1
|
Dehghani A, Khajepour F, Dehghani M, Razmara E, Zangouey M, Abadi MFS, Nezhad RBA, Dabiri S, Garshasbi M. Hsa-miR-194-5p and hsa-miR-195-5p are down-regulated expressed in high dysplasia HPV-positive Pap smear samples compared to normal cytology HPV-positive Pap smear samples. BMC Infect Dis 2024; 24:182. [PMID: 38342922 PMCID: PMC10860252 DOI: 10.1186/s12879-023-08942-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 12/20/2023] [Indexed: 02/13/2024] Open
Abstract
BACKGROUND The human papillomavirus (HPV) infection may affect the miRNA expression pattern during cervical cancer (CC) development. To demonstrate the association between high-risk HPVs and the development of cervix dysplasia, we examined the expression patterns of hsa-miR-194-5p and hsa-miR-195-5p in Pap smear samples from southeast Iranian women. We compared samples that were HPV-positive but showed no abnormality in the cytological examination to samples that were HPV-positive and had severe dysplasia. METHODS Pap smear samples were obtained from 60 HPV-positive (HPV-16/18) patients with histologically confirmed severe dysplasia (cervical intra-epithelial neoplasia (CIN 3) or carcinoma in situ) and the normal cytology group. The expression of hsa-miR-194-5p and hsa-miR-195-5p was analyzed by real-time quantitative PCR, using specific stem-loop primers and U6 snRNA as the internal reference gene. Clinicopathological features were associated with miRNA expression levels. Furthermore, functional enrichment analysis was conducted using in silico tools. The Kaplan-Meier survival method was also obtained to discriminate survival-significant candidate miRNAs in CC, and receiver operating characteristic (ROC) curves were constructed to assess the diagnostic value. RESULTS Compared to HPV-positive cytologically normal Pap smear samples, hsa-miR-194-5p and hsa-miR-195-5p relative expression decreased significantly in HPV-positive patients with a severe dysplasia Pap smear. Kaplan-Meier analysis indicated a significant association between the miR-194 decrease and poor CC survival. In essence, ROC curve analysis showed that miR-194-5p and miR-195-5p could serve as valuable markers for the development of cervix dysplasia in individuals who are positive for high-risk HPVs. CONCLUSIONS This study revealed that hsa-miR-194-5p and hsa-miR-195-5p may possess tumor suppressor capabilities in the context of cervical dysplasia progression. However, it remains uncertain whether these microRNAs are implicated in the transition of patients with high dysplasia to cervical cancer. We also showed the potential capability of candidate miRNAs as novel diagnostic biomarkers related to cervical dysplasia progression.
Collapse
Affiliation(s)
- Ali Dehghani
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fardin Khajepour
- Department of Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Dehghani
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ehsan Razmara
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
| | - Mohammadreza Zangouey
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Reza Bahram Abadi Nezhad
- Department of Microbiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Shahriar Dabiri
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
Rosendo-Chalma P, Antonio-Véjar V, Ortiz Tejedor JG, Ortiz Segarra J, Vega Crespo B, Bigoni-Ordóñez GD. The Hallmarks of Cervical Cancer: Molecular Mechanisms Induced by Human Papillomavirus. BIOLOGY 2024; 13:77. [PMID: 38392296 PMCID: PMC10886769 DOI: 10.3390/biology13020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
Human papillomaviruses (HPVs) and, specifically, high-risk HPVs (HR-HPVs) are identified as necessary factors in the development of cancer of the lower genital tract, with CaCU standing out as the most prevalent tumor. This review summarizes ten mechanisms activated by HR-HPVs during cervical carcinogenesis, which are broadly associated with at least seven of the fourteen distinctive physiological capacities of cancer in the newly established model by Hanahan in 2022. These mechanisms involve infection by human papillomavirus, cellular tropism, genetic predisposition to uterine cervical cancer (CaCU), viral load, viral physical state, regulation of epigenetic mechanisms, loss of function of the E2 protein, deregulated expression of E6/E7 oncogenes, regulation of host cell protein function, and acquisition of the mesenchymal phenotype.
Collapse
Affiliation(s)
- Pedro Rosendo-Chalma
- Laboratorio de Virus y Cáncer, Unidad de Investigación Biomédica en Cáncer of Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (IIB-UNAM), Mexico City 14080, Mexico
- Unidad Académica de Posgrado, Universidad Católica de Cuenca, Cuenca 010101, Ecuador
| | - Verónica Antonio-Véjar
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico
| | - Jonnathan Gerardo Ortiz Tejedor
- Unidad Académica de Posgrado, Universidad Católica de Cuenca, Cuenca 010101, Ecuador
- Carrera de Bioquímica y Farmacia, Universidad Católica de Cuenca, Cuenca 010101, Ecuador
| | - Jose Ortiz Segarra
- Carrera de Medicina, Facultad de Ciencias Médicas, Universidad de Cuenca, Cuenca 010107, Ecuador
| | - Bernardo Vega Crespo
- Carrera de Medicina, Facultad de Ciencias Médicas, Universidad de Cuenca, Cuenca 010107, Ecuador
| | | |
Collapse
|
3
|
Jönsson J, Wang L, Kajitani N, Schwartz S. A novel HPV16 splicing enhancer critical for viral oncogene expression and cell immortalization. Nucleic Acids Res 2024; 52:316-336. [PMID: 37994701 PMCID: PMC10783526 DOI: 10.1093/nar/gkad1099] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/18/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023] Open
Abstract
High-risk carcinogenic human papillomaviruses (HPVs), e.g. HPV16, express the E6 and E7 oncogenes from two mRNAs that are generated in a mutually exclusive manner by splicing. The HPV16 E7 mRNA, also known as the E6*I/E7 mRNA, is produced by splicing between splice sites SD226 and SA409, while E6 mRNAs retain the intron between these splice sites. We show that splicing between HPV16 splice sites SD226 and SA409 is controlled by a splicing enhancer consisting of a perfect repeat of an adenosine-rich, 11 nucleotide sequence: AAAAGCAAAGA. Two nucleotide substitutions in both 11 nucleotide sequences specifically inhibited production of the spliced E6*I/E7 mRNA. As a result, production of E7 protein was reduced and the ability of HPV16 to immortalize human primary keratinocytes was abolished. The splicing-enhancing effect was mediated by the cellular TRAP150/THRAP3 protein that also enhanced splicing of other high-risk HPV E6*I/E7 mRNAs, but had no effect on low-risk HPV mRNAs. In summary, we have identified a novel splicing enhancer in the E6 coding region that is specific for high-risk HPVs and that is critically linked to HPV16 carcinogenic properties.
Collapse
Affiliation(s)
- Johanna Jönsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC-B9, 751 23 Uppsala, Sweden
| | - Lianqing Wang
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC-B9, 751 23 Uppsala, Sweden
- Center of Translational Medicine, Zibo Central Hospital, 255036 Zibo, China
| | - Naoko Kajitani
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC-B9, 751 23 Uppsala, Sweden
| | - Stefan Schwartz
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC-B9, 751 23 Uppsala, Sweden
| |
Collapse
|
4
|
Gandhi S, Mohamad Razif MF, Othman S, Chakraborty S, Nor Rashid N. Evaluation of the proteomic landscape of HPV E7‑induced alterations in human keratinocytes reveal therapeutically relevant pathways for cervical cancer. Mol Med Rep 2023; 27:46. [PMID: 36633133 DOI: 10.3892/mmr.2023.12933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/18/2022] [Indexed: 01/10/2023] Open
Abstract
The lack of specific and accurate therapeutic targets poses a challenge in the treatment of cervical cancer (CC). Global proteomics has the potential to characterize the underlying and intricate molecular mechanisms that drive the identification of therapeutic candidates for CC in an unbiased manner. The present study assessed human papillomavirus (HPV)‑induced proteomic alterations to identify key cancer hallmark pathways and protein‑protein interaction (PPI) networks, which offered the opportunity to evaluate the possibility of using these for targeted therapy in CC. Comparative proteomic profiling of HPV‑transfected (HPV16/18 E7), HPV‑transformed (CaSki and HeLa) and normal human keratinocyte (HaCaT) cells was performed using the liquid chromatography‑tandem mass spectrometry (LC‑MS/MS) technique. Both label‑free quantification and differential expression analysis were performed to assess differentially regulated proteins in HPV‑transformed and ‑transfected cells. The present study demonstrated that protein expression was upregulated in HPV‑transfected cells compared with in HPV‑transformed cells. This was probably due to the ectopic expression of E7 protein in the former cell type, in contrast to its constitutive expression in the latter cell type. Subsequent pathway visualization and network construction demonstrated that the upregulated proteins in HPV16/18 E7‑transfected cells were predominantly associated with a diverse array of cancer hallmarks, including the mTORC1 signaling pathway, MYC targets V1, hypoxia and glycolysis. Among the various proteins present in the cancer hallmark enrichment pathways, phosphoglycerate kinase 1 (PGK1) was present across all pathways. Therefore, PGK1 may be considered as a potential biomarker. PPI analysis demonstrated a direct interaction between p130 and polyubiquitin B, which may lead to the degradation of p130 via the ubiquitin‑proteasome proteolytic pathway. In summary, elucidation of the key signaling pathways in HPV16/18‑transfected and ‑transformed cells may aid in the design of novel therapeutic strategies for clinical application such as targeted therapy and immunotherapy against cervical cancer.
Collapse
Affiliation(s)
- Sivasangkary Gandhi
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Shatrah Othman
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Sajib Chakraborty
- Translational System Biology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, People's Republic of Bangladesh
| | - Nurshamimi Nor Rashid
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Jaiswal N, Nandi D, Cheema PS, Nag A. The anaphase-promoting complex/cyclosome co-activator, Cdh1, is a novel target of human papillomavirus 16 E7 oncoprotein in cervical oncogenesis. Carcinogenesis 2022; 43:988-1001. [PMID: 35738876 DOI: 10.1093/carcin/bgac057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/01/2022] [Accepted: 06/23/2022] [Indexed: 01/13/2023] Open
Abstract
The transforming properties of the high-risk human papillomavirus (HPV) E7 oncoprotein are indispensable for driving the virus life cycle and pathogenesis. Besides inactivation of the retinoblastoma family of tumor suppressors as part of its oncogenic endeavors, E7-mediated perturbations of eminent cell cycle regulators, checkpoint proteins and proto-oncogenes are considered to be the tricks of its transformative traits. However, many such critical interactions are still unknown. In the present study, we have identified the anaphase-promoting complex/cyclosome (APC) co-activator, Cdh1, as a novel interacting partner and a degradation target of E7. We found that HPV16 E7-induced inactivation of Cdh1 promoted abnormal accumulation of multiple Cdh1 substrates. Such a mode of deregulation possibly contributes to HPV-mediated cervical oncogenesis. Our mapping studies recognized the C-terminal zinc-finger motif of E7 to associate with Cdh1 and interfere with the timely degradation of FoxM1, a bona fide Cdh1 substrate and a potent oncogene. Importantly, the E7 mutant with impaired interaction with Cdh1 exhibited defects in its ability for overriding typical cell cycle transition and oncogenic transformation, thereby validating the functional and pathological significance of the E7-Cdh1 axis during cervical carcinoma progression. Altogether, the findings from our study discover a unique nexus between E7 and APC/C-Cdh1, thereby adding to our understanding of the mechanism of E7-induced carcinogenesis and provide a promising target for the management of cervical carcinoma.
