1
|
Mercier AE, Joubert AM, Prudent R, Viallet J, Desroches-Castan A, De Koning L, Mabeta P, Helena J, Pepper MS, Lafanechère L. Sulfamoylated Estradiol Analogs Targeting the Actin and Microtubule Cytoskeletons Demonstrate Anti-Cancer Properties In Vitro and In Ovo. Cancers (Basel) 2024; 16:2941. [PMID: 39272798 PMCID: PMC11394244 DOI: 10.3390/cancers16172941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
The microtubule-disrupting agent 2-methoxyestradiol (2-ME) displays anti-tumor and anti-angiogenic properties, but its clinical development is halted due to poor pharmacokinetics. We therefore designed two 2-ME analogs in silico-an ESE-15-one and an ESE-16 one-with improved pharmacological properties. We investigated the effects of these compounds on the cytoskeleton in vitro, and their anti-angiogenic and anti-metastatic properties in ovo. Time-lapse fluorescent microscopy revealed that sub-lethal doses of the compounds disrupted microtubule dynamics. Phalloidin fluorescent staining of treated cervical (HeLa), metastatic breast (MDA-MB-231) cancer, and human umbilical vein endothelial cells (HUVECs) displayed thickened, stabilized actin stress fibers after 2 h, which rearranged into a peripheral radial pattern by 24 h. Cofilin phosphorylation and phosphorylated ezrin/radixin/moesin complexes appeared to regulate this actin response. These signaling pathways overlap with anti-angiogenic, extra-cellular communication and adhesion pathways. Sub-lethal concentrations of the compounds retarded both cellular migration and invasion. Anti-angiogenic and extra-cellular matrix signaling was evident with TIMP2 and P-VEGF receptor-2 upregulation. ESE-15-one and ESE-16 exhibited anti-tumor and anti-metastatic properties in vivo, using the chick chorioallantoic membrane assay. In conclusion, the sulfamoylated 2-ME analogs displayed promising anti-tumor, anti-metastatic, and anti-angiogenic properties. Future studies will assess the compounds for myeloproliferative effects, as seen in clinical applications of other drugs in this class.
Collapse
Affiliation(s)
- Anne Elisabeth Mercier
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Anna Margaretha Joubert
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Renaud Prudent
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Jean Viallet
- Inovotion SAS France, Biopolis, 38700 La Tronche, France
| | - Agnes Desroches-Castan
- Laboratoire Biosanté U1292, Université Grenoble Alpes, Inserm, CEA, 38000 Grenoble, France
| | - Leanne De Koning
- Institut Curie Centre de Recherche, PSL Research University, 75248 Paris Cedex 05, France
| | - Peace Mabeta
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Jolene Helena
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Michael Sean Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology, and South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Laurence Lafanechère
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
- Team Cytoskeleton Dynamics and Nuclear Functions, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
| |
Collapse
|
2
|
Liu X, Xu J, Zhang M, Wang H, Guo X, Zhao M, Duan M, Guan Z, Guo Y. RABV induces biphasic actin cytoskeletal rearrangement through Rac1 activity modulation. J Virol 2024; 98:e0060624. [PMID: 38809020 PMCID: PMC11264595 DOI: 10.1128/jvi.00606-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024] Open
Abstract
Rabies virus (RABV) is highly lethal and triggers severe neurological symptoms. The neuropathogenic mechanism remains poorly understood. Ras-related C3 botulinum toxin substrate 1 (Rac1) is a Rho-GTPase that is involved in actin remodeling and has been reported to be closely associated with neuronal dysfunction. In this study, by means of a combination of pharmacological inhibitors, small interfering RNA, and specific dominant-negatives, we characterize the crucial roles of dynamic actin and the regulatory function of Rac1 in RABV infection, dominantly in the viral entry phase. The data show that the RABV phosphoprotein interacts with Rac1. RABV phosphoprotein suppress Rac1 activity and impedes downstream Pak1-Limk1-Cofilin1 signaling, leading to the disruption of F-actin-based structure formation. In early viral infection, the EGFR-Rac1-signaling pathway undergoes a biphasic change, which is first upregulated and subsequently downregulated, corresponding to the RABV entry-induced remodeling pattern of F-actin. Taken together, our findings demonstrate for the first time the role played by the Rac1 signaling pathway in RABV infection and may provide a clue for an explanation for the etiology of rabies neurological pathogenesis.IMPORTANCEThough neuronal dysfunction is predominant in fatal rabies, the detailed mechanism by which rabies virus (RABV) infection causes neurological symptoms remains in question. The actin cytoskeleton is involved in numerous viruses infection and plays a crucial role in maintaining neurological function. The cytoskeletal disruption is closely associated with abnormal nervous symptoms and induces neurogenic diseases. In this study, we show that RABV infection led to the rearrangement of the cytoskeleton as well as the biphasic kinetics of the Rac1 signal transduction. These results help elucidate the mechanism that causes the aberrant neuronal processes by RABV infection and may shed light on therapeutic development aimed at ameliorating neurological disorders.
Collapse
Affiliation(s)
- Xiaomin Liu
- Institute of Zoonosis, College of Veterinary Medicine, Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Changchun, China
| | - Jing Xu
- Institute of Zoonosis, College of Veterinary Medicine, Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Changchun, China
| | - Maolin Zhang
- Institute of Zoonosis, College of Veterinary Medicine, Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Changchun, China
| | - Hualei Wang
- Institute of Zoonosis, College of Veterinary Medicine, Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Changchun, China
| | - Xin Guo
- Institute of Zoonosis, College of Veterinary Medicine, Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Changchun, China
| | - Mingxin Zhao
- Institute of Zoonosis, College of Veterinary Medicine, Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Changchun, China
| | - Ming Duan
- Institute of Zoonosis, College of Veterinary Medicine, Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Changchun, China
| | - Zhenhong Guan
- Institute of Zoonosis, College of Veterinary Medicine, Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Changchun, China
| | - Yidi Guo
- Institute of Zoonosis, College of Veterinary Medicine, Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Changchun, China
| |
Collapse
|
3
|
Noh SS, Shin HJ. Role of Virus-Induced EGFR Trafficking in Proviral Functions. Biomolecules 2023; 13:1766. [PMID: 38136637 PMCID: PMC10741569 DOI: 10.3390/biom13121766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Since its discovery in the early 1980s, the epidermal growth factor receptor (EGFR) has emerged as a pivotal and multifaceted player in elucidating the intricate mechanisms underlying various human diseases and their associations with cell survival, proliferation, and cellular homeostasis. Recent advancements in research have underscored the profound and multifaceted role of EGFR in viral infections, highlighting its involvement in viral entry, replication, and the subversion of host immune responses. In this regard, the importance of EGFR trafficking has also been highlighted in recent studies. The dynamic relocation of EGFR to diverse intracellular organelles, including endosomes, lysosomes, mitochondria, and even the nucleus, is a central feature of its functionality in diverse contexts. This dynamic intracellular trafficking is not merely a passive process but an orchestrated symphony, facilitating EGFR involvement in various cellular pathways and interactions with viral components. Furthermore, EGFR, which is initially anchored on the plasma membrane, serves as a linchpin orchestrating viral entry processes, a crucial early step in the viral life cycle. The role of EGFR in this context is highly context-dependent and varies among viruses. Here, we present a comprehensive summary of the current state of knowledge regarding the intricate interactions between EGFR and viruses. These interactions are fundamental for successful propagation of a wide array of viral species and affect viral pathogenesis and host responses. Understanding EGFR significance in both normal cellular processes and viral infections may not only help develop innovative antiviral therapies but also provide a deeper understanding of the intricate roles of EGFR signaling in infectious diseases.
Collapse
Affiliation(s)
- Se Sil Noh
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea;
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hye Jin Shin
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea;
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
- Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
4
|
Sasivimolrattana T, Bhattarakosol P. Impact of actin polymerization and filopodia formation on herpes simplex virus entry in epithelial, neuronal, and T lymphocyte cells. Front Cell Infect Microbiol 2023; 13:1301859. [PMID: 38076455 PMCID: PMC10704452 DOI: 10.3389/fcimb.2023.1301859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) has been known as a common viral pathogen that can infect several parts of the body, leading to various clinical manifestations. According to this diverse manifestation, HSV-1 infection in many cell types was demonstrated. Besides the HSV-1 cell tropism, e.g., fibroblast, epithelial, mucosal cells, and neurons, HSV-1 infections can occur in human T lymphocyte cells, especially in activated T cells. In addition, several studies found that actin polymerization and filopodia formation support HSV-1 infection in diverse cell types. Hence, the goal of this review is to explore the mechanism of HSV-1 infection in various types of cells involving filopodia formation and highlight potential future directions for HSV-1 entry-related research. Moreover, this review covers several strategies for possible anti-HSV drugs focused on the entry step, offering insights into potential therapeutic interventions.
Collapse
Affiliation(s)
| | - Parvapan Bhattarakosol
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Zhang B, Ding J, Ma Z. ICP4-Associated Activation of Rap1b Facilitates Herpes Simplex Virus Type I (HSV-1) Infection in Human Corneal Epithelial Cells. Viruses 2023; 15:1457. [PMID: 37515145 PMCID: PMC10385634 DOI: 10.3390/v15071457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
The strong contribution of RAS-related protein 1b (Rap1b) to cytoskeleton remodeling determines intracellular and extracellular physiological activities, including the successful infection of viruses in permissive cells, but its role in the HSV-1 life cycle is still unclear. Here, we demonstrated that the HSV-1 immediate early (IE) gene ICP4 inhibits protein kinase A (PKA) phosphorylation to induce Rap1b-activation-mediated viral infection. Rap1b activation and membrane enrichment begin at the early stage of HSV-1 infection and remain active during the proliferation period of the virus. Treating the cells with Rap1b small interfering RNA (siRNA) showed a dose-dependent decrease in viral infection levels, but no dose-dependent increase was observed after Rap1b overexpression. Further investigation indicated that the suppression of Rap1b activation derives from phosphorylated PKA and Rap1b mutants with partial or complete prenylation instead of phosphorylation, which promoted viral infection in a dose-dependent manner. Furthermore, the PKA agonist Forskolin disturbed Rap1b activation in a dose-dependent manner, accompanied by a decreasing trend in viral infection. Moreover, the HSV-1 IE gene ICP4 induced PKA dephosphorylation, leading to continuous Rap1b activation, followed by cytoskeleton rearrangement induced by cell division control protein 42 (CDC42) and Ras-related C3 botulinum toxin substrate 1 (RAC1). These further stimulated membrane-triggered physiological processes favoring virus infection. Altogether, we show the significance of Rap1b during HSV-1 infection and uncover the viral infection mechanism determined by the posttranslational regulation of the viral ICP4 gene and Rap1b host protein.
Collapse
Affiliation(s)
- Beibei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Juntao Ding
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Zhenghai Ma
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
6
|
Liang M, Li Y, Zhang K, Zhu Y, Liang J, Liu M, Zhang S, Chen D, Liang H, Liang L, An S, Zhu X, He Z. Host factor DUSP5 potently inhibits dengue virus infection by modulating cytoskeleton rearrangement. Antiviral Res 2023; 215:105622. [PMID: 37149044 DOI: 10.1016/j.antiviral.2023.105622] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/08/2023]
Abstract
Cytoskeleton has been reported to play an essential role in facilitating the viral life cycle. However, whether the host can exert its antiviral effects by modulating the cytoskeleton is not fully understood. In this study, we identified that host factor DUSP5 was upregulated after dengue virus (DENV) infection. In addition, we demonstrated that overexpression of DUSP5 remarkably inhibited DENV replication. Conversely, the depletion of DUSP5 led to an increase in viral replication. Moreover, DUSP5 was found to restrain viral entry into host cells by suppressing F-actin rearrangement via negatively regulating the ERK-MLCK-Myosin IIB signaling axis. Depletion of dephosphorylase activity of DUSP5 abolished its above inhibitory effects. Furthermore, we also revealed that DUSP5 exhibited broad-spectrum antiviral effects against DENV and Zika virus. Taken together, our studies identified DUSP5 as a key host defense factor against viral infection and uncovered an intriguing mechanism by which the host exerts its antiviral effects through targeting cytoskeleton rearrangement.
