models, anterograde spread occurred in the absence of Us9, although in some cases at reduced levels. This finding contrasts with gE- and gI-deleted viruses, which displayed no anterograde spread in any animal model. Thus, gE and gI are essential for HSV-1 anterograde spread, while Us9 is dispensable.
Collapse
|
31
|
Herpes simplex virus type 1 glycoprotein E mediates retrograde spread from epithelial cells to neurites. J Virol 2009; 83:4791-9. [PMID: 19279108 DOI: 10.1128/jvi.02341-08] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In animal models of infection, glycoprotein E (gE) is required for efficient herpes simplex virus type 1 (HSV-1) spread from the inoculation site to the cell bodies of innervating neurons (retrograde direction). Retrograde spread in vivo is a multistep process, in that HSV-1 first spreads between epithelial cells at the inoculation site, then infects neurites, and finally travels by retrograde axonal transport to the neuron cell body. To better understand the role of gE in retrograde spread, we used a compartmentalized neuron culture system, in which neurons were infected in the presence or absence of epithelial cells. We found that gE-deleted HSV-1 (NS-gEnull) retained retrograde axonal transport activity when added directly to neurites, in contrast to the retrograde spread defect of this virus in animals. To better mimic the in vivo milieu, we overlaid neurites with epithelial cells prior to infection. In this modified system, virus infects epithelial cells and then spreads to neurites, revealing a 100-fold retrograde spread defect for NS-gEnull. We measured the retrograde spread defect of NS-gEnull from a variety of epithelial cell lines and found that the magnitude of the spread defect from epithelial cells to neurons correlated with epithelial cell plaque size defect, indicating that gE plays a similar role in both types of spread. Therefore, gE-mediated spread between epithelial cells and neurites likely explains the retrograde spread defect of gE-deleted HSV-1 in vivo.
Collapse
|