Collapse
Affiliation(s)
- Neha Jaiswal
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Marg, New Delhi, India
| | - Deeptashree Nandi
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Marg, New Delhi, India
| | - Pradeep Singh Cheema
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Marg, New Delhi, India
| | - Alo Nag
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Marg, New Delhi, India
| |
Collapse
|
6
|
Chen Z, Yao D, Guo D, Sun Y, Liu L, Kou M, Yang X, Di S, Cai J, Wang X, Niu B. A functional mutation associated with piglet diarrhea partially by regulating the transcription of porcine STAT3. Front Vet Sci 2022; 9:1034187. [DOI: 10.3389/fvets.2022.1034187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to search for functional mutations within the promoter of porcine STAT3 and to provide causative genetic variants associated with piglet diarrhea. We firstly confirmed that STAT3 expressed higher in the small intestine than in the spleen, stomach and large intestine of SPF piglets, respectively (P < 0.05). Then, 10 genetic variations in the porcine STAT3 promoter region was identified by direct sequencing. Among them, three mutations SNP1: g.−870 G>A, SNP2: g.−584 A>C and a 6-bp Indel in the promoter region that displayed significant differential transcriptional activities were identified. Association analyses showed that SNP1: g.−870 G>A was significantly associated with piglet diarrhea (P < 0.05) and the GG animals had lower diarrhea score than AA piglets (P < 0.01) in both Min and Landrace population. Further functional analysis revealed that E2F6 repressed the transcriptional efficiency of STAT3 in vitro, by binding the G allele of SNP1. The present study suggested that SNP1: g.−870 G>A was a piglet diarrhea-associated variant that directly affected binding with E2F6, leading to changes in STAT3 transcription which might partially contribute to piglet diarrhea susceptibility or resistance.
Collapse
|
7
|
Scholl A, De S. Epigenetic Regulation by Polycomb Complexes from Drosophila to Human and Its Relation to Communicable Disease Pathogenesis. Int J Mol Sci 2022; 23:ijms232012285. [PMID: 36293135 PMCID: PMC9603650 DOI: 10.3390/ijms232012285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 12/05/2022] Open
Abstract
Although all cells in the human body are made of the same DNA, these cells undergo differentiation and behave differently during development, through integration of external and internal stimuli via 'specific mechanisms.' Epigenetics is one such mechanism that comprises DNA/RNA, histone modifications, and non-coding RNAs that regulate transcription without changing the genetic code. The discovery of the first Polycomb mutant phenotype in Drosophila started the study of epigenetics more than 80 years ago. Since then, a considerable number of Polycomb Group (PcG) genes in Drosophila have been discovered to be preserved in mammals, including humans. PcG proteins exert their influence through gene repression by acting in complexes, modifying histones, and compacting the chromatin within the nucleus. In this article, we discuss how our knowledge of the PcG repression mechanism in Drosophila translates to human communicable disease research.
Collapse
|
8
|
Porter VL, Marra MA. The Drivers, Mechanisms, and Consequences of Genome Instability in HPV-Driven Cancers. Cancers (Basel) 2022; 14:4623. [PMID: 36230545 PMCID: PMC9564061 DOI: 10.3390/cancers14194623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/28/2022] Open
Abstract
Human papillomavirus (HPV) is the causative driver of cervical cancer and a contributing risk factor of head and neck cancer and several anogenital cancers. HPV's ability to induce genome instability contributes to its oncogenicity. HPV genes can induce genome instability in several ways, including modulating the cell cycle to favour proliferation, interacting with DNA damage repair pathways to bring high-fidelity repair pathways to viral episomes and away from the host genome, inducing DNA-damaging oxidative stress, and altering the length of telomeres. In addition, the presence of a chronic viral infection can lead to immune responses that also cause genome instability of the infected tissue. The HPV genome can become integrated into the host genome during HPV-induced tumorigenesis. Viral integration requires double-stranded breaks on the DNA; therefore, regions around the integration event are prone to structural alterations and themselves are targets of genome instability. In this review, we present the mechanisms by which HPV-dependent and -independent genome instability is initiated and maintained in HPV-driven cancers, both across the genome and at regions of HPV integration.
Collapse
Affiliation(s)
- Vanessa L. Porter
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Marco A. Marra
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
9
|
The Interaction of Human Papillomavirus Infection and Prostaglandin E2 Signaling in Carcinogenesis: A Focus on Cervical Cancer Therapeutics. Cells 2022; 11:cells11162528. [PMID: 36010605 PMCID: PMC9406919 DOI: 10.3390/cells11162528] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Chronic infection by high-risk human papillomaviruses (HPV) and chronic inflammation are factors associated with the onset and progression of several neoplasias, including cervical cancer. Oncogenic proteins E5, E6, and E7 from HPV are the main drivers of cervical carcinogenesis. In the present article, we review the general mechanisms of HPV-driven cervical carcinogenesis, as well as the involvement of cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) and downstream effectors in this pathology. We also review the evidence on the crosstalk between chronic HPV infection and PGE2 signaling, leading to immune response weakening and cervical cancer development. Finally, the last section updates the current therapeutic and preventive options targeting PGE2-derived inflammation and HPV infection in cervical cancer. These treatments include nonsteroidal anti-inflammatory drugs, prophylactic and therapeutical vaccines, immunomodulators, antivirals, and nanotechnology. Inflammatory signaling pathways are closely related to the carcinogenic nature of the virus, highlighting inflammation as a co-factor for HPV-dependent carcinogenesis. Therefore, blocking inflammatory signaling pathways, modulating immune response against HPV, and targeting the virus represent excellent options for anti-tumoral therapies in cervical cancer.
Collapse
|
10
|
Miller J, Dakic A, Spurgeon M, Saenz F, Kallakury B, Zhao B, Zhang J, Zhu J, Ma Q, Xu Y, Lambert P, Schlegel R, Riegel AT, Liu X. AIB1 is a novel target of the high-risk HPV E6 protein and a biomarker of cervical cancer progression. J Med Virol 2022; 94:3962-3977. [PMID: 35437795 PMCID: PMC9199254 DOI: 10.1002/jmv.27795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 11/10/2022]
Abstract
The high-risk human papillomaviruses (HPV-16, -18) are critical etiologic agents in human malignancy, most importantly in cervical cancer. These oncogenic viruses encode the E6 and E7 proteins that are uniformly retained and expressed in cervical cancers and required for maintenance of the tumorigenic phenotype. The E6 and E7 proteins were first identified as targeting the p53 and pRB tumor suppressor pathways, respectively, in host cells, thereby leading to disruption of cell cycle controls. In addition to p53 degradation, a number of other functions and critical targets for E6 have been described, including telomerase, Myc, PDZ-containing proteins, Akt, Wnt, mTORC1, as well as others. In this study, we identified Amplified in Breast Cancer 1 (AIB1) as a new E6 target. We first found that E6 and hTERT altered similar profiling of gene expression in human foreskin keratinocytes (HFK), independent of telomerase activity. Importantly, AIB1 was a common transcriptional target of both E6 and hTERT. We then verified that high-risk E6 but not low-risk E6 expression led to increases in AIB1 transcript levels by real-time RT-PCR, suggesting that AIB1 upregulation may play an important role in cancer development. Western blots demonstrated that AIB1 expression increased in HPV-16 E6 and E7 expressing (E6E7) immortalized foreskin and cervical keratinocytes, and in three of four common cervical cancer cell lines as well. Then, we evaluated the expression of AIB1 in human cervical lesions and invasive carcinoma using immunohistochemical staining. Strikingly, AIB1 showed positivity in the nucleus of cells in the immediate suprabasal epithelium, while nuclei of the basal epithelium were negative, as evident in the Cervical Intraepithelial Neoplasia 1 (CIN1) samples. As the pathological grading of cervical lesions increased from CIN1, CIN2, CIN3 carcinoma in situ and invasive carcinoma, AIB1 staining increased progressively, suggesting that AIB1 may serve as a novel histological biomarker for cervical cancer development. For cases of invasive cervical carcinoma, AIB1 staining was specific to cancerous lesions. Increased expression of AIB1 was also observed in transgenic mouse cervical neoplasia and cancer models induced by E6E7 and estrogen. Knockdown of AIB1 expression in E6E7 immortalized human cervical cells significantly abolished cell proliferation. Taken together, these data support AIB1 as a novel target of HPV E6 and a biomarker of cervical cancer progression.
Collapse
Affiliation(s)
- Jonathan Miller
- Department of Pathology, Center for Cell ReprogrammingGeorgetown University Medical SchoolWashingtonDistrict of ColumbiaUSA
| | - Aleksandra Dakic
- Department of Pathology, Center for Cell ReprogrammingGeorgetown University Medical SchoolWashingtonDistrict of ColumbiaUSA
| | - Megan Spurgeon
- McArdle Laboratory for Cancer Research, Department of OncologyUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWisconsinUSA
| | - Francisco Saenz
- Department of Oncology, Lombardi Comprehensive Cancer CenterGeorgetown University Medical SchoolWashingtonDistrict of ColumbiaUSA
| | - Bhaskar Kallakury
- Department of Pathology, Center for Cell ReprogrammingGeorgetown University Medical SchoolWashingtonDistrict of ColumbiaUSA
| | - Bo Zhao
- Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Junran Zhang
- Department of Radiation Oncology, Wexner Medical CenterThe Ohio State UniversityColumbusOhioUSA
- The James Comprehensive Cancer CenterThe Ohio State UniversityColumbusOhioUSA
| | - Jian Zhu
- Department of Pathology, Wexner Medical CenterThe Ohio State UniversityColumbusOhioUSA
| | - Qin Ma
- The James Comprehensive Cancer CenterThe Ohio State UniversityColumbusOhioUSA
- Department of Biomedical Informatics, College of MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Ying Xu
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of BioinformaticsThe University of GeorgiaAthensGeorgiaUSA
| | - Paul Lambert
- McArdle Laboratory for Cancer Research, Department of OncologyUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWisconsinUSA
| | - Richard Schlegel
- Department of Pathology, Center for Cell ReprogrammingGeorgetown University Medical SchoolWashingtonDistrict of ColumbiaUSA
| | - Anna T. Riegel
- Department of Oncology, Lombardi Comprehensive Cancer CenterGeorgetown University Medical SchoolWashingtonDistrict of ColumbiaUSA
| | - Xuefeng Liu
- Department of Pathology, Center for Cell ReprogrammingGeorgetown University Medical SchoolWashingtonDistrict of ColumbiaUSA
- The James Comprehensive Cancer CenterThe Ohio State UniversityColumbusOhioUSA
- Department of Pathology, Wexner Medical CenterThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
11
|
Spurgeon ME, Cheng J, Ward-Shaw E, Dick FA, DeCaprio JA, Lambert PF. Merkel cell polyomavirus large T antigen binding to pRb promotes skin hyperplasia and tumor development. PLoS Pathog 2022; 18:e1010551. [PMID: 35560034 PMCID: PMC9132321 DOI: 10.1371/journal.ppat.1010551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/25/2022] [Accepted: 04/26/2022] [Indexed: 12/14/2022] Open
Abstract
Clear evidence supports a causal link between Merkel cell polyomavirus (MCPyV) and the highly aggressive human skin cancer called Merkel cell carcinoma (MCC). Integration of viral DNA into the human genome facilitates continued expression of the MCPyV small tumor (ST) and large tumor (LT) antigens in virus-positive MCCs. In MCC tumors, MCPyV LT is truncated in a manner that renders the virus unable to replicate yet preserves the LXCXE motif that facilitates its binding to and inactivation of the retinoblastoma tumor suppressor protein (pRb). We previously developed a MCPyV transgenic mouse model in which MCC tumor-derived ST and truncated LT expression were targeted to the stratified epithelium of the skin, causing epithelial hyperplasia, increased proliferation, and spontaneous tumorigenesis. We sought to determine if any of these phenotypes required the association between the truncated MCPyV LT and pRb. Mice were generated in which K14-driven MCPyV ST/LT were expressed in the context of a homozygous RbΔLXCXE knock-in allele that attenuates LT-pRb interactions through LT's LXCXE motif. We found that many of the phenotypes including tumorigenesis that develop in the K14-driven MCPyV transgenic mice were dependent upon LT's LXCXE-dependent interaction with pRb. These findings highlight the importance of the MCPyV LT-pRb interaction in an in vivo model for MCPyV-induced tumorigenesis.