Collapse
Affiliation(s)
- Minqi Liang
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yizhe Li
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Kexin Zhang
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yujia Zhu
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jingyao Liang
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Minjie Liu
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuqing Zhang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Delin Chen
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hao Liang
- Cancer Institute, Southern Medical University, Guangzhou, 510515, China
| | - Linyue Liang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shu An
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.
| | - Xun Zhu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China; Central Laboratory, The Third People's Hospital of Zhuhai, Zhuhai, 519060, China.
| | - Zhenjian He
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.
| |
Collapse
|
7
|
Villalonga E, Mosrin C, Normand T, Girardin C, Serrano A, Žunar B, Doudeau M, Godin F, Bénédetti H, Vallée B. LIM Kinases, LIMK1 and LIMK2, Are Crucial Node Actors of the Cell Fate: Molecular to Pathological Features. Cells 2023; 12:cells12050805. [PMID: 36899941 PMCID: PMC10000741 DOI: 10.3390/cells12050805] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
LIM kinase 1 (LIMK1) and LIM kinase 2 (LIMK2) are serine/threonine and tyrosine kinases and the only two members of the LIM kinase family. They play a crucial role in the regulation of cytoskeleton dynamics by controlling actin filaments and microtubule turnover, especially through the phosphorylation of cofilin, an actin depolymerising factor. Thus, they are involved in many biological processes, such as cell cycle, cell migration, and neuronal differentiation. Consequently, they are also part of numerous pathological mechanisms, especially in cancer, where their involvement has been reported for a few years and has led to the development of a wide range of inhibitors. LIMK1 and LIMK2 are known to be part of the Rho family GTPase signal transduction pathways, but many more partners have been discovered over the decades, and both LIMKs are suspected to be part of an extended and various range of regulation pathways. In this review, we propose to consider the different molecular mechanisms involving LIM kinases and their associated signalling pathways, and to offer a better understanding of their variety of actions within the physiology and physiopathology of the cell.
Collapse
Affiliation(s)
- Elodie Villalonga
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Christine Mosrin
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Thierry Normand
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Caroline Girardin
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Amandine Serrano
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Bojan Žunar
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| | - Michel Doudeau
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Fabienne Godin
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Hélène Bénédetti
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Béatrice Vallée
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
- Correspondence: ; Tel.: +33-(0)2-38-25-76-11
| |
Collapse
|
8
|
Li CC, Chi XJ, Wang J, Potter AL, Wang XJ, Yang CFJ. Small molecule RAF265 as an antiviral therapy acts against HSV-1 by regulating cytoskeleton rearrangement and cellular translation machinery. J Med Virol 2023; 95:e28226. [PMID: 36251738 DOI: 10.1002/jmv.28226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 01/11/2023]
Abstract
Host-targeting antivirals (HTAs) have received increasing attention for their potential as broad-spectrum antivirals that pose relatively low risk of developing drug resistance. The repurposing of pharmaceutical drugs for use as antivirals is emerging as a cost- and time- efficient approach to developing HTAs for the treatment of a variety of viral infections. In this study, we used a virus titer method to screen 30 small molecules for antiviral activity against Herpes simplex virus-1 (HSV-1). We found that the small molecule RAF265, an anticancer drug that has been shown to be a potent inhibitor of B-RAF V600E, reduced viral loads of HSV-1 by 4 orders of magnitude in Vero cells and reduced virus proliferation in vivo. RAF265 mediated cytoskeleton rearrangement and targeted the host cell's translation machinery, which suggests that the antiviral activity of RAF265 may be attributed to a dual inhibition strategy. This study offers a starting point for further advances toward clinical development of antivirals against HSV-1.
Collapse
Affiliation(s)
- Cui-Cui Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Department of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiao-Jing Chi
- Department of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Department of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Alexandra L Potter
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Xiao-Jia Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Department of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chi-Fu Jeffrey Yang
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA.,Division of Thoracic Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
9
|
PIK-24 Inhibits RSV-Induced Syncytium Formation via Direct Interaction with the p85α Subunit of PI3K. J Virol 2022; 96:e0145322. [PMID: 36416586 PMCID: PMC9749462 DOI: 10.1128/jvi.01453-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Phosphoinositide-3 kinase (PI3K) signaling regulates many cellular processes, including cell survival, differentiation, proliferation, cytoskeleton reorganization, and apoptosis. The actin cytoskeleton regulated by PI3K signaling plays an important role in plasma membrane rearrangement. Currently, it is known that respiratory syncytial virus (RSV) infection requires PI3K signaling. However, the regulatory pattern or corresponding molecular mechanism of PI3K signaling on cell-to-cell fusion during syncytium formation remains unclear. This study synthesized a novel PI3K inhibitor PIK-24 designed with PI3K as a target and used it as a molecular probe to investigate the involvement of PI3K signaling in syncytium formation during RSV infection. The results of the antiviral mechanism revealed that syncytium formation required PI3K signaling to activate RHO family GTPases Cdc42, to upregulate the inactive form of cofilin, and to increase the amount of F-actin in cells, thereby causing actin cytoskeleton reorganization and membrane fusion between adjacent cells. PIK-24 treatment significantly abolished the generation of these events by blocking the activation of PI3K signaling. Moreover, PIK-24 had an obvious binding activity with the p85α regulatory subunit of PI3K. The anti-RSV effect similar to PIK-24 was obtained after knockdown of p85α in vitro or knockout of p85α in vivo, suggesting that PIK-24 inhibited RSV infection by targeting PI3K p85α. Most importantly, PIK-24 exerted a potent anti-RSV activity, and its antiviral effect was stronger than that of the classic PI3K inhibitor LY294002, PI-103, and broad-spectrum antiviral drug ribavirin. Thus, PIK-24 has the potential to be developed into a novel anti-RSV agent targeting cellular PI3K signaling. IMPORTANCE PI3K protein has many functions and regulates various cellular processes. As an important regulatory subunit of PI3K, p85α can regulate the activity of PI3K signaling. Therefore, it serves as the key target for virus infection. Indeed, p85α-regulated PI3K signaling facilitates various intracellular plasma membrane rearrangement events by modulating the actin cytoskeleton, which may be critical for RSV-induced syncytium formation. In this study, we show that a novel PI3K inhibitor inhibits RSV-induced PI3K signaling activation and actin cytoskeleton reorganization by targeting the p85α protein, thereby inhibiting syncytium formation and exerting a potent antiviral effect. Respiratory syncytial virus (RSV) is one of the most common respiratory pathogens, causing enormous morbidity, mortality, and economic burden. Currently, no effective antiviral drugs or vaccines exist for RSV infection. This study contributes to understanding the molecular mechanism by which PI3K signaling regulates syncytium formation and provides a leading compound for anti-RSV infection drug development.
Collapse
|
10
|
Wang H, Liu Y, Liu W, Wu K, Wang X. F-actin dynamics in midgut cells enables virus persistence in vector insects. MOLECULAR PLANT PATHOLOGY 2022; 23:1671-1685. [PMID: 36073369 PMCID: PMC9562576 DOI: 10.1111/mpp.13260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Hemipteran insects that transmit plant viruses in a persistent circulative manner acquire, retain and transmit viruses for their entire life. The mechanism enabling this persistence has remained unclear for many years. Here, we determined how wheat dwarf virus (WDV) persists in its leafhopper vector Psammotettix alienus. We found that WDV caused the up-regulation of actin-depolymerizing factor (ADF) at the mRNA and protein levels in the midgut cells of leafhoppers after experiencing a WDV acquisition access period (AAP) of 6, 12 or 24 h. Experimental inhibition of F-actin depolymerization by jasplakinolide and dsRNA injection led to lower virus accumulation levels and transmission efficiencies, suggesting that depolymerization of F-actin regulated by ADF is essential for WDV invasion of midgut cells. Exogenous viral capsid protein (CP) inhibited ADF depolymerization of actin filaments in vitro and in Spodoptera frugiperda 9 (Sf9) cells because the CP competed with actin to bind ADF and then blocked actin filament disassembly. Interestingly, virions colocalized with ADF after a 24-h AAP, just as actin polymerization occurred, indicating that the binding of CP with ADF affects the ability of ADF to depolymerize F-actin, inhibiting WDV entry. Similarly, the luteovirus barley yellow dwarf virus also induced F-actin depolymerization and then polymerization in the gut cells of its vector Schizaphis graminum. Thus, F-actin dynamics are altered by nonpropagative viruses in midgut cells to enable virus persistence in vector insects.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yan Liu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Wenwen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
11
|
Dabie bandavirus Nonstructural Protein Interacts with Actin to Induce F-Actin Rearrangement and Inhibit Viral Adsorption and Entry. J Virol 2022; 96:e0078822. [PMID: 35862701 PMCID: PMC9327694 DOI: 10.1128/jvi.00788-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Dabie bandavirus (DBV) is an emerging Bandavirus that causes multiorgan failure with a high fatality rate in humans. While many viruses can manipulate the actin cytoskeleton to facilitate viral growth, the regulation pattern of the actin cytoskeleton and the molecular mechanisms involved in DBV entry into the host cells remain unclear. In this study, we demonstrate that expression of nonstructural protein (NSs) or infection with DBV induces actin rearrangement, which presents a point-like distribution, and this destruction is dependent on inclusion bodies (IBs). Further experiments showed that NSs inhibits viral adsorption by destroying the filopodium structure. In addition, NSs also compromised the viral entry by inhibiting clathrin aggregation on the cell surface and capturing clathrin into IBs. Furthermore, NSs induced clathrin light chain B (CLTB) degradation through the K48-linked ubiquitin proteasome pathway, which could negatively regulate clathrin-mediated endocytosis, inhibiting the viral entry. Finally, we confirmed that this NSs-induced antiviral mechanism is broadly applicable to other viruses, such as enterovirus 71 (EV71) and influenza virus, A/PR8/34 (PR8), which use the same clathrin-mediated endocytosis to enter host cells. In conclusion, our study provides new insights into the role of NSs in inhibiting endocytosis and a novel strategy for treating DBV infections. IMPORTANCEDabie bandavirus (DBV), a member of the Phenuiviridae family, is a newly emerging tick-borne pathogen that causes multifunctional organ failure and even death in humans. The actin cytoskeleton is involved in various crucial cellular processes and plays an important role in viral life activities. However, the relationship between DBV infection and the actin cytoskeleton has not been described in detail. Here, we show for the first time the interaction between NSs and actin to induce actin rearrangement, which inhibits the viral adsorption and entry. We also identify a key mechanism underlying NSs-induced entry inhibition in which NSs prevents clathrin aggregation on the cell surface by hijacking clathrin into the inclusion body and induces CLTB degradation through the K48-linked ubiquitination modification. This paper is the first to reveal the antiviral mechanism of NSs and provides a theoretical basis for the search for new antiviral targets.