Collapse
Affiliation(s)
- Megan E. Spurgeon
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- * E-mail:
| | - Jingwei Cheng
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, United States of America
| | - Ella Ward-Shaw
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Frederick A. Dick
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
- Children’s Health Research Institute, London, Ontario, Canada
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada
| | - James A. DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| |
Collapse
|
12
|
Wu SC, Münger K. Role and Clinical Utility of Cancer/Testis Antigens in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13225690. [PMID: 34830845 PMCID: PMC8616139 DOI: 10.3390/cancers13225690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer/testis (CT) antigens exhibit selective expression predominantly in immunoprivileged tissues in non-pathological contexts but are aberrantly expressed in diverse cancers. Due to their expression pattern, they have historically been attractive targets for immunotherapies. A growing number of studies implicate CT antigens in almost all hallmarks of cancer, suggesting that they may act as cancer drivers. CT antigens are expressed in head and neck squamous cell carcinomas. However, their role in the pathogenesis of these cancers remains poorly studied. Given that CT antigens hold intriguing potential as therapeutic targets and as biomarkers for prognosis and that they can provide novel insights into oncogenic mechanisms, their further study in the context of head and squamous cell carcinoma is warranted.
Collapse
Affiliation(s)
- Sharon Changshan Wu
- Molecular Microbiology Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA;
| | - Karl Münger
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
- Correspondence:
| |
Collapse
|
13
|
Alfaro-Mora Y, Domínguez-Gómez G, Cáceres-Gutiérrez RE, Tolentino-García L, Herrera LA, Castro-Hernández C, Bermúdez-Cruz RM, Díaz-Chávez J. MPS1 is involved in the HPV16-E7-mediated centrosomes amplification. Cell Div 2021; 16:6. [PMID: 34736484 PMCID: PMC8567613 DOI: 10.1186/s13008-021-00074-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/14/2021] [Indexed: 11/10/2022] Open
Abstract
Background It has been reported that the oncoprotein E7 from human papillomavirus type 16 (HPV16-E7) can induce the excessive synthesis of centrosomes through the increase in the expression of PLK4, which is a transcriptional target of E2F1. On the other hand, it has been reported that increasing MPS1 protein stability can also generate an excessive synthesis of centrosomes. In this work, we analyzed the possible role of MPS1 in the amplification of centrosomes mediated by HPV16-E7. Results Employing qRT-PCR, Western Blot, and Immunofluorescence techniques, we found that E7 induces an increase in the MPS1 transcript and protein levels in the U2OS cell line, as well as protein stabilization. Besides, we observed that inhibiting the expression of MPS1 in E7 protein-expressing cells leads to a significant reduction in the number of centrosomes. Conclusions These results indicate that the presence of the MPS1 protein is necessary for E7 protein to increase the number of centrosomes, and possible implications are discussed. Supplementary Information The online version contains supplementary material available at 10.1186/s13008-021-00074-9.
Collapse
Affiliation(s)
- Yair Alfaro-Mora
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Mexico City, Mexico.,Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Guadalupe Domínguez-Gómez
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Rodrigo E Cáceres-Gutiérrez
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Laura Tolentino-García
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología (INCan), Mexico City, Mexico.,Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Clementina Castro-Hernández
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Rosa María Bermúdez-Cruz
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Mexico City, Mexico.
| | - José Díaz-Chávez
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología (INCan), Mexico City, Mexico.
| |
Collapse
|
14
|
Basukala O, Banks L. The Not-So-Good, the Bad and the Ugly: HPV E5, E6 and E7 Oncoproteins in the Orchestration of Carcinogenesis. Viruses 2021; 13:1892. [PMID: 34696321 PMCID: PMC8541208 DOI: 10.3390/v13101892] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Infection with HPV starts with the access of the viral particles to basal cells in the epidermis, potentially via microtraumas to the skin. The basal cells are able to keep away these pathogens in normal circumstances through a robust immune response from the host, as HPV infections are, in general, cleared within 2 to 3 weeks. However, the rare instances of persistent infection and/or in cases where the host immune system is compromised are major risk factors for the development of lesions potentially leading to malignancy. Evolutionarily, obligatory pathogens such as HPVs would not be expected to risk exposing the host to lethal cancer, as this would entail challenging their own life cycle, but infection with these viruses is highly correlated with cancer and malignancy-as in cancer of the cervix, which is almost always associated with these viruses. Despite this key associative cause and the availability of very effective vaccines against these viruses, therapeutic interventions against HPV-induced cancers are still a challenge, indicating the need for focused translational research. In this review, we will consider the key roles that the viral proteins play in driving the host cells to carcinogenesis, mainly focusing on events orchestrated by early proteins E5, E6 and E7-the not-so-good, the bad and the ugly-and discuss and summarize the major events that lead to these viruses mechanistically corrupting cellular homeostasis, giving rise to cancer and malignancy.
Collapse
Affiliation(s)
| | - Lawrence Banks
- Tumour Virology Laboratory, International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy;
| |
Collapse
|
15
|
Aarthy M, Singh SK. Interpretations on the Interaction between Protein Tyrosine Phosphatase and E7 Oncoproteins of High and Low-Risk HPV: A Computational Perception. ACS OMEGA 2021; 6:16472-16487. [PMID: 34235319 PMCID: PMC8246469 DOI: 10.1021/acsomega.1c01619] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/08/2021] [Indexed: 05/17/2023]
Abstract
The most prevalent and common sexually transmitted infection is caused by human papillomavirus (HPV) among sexually active women. Numerous genotypes of HPV are available, among which the major oncoproteins E6 and E7 lead to the progression of cervical cancer. The E7 oncoprotein interacts with cytoplasmic tumor suppressor protein PTPN14, which is the key regulator of cellular growth control pathways effecting the reduction of steady-state level. Disrupting the interaction between the tumor suppressor and the oncoprotein is vital to cease the development of cancer. Hence, the mechanism of interaction between E7 and tumor suppressor is explored through protein-protein and protein-ligand binding along with the conformational stability studies. The obtained results state that the LXCXE domain of HPV E7 of high and low risks binds with the tumor suppressor protein. Also, the small molecules bind in the interface of E7-PTPN14 that disrupts the interaction between the tumor suppressor and oncoprotein. These results were further supported by the dynamics simulation stating the stability over the bounded complex and the energy maintained during postdocking as well as postdynamics calculations. These observations possess an avenue in the drug discovery that leads to further validation and also proposes a potent drug candidate to treat cervical cancer caused by HPV.
Collapse
|
16
|
Ocadiz-Delgado R, Cruz-Colin JL, Alvarez-Rios E, Torres-Carrillo A, Hernandez-Mendoza K, Conde-Pérezprina JC, Dominguez-Gomez GI, Garcia-Villa E, Lambert PF, Gariglio P. Expression of miR-34a and miR-15b during the progression of cervical cancer in a murine model expressing the HPV16 E7 oncoprotein. J Physiol Biochem 2021; 77:547-555. [PMID: 33937961 DOI: 10.1007/s13105-021-00818-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 04/20/2021] [Indexed: 01/01/2023]
Abstract
The high-risk human papillomavirus (HR-HPV) E7 oncoprotein appears to be a major determinant for cell immortalization and transformation altering critical processes such as cell proliferation, apoptosis, and immune response. This oncoprotein plays an essential role in cervical carcinogenesis, but other cofactors such as long-term use of hormonal contraceptives are necessary to modulate the risk of cervical cancer (CC). The role of HR-HPVs in the alteration of microRNA (miRNA) levels in persistent viral infections currently remains unclear. The aim of this study was to evaluate the miR-34a and miR-15b expression levels in the murine HPV16K14E7 (K14E7) transgenic model after chronic estrogen (E2) treatment and their involvement in CC. Interestingly, results showed that, although miR-34a expression is elevated by the HPVE7 oncogene, this expression was downregulated in the presence of both the E7 oncoprotein and chronic E2 in cervical carcinoma. On the other hand, miR-15b expression was upregulated along cervical carcinogenesis mainly by the effect of E2. These different changes in the expression levels of miR-34a and miR-15b along cervical carcinogenesis conduced to low apoptosis levels, high cell proliferation and finally, to cancerous cervical tissue development. In this work, we also determined the relative mRNA expression of Cyclin E2 (Ccne2), Cyclin A2 (Ccna2), and B cell lymphoma 2 (Bcl-2) (target genes of miR-34a and miR-15b); Sirtuin 1 (Sirt1), Cmyc, and Bax (miR-34a target genes); and p21/WAF1 (mir15b target gene) and the H-ras oncogene. Given the modifications in the expression levels of miR-34a and miR-15b during the development of cervical cancer, it will be useful to carry out further investigation to confirm them as molecular biomarkers of cancer.
Collapse
Affiliation(s)
- Rodolfo Ocadiz-Delgado
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Colonia San Pedro Zacatenco Delegación Gustavo A. Madero, 07360, Mexico City, CP, Mexico
| | - Jose-Luis Cruz-Colin
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Colonia San Pedro Zacatenco Delegación Gustavo A. Madero, 07360, Mexico City, CP, Mexico.,Department of Genomic Diagnostic, INMEGEN, Mexico City, Mexico, Mexico
| | - Elizabeth Alvarez-Rios
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Colonia San Pedro Zacatenco Delegación Gustavo A. Madero, 07360, Mexico City, CP, Mexico
| | - Antonio Torres-Carrillo
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Colonia San Pedro Zacatenco Delegación Gustavo A. Madero, 07360, Mexico City, CP, Mexico
| | - Karina Hernandez-Mendoza
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Colonia San Pedro Zacatenco Delegación Gustavo A. Madero, 07360, Mexico City, CP, Mexico
| | - Juan-Cristobal Conde-Pérezprina
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Colonia San Pedro Zacatenco Delegación Gustavo A. Madero, 07360, Mexico City, CP, Mexico
| | - Guadalupe-Isabel Dominguez-Gomez
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Colonia San Pedro Zacatenco Delegación Gustavo A. Madero, 07360, Mexico City, CP, Mexico.,Subdirección de Investigación Clínica, INCan, Mexico City, Mexico, Mexico
| | - Enrique Garcia-Villa
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Colonia San Pedro Zacatenco Delegación Gustavo A. Madero, 07360, Mexico City, CP, Mexico
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison, WI, USA
| | - Patricio Gariglio
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Colonia San Pedro Zacatenco Delegación Gustavo A. Madero, 07360, Mexico City, CP, Mexico.
| |
Collapse
|
17
|
Dias TR, Santos JMO, Gil da Costa RM, Medeiros R. Long non-coding RNAs regulate the hallmarks of cancer in HPV-induced malignancies. Crit Rev Oncol Hematol 2021; 161:103310. [PMID: 33781867 DOI: 10.1016/j.critrevonc.2021.103310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
High-risk human papillomavirus (HPV) is the most frequent sexually transmitted agent worldwide and is responsible for approximately 5% of human cancers. Identifying novel biomarkers and therapeutic targets for these malignancies requires a deeper understanding of the mechanisms involved in the progression of HPV-induced cancers. Long non-coding RNAs (lncRNAs) are crucial in the regulation of biological processes. Importantly, these molecules are key players in the progression of multiple malignancies and are able to regulate the development of the different hallmarks of cancer. This review highlights the action of lncRNAs in the regulation of cellular processes leading to the typical hallmarks of cancer. The regulation of lncRNAs by HPV oncogenes, their targets and also their mechanisms of action are also discussed, in the context of HPV-induced malignancies. Overall, accumulating data indicates that lncRNAs may have a significant potential to become useful tools for clinical practice as disease biomarkers or therapy targets.
Collapse
Affiliation(s)
- Tânia R Dias
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal; Research Department of the Portuguese League Against Cancer-Regional Nucleus of the North (Liga Portuguesa Contra o Cancro-Núcleo Regional do Norte), 4200-177, Porto, Portugal.
| | - Joana M O Santos
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal.
| | - Rui M Gil da Costa
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5001-911 Vila Real, Portugal; LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465, Porto, Portugal; Postgraduate Programme in Adult Health (PPGSAD), Tumour and DNA Biobank, Federal University of Maranhão (UFMA), 65080-805, São Luís, Brazil.
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal; Research Department of the Portuguese League Against Cancer-Regional Nucleus of the North (Liga Portuguesa Contra o Cancro-Núcleo Regional do Norte), 4200-177, Porto, Portugal; Virology Service, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072, Porto, Portugal; CEBIMED, Faculty of Health Sciences of the Fernando Pessoa University, 4249-004, Porto, Portugal.
| |
Collapse
|
18
|
Läsche M, Urban H, Gallwas J, Gründker C. HPV and Other Microbiota; Who's Good and Who's Bad: Effects of the Microbial Environment on the Development of Cervical Cancer-A Non-Systematic Review. Cells 2021; 10:cells10030714. [PMID: 33807087 PMCID: PMC8005086 DOI: 10.3390/cells10030714] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Cervical cancer is responsible for around 5% of all human cancers worldwide. It develops almost exclusively from an unsolved, persistent infection of the squamocolumnar transformation zone between the endo- and ecto-cervix with various high-risk (HR) human papillomaviruses (HPVs). The decisive turning point on the way to persistent HPV infection and malignant transformation is an immune system weakened by pathobionts and oxidative stress and an injury to the cervical mucosa, often caused by sexual activities. Through these injury and healing processes, HPV viruses, hijacking activated keratinocytes, move into the basal layers of the cervical epithelium and then continue their development towards the distal prickle cell layer (Stratum spinosum). The microbial microenvironment of the cervical tissue determines the tissue homeostasis and the integrity of the protective mucous layer through the maintenance of a healthy immune and metabolic signalling. Pathological microorganisms and the resulting dysbiosis disturb this signalling. Thus, pathological inflammatory reactions occur, which manifest the HPV infection. About 90% of all women contract an HPV infection in the course of their lives. In about 10% of cases, the virus persists and cervical intra-epithelial neoplasia (CIN) develops. Approximately 1% of women with a high-risk HPV infection incur a cervical carcinoma after 10 to 20 years. In this non-systematic review article, we summarise how the sexually and microbial mediated pathogenesis of the cervix proceeds through aberrant immune and metabolism signalling via CIN to cervical carcinoma. We show how both the virus and the cancer benefit from the same changes in the immune and metabolic environment.
Collapse
|
19
|
Scarth JA, Patterson MR, Morgan EL, Macdonald A. The human papillomavirus oncoproteins: a review of the host pathways targeted on the road to transformation. J Gen Virol 2021; 102:001540. [PMID: 33427604 PMCID: PMC8148304 DOI: 10.1099/jgv.0.001540] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022] Open
Abstract
Persistent infection with high-risk human papillomaviruses (HR-HPVs) is the causal factor in over 99 % of cervical cancer cases, and a significant proportion of oropharyngeal and anogenital cancers. The key drivers of HPV-mediated transformation are the oncoproteins E5, E6 and E7. Together, they act to prolong cell-cycle progression, delay differentiation and inhibit apoptosis in the host keratinocyte cell in order to generate an environment permissive for viral replication. The oncoproteins also have key roles in mediating evasion of the host immune response, enabling infection to persist. Moreover, prolonged infection within the cellular environment established by the HR-HPV oncoproteins can lead to the acquisition of host genetic mutations, eventually culminating in transformation to malignancy. In this review, we outline the many ways in which the HR-HPV oncoproteins manipulate the host cellular environment, focusing on how these activities can contribute to carcinogenesis.
Collapse
Affiliation(s)
- James A. Scarth
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| | - Molly R. Patterson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| | - Ethan L. Morgan
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Present address: Tumour Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institute of Health, Bethesda, MD 20892, USA
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| |
Collapse
|
20
|
The Role of Ataxia Telangiectasia Mutant and Rad3-Related DNA Damage Response in Pathogenesis of Human Papillomavirus. Pathogens 2020; 9:pathogens9060506. [PMID: 32585979 PMCID: PMC7350315 DOI: 10.3390/pathogens9060506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/16/2022] Open
Abstract
Human papillomavirus (HPV) infection leads to a variety of benign lesions and malignant tumors such as cervical cancer and head and neck squamous cell carcinoma. Several HPV vaccines have been developed that can help to prevent cervical carcinoma, but these vaccines are only effective in individuals with no prior HPV infection. Thus, it is still important to understand the HPV life cycle and in particular the association of HPV with human pathogenesis. HPV production requires activation of the DNA damage response (DDR), which is a complex signaling network composed of multiple sensors, mediators, transducers, and effectors that safeguard cellular DNAs to maintain the host genome integrity. In this review, we focus on the roles of the ataxia telangiectasia mutant and Rad3-related (ATR) DNA damage response in HPV DNA replication. HPV can induce ATR expression and activate the ATR pathway. Inhibition of the ATR pathway results in suppression of HPV genome maintenance and amplification. The mechanisms underlying this could be through various molecular pathways such as checkpoint signaling and transcriptional regulation. In light of these findings, other downstream mechanisms of the ATR pathway need to be further investigated for better understanding HPV pathogenesis and developing novel ATR DDR-related inhibitors against HPV infection.
Collapse
|
21
|
Kori M, Arga KY. Pathways involved in viral oncogenesis: New perspectives from virus-host protein interactomics. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165885. [PMID: 32574835 DOI: 10.1016/j.bbadis.2020.165885] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/03/2020] [Accepted: 06/18/2020] [Indexed: 02/06/2023]
Abstract
Oncogenic viruses are among the apparent causes of cancer-associated mortality. It was estimated that 12% to 15% of human malignancies are linked to oncoviruses. Although modernist strategies and traditional genetic studies have defined host-pathogen interactions of the oncoviruses, their host functions which are critical for the establishment of infection still remain mysterious. However, over the last few years, it has become clear that infections hijack and modify cellular pathways for their benefit. In this context, we constructed the virus-host protein interaction networks of seven oncoviruses (EBV, HBV, HCV, HTLV-1, HHV8, HPV16, and HPV18), and revealed cellular pathways hijacking as a result of oncogenic virus infection. Several signaling pathways/processes such as TGF-β signaling, cell cycle, retinoblastoma tumor suppressor protein, and androgen receptor signaling were mutually targeted by viruses to induce oncogenesis. Besides, cellular pathways specific to a certain virus were detected. By this study, we believe that we improve the understanding of the molecular pathogenesis of viral oncogenesis and provide information in setting new targets for treatment, prognosis, and diagnosis.
Collapse
Affiliation(s)
- Medi Kori
- Department of Bioengineering, Marmara University, Istanbul, Turkey
| | | |
Collapse
|
22
|
Epigenetic Regulation of the Human Papillomavirus Life Cycle. Pathogens 2020; 9:pathogens9060483. [PMID: 32570816 PMCID: PMC7350343 DOI: 10.3390/pathogens9060483] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/20/2022] Open
Abstract
Persistent infection with certain types of human papillomaviruses (HPVs), termed high risk, presents a public health burden due to their association with multiple human cancers, including cervical cancer and an increasing number of head and neck cancers. Despite the development of prophylactic vaccines, the incidence of HPV-associated cancers remains high. In addition, no vaccine has yet been licensed for therapeutic use against pre-existing HPV infections and HPV-associated diseases. Although persistent HPV infection is the major risk factor for cancer development, additional genetic and epigenetic alterations are required for progression to the malignant phenotype. Unlike genetic mutations, the reversibility of epigenetic modifications makes epigenetic regulators ideal therapeutic targets for cancer therapy. This review article will highlight the recent advances in the understanding of epigenetic modifications associated with HPV infections, with a particular focus on the role of these epigenetic changes during different stages of the HPV life cycle that are closely associated with activation of DNA damage response pathways.
Collapse
|
23
|
Casarotto M, Fanetti G, Guerrieri R, Palazzari E, Lupato V, Steffan A, Polesel J, Boscolo-Rizzo P, Fratta E. Beyond MicroRNAs: Emerging Role of Other Non-Coding RNAs in HPV-Driven Cancers. Cancers (Basel) 2020; 12:cancers12051246. [PMID: 32429207 PMCID: PMC7281476 DOI: 10.3390/cancers12051246] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
Persistent infection with high-risk Human Papilloma Virus (HPV) leads to the development of several tumors, including cervical, oropharyngeal, and anogenital squamous cell carcinoma. In the last years, the use of high-throughput sequencing technologies has revealed a number of non-coding RNA (ncRNAs), distinct from micro RNAs (miRNAs), that are deregulated in HPV-driven cancers, thus suggesting that HPV infection may affect their expression. However, since the knowledge of ncRNAs is still limited, a better understanding of ncRNAs biology, biogenesis, and function may be challenging for improving the diagnosis of HPV infection or progression, and for monitoring the response to therapy of patients affected by HPV-driven tumors. In addition, to establish a ncRNAs expression profile may be instrumental for developing more effective therapeutic strategies for the treatment of HPV-associated lesions and cancers. Therefore, this review will address novel classes of ncRNAs that have recently started to draw increasing attention in HPV-driven tumors, with a particular focus on ncRNAs that have been identified as a direct target of HPV oncoproteins.
Collapse
Affiliation(s)
- Mariateresa Casarotto
- Division of Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081 Aviano (PN), Italy; (M.C.); (R.G.); (A.S.)
| | - Giuseppe Fanetti
- Division of Radiotherapy, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081 Aviano (PN), Italy; (G.F.); (E.P.)
| | - Roberto Guerrieri
- Division of Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081 Aviano (PN), Italy; (M.C.); (R.G.); (A.S.)
| | - Elisa Palazzari
- Division of Radiotherapy, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081 Aviano (PN), Italy; (G.F.); (E.P.)
| | - Valentina Lupato
- Division of Otolaryngology, General Hospital “Santa Maria degli Angeli”, 33170 Pordenone, Italy;
| | - Agostino Steffan
- Division of Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081 Aviano (PN), Italy; (M.C.); (R.G.); (A.S.)
| | - Jerry Polesel
- Division of Cancer Epidemiology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081 Aviano (PN), Italy;
| | - Paolo Boscolo-Rizzo
- Section of Otolaryngology, Department of Neurosciences, University of Padova, 31100 Treviso, Italy;
| | - Elisabetta Fratta
- Division of Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081 Aviano (PN), Italy; (M.C.); (R.G.); (A.S.)
- Correspondence: ; Tel.: +390434659569
| |
Collapse
|
24
|
Hemmat N, Bannazadeh Baghi H. Association of human papillomavirus infection and inflammation in cervical cancer. Pathog Dis 2020; 77:5558235. [PMID: 31504464 DOI: 10.1093/femspd/ftz048] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/01/2019] [Indexed: 12/11/2022] Open
Abstract
Human papillomavirus (HPV) associated cancers, and in particular cervical cancer, are considered to be directly stimulated by HPV oncogenes. Alternatively, these types of cancers could also be indirectly stimulated by HPV-induced chronic inflammations, which in turn are also caused by HPV oncogenes activity. Chronic inflammation is associated with repeated tissue injury and development of mutations in the vital tumor suppressor genes. Thus, it is important to understand that the persistent HPV infection and its associated chronic inflammation is responsible for the progression of HPV-induced cancers. HPV E5, E6 and E7 could upregulate the expression of cyclooxygenase (COX)-2 and prostaglandin (PG) E2 followed by the activation of the COX-PG pathway. This pathway is assumed to be the main cause of HPV-induced inflammation. Additionally, HPV oncogenes could have an impact on the upregulation of pro-inflammatory cytokines in HPV-positive patients. The upregulation of such cytokines accelerates the incidence of inflammation following HPV infection. Other factors such as microRNAs, which are involved in the inflammation pathways and aging, give rise to the increased level of pro-inflammatory cytokines and could also be responsible for the acceleration of HPV-induced inflammation and consequent cervical cancer. In this review, the exact roles of HPV oncogenes in the occurrence of inflammation in cervical tissue, and the effects of other factors in this event are evaluated.
Collapse
Affiliation(s)
- Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
25
|
Sharma S, Munger K. The Role of Long Noncoding RNAs in Human Papillomavirus-associated Pathogenesis. Pathogens 2020; 9:pathogens9040289. [PMID: 32326624 PMCID: PMC7238103 DOI: 10.3390/pathogens9040289] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
Infections with high-risk human papillomaviruses cause ~5% of all human cancers. E6 and E7 are the only viral genes that are consistently expressed in cancers, and they are necessary for tumor initiation, progression, and maintenance. E6 and E7 encode small proteins that lack intrinsic enzymatic activities and they function by binding to cellular regulatory molecules, thereby subverting normal cellular homeostasis. Much effort has focused on identifying protein targets of the E6 and E7 proteins, but it has been estimated that ~98% of the human transcriptome does not encode proteins. There is a growing interest in studying noncoding RNAs as biochemical targets and biological mediators of human papillomavirus (HPV) E6/E7 oncogenic activities. This review focuses on HPV E6/E7 targeting cellular long noncoding RNAs, a class of biologically versatile molecules that regulate almost every known biological process and how this may contribute to viral oncogenesis.