Collapse
|
12
|
Tsai MS, Chen SH, Chang CP, Hsiao YL, Wang LC. Integrin-Linked Kinase Reduces H3K9 Trimethylation to Enhance Herpes Simplex Virus 1 Replication. Front Cell Infect Microbiol 2022; 12:814307. [PMID: 35350437 PMCID: PMC8957879 DOI: 10.3389/fcimb.2022.814307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
Histone modifications control the lytic gene expression of herpes simplex virus 1 (HSV-1). The heterochromatin mark, trimethylation of histone H3 on lysine (K) 9 (H3K9me3), is detected on HSV-1 genomes at early phases of infection to repress viral gene transcription. However, the components and mechanisms involved in the process are mostly unknown. Integrin-linked kinase (ILK) is activated by PI3K to phosphorylate Akt and promote several RNA virus infections. Akt has been shown to enhance HSV-1 infection, suggesting a pro-viral role of ILK in HSV-1 infection that has not been addressed before. Here, we reveal that ILK enhances HSV-1 replication in an Akt-independent manner. ILK reduces the accumulation of H3K9me3 on viral promoters and replication compartments. Notably, ILK reduces H3K9me3 in a manner independent of ICP0. Instead, we show an increased binding of H3K9 methyltransferase SUV39H1 and corepressor TRIM28 on viral promoters in ILK knockdown cells. Knocking down SUV39H1 or TRIM28 increases HSV-1 lytic gene transcription in ILK knockdown cells. These results show that ILK antagonizes SVU39H1- and TRIM28-mediated repression on lytic gene transcription. We further demonstrate that ILK knockdown reduces TRIM28 phosphorylation on serine 473 and 824 in HSV-1-infected cells, suggesting that ILK facilitates TRIM28 phosphorylation to abrogate its inhibition on lytic gene transcription. OSU-T315, an ILK inhibitor, suppresses HSV-1 replication in cells and mice. In conclusion, we demonstrate that ILK decreases H3K9me3 on HSV-1 DNA by reducing SUV39H1 and TRIM28 binding. Moreover, our results suggest that targeting ILK could be a broad-spectrum antiviral strategy for DNA and RNA virus infections, especially for DNA viruses controlled by histone modifications.
Collapse
Affiliation(s)
- Meng-Shan Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shun-Hua Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Peng Chang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ling Hsiao
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Li-Chiu Wang
- School of Medicine, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
13
|
Xie Y, Zhang Z, Zhang M, Cao H. Cofilin‑1 as a potential biomarker for Mycobacterium tuberculosis infection. Exp Ther Med 2022; 23:253. [PMID: 35261625 PMCID: PMC8855514 DOI: 10.3892/etm.2022.11178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/05/2022] [Indexed: 11/23/2022] Open
Abstract
Tuberculosis (TB) induced by Mycobacterium tuberculosis (M. tb), is one of the deadliest human infections worldwide. Our previous studies demonstrated cofilin-1 (CFL1) expression was significantly increased in exosomes from Mycobacterium avium (M. avium)-infected macrophages. The expression of CFL1 protein in M. tb infected hosts was investigated in the present study to predict whether CFL1 could have potential as a biomarker for M. tb infection. In the present study, the mRNA and protein expression levels of CFL1 in M. avium-infected macrophages and supernatants were analyzed via reverse transcription-quantitative PCR and western blotting. Furthermore, CFL1 expression in macrophages was knocked down in vivo, and then CFL1 expression levels in M. avium-infected macrophages and supernatant were detected via western blotting and ELISA. In addition, CFL1 was detected in the peripheral blood mononuclear cells and plasma of patients with TB using western blotting and ELISA. The specificity and sensitivity of CFL1 as a biomarker and the association between TB infection and normal individuals were compared and analyzed using GraphPad Prism 5. CFL1 protein expression levels were significantly increased in M. avium-infected macrophages and supernatant. Meanwhile, CFL1 was upregulated in patients with TB. Bioinformatics statistics indicated the high specificity and sensitivity of CFL1 in patients with TB. Thus, these results suggest that CFL1 may act as a potential biomarker of TB infection.
Collapse
Affiliation(s)
- Yiping Xie
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Zhiqin Zhang
- Biological Sample Bank, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Min Zhang
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Hui Cao
- Department of food safety and evaluation, Institute of Food Safety and Evaluation, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
14
|
Song X, Wang Y, Li F, Cao W, Zeng Q, Qin S, Wang Z, Jia J, Xiao J, Hu X, Liu K, Wang Y, Ren Z. Hsp90 Inhibitors Inhibit the Entry of Herpes Simplex Virus 1 Into Neuron Cells by Regulating Cofilin-Mediated F-Actin Reorganization. Front Microbiol 2022; 12:799890. [PMID: 35082770 PMCID: PMC8785254 DOI: 10.3389/fmicb.2021.799890] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/10/2021] [Indexed: 11/15/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) is a common neurotropic virus, the herpes simplex encephalitis (HSE) caused by which is considered to be the most common sporadic but fatal encephalitis. Traditional antiviral drugs against HSV-1 are limited to nucleoside analogs targeting viral factors. Inhibition of heat shock protein 90 (Hsp90) has potent anti-HSV-1 activities via numerous mechanisms, but the effects of Hsp90 inhibitors on HSV-1 infection in neuronal cells, especially in the phase of virus entry, are still unknown. In this study, we aimed to investigate the effects of the Hsp90 inhibitors on HSV-1 infection of neuronal cells. Interestingly, we found that Hsp90 inhibitors promoted viral adsorption but inhibited subsequent penetration in neuronal cell lines and primary neurons, which jointly confers the antiviral activity of the Hsp90 inhibitors. Mechanically, Hsp90 inhibitors mainly impaired the interaction between Hsp90 and cofilin, resulting in reduced cofilin membrane distribution, which led to F-actin polymerization to promote viral attachment. However, excessive polymerization of F-actin inhibited subsequent viral penetration. Consequently, unidirectional F-actin polymerization limits the entry of HSV-1 virions into neuron cells. Our research extended the molecular mechanism of Hsp90 in HSV-1 infection in neuron cells and provided a theoretical basis for developing antiviral drugs targeting Hsp90.
Collapse
Affiliation(s)
- Xiaowei Song
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yiliang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Feng Li
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Wenyan Cao
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Qiongzhen Zeng
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Shurong Qin
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhaoyang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Jiaoyan Jia
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Ji Xiao
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiao Hu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Kaisheng Liu
- The Second Clinical Medical College, Shenzhen People's Hospital, Jinan University, Guangzhou, China
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhe Ren
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
15
|
Danastas K, Larsen A, Jobson S, Guo G, Cunningham AL, Miranda-Saksena M. Herpes simplex virus-1 utilizes the host actin cytoskeleton for its release from axonal growth cones. PLoS Pathog 2022; 18:e1010264. [PMID: 35073379 PMCID: PMC8812851 DOI: 10.1371/journal.ppat.1010264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/03/2022] [Accepted: 01/10/2022] [Indexed: 11/19/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) has evolved mechanisms to exploit the host cytoskeleton during entry, replication and exit from cells. In this study, we determined the role of actin and the molecular motor proteins, myosin II and myosin V, in the transport and release of HSV-1 from axon termini, or growth cones. Using compartmentalized neuronal devices, we showed that inhibition of actin polymerization, but not actin branching, significantly reduced the release of HSV-1 from axons. Furthermore, we showed that inhibition of myosin V, but not myosin II, also significantly reduced the release of HSV-1 from axons. Using confocal and electron microscopy, we determined that viral components are transported along axons to growth cones, despite actin or myosin inhibition. Overall, our study supports the role of actin in virus release from axonal growth cones and suggests myosin V as a likely candidate involved in this process. Herpes simplex virus type 1 (HSV-1) is a ubiquitous human pathogen causing cold sores and genital herpes. HSV-1 infects sensory neurons of the peripheral nervous system where it establishes a lifelong infection and cannot be cured. Reactivation is common, with the virus transported back along sensory nerves, forming new lesions, or is shed asymptomatically. Antiviral resistance is emerging to current antivirals that target viral replication, indicating the need to identify new targets for future treatment. The host cell cytoskeleton plays an important role during transport of the virus. HSV-1 is transported along axons via microtubules; however, how the virus is released from axon termini, where actin predominates, is unknown. Here we show that an intact actin cytoskeleton is required for efficient virus release from axon termini. Furthermore, we show that myosin V, an actin based molecular motor that drives transport, is essential in virus release from axon termini. Together, this study defines the mechanisms behind HSV-1 release from axon termini which will guide future directions in identifying possible therapeutic targets for HSV-1.
Collapse
Affiliation(s)
- Kevin Danastas
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| | - Ava Larsen
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| | - Sophie Jobson
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| | - Gerry Guo
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
- * E-mail: (ALC); (MM-S)
| | - Monica Miranda-Saksena
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
- * E-mail: (ALC); (MM-S)
| |
Collapse
|
16
|
Jiang X, Lv J, Zhou R, Xiang X. The effect of cofilin 1 expression and phosphorylation dynamics on cell fate determination and neuron maturation in neural stem cells. Neurosci Lett 2021; 764:136292. [PMID: 34655709 DOI: 10.1016/j.neulet.2021.136292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/28/2021] [Accepted: 10/10/2021] [Indexed: 11/27/2022]
Abstract
Previous studies showed that neural stem cells (NSCs) have an ability to differentiate into neurons, astrocytes and oligodendrocytes. However, the mechanisms that govern the fate of neural stem cell determination have not yet been fully clarified. In this study, we demonstrated that expression and activation of cofilin 1, a F-actin depolymerizing factor, are significantly changed during the development of brain, cortex or NSCs. Using Neuro-2a cells as a model, we found that overexpression of cofilin 1 significantly inhibit the cell differentiation and neurite outgrowth, while inhibition of intracellular cofilin 1 phosphorylation was significantly promoted. In cultured NSCs, we observed that cofilin 1 reduced the proportion of neurons derived from NSC due to inhibition of the phosphorylation, while the morphological maturation of neurons was promoted. Together, our findings revealed that cofilin 1 plays dynamic regulatory role on NSC cell fate determination and enhance neuronal maturation through regulating its activity and expression.
Collapse
Affiliation(s)
- Xia Jiang
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province College of Biological and Food Engineering, Huaihua University, Huaihua 418008, China; School of Innovation and Entrepreneurship, Huaihua University, Huaihua 418008, China
| | - Jianyi Lv
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province College of Biological and Food Engineering, Huaihua University, Huaihua 418008, China
| | - Rong Zhou
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province College of Biological and Food Engineering, Huaihua University, Huaihua 418008, China
| | - Xiaoliang Xiang
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province College of Biological and Food Engineering, Huaihua University, Huaihua 418008, China.
| |
Collapse
|
17
|
Shan T, Ye J, Jia J, Wang Z, Jiang Y, Wang Y, Wang Y, Zheng K, Ren Z. Viral UL8 Is Involved in the Antiviral Activity of Oleanolic Acid Against HSV-1 Infection. Front Microbiol 2021; 12:689607. [PMID: 34354687 PMCID: PMC8329587 DOI: 10.3389/fmicb.2021.689607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is highly prevalent in humans and can cause severe diseases, especially in immunocompromised adults and newborns, such as keratitis and herpes simplex encephalitis. At present, the clinical therapeutic drug against HSV-1 infection is acyclovir (ACV), and its extensive usage has led to the emergence of ACV-resistant strains. Therefore, it is urgent to explore novel therapeutic targets and anti-HSV-1 drugs. This study demonstrated that Oleanolic acid, a pentacyclic triterpenoid widely existing in natural product, had strong antiviral activity against both ACV-sensitive and -resistant HSV-1 strains in different cells. Mechanism studies showed that Oleanolic acid exerted its anti-HSV-1 activity in the immediate early stage of infection, which involved the dysregulation of viral UL8, a component of viral helicase-primase complex critical for viral replication. In addition, Oleanolic acid significantly ameliorated the skin lesions in an HSV-1 infection mediated zosteriform model. Together, our study suggested that Oleanolic acid could be a potential candidate for clinical therapy of HSV-1 infection-related diseases.
Collapse
Affiliation(s)
- Tianhao Shan
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ju Ye
- Key Laboratory of Plant Chemistry in Qinghai-Tibet Plateau, Qinghai University for Nationalities, Xining, China
| | - Jiaoyan Jia
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhaoyang Wang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yuzhou Jiang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yiliang Wang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yifei Wang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Kai Zheng
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Zhe Ren
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
18
|
Mangold CA, Rathbun MM, Renner DW, Kuny CV, Szpara ML. Viral infection of human neurons triggers strain-specific differences in host neuronal and viral transcriptomes. PLoS Pathog 2021; 17:e1009441. [PMID: 33750985 PMCID: PMC8016332 DOI: 10.1371/journal.ppat.1009441] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/01/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022] Open
Abstract
Infection with herpes simplex virus 1 (HSV-1) occurs in over half the global population, causing recurrent orofacial and/or genital lesions. Individual strains of HSV-1 demonstrate differences in neurovirulence in vivo, suggesting that viral genetic differences may impact phenotype. Here differentiated SH-SY5Y human neuronal cells were infected with one of three HSV-1 strains known to differ in neurovirulence in vivo. Host and viral RNA were sequenced simultaneously, revealing strain-specific differences in both viral and host transcription in infected neurons. Neuronal morphology and immunofluorescence data highlight the pathological changes in neuronal cytoarchitecture induced by HSV-1 infection, which may reflect host transcriptional changes in pathways associated with adherens junctions, integrin signaling, and others. Comparison of viral protein levels in neurons and epithelial cells demonstrated that a number of differences were neuron-specific, suggesting that strain-to-strain variations in host and virus transcription are cell type-dependent. Together, these data demonstrate the importance of studying virus strain- and cell-type-specific factors that may contribute to neurovirulence in vivo, and highlight the specificity of HSV-1-host interactions.
Collapse
Affiliation(s)
- Colleen A. Mangold
- Departments of Biology, Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Entomology, College of Agricultural Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Molly M. Rathbun
- Departments of Biology, Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Daniel W. Renner
- Departments of Biology, Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Chad V. Kuny
- Departments of Biology, Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Moriah L. Szpara
- Departments of Biology, Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
19
|
Nie Y, Hui L, Guo M, Yang W, Huang R, Chen J, Wen X, Zhao M, Wu Y. Rearrangement of Actin Cytoskeleton by Zika Virus Infection Facilitates Blood-Testis Barrier Hyperpermeability. Virol Sin 2021; 36:692-705. [PMID: 33534087 PMCID: PMC8379325 DOI: 10.1007/s12250-020-00343-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/24/2020] [Indexed: 01/13/2023] Open
Abstract
In recent years, various serious diseases caused by Zika virus (ZIKV) have made it impossible to be ignored. Confirmed existence of ZIKV in semen and sexually transmission of ZIKV suggested that it can break the blood–testis barrier (BTB), or Sertoli cell barrier (SCB). However, little is known about the underlying mechanism. In this study, interaction between actin, an important component of the SCB, and ZIKV envelope (E) protein domain III (EDIII) was inferred from co-immunoprecipitation (Co-IP) liquid chromatography–tandem mass spectrometry (LC–MS/MS) analysis. Confocal microscopy confirmed the role of actin filaments (F-actin) in ZIKV infection, during which part of the stress fibers, the bundles that constituted by paralleled actin filaments, were disrupted and presented in the cell periphery. Colocalization of E and reorganized actin filaments in the cell periphery of transfected Sertoli cells suggests a participation of ZIKV E protein in ZIKV-induced F-actin rearrangement. Perturbation of F-actin by cytochalasin D (CytoD) or Jasplakinolide (Jas) enhanced the infection of ZIKV. More importantly, the transepithelial electrical resistance (TEER) of an in vitro mouse SCB (mSCB) model declined with the progression of ZIKV infection or overexpression of E protein. Co-IP and confocal microscopy analyses revealed that the interaction between F-actin and tight junction protein ZO-1 was reduced after ZIKV infection or E protein overexpression, highlighting the role of E protein in ZIKV-induced disruption of the BTB. We conclude that the interaction between ZIKV E and F-actin leads to the reorganization of F-actin network, thereby compromising BTB integrity.
Collapse
Affiliation(s)
- Yiwen Nie
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Lixia Hui
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Moujian Guo
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Wei Yang
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Huang
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Junsen Chen
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Xinyue Wen
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Meng Zhao
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Ying Wu
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430072, China.
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, 430071, China.
| |
Collapse
|
20
|
Liang Z, Wang L, Wu H, Singh D, Zhang X. Integrative analysis of microRNA and mRNA expression profiles in MARC-145 cells infected with PRRSV. Virus Genes 2020; 56:610-620. [PMID: 32785889 DOI: 10.1007/s11262-020-01786-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/05/2020] [Indexed: 10/23/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes tremendous economic losses to the swine industry worldwide. miRNAs are crucial regulators of gene expression and a wide range of complex interactions of miRNAs-mRNAs is possible during virus infection. However, there is no comprehensive integrated study of miRNA and mRNA networks in MARC-145 cells after infection with PRRSV. We analyzed the differential expressions, co-relations, annotations, and putative functions of miRNA and mRNA networks in PRRSV-infected MARC-145 cells. Based on the filtering criterion, 22 differentially expressed miRNAs (DEmiRs) (15 up- and 7 downregulated) were filtered out. miRNA-mRNA interaction networks were constructed. For the 18 selected miRNAs, 390 potential target genes were predicted from the differentially expressed mRNAs (DEmRs). GO and KEGG pathway annotations predicted 34 KEGG pathways, 12 of which are known to be involved in virus infection. Real-time PCR validated the RNA-seq results. Our analysis showed that miR-27a-5p and miR-21-3p downregulate the expression of two of their potential target genes-SPARC, CLIC1, and cofilin-1, COX7A2, respectively. Further experiments proved that miR-21-3p and miR-27a-5p can promote PRRSV replication significantly. It is the first report that these two miRNAs participate in the interaction of host cells with PRRSV. Our results provide insights into the role of miRNAs in response to PRRSV infection, which will aid the research for developing novel therapies against PRRSV.
Collapse
Affiliation(s)
- Zhenpu Liang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450000, China
| | - Liang Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450000, China
| | - Hui Wu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450000, China
| | - Deepali Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201312, India
| | - Xiaoxia Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450000, China.
| |
Collapse
|
21
|
Wang Y, Song X, Wang Y, Huang L, Luo W, Li F, Qin S, Wang Y, Xiao J, Wu Y, Jin F, Kitazato K, Wang Y. Dysregulation of cofilin-1 activity-the missing link between herpes simplex virus type-1 infection and Alzheimer's disease. Crit Rev Microbiol 2020; 46:381-396. [PMID: 32715819 DOI: 10.1080/1040841x.2020.1794789] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial disease triggered by environmental factors in combination with genetic predisposition. Infectious agents, in particular herpes simplex virus type 1 (HSV-1), are gradually being recognised as important factors affecting the development of AD. However, the mechanism linking HSV-1 and AD remains unknown. Of note, HSV-1 manipulates the activity of cofilin-1 to ensure their efficient infection in neuron cells. Cofilin-1, the main regulator of actin cytoskeleton reorganization, is implicating for the plastic of dendritic spines and axon regeneration of neuronal cells. Moreover, dysfunction of cofilin-1 is observed in most AD patients, as well as in mice with AD and ageing. Further, inhibition of cofilin-1 activity ameliorates the host cognitive impairment in an animal model of AD. Together, dysregulation of cofilin-1 led by HSV-1 infection is a potential link between HSV-1 and AD. Herein, we critically summarize the role of cofilin-1-mediated actin dynamics in both HSV-1 infection and AD, respectively. We also propose several hypotheses regarding the connecting roles of cofilin-1 dysregulation in HSV-1 infection and AD. Our review provides a foundation for future studies targeting individuals carrying HSV-1 in combination with cofilin-1 to promote a more individualised approach for treatment and prevention of AD.
Collapse
Affiliation(s)
- Yiliang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Xiaowei Song
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Yun Wang
- Department of Obstetrics and gynecology, The First affiliated hospital of Jinan University, Guangzhou, PR China
| | - Lianzhou Huang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Weisheng Luo
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Feng Li
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Shurong Qin
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Yuan Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Ji Xiao
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Yanting Wu
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Fujun Jin
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| | - Kaio Kitazato
- Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, PR China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, PR China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, PR China
| |
Collapse
|
22
|
Wang Y, Huang L, Wang Y, Luo W, Li F, Xiao J, Qin S, Wang Z, Song X, Wang Y, Jin F, Wang Y. Single-cell RNA-sequencing analysis identifies host long noncoding RNA MAMDC2-AS1 as a co-factor for HSV-1 nuclear transport. Int J Biol Sci 2020; 16:1586-1603. [PMID: 32226304 PMCID: PMC7097924 DOI: 10.7150/ijbs.42556] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/02/2020] [Indexed: 12/29/2022] Open
Abstract
Herpes simplex virus (HSV) type 1 (HSV-1) infection exhibited high heterogeneity at individual cells level, including the different gene expression patterns and varying amounts of progeny virus. However, the underlying mechanism of such variability remains obscure. The importance of host long noncoding RNAs (lncRNAs) in virus infection had been recognized, while the contribution of lncRNAs to the heterogeneous infection remains unknown. Herein, a prior single-cell RNA sequencing data using HSV-1 reporter strain expressing ICP4-YFP was re-analyzed to obtain the differentially expressed lncRNA between the successfully initiated viral gene expression (ICP4-YFP+) cells and the aborted infection cells (ICP4-YFP-). The ICP4-YFP+ population show a higher abundance of MAMDC2 antisense 1 (MAMDC2-AS1) lncRNA than ICP4-YFP- population. MAMDC2-AS1 silencing reduces the expression of HSV-1 immediate early (IE) genes and limit HSV-1 infection in human host cells. Consistently, ectopic expression of MAMDC2-AS1 enhances HSV-1 IE genes transcription and facilitates the formation of HSV-1-induced plaques. Mechanically, both RNA-pull down and RNA immunoprecipitation assays show that MAMDC2-AS1 interacts with the RNA binding protein heat shock protein 90α (Hsp90α), a molecular chaperone involving in the nuclear import of HSV-1. The MAMDC2-AS1-Hsp90α interaction facilitates the nuclear transport of viral tegument protein VP16, the core factor initiating the expression of HSV-1 IE genes. The transcription factor YY1 mediates the induction of MAMDC2-AS1 upon HSV-1 infection. Our study elucidates the contribution of lncRNA to HSV-1 infection susceptibility in human cells and the role of Hsp90α RNA binding activity in HSV-1 infection.