Collapse
|
26
|
Suppression of a Subset of Interferon-Induced Genes by Human Papillomavirus Type 16 E7 via a Cyclin Dependent Kinase 8-Dependent Mechanism. Viruses 2020; 12:v12030311. [PMID: 32183180 PMCID: PMC7150855 DOI: 10.3390/v12030311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
Persistent infection by human papillomaviruses (HPVs), small, double-stranded DNA viruses that infect keratinocytes of the squamous epithelia, can lead to the development of cervical and other cancers. The viral oncoprotein E7 contributes to viral persistence in part by regulating host gene expression through binding host transcriptional regulators, although mechanisms responsible for E7-mediated transcriptional regulation are incompletely understood. Type I IFN signaling promotes the expression of anti-viral genes, called interferon-stimulated genes (ISGs), through the phosphorylation and activation of STAT1. In this study, we have observed that the CR3 domain of E7 contributes to the episomal maintenance of viral genomes. Transcriptome analysis revealed that E7 transcriptionally suppresses a subset of ISGs but not through regulation of STAT1 activation. Instead, we discovered that E7 associates with Mediator kinase CDK8 and this is correlated with the recruitment of CDK8 to ISG promoters and reduced ISG expression. E7 fails to suppress ISGs in the absence of CDK8, indicating that CDK8 function contributes to the suppression of ISGs by E7. Altogether, E7/CDK8 association may be a novel mechanism by which E7 inhibits innate immune signaling.
Collapse
|
27
|
Yao HL, Liu M, Wang WJ, Wang XL, Song J, Song QQ, Han J. Construction of miRNA-target networks using microRNA profiles of CVB3-infected HeLa cells. Sci Rep 2019; 9:17876. [PMID: 31784561 PMCID: PMC6884461 DOI: 10.1038/s41598-019-54188-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) play an important role in regulating gene expression in multiple biological processes and diseases. Thus, to understand changes in miRNA during CVB3 infection, specific miRNA expression profiles were investigated at 3 h, 6 h, and 9 h postinfection in HeLa cells by small-RNA high-throughput sequencing. Biological implications of 68 differentially expressed miRNAs were analyzed through GO and KEGG pathways. Interaction networks between 34 known highly differentially expressed miRNAs and targets were constructed by mirDIP and Navigator. The predicted targets showed that FAM135A, IKZF2, PLAG1, ZNF148, PHC3, LCOR and DYRK1A, which are associated with cellular differentiation and transcriptional regulation, were recognized by 8 miRNAs or 9 miRNAs through interactional regulatory networks. Seven target genes were confirmed by RT-qPCR. The results showed that the expression of DYRK1A, FAM135A, PLAG1, ZNF148, and PHC3 were obviously inhibited at 3 h, 6 h, and 9 h postinfection. The expression of LCOR did not show a significant change, and the expression of IKZF2 increased gradually with prolonged infection time. Our findings improve the understanding of the pathogenic mechanism of CVB3 infection on cellular differentiation and development through miRNA regulation, which has implications for interventional approaches to CVB3-infection therapy. Our results also provide a new method for screening target genes of microRNA regulation in virus-infected cells.
Collapse
Affiliation(s)
- Hai Lan Yao
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, 2 YaBao Rd, Beijing, 100020, China
| | - Mi Liu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Rd, Beijing, 102206, China
- Center for Biosafety Mega-Science, Chinese Academy of Science, 44 Xiao HongShan, Wuhan, Hubei, 430071, China
| | - Wen Jun Wang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Rd, Beijing, 102206, China
- Center for Biosafety Mega-Science, Chinese Academy of Science, 44 Xiao HongShan, Wuhan, Hubei, 430071, China
| | - Xin Ling Wang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Rd, Beijing, 102206, China
- Center for Biosafety Mega-Science, Chinese Academy of Science, 44 Xiao HongShan, Wuhan, Hubei, 430071, China
| | - Juan Song
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Rd, Beijing, 102206, China
- Center for Biosafety Mega-Science, Chinese Academy of Science, 44 Xiao HongShan, Wuhan, Hubei, 430071, China
| | - Qin Qin Song
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Rd, Beijing, 102206, China
- Center for Biosafety Mega-Science, Chinese Academy of Science, 44 Xiao HongShan, Wuhan, Hubei, 430071, China
| | - Jun Han
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Rd, Beijing, 102206, China.
- Center for Biosafety Mega-Science, Chinese Academy of Science, 44 Xiao HongShan, Wuhan, Hubei, 430071, China.
| |
Collapse
|
28
|
Mendoza-Almanza G, Ortíz-Sánchez E, Rocha-Zavaleta L, Rivas-Santiago C, Esparza-Ibarra E, Olmos J. Cervical cancer stem cells and other leading factors associated with cervical cancer development. Oncol Lett 2019; 18:3423-3432. [PMID: 31516560 PMCID: PMC6733009 DOI: 10.3892/ol.2019.10718] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 06/06/2019] [Indexed: 02/07/2023] Open
Abstract
Cervical cancer (CC) is one of the leading causes of cancer-associated mortalities in women from developing countries. Similar to other types of cancer, CC is considered to be a multifactorial disease, involving socioeconomic, cultural, immunological and epigenetic factors, as well as persistent human papilloma virus (HPV) infection. It has been well established that cancer stem cells (CSCs) play an important role in defining tumor size, the speed of development and the level of regression following treatment; therefore, CSCs are associated with a poor prognosis. CSCs have been detected in many types of cancer, including leukemia, pancreatic, colon, esophagus, liver, prostate, breast, gastric and lung cancer. In cervical cancer, CSCs have been associated with resistance to normally used drugs such as cisplatin. The present review summarizes the strategies that high-risk HPV viruses (HPV-16 and HPV-18) have developed to transform normal epithelial cells into cancer cells, as well as the cellular pathways and studies associated with the identification of cervical cancer stem cell biomarkers. In this sense, the present review provides state of the art information regarding CC development.
Collapse
Affiliation(s)
- Gretel Mendoza-Almanza
- National Council for Science and Technology, Autonomous University of Zacatecas, Zacatecas 98060, Mexico
| | | | - Leticia Rocha-Zavaleta
- Institute of Biomedical Research, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - César Rivas-Santiago
- National Council for Science and Technology, Autonomous University of Zacatecas, Zacatecas 98060, Mexico
| | - Edgar Esparza-Ibarra
- Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas 98060, Mexico
| | - Jorge Olmos
- Department of Marine Biotechnology, Center for Scientific Research and Higher Education, Ensenada 22860, Mexico
- Correspondence to: Dr Jorge Olmos, Department of Marine Biotechnology, Center for Scientific Research and Higher Education, 3918 Carretera Ensenada-Tijuana, Ensenada 22860, Mexico, E-mail:
| |
Collapse
|
29
|
Yun HY, Kim MW, Lee HS, Kim W, Shin JH, Kim H, Shin HC, Park H, Oh BH, Kim WK, Bae KH, Lee SC, Lee EW, Ku B, Kim SJ. Structural basis for recognition of the tumor suppressor protein PTPN14 by the oncoprotein E7 of human papillomavirus. PLoS Biol 2019; 17:e3000367. [PMID: 31323018 PMCID: PMC6668832 DOI: 10.1371/journal.pbio.3000367] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 07/31/2019] [Accepted: 07/08/2019] [Indexed: 12/28/2022] Open
Abstract
Human papillomaviruses (HPVs) are causative agents of various diseases associated with cellular hyperproliferation, including cervical cancer, one of the most prevalent tumors in women. E7 is one of the two HPV-encoded oncoproteins and directs recruitment and subsequent degradation of tumor-suppressive proteins such as retinoblastoma protein (pRb) via its LxCxE motif. E7 also triggers tumorigenesis in a pRb-independent pathway through its C-terminal domain, which has yet been largely undetermined, with a lack of structural information in a complex form with a host protein. Herein, we present the crystal structure of the E7 C-terminal domain of HPV18 belonging to the high-risk HPV genotypes bound to the catalytic domain of human nonreceptor-type protein tyrosine phosphatase 14 (PTPN14). They interact directly and potently with each other, with a dissociation constant of 18.2 nM. Ensuing structural analysis revealed the molecular basis of the PTPN14-binding specificity of E7 over other protein tyrosine phosphatases and also led to the identification of PTPN21 as a direct interacting partner of E7. Disruption of HPV18 E7 binding to PTPN14 by structure-based mutagenesis impaired E7’s ability to promote keratinocyte proliferation and migration. Likewise, E7 binding-defective PTPN14 was resistant for degradation via proteasome, and it was much more effective than wild-type PTPN14 in attenuating the activity of downstream effectors of Hippo signaling and negatively regulating cell proliferation, migration, and invasion when examined in HPV18-positive HeLa cells. These results therefore demonstrated the significance and therapeutic potential of the intermolecular interaction between HPV E7 and host PTPN14 in HPV-mediated cell transformation and tumorigenesis. Human papillomaviruses cause various diseases associated with cellular hyperproliferation, including cervical cancer. Structural, biochemical, and cellular analyses reveal the molecular basis and significance of the intermolecular interaction between the E7 protein of human papillomavirus 18 and the human tumor suppressor protein PTPN14.
Collapse
MESH Headings
- Amino Acid Sequence
- Cell Line
- Cell Line, Tumor
- Cell Transformation, Neoplastic
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Female
- HEK293 Cells
- HeLa Cells
- Humans
- Models, Molecular
- Oncogene Proteins, Viral/chemistry
- Oncogene Proteins, Viral/genetics
- Oncogene Proteins, Viral/metabolism
- Protein Binding
- Protein Domains
- Protein Tyrosine Phosphatases, Non-Receptor/chemistry
- Protein Tyrosine Phosphatases, Non-Receptor/genetics
- Protein Tyrosine Phosphatases, Non-Receptor/metabolism
- Retinoblastoma Protein/chemistry
- Retinoblastoma Protein/genetics
- Retinoblastoma Protein/metabolism
- Sequence Homology, Amino Acid
- Uterine Cervical Neoplasms/genetics
- Uterine Cervical Neoplasms/metabolism
- Uterine Cervical Neoplasms/pathology
Collapse
Affiliation(s)
- Hye-Yeoung Yun
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, Republic of Korea
| | - Min Wook Kim
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, Republic of Korea
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hye Seon Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Wantae Kim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Ji Hye Shin
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hyunmin Kim
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ho-Chul Shin
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hwangseo Park
- Department of Bioscience and Biotechnology, Sejong University, Seoul, Republic of Korea
| | - Byung-Ha Oh
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Won Kon Kim
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, Republic of Korea
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Kwang-Hee Bae
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, Republic of Korea
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Sang Chul Lee
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, Republic of Korea
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- * E-mail: (E-WL); (BK); (SJK)
| | - Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- * E-mail: (E-WL); (BK); (SJK)
| | - Seung Jun Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, Republic of Korea
- * E-mail: (E-WL); (BK); (SJK)
| |
Collapse
|
30
|
Gheit T. Mucosal and Cutaneous Human Papillomavirus Infections and Cancer Biology. Front Oncol 2019; 9:355. [PMID: 31134154 PMCID: PMC6517478 DOI: 10.3389/fonc.2019.00355] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022] Open
Abstract
Papillomaviridae is a family of small non-enveloped icosahedral viruses with double-stranded circular DNA. More than 200 different human papillomaviruses (HPVs) have been listed so far. Based on epidemiological data, a subgroup of alphapapillomaviruses (alpha HPVs) was referred to as high-risk (HR) HPV types. HR HPVs are the etiological agents of anogenital cancer and a subset of head and neck cancers. The cutaneous HPV types, mainly from beta and gamma genera, are widely present on the surface of the skin in the general population. However, there is growing evidence of an etiological role of betapapillomaviruses (beta HPVs) in non-melanoma skin cancer (NMSC), together with ultraviolet (UV) radiation. Studies performed on mucosal HR HPV types, such as 16 and 18, showed that both oncoproteins E6 and E7 play a key role in cervical cancer by altering pathways involved in the host immune response to establish a persistent infection and by promoting cellular transformation. Continuous expression of E6 and E7 of mucosal HR HPV types is essential to initiate and to maintain the cellular transformation process, whereas expression of E6 and E7 of cutaneous HPV types is not required for the maintenance of the skin cancer phenotype. Beta HPV types appear to play a role in the initiation of skin carcinogenesis, by exacerbating the accumulation of UV radiation-induced DNA breaks and somatic mutations (the hit-and-run mechanism), and they would therefore act as facilitators rather than direct actors in NMSC. In this review, the natural history of HPV infection and the transforming properties of various HPV genera will be described, with a particular focus on describing the state of knowledge about the role of cutaneous HPV types in NMSC.
Collapse
Affiliation(s)
- Tarik Gheit
- Infections and Cancer Biology Group, International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
31
|
Estêvão D, Costa NR, Gil da Costa RM, Medeiros R. Hallmarks of HPV carcinogenesis: The role of E6, E7 and E5 oncoproteins in cellular malignancy. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:153-162. [PMID: 30707946 DOI: 10.1016/j.bbagrm.2019.01.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 01/06/2023]
Abstract
Human papillomavirus (HPV) is the most common sexually transmitted infectious agent worldwide, being also responsible for 5% of all human cancers. The integration and hypermethylation mechanisms of the HPV viral genome promote the unbalanced expression of the E6, E7 and E5 oncoproteins, which are crucial factors for the carcinogenic cascade in HPV-induced cancers. This review highlights the action of E6, E7 and E5 over key regulatory targets, promoting all known hallmarks of cancer. Both well-characterized and novel targets of these HPV oncoproteins are described, detailing their mechanisms of action. Finally, this review approaches the possibility of targeting E6, E7 and E5 for therapeutic applications in the context of cancer.
Collapse
Affiliation(s)
- Diogo Estêvão
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology of Porto (IPO-Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; FMUP, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Natália Rios Costa
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology of Porto (IPO-Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Rui M Gil da Costa
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology of Porto (IPO-Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5001-911 Vila Real, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology of Porto (IPO-Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; FMUP, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; LPCC, Research Department Portuguese League Against Cancer (Liga Portuguesa Contra o Cancro-Núcleo Regional do Norte), Estrada Interior da Circunvalação, no. 6657, 4200-177 Porto, Portugal; CEBIMED, Faculty of Health Sciences, Fernando Pessoa University, Porto, Portugal.
| |
Collapse
|
32
|
Abstract
The inactivation of critical cell cycle checkpoints by the human papillomavirus (HPV) oncoprotein E7 results in replication stress (RS) that leads to genomic instability in premalignant lesions. Intriguingly, RS tolerance is achieved through several mechanisms, enabling HPV to exploit the cellular RS response for viral replication and to facilitate viral persistence in the presence of DNA damage. As such, inhibitors of the RS response pathway may provide a novel approach to target HPV-associated lesions and cancers.
Collapse
|
33
|
Ostermann E, Loroch S, Qian Z, Sickmann A, Wiebusch L, Brune W. Activation of E2F-dependent transcription by the mouse cytomegalovirus M117 protein affects the viral host range. PLoS Pathog 2018; 14:e1007481. [PMID: 30532172 PMCID: PMC6301716 DOI: 10.1371/journal.ppat.1007481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 12/20/2018] [Accepted: 11/21/2018] [Indexed: 01/02/2023] Open
Abstract
Cytomegaloviruses (CMVs) have a highly restricted host range as they replicate only in cells of their own or closely related species. To date, the molecular mechanisms underlying the CMV host restriction remain poorly understood. However, it has been shown that mouse cytomegalovirus (MCMV) can be adapted to human cells and that adaptation goes along with adaptive mutations in several viral genes. In this study, we identify MCMV M117 as a novel host range determinant. Mutations in this gene enable the virus to cross the species barrier and replicate in human RPE-1 cells. We show that the M117 protein is expressed with early kinetics, localizes to viral replication compartments, and contributes to the inhibition of cellular DNA synthesis. Mechanistically, M117 interacts with members of the E2F transcription factor family and induces E2F target gene expression in murine and human cells. While the N-terminal part of M117 mediates E2F interaction, the C-terminal part mediates self-interaction. Both parts are required for the activation of E2F-dependent transcription. We further show that M117 is dispensable for viral replication in cultured mouse fibroblasts and endothelial cells, but is required for colonization of mouse salivary glands in vivo. Conversely, inactivation of M117 or pharmacological inhibition of E2F facilitates MCMV replication in human RPE-1 cells, whereas replacement of M117 by adenovirus E4orf6/7, a known E2F activator, prevents it. These results indicate that E2F activation is detrimental for MCMV replication in human cells. In summary, this study identifies MCMV M117 as a novel E2F activator that functions as a host range determinant by precluding MCMV replication in human cells.
Collapse
Affiliation(s)
- Eléonore Ostermann
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Stefan Loroch
- Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V., Dortmund, Germany
| | - Zhikang Qian
- Unit of Herpesvirus and Molecular Virology, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V., Dortmund, Germany
| | - Lüder Wiebusch
- Labor für Pädiatrische Molekularbiologie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Wolfram Brune
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- * E-mail:
| |
Collapse
|
34
|
High-Risk Human Papillomaviral Oncogenes E6 and E7 Target Key Cellular Pathways to Achieve Oncogenesis. Int J Mol Sci 2018; 19:ijms19061706. [PMID: 29890655 PMCID: PMC6032416 DOI: 10.3390/ijms19061706] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022] Open
Abstract
Infection with high-risk human papillomavirus (HPV) has been linked to several human cancers, the most prominent of which is cervical cancer. The integration of the viral genome into the host genome is one of the manners in which the viral oncogenes E6 and E7 achieve persistent expression. The most well-studied cellular targets of the viral oncogenes E6 and E7 are p53 and pRb, respectively. However, recent research has demonstrated the ability of these two viral factors to target many more cellular factors, including proteins which regulate epigenetic marks and splicing changes in the cell. These have the ability to exert a global change, which eventually culminates to uncontrolled proliferation and carcinogenesis.
Collapse
|
35
|
Sharma S, Munger K. Expression of the cervical carcinoma expressed PCNA regulatory (CCEPR) long noncoding RNA is driven by the human papillomavirus E6 protein and modulates cell proliferation independent of PCNA. Virology 2018; 518:8-13. [PMID: 29427865 DOI: 10.1016/j.virol.2018.01.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/22/2018] [Accepted: 01/31/2018] [Indexed: 12/22/2022]
Abstract
Modulation of expression of noncoding RNAs is an important aspect of the oncogenic activities of high-risk human papillomavirus (HPV) E6 and E7 proteins. While HPV E6/E7-mediated alterations of microRNAs (miRNAs) has been studied in detail there are fewer reports on HPV-mediated dysregulation of long noncoding RNAs (lncRNAs). The cervical carcinoma expressed PCNA regulatory (CCEPR) lncRNA is highly expressed in cervical cancers and expression correlates with tumor size and patient outcome. We report that CCEPR is a nuclear lncRNA and that HPV16 E6 oncogene expression causes increased CCEPR expression through a mechanism that is not directly dependent on TP53 inactivation. CCEPR depletion in cervical carcinoma cell lines reduces viability, while overexpression enhances viability. In contrast to what was published and inspired its designation, there is no evidence for PCNA mRNA stabilization, and hence CCEPR likely functions through a different mechanism.
Collapse
Affiliation(s)
- Surendra Sharma
- Biochemistry Program, Sackler School of Graduate Biomedical Sciences and Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, United States
| | - Karl Munger
- Biochemistry Program, Sackler School of Graduate Biomedical Sciences and Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, United States.
| |
Collapse
|
36
|
Soto DR, Barton C, Munger K, McLaughlin-Drubin ME. KDM6A addiction of cervical carcinoma cell lines is triggered by E7 and mediated by p21CIP1 suppression of replication stress. PLoS Pathog 2017; 13:e1006661. [PMID: 28968467 PMCID: PMC5638616 DOI: 10.1371/journal.ppat.1006661] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/12/2017] [Accepted: 09/21/2017] [Indexed: 12/13/2022] Open
Abstract
Expression of E7 proteins encoded by carcinogenic, high-risk human papillomaviruses (HPVs) triggers increased expression of the histone H3 lysine 27 demethylase KDM6A. KDM6A expression is necessary for survival of high-risk HPV E7 expressing cells, including several cervical cancer lines. Here we show that increased KDM6A in response to high-risk HPV E7 expression causes epigenetic de-repression of the cell cycle and DNA replication inhibitor p21CIP1, and p21CIP1 expression is necessary for survival of high-risk HPV E7 expressing cells. The requirement for KDM6A and p21CIP1 expression for survival of high-risk HPV E7 expressing cells is based on p21CIP1’s ability to inhibit DNA replication through PCNA binding. We show that ectopic expression of cellular replication factors can rescue the loss of cell viability in response to p21CIP1 and KDM6A depletion. Moreover, we discovered that nucleoside supplementation will override the loss of cell viability in response to p21CIP1 depletion, suggesting that p21CIP1 depletion causes lethal replication stress. This model is further supported by increased double strand DNA breaks upon KDM6A or p21CIP1 depletion and DNA combing experiments that show aberrant re-replication upon KDM6A or p21CIP1 depletion in high-risk HPV E7 expressing cells. Therefore, KDM6A and p21CIP1 expression are essential to curb E7 induced replication stress to levels that do not markedly interfere with cell viability. High-risk human papillomaviruses (HPVs) are associated with approximately five percent of all human cancers, including virtually all cervical cancers as well as a large percentage of anal, vaginal, vulvar, penile, and oropharyngeal cancers. The HPV E6 and E7 proteins are the major oncogenic drivers in these tumors, and persistent expression of E6 and E7 is required for the maintenance of the transformed state. While E6 and E7 lack intrinsic enzymatic activities, and thus are difficult to directly target therapeutically, they biochemically interact with, functionally modify, or alter expression of key host cellular signaling proteins. HPV16 E7 triggers increased expression of the KDM6A histone demethylase, and KDM6A expression becomes necessary for the survival of HPV16 E7 expressing cells. Here we show that the requirement for persistent KDM6A expression is mediated by the cell cycle and DNA replication inhibitor p21CIP1 in that p21CIP1 expression is necessary for survival of E7 expressing cells. Remarkably, this is based on the ability of p21CIP1 to inhibit cellular DNA replication by binding PCNA. Our results suggest that increased KDM6A and p21CIP1 expression serves to curb HPV16 E7-induced replication stress to levels that are conducive to DNA replication but do not cause death of HPV infected cells.
Collapse
Affiliation(s)
- David R. Soto
- Infectious Diseases Division, Department of Medicine, The Channing Laboratory, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christopher Barton
- Infectious Diseases Division, Department of Medicine, The Channing Laboratory, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Karl Munger
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Margaret E. McLaughlin-Drubin
- Infectious Diseases Division, Department of Medicine, The Channing Laboratory, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
37
|
Epigenetic Alterations in Human Papillomavirus-Associated Cancers. Viruses 2017; 9:v9090248. [PMID: 28862667 PMCID: PMC5618014 DOI: 10.3390/v9090248] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 08/25/2017] [Accepted: 08/25/2017] [Indexed: 12/15/2022] Open
Abstract
Approximately 15–20% of human cancers are caused by viruses, including human papillomaviruses (HPVs). Viruses are obligatory intracellular parasites and encode proteins that reprogram the regulatory networks governing host cellular signaling pathways that control recognition by the immune system, proliferation, differentiation, genomic integrity, and cell death. Given that key proteins in these regulatory networks are also subject to mutation in non-virally associated diseases and cancers, the study of oncogenic viruses has also been instrumental to the discovery and analysis of many fundamental cellular processes, including messenger RNA (mRNA) splicing, transcriptional enhancers, oncogenes and tumor suppressors, signal transduction, immune regulation, and cell cycle control. More recently, tumor viruses, in particular HPV, have proven themselves invaluable in the study of the cancer epigenome. Epigenetic silencing or de-silencing of genes can have cellular consequences that are akin to genetic mutations, i.e., the loss and gain of expression of genes that are not usually expressed in a certain cell type and/or genes that have tumor suppressive or oncogenic activities, respectively. Unlike genetic mutations, the reversible nature of epigenetic modifications affords an opportunity of epigenetic therapy for cancer. This review summarizes the current knowledge on epigenetic regulation in HPV-infected cells with a focus on those elements with relevance to carcinogenesis.