Collapse
Affiliation(s)
- Yiliang Wang
- College of Life science and Technology, Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, Guangzhou 510632, PR China
| | - Lianzhou Huang
- College of Life science and Technology, Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, Guangzhou 510632, PR China.,College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Yun Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, PR China
| | - Weisheng Luo
- College of Life science and Technology, Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, Guangzhou 510632, PR China
| | - Feng Li
- College of Life science and Technology, Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, Guangzhou 510632, PR China
| | - Ji Xiao
- College of Life science and Technology, Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, Guangzhou 510632, PR China
| | - Shurong Qin
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Zhaoyang Wang
- College of Life science and Technology, Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, Guangzhou 510632, PR China
| | - Xiaowei Song
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Yuan Wang
- College of Life science and Technology, Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, Guangzhou 510632, PR China
| | - Fujun Jin
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, PR China
| | - Yifei Wang
- College of Life science and Technology, Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, Guangzhou 510632, PR China
| |
Collapse
|
23
|
Graber K, Khan F, Glück B, Weigel C, Marzo S, Doshi H, Ehrhardt C, Heller R, Gräler M, Henke A. The role of sphingosine-1-phosphate signaling in HSV-1-infected human umbilical vein endothelial cells. Virus Res 2020; 276:197835. [DOI: 10.1016/j.virusres.2019.197835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 01/14/2023]
|
24
|
Yu FL, Miao H, Xia J, Jia F, Wang H, Xu F, Guo L. Proteomics Analysis Identifies IRSp53 and Fascin as Critical for PRV Egress and Direct Cell-Cell Transmission. Proteomics 2019; 19:e1900009. [PMID: 31531927 DOI: 10.1002/pmic.201900009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 07/29/2019] [Indexed: 12/23/2022]
Abstract
Pseudorabies virus (PRV) has been widely used as a live trans-synaptic tracer for mapping neuronal circuits. Systematically identifying mature PRV virion proteomes and defining co-purified host proteins are necessary to fully understand the detailed mechanism underlying PRV transmission processes. Here, a PRV virion purification strategy based on sorting with flow cytometry is developed and the mature extracellular and intracellular PRV virion proteomes using LC coupled with MS/MS are characterized. In addition to viral proteins, a large number of host proteins are also identified, including proteins related to actin cytoskeletal dynamics and membrane protrusion. How many of these host proteins are true virion components are unknown and the majority of these may not be. Through functional analysis, it is found that IRSp53 and fascin are critical for the egress process and play a role in direct cell-cell transmission. Moreover, it is shown that CDC42 and Rac1 are also involved in the production of mature extracellular virions. The results suggest that the formation of the filopodia-like cytoskeleton and the rearrangement of the membrane, which are both associated with IRSp53 and fascin, may be important for the transmission of viruses used in neuronal tracing.
Collapse
Affiliation(s)
- Fei-Long Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Huan Miao
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Jinjin Xia
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Fan Jia
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Huadong Wang
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Fuqiang Xu
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China.,Center for Excellence in Brian Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Lin Guo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
25
|
Zhang C, Chen F, Liu X, Han X, Hu Y, Su X, Chen Y, Sun Y, Han L. Gliotoxin Induces Cofilin Phosphorylation to Promote Actin Cytoskeleton Dynamics and Internalization of Aspergillus fumigatus Into Type II Human Pneumocyte Cells. Front Microbiol 2019; 10:1345. [PMID: 31275272 PMCID: PMC6591310 DOI: 10.3389/fmicb.2019.01345] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/29/2019] [Indexed: 01/27/2023] Open
Abstract
Aspergillus fumigatus is able to internalize into lung epithelial cells to escape from immune attack for further dissemination. We previously reported that gliotoxin, a major mycotoxin of A. fumigatus, promotes this internalization; however, the mechanism remained unclear. Here, we report that gliotoxin is able to induce cofilin phosphorylation in A549 type II human pneumocytes. Either too high or too low a level of cofilin phosphorylation blocked the gliotoxin-induced actin cytoskeleton rearrangement and A. fumigatus internalization. LIM domain kinase 1 (LIMK1) and its upstream small GTPases (Cdc42 and RhoA, but not Rac1) predominantly mediated the gliotoxin-induced cofilin phosphorylation and A. fumigatus internalization. Simultaneously, gliotoxin significantly stimulated an increase in cAMP; however, adding an antagonist of PKA did not block gliotoxin-induced A. fumigatus internalization. In vivo, exogenous gliotoxin helped gliotoxin synthesis deficient strain gliPΔ invade into the lung tissue and the lung fungal burden increased markedly in immunosuppressed mice. In conclusion, these data revealed a novel role of gliotoxin in inducing cofilin phosphorylation mostly through the Cdc42/RhoA-LIMK1 signaling pathway to promote actin cytoskeleton rearrangement and internalization of A. fumigatus into type II human pneumocytes.
Collapse
Affiliation(s)
- Changjian Zhang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China.,Academy of Military Medical Sciences, Beijing, China
| | - Fangyan Chen
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xiaoyu Liu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China.,Academy of Military Medical Sciences, Beijing, China
| | - Xuelin Han
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Yingsong Hu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xueting Su
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Yong Chen
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Yansong Sun
- Academy of Military Medical Sciences, Beijing, China
| | - Li Han
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
26
|
Li F, Song X, Su G, Wang Y, Wang Z, Jia J, Qing S, Huang L, Wang Y, Zheng K, Wang Y. Amentoflavone Inhibits HSV-1 and ACV-Resistant Strain Infection by Suppressing Viral Early Infection. Viruses 2019; 11:E466. [PMID: 31121928 PMCID: PMC6563227 DOI: 10.3390/v11050466] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 02/06/2023] Open
Abstract
Infection of Herpes simplex virus 1 (HSV-1) induces severe clinical disorders, such as herpes simplex encephalitis and keratitis. Acyclovir (ACV) is the current therapeutic drug against viral infection and ACV-resistant strains have gradually emerged, leading to the requirement for novel antiviral agents. In this study, we exhibited the antiviral activity of amentoflavone, a naturally occurring biflavonoid, toward HSV-1 and ACV-resistant strains. Amentoflavone significantly inhibited infection of HSV-1 (F strain), as well as several ACV-resistant strains including HSV-1/106, HSV-1/153 and HSV-1/Blue at high concentrations. Time-of-drug-addition assay further revealed that amentoflavone mainly impaired HSV-1 early infection. More detailed study demonstrated that amentoflavone affected cofilin-mediated F-actin reorganization and reduced the intracellular transportation of HSV-1 from the cell membrane to the nucleus. In addition, amentoflavone substantially decreased transcription of viral immediate early genes. Collectively, amentoflavone showed strong antiviral activity against HSV-1 and ACV-resistant strains, and amentoflavone could be a promising therapeutic candidate for HSV-1 pathogenesis.
Collapse
Affiliation(s)
- Feng Li
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Xiaowei Song
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Guifeng Su
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Yiliang Wang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Zhaoyang Wang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Jiaoyan Jia
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Shurong Qing
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Lianzhou Huang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Yuan Wang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Kai Zheng
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Yifei Wang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
27
|
Heat-shock protein 90α is involved in maintaining the stability of VP16 and VP16-mediated transactivation of α genes from herpes simplex virus-1. Mol Med 2018; 24:65. [PMID: 30577726 PMCID: PMC6303900 DOI: 10.1186/s10020-018-0066-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/05/2018] [Indexed: 01/24/2023] Open
Abstract
Background Numerous host cellular factors are exploited by viruses to facilitate infection. Our previous studies and those of others have shown heat-shock protein 90 (Hsp90), a cellular molecular chaperone, is involved in herpes simplex virus (HSV)-1 infection. However, the function of the dominant Hsp90 isoform and the relationship between Hsp90 and HSV-1 α genes remain unclear. Methods and results Hsp90α knockdown or inhibition significantly inhibited the promoter activity of HSV-1 α genes and downregulated virion protein 16(VP16) expression from virus and plasmids. The Hsp90α knockdown-induced suppression of α genes promoter activity and downregulation of α genes was reversed by VP16 overexpression, indicating that Hsp90α is involved in VP16-mediated transcription of HSV-1 α genes. Co-immunoprecipitation experiments indicated that VP16 interacted with Hsp90α through the conserved core domain within VP16. Based on using autophagy inhibitors and the presence of Hsp90 inhibitors in ATG7−/− (autophagy-deficient) cells, Hsp90 inhibition-induced degradation of VP16 is dependent on macroautophagy-mediated degradation but not chaperone-mediated autophagy (CMA) pathway. In vivo studies demonstrated that treatment with gels containing Hsp90 inhibitor effectively reduced the level of VP16 and α genes, which may contribute to the amelioration of the skin lesions in an HSV-1 infection mediated zosteriform model. Conclusion Our study provides new insights into the mechanisms by which Hsp90α facilitates the transactivation of HSV-1 α genes and viral infection, and highlights the importance of developing selective inhibitors targeting the interaction between Hsp90α and VP16 to reduce toxicity, a major challenge in the clinical use of Hsp90 inhibitors. Electronic supplementary material The online version of this article (10.1186/s10020-018-0066-x) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Walsh D, Naghavi MH. Exploitation of Cytoskeletal Networks during Early Viral Infection. Trends Microbiol 2018; 27:39-50. [PMID: 30033343 DOI: 10.1016/j.tim.2018.06.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/12/2018] [Accepted: 06/29/2018] [Indexed: 12/12/2022]
Abstract
Being dependent upon host transport systems to navigate the cytoplasm, viruses have evolved various strategies to manipulate cytoskeletal functions. Generally, viruses use the actin cytoskeleton to control entry and short-range transport at the cell periphery and exploit microtubules (MTs) for longer-range cytosolic transport, in some cases to reach the nucleus. While earlier studies established the fundamental importance of these networks to successful infection, the mechanistic details and true extent to which viruses usurp highly specialized host cytoskeletal regulators and motor adaptors is only beginning to emerge. This review outlines our current understanding of how cytoskeletal regulation contributes specifically to the early stages of viral infection, with a primary focus on retroviruses and herpesviruses as examples of recent advances in this area.
Collapse
Affiliation(s)
- Derek Walsh
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mojgan H Naghavi
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
29
|
Chattopadhyay D, Mukhopadhyay A, Ojha D, Sadhukhan P, Dutta S. Immuno-metabolic changes in herpes virus infection. Cytokine 2018; 112:52-62. [PMID: 29960669 DOI: 10.1016/j.cyto.2018.06.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 12/18/2022]
Abstract
Recent evidences indicate that change in cellular metabolic pathways can alter immune response and function of the host; emphasizing the role of metabolome in health and diseases. Human Herpes simplex virus type-1 (HSV-1) and type-2 (HSV-2) causes diseases from asymptomatic to highly prevalent oral and genital herpes, recurrent blisters or neurological complications. Immune responses against HSV are complex with delicate interplay between innate signaling pathways and adaptive immune responses. The innate response involves the induction of protective IFN-1; while Natural Killer (NK) cells and plasmacytoid Dendritic Cells (pDC) confer in vivo adaptive anti-HSV response along with humoral and cellular components in controlling infection and latency. Metabolic changes lead to up-/down-regulation of several cytokines and chemokines like IFN-γ, IL-2, IL-4, IL-10 and MIP1β in HSV infection and recurrences. Recently, the viral protein ICP0 has been identified as an attenuator of TLR signaling, that inhibit innate responses to HSV. This review will summarize the role of metabolome in innate and adaptive effectors in infection, pathogenesis and immune control of HSV, highlighting the delicate interplay between the metabolic changes and immunity.