Collapse
|
38
|
The human papillomavirus replication cycle, and its links to cancer progression: a comprehensive review. Clin Sci (Lond) 2017; 131:2201-2221. [DOI: 10.1042/cs20160786] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/26/2017] [Accepted: 07/03/2017] [Indexed: 12/21/2022]
Abstract
HPVs (human papillomaviruses) infect epithelial cells and their replication cycle is intimately linked to epithelial differentiation. There are over 200 different HPV genotypes identified to date and each displays a strict tissue specificity for infection. HPV infection can result in a range of benign lesions, for example verrucas on the feet, common warts on the hands, or genital warts. HPV infects dividing basal epithelial cells where its dsDNA episomal genome enters the nuclei. Upon basal cell division, an infected daughter cell begins the process of keratinocyte differentiation that triggers a tightly orchestrated pattern of viral gene expression to accomplish a productive infection. A subset of mucosal-infective HPVs, the so-called ‘high risk’ (HR) HPVs, cause cervical disease, categorized as low or high grade. Most individuals will experience transient HR-HPV infection during their lifetime but these infections will not progress to clinically significant cervical disease or cancer because the immune system eventually recognizes and clears the virus. Cancer progression is due to persistent infection with an HR-HPV. HR-HPV infection is the cause of >99.7% cervical cancers in women, and a subset of oropharyngeal cancers, predominantly in men. HPV16 (HR-HPV genotype 16) is the most prevalent worldwide and the major cause of HPV-associated cancers. At the molecular level, cancer progression is due to increased expression of the viral oncoproteins E6 and E7, which activate the cell cycle, inhibit apoptosis, and allow accumulation of DNA damage. This review aims to describe the productive life cycle of HPV and discuss the roles of the viral proteins in HPV replication. Routes to viral persistence and cancer progression are also discussed.
Collapse
|
39
|
Gameiro SF, Kolendowski B, Zhang A, Barrett JW, Nichols AC, Torchia J, Mymryk JS. Human papillomavirus dysregulates the cellular apparatus controlling the methylation status of H3K27 in different human cancers to consistently alter gene expression regardless of tissue of origin. Oncotarget 2017; 8:72564-72576. [PMID: 29069809 PMCID: PMC5641152 DOI: 10.18632/oncotarget.19885] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/03/2017] [Indexed: 12/31/2022] Open
Abstract
High-risk human papillomaviruses (HPV) cause cancer at multiple distinct anatomical locations. Regardless of the tissue of origin, most HPV positive (HPV+) cancers show highly upregulated expression of the p16 product of the cyclin-dependent kinase inhibitor 2A (CDKN2A) gene. Paradoxically, HPV+ tumor cells require continuous expression of this tumor suppressor for survival. Thus, restoration of normal p16 regulation has potential therapeutic value against HPV induced cancers. Normally, p16 transcription is tightly controlled at the epigenetic level via polycomb repressive complex-mediated tri-methylation of histone 3 lysine 27 (H3K27me3). Although a mechanism by which HPV induces p16 has been proposed based on tissue culture models, it has not been extensively validated in human tumors. In this study, we used data from over 800 human cervical and head and neck tumors from The Cancer Genome Atlas (TCGA) to test this model. We determined the impact of HPV status on expression from the CDKN2A locus, the adjacent CDKN2B locus, and transcript levels of key epigenetic regulators of these loci. As expected, HPV+ tumors from both anatomical sites exhibited high levels of p16. Furthermore, HPV+ tumors expressed higher levels of KDM6A, which demethylates H3K27me3. CpG methylation of the CDKN2A locus was also consistently altered in HPV+ tumors. This data validates previous tissue culture studies and identifies remarkable similarities between the effects of HPV on gene expression and DNA methylation in both cervical and oral tumors in large human cohorts. Furthermore, these results support a model whereby HPV-mediated dysregulation of CDKN2A transcription requires KDM6A, a potentially druggable target.
Collapse
Affiliation(s)
- Steven F Gameiro
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Bart Kolendowski
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Ali Zhang
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - John W Barrett
- Department of Otolaryngology, Head & Neck Surgery, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Anthony C Nichols
- Department of Otolaryngology, Head & Neck Surgery, The University of Western Ontario, London, ON N6A 3K7, Canada.,Department of Oncology, The University of Western Ontario, London, ON N6A 3K7, Canada.,London Regional Cancer Program, Lawson Health Research Institute, London, ON N6C 2R5, Canada
| | - Joe Torchia
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 3K7, Canada.,Department of Oncology, The University of Western Ontario, London, ON N6A 3K7, Canada.,London Regional Cancer Program, Lawson Health Research Institute, London, ON N6C 2R5, Canada
| | - Joe S Mymryk
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON N6A 3K7, Canada.,Department of Otolaryngology, Head & Neck Surgery, The University of Western Ontario, London, ON N6A 3K7, Canada.,Department of Oncology, The University of Western Ontario, London, ON N6A 3K7, Canada.,London Regional Cancer Program, Lawson Health Research Institute, London, ON N6C 2R5, Canada
| |
Collapse
|
40
|
Molecular mechanisms underlying human papillomavirus E6 and E7 oncoprotein-induced cell transformation. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 772:23-35. [DOI: 10.1016/j.mrrev.2016.08.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/18/2016] [Accepted: 08/02/2016] [Indexed: 11/17/2022]
|
41
|
Westrich JA, Warren CJ, Pyeon D. Evasion of host immune defenses by human papillomavirus. Virus Res 2017; 231:21-33. [PMID: 27890631 PMCID: PMC5325784 DOI: 10.1016/j.virusres.2016.11.023] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/10/2016] [Accepted: 11/12/2016] [Indexed: 12/13/2022]
Abstract
A majority of human papillomavirus (HPV) infections are asymptomatic and self-resolving in the absence of medical interventions. Various innate and adaptive immune responses, as well as physical barriers, have been implicated in controlling early HPV infections. However, if HPV overcomes these host immune defenses and establishes persistence in basal keratinocytes, it becomes very difficult for the host to eliminate the infection. The HPV oncoproteins E5, E6, and E7 are important in regulating host immune responses. These oncoproteins dysregulate gene expression, protein-protein interactions, posttranslational modifications, and cellular trafficking of critical host immune modulators. In addition to the HPV oncoproteins, sequence variation and dinucleotide depletion in papillomavirus genomes has been suggested as an alternative strategy for evasion of host immune defenses. Since anti-HPV host immune responses are also considered to be important for antitumor immunity, immune dysregulation by HPV during virus persistence may contribute to immune suppression essential for HPV-associated cancer progression. Here, we discuss cellular pathways dysregulated by HPV that allow the virus to evade various host immune defenses.
Collapse
Affiliation(s)
- Joseph A Westrich
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Cody J Warren
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Current address: BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Dohun Pyeon
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
42
|
Songock WK, Kim SM, Bodily JM. The human papillomavirus E7 oncoprotein as a regulator of transcription. Virus Res 2016; 231:56-75. [PMID: 27818212 DOI: 10.1016/j.virusres.2016.10.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 12/12/2022]
Abstract
High-risk human papillomaviruses (HPVs) encode oncoproteins which manipulate gene expression patterns in the host keratinocytes to facilitate viral replication, regulate viral transcription, and promote immune evasion and persistence. In some cases, oncoprotein-induced changes in host cell behavior can cause progression to cancer, but a complete picture of the functions of the viral oncoproteins in the productive HPV life cycle remains elusive. E7 is the HPV-encoded factor most responsible for maintaining cell cycle competence in differentiating keratinocytes. Through interactions with dozens of host factors, E7 has an enormous impact on host gene expression patterns. In this review, we will examine the role of E7 specifically as a regulator of transcription. We will discuss mechanisms of regulation of cell cycle-related genes by E7 as well as genes involved in immune regulation, growth factor signaling, DNA damage responses, microRNAs, and others pathways. We will also discuss some unanswered questions about how transcriptional regulation by E7 impacts the biology of HPV in both benign and malignant conditions.
Collapse
Affiliation(s)
- William K Songock
- Department of Microbiology and Immunology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Seong-Man Kim
- Department of Microbiology and Immunology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Jason M Bodily
- Department of Microbiology and Immunology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| |
Collapse
|
43
|
Tomaić V. Functional Roles of E6 and E7 Oncoproteins in HPV-Induced Malignancies at Diverse Anatomical Sites. Cancers (Basel) 2016; 8:cancers8100095. [PMID: 27775564 PMCID: PMC5082385 DOI: 10.3390/cancers8100095] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/15/2016] [Accepted: 10/08/2016] [Indexed: 01/13/2023] Open
Abstract
Approximately 200 human papillomaviruses (HPVs) infect human epithelial cells, of which the alpha and beta types have been the most extensively studied. Alpha HPV types mainly infect mucosal epithelia and a small group of these causes over 600,000 cancers per year worldwide at various anatomical sites, especially anogenital and head-and-neck cancers. Of these the most important is cervical cancer, which is the leading cause of cancer-related death in women in many parts of the world. Beta HPV types infect cutaneous epithelia and may contribute towards the initiation of non-melanoma skin cancers. HPVs encode two oncoproteins, E6 and E7, which are directly responsible for the development of HPV-induced carcinogenesis. They do this cooperatively by targeting diverse cellular pathways involved in the regulation of cell cycle control, of apoptosis and of cell polarity control networks. In this review, the biological consequences of papillomavirus targeting of various cellular substrates at diverse anatomical sites in the development of HPV-induced malignancies are highlighted.
Collapse
Affiliation(s)
- Vjekoslav Tomaić
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy.
- Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia.
| |
Collapse
|
44
|
Durzynska J, Lesniewicz K, Poreba E. Human papillomaviruses in epigenetic regulations. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 772:36-50. [PMID: 28528689 DOI: 10.1016/j.mrrev.2016.09.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/01/2016] [Accepted: 09/17/2016] [Indexed: 12/12/2022]
Abstract
Human Papillomaviruses (HPVs) are double-stranded DNA viruses, that infect epithelial cells and are etiologically involved in the development of human cancer. Today, over 200 types of human papillomaviruses are known. They are divided into low-risk and high-risk HPVs depending on their potential to induce carcinogenesis, driven by two major viral oncoproteins, E6 and E7. By interacting with cellular partners, these proteins are involved in interdependent viral and cell cycles in stratified differentiating epithelium, and concomitantly induce epigenetic changes in infected cells and those undergoing malignant transformation. E6 and E7 oncoproteins interact with and/or modulate expression of many proteins involved in epigenetic regulation, including DNA methyltransferases, histone-modifying enzymes and subunits of chromatin remodeling complexes, thereby influencing host cell transcription program. Furthermore, HPV oncoproteins modulate expression of cellular micro RNAs. Most of these epigenetic actions in a complex dynamic interplay participate in the maintenance of persistent infection, cell transformation, and development of invasive cancer by a considerable deregulation of tumor suppressor and oncogenes. In this study, we have undertaken to discuss a number of studies concerning epigenetic regulations in HPV-dependent cells and to focus on those that have biological relevance to cancer progression.