Collapse
Affiliation(s)
- Debprasad Chattopadhyay
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India; ICMR-Virus Unit, Infectious Diseases and Beliaghata General Hospital, 57 Dr Suresh Chandra Banerjee Road, Beliaghata, Kolkata, West Bengal 700010, India.
| | - Aparna Mukhopadhyay
- Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India
| | - Durbadal Ojha
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
| | - Provash Sadhukhan
- ICMR-Virus Unit, Infectious Diseases and Beliaghata General Hospital, 57 Dr Suresh Chandra Banerjee Road, Beliaghata, Kolkata, West Bengal 700010, India
| | - Shanta Dutta
- ICMR-National Institute of Cholera & Enteric Diseases, P- C.I.T. Scheme XM, 33 CIT Road, Beliaghata, Kolkata, West Bengal 700010, India
| |
Collapse
|
30
|
Zilch A, Rien C, Weigel C, Huskobla S, Glück B, Spengler K, Sauerbrei A, Heller R, Gräler M, Henke A. Influence of sphingosine-1-phosphate signaling on HCMV replication in human embryonal lung fibroblasts. Med Microbiol Immunol 2018; 207:227-242. [DOI: 10.1007/s00430-018-0543-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/17/2018] [Indexed: 12/16/2022]
|
31
|
Zhong Z, Grasso L, Sibilla C, Stevens TJ, Barry N, Bertolotti A. Prion-like protein aggregates exploit the RHO GTPase to cofilin-1 signaling pathway to enter cells. EMBO J 2018; 37:embj.201797822. [PMID: 29496740 DOI: 10.15252/embj.201797822] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 01/16/2018] [Accepted: 01/24/2018] [Indexed: 01/01/2023] Open
Abstract
Protein aggregation is a hallmark of diverse neurodegenerative diseases. Multiple lines of evidence have revealed that protein aggregates can penetrate inside cells and spread like prions. How such aggregates enter cells remains elusive. Through a focused siRNA screen targeting genes involved in membrane trafficking, we discovered that mutant SOD1 aggregates, like viruses, exploit cofilin-1 to remodel cortical actin and enter cells. Upstream of cofilin-1, signalling from the RHO GTPase and the ROCK1 and LIMK1 kinases controls cofilin-1 activity to remodel actin and modulate aggregate entry. In the spinal cord of symptomatic SOD1G93A transgenic mice, cofilin-1 phosphorylation is increased and actin dynamics altered. Importantly, the RHO to cofilin-1 signalling pathway also modulates entry of tau and α-synuclein aggregates. Our results identify a common host cell signalling pathway that diverse protein aggregates exploit to remodel actin and enter cells.
Collapse
Affiliation(s)
- Zhen Zhong
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Laura Grasso
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | | | |
Collapse
|
32
|
Infection and Transport of Herpes Simplex Virus Type 1 in Neurons: Role of the Cytoskeleton. Viruses 2018; 10:v10020092. [PMID: 29473915 PMCID: PMC5850399 DOI: 10.3390/v10020092] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/16/2018] [Accepted: 02/20/2018] [Indexed: 12/22/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a neuroinvasive human pathogen that has the ability to infect and replicate within epithelial cells and neurons and establish a life-long latent infection in sensory neurons. HSV-1 depends on the host cellular cytoskeleton for entry, replication, and exit. Therefore, HSV-1 has adapted mechanisms to promote its survival by exploiting the microtubule and actin cytoskeletons to direct its active transport, infection, and spread between neurons and epithelial cells during primary and recurrent infections. This review will focus on the currently known mechanisms utilized by HSV-1 to harness the neuronal cytoskeleton, molecular motors, and the secretory and exocytic pathways for efficient virus entry, axonal transport, replication, assembly, and exit from the distinct functional compartments (cell body and axon) of the highly polarized sensory neurons.
Collapse
|
33
|
Cytoskeletons in the Closet-Subversion in Alphaherpesvirus Infections. Viruses 2018; 10:v10020079. [PMID: 29438303 PMCID: PMC5850386 DOI: 10.3390/v10020079] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/30/2018] [Accepted: 02/07/2018] [Indexed: 12/14/2022] Open
Abstract
Actin filaments, microtubules and intermediate filaments form the cytoskeleton of vertebrate cells. Involved in maintaining cell integrity and structure, facilitating cargo and vesicle transport, remodelling surface structures and motility, the cytoskeleton is necessary for the successful life of a cell. Because of the broad range of functions these filaments are involved in, they are common targets for viral pathogens, including the alphaherpesviruses. Human-tropic alphaherpesviruses are prevalent pathogens carried by more than half of the world’s population; comprising herpes simplex virus (types 1 and 2) and varicella-zoster virus, these viruses are characterised by their ability to establish latency in sensory neurons. This review will discuss the known mechanisms involved in subversion of and transport via the cytoskeleton during alphaherpesvirus infections, focusing on protein-protein interactions and pathways that have recently been identified. Studies on related alphaherpesviruses whose primary host is not human, along with comparisons to more distantly related beta and gammaherpesviruses, are also presented in this review. The need to decipher as-yet-unknown mechanisms exploited by viruses to hijack cytoskeletal components—to reveal the hidden cytoskeletons in the closet—will also be addressed.
Collapse
|
34
|
Differentiated Human SH-SY5Y Cells Provide a Reductionist Model of Herpes Simplex Virus 1 Neurotropism. J Virol 2017; 91:JVI.00958-17. [PMID: 28956768 DOI: 10.1128/jvi.00958-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/19/2017] [Indexed: 12/13/2022] Open
Abstract
Neuron-virus interactions that occur during herpes simplex virus (HSV) infection are not fully understood. Neurons are the site of lifelong latency and are a crucial target for long-term suppressive therapy or viral clearance. A reproducible neuronal model of human origin would facilitate studies of HSV and other neurotropic viruses. Current neuronal models in the herpesvirus field vary widely and have caveats, including incomplete differentiation, nonhuman origins, or the use of dividing cells that have neuropotential but lack neuronal morphology. In this study, we used a robust approach to differentiate human SH-SY5Y neuroblastoma cells over 2.5 weeks, producing a uniform population of mature human neuronal cells. We demonstrate that terminally differentiated SH-SY5Y cells have neuronal morphology and express proteins with subcellular localization indicative of mature neurons. These neuronal cells are able to support a productive HSV-1 infection, with kinetics and overall titers similar to those seen in undifferentiated SH-SY5Y cells and the related SK-N-SH cell line. However, terminally differentiated, neuronal SH-SY5Y cells release significantly less extracellular HSV-1 by 24 h postinfection (hpi), suggesting a unique neuronal response to viral infection. With this model, we are able to distinguish differences in neuronal spread between two strains of HSV-1. We also show expression of the antiviral protein cyclic GMP-AMP synthase (cGAS) in neuronal SH-SY5Y cells, which is the first demonstration of the presence of this protein in nonepithelial cells. These data provide a model for studying neuron-virus interactions at the single-cell level as well as via bulk biochemistry and will be advantageous for the study of neurotropic viruses in vitroIMPORTANCE Herpes simplex virus (HSV) affects millions of people worldwide, causing painful oral and genital lesions, in addition to a multitude of more severe symptoms such as eye disease, neonatal infection, and, in rare cases, encephalitis. Presently, there is no cure available to treat those infected or prevent future transmission. Due to the ability of HSV to cause a persistent, lifelong infection in the peripheral nervous system, the virus remains within the host for life. To better understand the basis of virus-neuron interactions that allow HSV to persist within the host peripheral nervous system, improved neuronal models are required. Here we describe a cost-effective and scalable human neuronal model system that can be used to study many neurotropic viruses, such as HSV, Zika virus, dengue virus, and rabies virus.
Collapse
|
35
|
Discovery of Novel Small-Molecule Inhibitors of LIM Domain Kinase for Inhibiting HIV-1. J Virol 2017; 91:JVI.02418-16. [PMID: 28381571 PMCID: PMC5469273 DOI: 10.1128/jvi.02418-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/28/2017] [Indexed: 01/22/2023] Open
Abstract
A dynamic actin cytoskeleton is necessary for viral entry, intracellular migration, and virion release. For HIV-1 infection, during entry, the virus triggers early actin activity by hijacking chemokine coreceptor signaling, which activates a host dependency factor, cofilin, and its kinase, the LIM domain kinase (LIMK). Although knockdown of human LIM domain kinase 1 (LIMK1) with short hairpin RNA (shRNA) inhibits HIV infection, no specific small-molecule inhibitor of LIMK has been available. Here, we describe the design and discovery of novel classes of small-molecule inhibitors of LIMK for inhibiting HIV infection. We identified R10015 as a lead compound that blocks LIMK activity by binding to the ATP-binding pocket. R10015 specifically blocks viral DNA synthesis, nuclear migration, and virion release. In addition, R10015 inhibits multiple viruses, including Zaire ebolavirus (EBOV), Rift Valley fever virus (RVFV), Venezuelan equine encephalitis virus (VEEV), and herpes simplex virus 1 (HSV-1), suggesting that LIMK inhibitors could be developed as a new class of broad-spectrum antiviral drugs. IMPORTANCE The actin cytoskeleton is a structure that gives the cell shape and the ability to migrate. Viruses frequently rely on actin dynamics for entry and intracellular migration. In cells, actin dynamics are regulated by kinases, such as the LIM domain kinase (LIMK), which regulates actin activity through phosphorylation of cofilin, an actin-depolymerizing factor. Recent studies have found that LIMK/cofilin are targeted by viruses such as HIV-1 for propelling viral intracellular migration. Although inhibiting LIMK1 expression blocks HIV-1 infection, no highly specific LIMK inhibitor is available. This study describes the design, medicinal synthesis, and discovery of small-molecule LIMK inhibitors for blocking HIV-1 and several other viruses and emphasizes the feasibility of developing LIMK inhibitors as broad-spectrum antiviral drugs.
Collapse
|
36
|
Marzook NB, Newsome TP. Viruses That Exploit Actin-Based Motility for Their Replication and Spread. Handb Exp Pharmacol 2016; 235:237-261. [PMID: 27757755 DOI: 10.1007/164_2016_41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The actin cytoskeleton is a crucial part of the eukaryotic cell. Viruses depend on host cells for their replication, and, as a result, many have developed ways of manipulating the actin network to promote their spread. This chapter reviews the various ways in which viruses utilize the actin cytoskeleton at discrete steps in their life cycle, from entry into the host cell, replication, and assembly of new progeny to virus release. Various actin inhibitors that function in different ways to affect proper actin dynamics can be used to parse the role of actin at these steps.
Collapse
Affiliation(s)
- N Bishara Marzook
- The School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Timothy P Newsome
- The School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
37
|
Kumar SP, Chandy ML, Shanavas M, Khan S, Suresh K. Pathogenesis and life cycle of herpes simplex virus infection-stages of primary, latency and recurrence. JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY MEDICINE AND PATHOLOGY 2016. [DOI: 10.1016/j.ajoms.2016.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
38
|
Chang K, Baginski J, Hassan SF, Volin M, Shukla D, Tiwari V. Filopodia and Viruses: An Analysis of Membrane Processes in Entry Mechanisms. Front Microbiol 2016; 7:300. [PMID: 27014223 PMCID: PMC4785137 DOI: 10.3389/fmicb.2016.00300] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/23/2016] [Indexed: 12/21/2022] Open
Abstract
Filopodia are thin, actin rich bundles protruding from cell plasma membranes, serving physiological purposes, such as probing the environment and facilitating cell-to-cell adhesion. Recent studies have highlighted that actively polymerized filopodial-protrusions are exploited during virus entry, trafficking, spread, and the development of clinical pathology of viral diseases. These observations have caused a surge in investigation of the key determinants of filopodial induction and their influence on cell topography including receptor expression for viral entry. It is now very clear that filopodia can provide unique opportunities for many viruses to invade host cells vertically during primary infection, or horizontally during virus spread from cell-to-cell. These emerging concepts can explain the unprecedented ability of viruses to invade both nearby and long-distant host cells, a feature that may directly contribute to viral tropism. In this review, we summarize the significance of filopodia in viral diseases and discuss future therapeutic possibilities to precisely target filopodial-flyovers to prevent or control infectious diseases.
Collapse
Affiliation(s)
- Kenneth Chang
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University Downers Grove, IL, USA
| | - John Baginski
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University Downers Grove, IL, USA
| | - Samer F Hassan
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago Chicago, IL, USA
| | - Michael Volin
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University Downers Grove, IL, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago Chicago, IL, USA
| | - Vaibhav Tiwari
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University Downers Grove, IL, USA
| |
Collapse
|
39
|
Bao Z, Han X, Chen F, Jia X, Zhao J, Zhang C, Yong C, Tian S, Zhou X, Han L. Evidence for the involvement of cofilin in Aspergillus fumigatus internalization into type II alveolar epithelial cells. BMC Microbiol 2015; 15:161. [PMID: 26268695 PMCID: PMC4542120 DOI: 10.1186/s12866-015-0500-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 08/04/2015] [Indexed: 11/23/2022] Open
Abstract
Background The internalization of Aspergillus fumigatus into alveolar epithelial cells (AECs) is tightly controlled by host cellular actin dynamics, which require close modulation of the ADF (actin depolymerizing factor)/cofilin family. However, the role of cofilin in A. fumigatus internalization into AECs remains unclear. Results Here, we demonstrated that germinated A. fumigatus conidia were able to induce phosphorylation of cofilin in A549 cells during the early stage of internalization. The modulation of cofilin activity by overexpression, knockdown, or mutation of the cofilin gene in A549 cells decreased the efficacy of A. fumigatus internalization. Reducing the phosphorylation status of cofilin with BMS-5 (LIM kinase inhibitor) or overexpression of the slingshot phosphatases also impeded A. fumigatus internalization. Both the C. botulimun C3 transferase (a specific RhoA inhibitor) and Y27632 (a specific ROCK inhibitor) reduced the internalization of A. fumigatus and the level of phosphorylated cofilin. β-1,3-glucan (the major component of the conidial cell wall) and its host cell receptor dectin-1 did not seem to be associated with cofilin phosphorylation during A. fumigatus infection. Conclusion These results indicated that cofilin might be involved in the modulation of A. fumigatus internalization into type II alveolar epithelial cells through the RhoA-ROCK-LIM kinase pathway.
Collapse
Affiliation(s)
- Zhiyao Bao
- Department of Respiratory Medicine, Shanghai first people's hospital, Shanghai Jiao Tong University, No. 100, Haining Road, Shanghai, 200080, China. .,Department of Respiratory Medicine, Ruijin hospital, School of Medicine, Shanghai Jiaotong University, No. 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Xuelin Han
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Fengtai Dong Street 20, Beijing, 100071, China.
| | - Fangyan Chen
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Fengtai Dong Street 20, Beijing, 100071, China.
| | - Xiaodong Jia
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Fengtai Dong Street 20, Beijing, 100071, China.
| | - Jingya Zhao
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Fengtai Dong Street 20, Beijing, 100071, China.
| | - Changjian Zhang
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Fengtai Dong Street 20, Beijing, 100071, China.
| | - Chen Yong
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Fengtai Dong Street 20, Beijing, 100071, China.
| | - Shuguang Tian
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Fengtai Dong Street 20, Beijing, 100071, China.
| | - Xin Zhou
- Department of Respiratory Medicine, Shanghai first people's hospital, Shanghai Jiao Tong University, No. 100, Haining Road, Shanghai, 200080, China.
| | - Li Han
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Fengtai Dong Street 20, Beijing, 100071, China.
| |
Collapse
|
40
|
Actin-Modulating Protein Cofilin Is Involved in the Formation of Measles Virus Ribonucleoprotein Complex at the Perinuclear Region. J Virol 2015; 89:10524-31. [PMID: 26269174 DOI: 10.1128/jvi.01819-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 07/30/2015] [Indexed: 02/01/2023] Open
Abstract
UNLABELLED In measles virus (MV)-infected cells, the ribonucleoprotein (RNP) complex, comprised of the viral genome and the nucleocapsid (N) protein, phosphoprotein (P protein), and large protein, assembles at the perinuclear region and synthesizes viral RNAs. The cellular proteins involved in the formation of the RNP complex are largely unknown. In this report, we show that cofilin, an actin-modulating host protein, interacts with the MV N protein and aids in the formation of the RNP complex. Knockdown of cofilin using the short hairpin RNA reduces the formation of the RNP complex after MV infection and that of the RNP complex-like structure after plasmid-mediated expression of MV N and P proteins. A lower level of formation of the RNP complex results in the reduction of viral RNA synthesis. Cofilin phosphorylation on the serine residue at position 3, an enzymatically inactive form, is increased after MV infection and the phosphorylated form of cofilin is preferentially included in the complex. These results indicate that cofilin plays an important role in MV replication by increasing formation of the RNP complex and viral RNA synthesis. IMPORTANCE Many RNA viruses induce within infected cells the structure called the ribonucleoprotein (RNP) complex in which viral RNA synthesis occurs. It is comprised of the viral genome and proteins that include the viral RNA polymerase. The cellular proteins involved in the formation of the RNP complex are largely unknown. In this report, we show that cofilin, an actin-modulating host protein, binds to the measles virus (MV) nucleocapsid protein and plays an important role in the formation of the MV RNP complex and MV RNA synthesis. The level of the phosphorylated form of cofilin, enzymatically inactive, is increased after MV infection, and the phosphorylated form is preferentially associated with the RNP complex. Our findings determined with cofilin will help us better understand the mechanism by which the RNP complex is formed in virus-infected cells and develop new antiviral drugs targeting the RNP complex.
Collapse
|
41
|
Jeong EH, Vaidya B, Cho SY, Park MA, Kaewintajuk K, Kim SR, Oh MJ, Choi JS, Kwon J, Kim D. Identification of regulators of the early stage of viral hemorrhagic septicemia virus infection during curcumin treatment. FISH & SHELLFISH IMMUNOLOGY 2015; 45:184-193. [PMID: 25862970 DOI: 10.1016/j.fsi.2015.03.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/26/2015] [Accepted: 03/30/2015] [Indexed: 06/04/2023]
Abstract
The effect of curcumin pretreatment (15-240 μM) in fathead minnow cells infected with viral hemorrhagic septicemia virus (VHSV) was evaluated. Cell viability, apoptosis and viral copy number were analyzed using Cell Counting Kit-8 assay, Annexin V staining, and reverse transcription-PCR, respectively. Pretreatment with 120 μM curcumin showed an increase in viability (>90% of mock) of VHSV-infected cells and reduction in the copy number (0.2-log reduction in VHSV N gene expression), reactive oxygen species and apoptosis in the cells without cytotoxic effects. To understand the mechanisms underlaying the antiviral effects of curcumin pretreatment, a comparative proteomic analysis was performed in four samples (M, mock; C, curcumin-treated; V, VHSV-infected; and CV, curcumin-treated VHSV-infected) in triplicate. In total, 185 proteins were detected. The analysis showed that three proteins, including heat shock cognate 71 (HSC71), actin, alpha cardiac muscle (ACTC1) and elongation factor 1 (EEF1) were differentially expressed between V and CV samples. Network analysis performed by Ingenuity Pathways Analysis (IPA) showed that HSC71 was the primary protein interacting with fibronectin (FN) 1, actins (ACTB, ACTG, F-actin) and gelsolin (GSN) in both V and CV samples and thus is a strong target candidate for the protection from VHSV infection at the viral entry stage. Our proteomics data suggest that curcumin pretreatment inhibits entry of VHSV in cells by downregulating FN1 or upregulating F-actin. For both proteins, HSC71 acts as a binding protein that modulates their functions. Furthermore, consistent with the effect of a heat shock protein inhibitor (KNK437), curcumin downregulated HSC71 expression with increasing viability of VHSV-infected cells and inhibited VHSV replication, suggesting that the downregulation of HSC71 could be responsible for the antiviral activity of curcumin. In conclusion, this study indicates that the suppression of viral entry by rearrangement of the F-actin/G-actin ratio via downregulating HSC71 is a plausible mechanism by which curcumin pretreatment controls the early stages of VHSV infection.
Collapse
Affiliation(s)
- Eun-Hye Jeong
- Department of Food Science and Technology, Chonnam National University, Gwangju 500-757, South Korea
| | - Bipin Vaidya
- Department of Food Science and Technology, Chonnam National University, Gwangju 500-757, South Korea; Bioenergy Research Center, Chonnam National University, Gwangju 500-757, South Korea
| | - Se-Young Cho
- Department of Food Science and Technology, Chonnam National University, Gwangju 500-757, South Korea
| | - Myoung-Ae Park
- Aquatic Life Disease Control Division, National Fisheries Research and Development Institute, Busan 619-705, South Korea
| | - Kusuma Kaewintajuk
- Department of Food Science and Technology, Chonnam National University, Gwangju 500-757, South Korea
| | - Seok Ryel Kim
- West Sea Fisheries Research Institute, National Fisheries Research and Development Institute, Incheon 400-420, South Korea
| | - Myung-Joo Oh
- Department of Aqualife Medicine, Chonnam National University, Yeosu 550-749, South Korea
| | - Jong-Soon Choi
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon 305-806, South Korea
| | - Joseph Kwon
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon 305-806, South Korea.
| | - Duwoon Kim
- Department of Food Science and Technology, Chonnam National University, Gwangju 500-757, South Korea; Bioenergy Research Center, Chonnam National University, Gwangju 500-757, South Korea; Agribio Disaster Research Center, Institute of Environmentally-Friendly Agriculture, Chonnam National University, Gwangju 500-757, South Korea.
| |
Collapse
|
42
|
Zheng K, Kitazato K, Wang Y, He Z. Pathogenic microbes manipulate cofilin activity to subvert actin cytoskeleton. Crit Rev Microbiol 2015; 42:677-95. [PMID: 25853495 DOI: 10.3109/1040841x.2015.1010139] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Actin-depolymerizing factor (ADF)/cofilin proteins are key players in controlling the temporal and spatial extent of actin dynamics, which is crucial for mediating host-pathogen interactions. Pathogenic microbes have evolved molecular mechanisms to manipulate cofilin activity to subvert the actin cytoskeletal system in host cells, promoting their internalization into the target cells, modifying the replication niche and facilitating their intracellular and intercellular dissemination. The study of how these pathogens exploit cofilin pathways is crucial for understanding infectious disease and providing potential targets for drug therapies.
Collapse
Affiliation(s)
- Kai Zheng
- a Department of Pharmacy, School of Medicine , Shenzhen University , Shenzhen , Guangdong , People's Republic of China .,c Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University , Guangzhou , China
| | - Kaio Kitazato
- b Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology , Nagasaki University , Nagasaki , Japan , and
| | - Yifei Wang
- c Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University , Guangzhou , China
| | - Zhendan He
- a Department of Pharmacy, School of Medicine , Shenzhen University , Shenzhen , Guangdong , People's Republic of China
| |
Collapse
|
43
|
Jacob T, Van den Broeke C, Grauwet K, Baert K, Claessen C, De Pelsmaeker S, Van Waesberghe C, Favoreel HW. Pseudorabies virus US3 leads to filamentous actin disassembly and contributes to viral genome delivery to the nucleus. Vet Microbiol 2015; 177:379-85. [PMID: 25869795 DOI: 10.1016/j.vetmic.2015.03.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 11/16/2022]
Abstract
The conserved alphaherpesvirus US3 tegument protein induces rearrangements of the actin cytoskeleton, consisting of protrusion formation and stress fiber breakdown. Although US3 does not affect levels of total actin protein, it remains unclear whether US3 modulates the total levels of filamentous (F) actin. In this report, we show that the pseudorabies virus (PRV) US3 protein, via its kinase activity, leads to disassembly of F-actin in porcine ST cells. F-actin disassembly has been reported before to contribute to host cell entry of HIV. In line with this, in the current study, we report that US3 has a previously uncharacterized role in viral genome delivery to the nucleus, since quantitative polymerase chain reaction (qPCR) assays on nuclear fractions demonstrated a reduced nuclear delivery of US3null PRV compared to wild type PRV genomes. Treatment of cells with the actin depolymerizing drug cytochalasin D enhanced virus genome delivery to the nucleus, particularly of US3null PRV, supporting a role for F-actin disassembly during certain aspects of viral entry. In conclusion, the US3 kinase of PRV leads to F-actin depolymerization, and US3 and F-actin disassembly contribute to viral genome delivery to the nucleus.