Collapse
Affiliation(s)
- Julia Durzynska
- Department of Molecular Virology, Institute of Experimental Biology, A. Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Krzysztof Lesniewicz
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Elzbieta Poreba
- Department of Molecular Virology, Institute of Experimental Biology, A. Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland.
| |
Collapse
|
45
|
Role of WDHD1 in Human Papillomavirus-Mediated Oncogenesis Identified by Transcriptional Profiling of E7-Expressing Cells. J Virol 2016; 90:6071-6084. [PMID: 27099318 DOI: 10.1128/jvi.00513-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/16/2016] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED The E7 oncoprotein of the high-risk human papillomavirus (HPV) plays a major role in HPV-induced carcinogenesis. E7 abrogates the G1 cell cycle checkpoint and induces genomic instability, but the mechanism is not fully understood. In this study, we performed RNA sequencing (RNA-seq) to characterize the transcriptional profile of keratinocytes expressing HPV 16 (HPV-16) E7. At the transcriptome level, 236 genes were differentially expressed between E7 and vector control cells. A subset of the differentially expressed genes, most of them novel to E7-expressing cells, was further confirmed by real-time PCR. Of interest, the activities of multiple transcription factors were altered in E7-expressing cells. Through bioinformatics analysis, pathways altered in E7-expressing cells were investigated. The upregulated genes were enriched in cell cycle and DNA replication, as well as in the DNA metabolic process, transcription, DNA damage, DNA repair, and nucleotide metabolism. Specifically, we focused our studies on the gene encoding WDHD1 (WD repeat and high mobility group [HMG]-box DNA-binding protein), one of the genes that was upregulated in E7-expressing cells. WDHD1 is a component of the replisome that regulates DNA replication. Recent studies suggest that WDHD1 may also function as a DNA replication initiation factor as well as a G1 checkpoint regulator. We found that in E7-expressing cells, the steady-state level of WDHD1 protein was increased along with the half-life. Moreover, downregulation of WDHD1 reduced E7-induced G1 checkpoint abrogation and rereplication, demonstrating a novel function for WDHD1. These studies shed light on mechanisms by which HPV induces genomic instability and have therapeutic implications. IMPORTANCE The high-risk HPV types induce cervical cancer and encode an E7 oncoprotein that plays a major role in HPV-induced carcinogenesis. However, the mechanism by which E7 induces carcinogenesis is not fully understood; specific anti-HPV agents are not available. In this study, we performed RNA-seq to characterize transcriptional profiling of keratinocytes expressing HPV-16 E7 and identified more than 200 genes that were differentially expressed between E7 and vector control cells. Through bioinformatics analysis, pathways altered in E7-expressing cells were identified. Significantly, the WDHD1 gene, one of the genes that is upregulated in E7-expressing cells, was found to play an important role in E7-induced G1 checkpoint abrogation and rereplication. These studies shed light on mechanisms by which HPV induces genomic instability and have therapeutic implications.
Collapse
|
46
|
Albino-Sanchez ME, Vazquez-Hernandez J, Ocadiz-Delgado R, Serafin-Higuera N, León-Galicia I, Garcia-Villa E, Hernandez-Pando R, Gariglio P. Decreased RARβ expression induces abundant inflammation and cervical precancerous lesions. Exp Cell Res 2016; 346:40-52. [PMID: 27207583 DOI: 10.1016/j.yexcr.2016.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/03/2016] [Accepted: 05/15/2016] [Indexed: 12/29/2022]
Abstract
It is well known that vitamin A and its receptors protect against cancer development and that Retinoid Acid Receptor β (RARβ) is epigenetically silenced during tumoral progression. Cervical Cancer (CC) has been causally linked to high risk human papillomavirus (HR-HPV) infection. However, host factors are important in determining the outcome of persistent HR-HPV infection as most cervical precancerous lesions containing HR-HPVs do not progress to invasive carcinomas. Increasing evidence suggests that low diet in vitamin A and their receptors participate in the development of CC. The aim of this study has been to investigate the effects of abated RARβ expression in the development of cervical premalignant lesions in 4 month-old conditional mice (RARβ(L-/L-)). Results demonstrated the development of spontaneous squamous metaplasia, inflammatory infiltrate, enhanced mitotic activity, loss of cell differentiation, as well as decreased apoptosis and p16(INK4a) protein levels in RARβ(L-/L-) mice cervix. All these changes are hallmarks of moderate dysplasia. Importantly, our results suggest that the low expression of RARβ, may induce the down regulation of p16(INK4a), chronic inflammation and decreased apoptosis and may be involved in vulnerability to HR-HPV and early stage cervical carcinogenesis.
Collapse
Affiliation(s)
- M E Albino-Sanchez
- Department of Genetics & Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. IPN 2508, Col. San Pedro Zacatenco, 07360 México, DF, México
| | - J Vazquez-Hernandez
- Department of Genetics & Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. IPN 2508, Col. San Pedro Zacatenco, 07360 México, DF, México
| | - R Ocadiz-Delgado
- Department of Genetics & Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. IPN 2508, Col. San Pedro Zacatenco, 07360 México, DF, México
| | - N Serafin-Higuera
- Department of Genetics & Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. IPN 2508, Col. San Pedro Zacatenco, 07360 México, DF, México
| | - I León-Galicia
- Department of Genetics & Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. IPN 2508, Col. San Pedro Zacatenco, 07360 México, DF, México
| | - E Garcia-Villa
- Department of Genetics & Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. IPN 2508, Col. San Pedro Zacatenco, 07360 México, DF, México
| | - R Hernandez-Pando
- Department of Pathology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran (INCMNSZ), Vasco de Quiroga 15, Col. Seccion XVI, Tlalpan, 14000 México, DF, México
| | - P Gariglio
- Department of Genetics & Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. IPN 2508, Col. San Pedro Zacatenco, 07360 México, DF, México.
| |
Collapse
|
47
|
El-Araby AM, Fouad AA, Hanbal AM, Abdelwahab SM, Qassem OM, El-Araby ME. Epigenetic Pathways of Oncogenic Viruses: Therapeutic Promises. Arch Pharm (Weinheim) 2016; 349:73-90. [PMID: 26754591 DOI: 10.1002/ardp.201500375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/30/2015] [Accepted: 12/04/2015] [Indexed: 01/19/2023]
Abstract
Cancerous transformation comprises different events that are both genetic and epigenetic. The ultimate goal for such events is to maintain cell survival and proliferation. This transformation occurs as a consequence of different features such as environmental and genetic factors, as well as some types of infection. Many viral infections are considered to be causative agents of a number of different malignancies. To convert normal cells into cancerous cells, oncogenic viruses must function at the epigenetic level to communicate with their host cells. Oncogenic viruses encode certain epigenetic factors that lead to the immortality and proliferation of infected cells. The epigenetic effectors produced by oncogenic viruses constitute appealing targets to prevent and treat malignant diseases caused by these viruses. In this review, we highlight the importance of epigenetic reprogramming for virus-induced oncogenesis, with special emphasis on viral epigenetic oncoproteins as therapeutic targets. The discovery of molecular components that target epigenetic pathways, especially viral factors, is also discussed.
Collapse
Affiliation(s)
- Amr M El-Araby
- Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, Egypt
| | | | - Amr M Hanbal
- Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, Egypt
| | | | - Omar M Qassem
- Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, Egypt
| | - Moustafa E El-Araby
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Alsulaymanya, Jeddah, Saudi Arabia.,Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
48
|
Human papillomavirus type 16 E7 oncoprotein upregulates the retinoic acid receptor-beta expression in cervical cancer cell lines and K14E7 transgenic mice. Mol Cell Biochem 2015; 408:261-72. [PMID: PMID: 26173416 DOI: 10.1007/s11010-015-2504-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 07/04/2015] [Indexed: 12/22/2022]
Abstract
Persistent infection with high-risk human papillomaviruses is the main etiological factor in cervical cancer (CC). The human papillomavirus type 16 (HPV16) E7 oncoprotein alters several cellular processes, regulating the expression of many genes in order to avoid cell cycle control. Retinoic acid receptor beta (RARB) blocks cell growth, inducing differentiation and apoptosis. This tumor suppressor gene is gradually silenced in late passages of foreskin keratinocytes immortalized with HPV16 and in various tumors, including CC, mainly by epigenetic modifications. We investigated the effect of E7 oncoprotein on RARB gene expression. We found that HPV16 E7 increases RARB mRNA and RAR-beta protein expression both in vitro and in the cervix of young K14E7 transgenic mice. In E7-expressing cells, RARB overexpression is further increased in the presence of the tumor suppressor p53 (TP53) R273C mutant. This effect does not change when either C33-A or E7-expressing C33-A cell line is treated with Trichostatin A, suggesting that E7 enhances RARB expression independently of histone deacetylases inhibition. These findings indicate that RARB overexpression is part of the early molecular events induced by the E7 oncoprotein.
Collapse
|
49
|
Sharma S, Mandal P, Sadhukhan T, Roy Chowdhury R, Ranjan Mondal N, Chakravarty B, Chatterjee T, Roy S, Sengupta S. Bridging Links between Long Noncoding RNA HOTAIR and HPV Oncoprotein E7 in Cervical Cancer Pathogenesis. Sci Rep 2015; 5:11724. [PMID: 26152361 PMCID: PMC4495428 DOI: 10.1038/srep11724] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 06/03/2015] [Indexed: 12/21/2022] Open
Abstract
Human Papillomavirus (HPV) type 16 oncoprotein E7 plays a major role in cervical carcinogenesis by interacting with and functionally inactivating various host regulatory molecules. Long noncoding RNA (lncRNA) HOTAIR is one such regulator that recruits chromatin remodelling complex PRC2, creating gene silencing H3K27 me3 marks. Hence, we hypothesized that HOTAIR could be a potential target of E7, in HPV16 related cervical cancers (CaCx). We identified significant linear trend of progressive HOTAIR down-regulation through HPV negative controls, HPV16 positive non-malignants and CaCx samples. Majority of CaCx cases portrayed HOTAIR down-regulation in comparison to HPV negative controls, with corresponding up-regulation of HOTAIR target, HOXD10, and enrichment of cancer related pathways. However, a small subset had significantly higher HOTAIR expression, concomitant with high E7 expression and enrichment of metastatic pathways. Expression of HOTAIR and PRC2-complex members (EZH2 and SUZ12), showed significant positive correlation with E7 expression in CaCx cases and E7 transfected C33A cell line, suggestive of interplay between E7 and HOTAIR. Functional inactivation of HOTAIR by direct interaction with E7 could also be predicted by in silico analysis and confirmed by RNA-Immunoprecipitation. Our study depicts one of the causal mechanisms of cervical carcinogenesis by HPV16 E7, through modulation of HOTAIR expression and function.
Collapse
Affiliation(s)
- Sweta Sharma
- National Institute of Biomedical Genomics, Netaji Subhas Sanatorium, 2 Floor, P.O. N.S.S, Kalyani 741251, West Bengal, India
| | - Paramita Mandal
- National Institute of Biomedical Genomics, Netaji Subhas Sanatorium, 2 Floor, P.O. N.S.S, Kalyani 741251, West Bengal, India
| | - Tamal Sadhukhan
- National Institute of Biomedical Genomics, Netaji Subhas Sanatorium, 2 Floor, P.O. N.S.S, Kalyani 741251, West Bengal, India
| | - Rahul Roy Chowdhury
- Department of Gynecology, Saroj Gupta Cancer Centre and Research Institute, Kolkata,India
| | - Nidhu Ranjan Mondal
- Department of Gynecology, Saroj Gupta Cancer Centre and Research Institute, Kolkata,India
| | - Biman Chakravarty
- Department of Gynecology, Saroj Gupta Cancer Centre and Research Institute, Kolkata,India
| | - Tanmay Chatterjee
- Department of Gynecology, Saroj Gupta Cancer Centre and Research Institute, Kolkata,India
| | - Sudipta Roy
- Sri Aurobindo Seva Kendra, 1H, Gariahat Road (S) Jodhpur Park, Kolkata-700068, West Bengal, India
| | - Sharmila Sengupta
- National Institute of Biomedical Genomics, Netaji Subhas Sanatorium, 2 Floor, P.O. N.S.S, Kalyani 741251, West Bengal, India
| |
Collapse
|
50
|
Chen J. Signaling pathways in HPV-associated cancers and therapeutic implications. Rev Med Virol 2015; 25 Suppl 1:24-53. [DOI: 10.1002/rmv.1823] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 10/15/2014] [Accepted: 12/27/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Jiezhong Chen
- School of Biomedical Sciences and Australian Institute for Bioengineering and Nanotechnology; The University of Queensland; Brisbane Queensland Australia
| |
Collapse
|