Collapse
Affiliation(s)
- Thary Jacob
- Department of Virology, Parasitology, and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Céline Van den Broeke
- Department of Virology, Parasitology, and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Korneel Grauwet
- Department of Virology, Parasitology, and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Kim Baert
- Department of Virology, Parasitology, and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Christophe Claessen
- Department of Virology, Parasitology, and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Steffi De Pelsmaeker
- Department of Virology, Parasitology, and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Cliff Van Waesberghe
- Department of Virology, Parasitology, and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Herman W Favoreel
- Department of Virology, Parasitology, and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| |
Collapse
|
44
|
Cofilin-1 is involved in regulation of actin reorganization during influenza A virus assembly and budding. Biochem Biophys Res Commun 2014; 453:821-5. [DOI: 10.1016/j.bbrc.2014.10.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 10/08/2014] [Indexed: 11/18/2022]
|
45
|
Van den Broeke C, Jacob T, Favoreel HW. Rho'ing in and out of cells: viral interactions with Rho GTPase signaling. Small GTPases 2014; 5:e28318. [PMID: 24691164 DOI: 10.4161/sgtp.28318] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rho GTPases are key regulators of actin and microtubule dynamics and organization. Increasing evidence shows that many viruses have evolved diverse interactions with Rho GTPase signaling and manipulate them for their own benefit. In this review, we discuss how Rho GTPase signaling interferes with many steps in the viral replication cycle, especially entry, replication, and spread. Seen the diversity between viruses, it is not surprising that there is considerable variability in viral interactions with Rho GTPase signaling. However, several largely common effects on Rho GTPases and actin architecture and microtubule dynamics have been reported. For some of these processes, the molecular signaling and biological consequences are well documented while for others we just begin to understand them. A better knowledge and identification of common threads in the different viral interactions with Rho GTPase signaling and their ultimate consequences for virus and host may pave the way toward the development of new antiviral drugs that may target different viruses.
Collapse
Affiliation(s)
- Céline Van den Broeke
- Department of Virology, Parasitology, and Immunology; Faculty of Veterinary Medicine; Ghent University; Ghent, Belgium
| | - Thary Jacob
- Department of Virology, Parasitology, and Immunology; Faculty of Veterinary Medicine; Ghent University; Ghent, Belgium
| | - Herman W Favoreel
- Department of Virology, Parasitology, and Immunology; Faculty of Veterinary Medicine; Ghent University; Ghent, Belgium
| |
Collapse
|
46
|
Zheng K, Xiang Y, Wang Q, Jin F, Chen M, Ma K, Ren Z, Wang Y. Calcium-signal facilitates herpes simplex virus type 1 nuclear transport through slingshot 1 and calpain-1 activation. Virus Res 2014; 188:32-7. [PMID: 24670325 DOI: 10.1016/j.virusres.2014.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/10/2014] [Accepted: 03/12/2014] [Indexed: 10/25/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) can establish its latency in neurons and is associated with virus-induced pathological neurodegeneration in the nervous system. Here we show that viral penetration-induced calcium release facilitated HSV-1 intracellular trafficking through activating slingshot 1 (SSH), a phosphatase regulating actin filament dynamics. More detailed studies revealed that phospholipase C gamma 1, and the inositol 1,4,5-trisphosphate receptor isoform 1 were required for SSH activation. Besides, calpain-1, a calcium-dependent cysteine protease, was involved in viral intracellular migration. These results may lead to new targets for antiviral therapy.
Collapse
Affiliation(s)
- Kai Zheng
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China; College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yangfei Xiang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Qiaoli Wang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Fujun Jin
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Maoyun Chen
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Kaiqi Ma
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Zhe Ren
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
47
|
Zheng K, Chen M, Xiang Y, Ma K, Jin F, Wang X, Wang X, Wang S, Wang Y. Inhibition of herpes simplex virus type 1 entry by chloride channel inhibitors tamoxifen and NPPB. Biochem Biophys Res Commun 2014; 446:990-6. [PMID: 24657267 DOI: 10.1016/j.bbrc.2014.03.050] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 03/12/2014] [Indexed: 11/26/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) infection is very common worldwide and can cause significant health problems from periodic skin and corneal lesions to encephalitis. Appearance of drug-resistant viruses in clinical therapy has made exploring novel antiviral agents emergent. Here we show that chloride channel inhibitors, including tamoxifen and 5-nitro-2-(3-phenyl-propylamino) benzoic acid (NPPB), exhibited extensive antiviral activities toward HSV-1 and ACV-resistant HSV viruses. HSV-1 infection induced chloride ion influx while treatment with inhibitors reduced the increase of intracellular chloride ion concentration. Pretreatment or treatment of inhibitors at different time points during HSV-1 infection all suppressed viral RNA synthesis, protein expression and virus production. More detailed studies demonstrated that tamoxifen and NPPB acted as potent inhibitors of HSV-1 early entry step by preventing viral binding, penetration and nuclear translocation. Specifically the compounds appeared to affect viral fusion process by inhibiting virus binding to lipid rafts and interrupting calcium homeostasis. Taken together, the observation that tamoxifen and NPPB can block viral entry suggests a stronger potential for these compounds as well as other ion channel inhibitors in antiviral therapy against HSV-1, especially the compound tamoxifen is an immediately actionable drug that can be reused for treatment of HSV-1 infections.
Collapse
Affiliation(s)
- Kai Zheng
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China; College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Maoyun Chen
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China; College of pharmacy, Jinan University, Guangzhou, China
| | - Yangfei Xiang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Kaiqi Ma
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Fujun Jin
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China; College of pharmacy, Jinan University, Guangzhou, China
| | - Xiao Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoyan Wang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Shaoxiang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
48
|
Epidermal growth factor receptor-PI3K signaling controls cofilin activity to facilitate herpes simplex virus 1 entry into neuronal cells. mBio 2014; 5:e00958-13. [PMID: 24425731 PMCID: PMC3903278 DOI: 10.1128/mbio.00958-13] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) establishes latency in neurons and can cause severe disseminated infection with neurological impairment and high mortality. This neurodegeneration is thought to be tightly associated with virus-induced cytoskeleton disruption. Currently, the regulation pattern of the actin cytoskeleton and the involved molecular mechanisms during HSV-1 entry into neurons remain unclear. Here, we demonstrate that the entry of HSV-1 into neuronal cells induces biphasic remodeling of the actin cytoskeleton and an initial inactivation followed by the subsequent activation of cofilin, a member of the actin depolymerizing factor family that is critical for actin reorganization. The disruption of F-actin dynamics or the modulation of cofilin activity by mutation, knockdown, or overexpression affects HSV-1 entry efficacy and virus-mediated cell ruffle formation. Binding of the HSV-1 envelope initiates the epidermal growth factor receptor (EGFR)-phosphatidylinositide 3-kinase (PI3K) signaling pathway, which leads to virus-induced early cofilin phosphorylation and F-actin polymerization. Moreover, the extracellular signal-regulated kinase (ERK) kinase and Rho-associated, coiled-coil-containing protein kinase 1 (ROCK) are recruited as downstream mediators of the HSV-1-induced cofilin inactivation pathway. Inhibitors specific for those kinases significantly reduce the virus infectivity without affecting virus binding to the target cells. Additionally, lipid rafts are clustered to promote EGFR-associated signaling cascade transduction. We propose that HSV-1 hijacks cofilin to initiate infection. These results could promote a better understanding of the pathogenesis of HSV-1-induced neurological diseases. The actin cytoskeleton is involved in many crucial cellular processes and acts as an obstacle to pathogen entry into host cells. Because HSV-1 establishes lifelong latency in neurons and because neuronal cytoskeletal disruption is thought to be the main cause of HSV-1-induced neurodegeneration, understanding the F-actin remodeling pattern by HSV-1 infection and the molecular interactions that facilitate HSV-1 entry into neurons is important. In this study, we showed that HSV-1 infection induces the rearrangement of the cytoskeleton as well as the initial inactivation and subsequent activation of cofilin. Then, we determined that activation of the EGFR-PI3K-Erk1/2 signaling pathway inactivates cofilin and promotes F-actin polymerization. We postulate that by regulating actin cytoskeleton dynamics, cofilin biphasic activation could represent the specific cellular machinery usurped by pathogen infection, and these results will greatly contribute to the understanding of HSV-1-induced early and complex changes in host cells that are closely linked to HSV-1 pathogenesis.
Collapse
|
49
|
Xiang Y, Zheng K, Zhong M, Chen J, Wang X, Wang Q, Wang S, Ren Z, Fan J, Wang Y. Ubiquitin-proteasome-dependent slingshot 1 downregulation in neuronal cells inactivates cofilin to facilitate HSV-1 replication. Virology 2013; 449:88-95. [PMID: 24418541 DOI: 10.1016/j.virol.2013.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/09/2013] [Accepted: 11/06/2013] [Indexed: 10/26/2022]
Abstract
Actin and its regulators are critical for neuronal function. Infection with herpes simplex virus 1 (HSV-1) remodels neuronal cell actin dynamics, which may relate virus-induced pathological processes in the nervous system. We previously demonstrated that cofilin is an actin regulator that participates in HSV-1-induced actin dynamics in neuronal cells, but how HSV-1 regulates cofilin has remained unclear. In the present study, we demonstrated the HSV-1-induced the inactivation of cofilin and the accumulation of phosphorylated cofilin in the nucleus, which together benefited viral replication. This consistent cofilin inactivation was achieved by the downregulation of slingshot 1 (SSH1). Notably, virus-induced SSH1 downregulation depended on the ubiquitin-proteasome system. Cofilin inactivation is therefore critical for HSV-1 replication during neuronal infection and is maintained by SSH1 downregulation. Moreover, these results provide new insight into the HSV-1-induced neurological pathogenesis and suggest potential new strategies to inhibit HSV-1 replication.
Collapse
Affiliation(s)
- Yangfei Xiang
- Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China; College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Kai Zheng
- Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| | - Meigong Zhong
- Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China; College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jia Chen
- Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China; College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xiao Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510080, China
| | - Qiaoli Wang
- Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| | - Shaoxiang Wang
- Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| | - Zhe Ren
- Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| | - Jianglin Fan
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo-City 409-3898, Japan
| | - Yifei Wang
- Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
50
|
Proteomics analysis of autophagy-deficient Atg7-/- MEFs reveals a close relationship between F-actin and autophagy. Biochem Biophys Res Commun 2013; 437:482-8. [PMID: 23850690 DOI: 10.1016/j.bbrc.2013.06.111] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 06/28/2013] [Indexed: 12/20/2022]
Abstract
Autophagy plays a crucial role in a wide array of physiological processes. To uncover the complex regulatory networks and mechanisms underlying basal autophagy, we performed a quantitative proteomics analysis of autophagy-deficient mouse embryonic fibroblast cells (MEFs) using iTRAQ labeling coupled with on-line 2D LC/MS/MS. We quantified a total of 1234 proteins and identified 114 proteins that were significantly altered (90% confidence interval), including 48 up-regulated proteins and 66 down-regulated proteins. We determined that F-actin was disassembled in autophagy-deficient Atg7(-/-) MEFs. Treatment of the WT MEFs with cytochalasin D (CD), which induces F-actin depolymerization, significantly induced autophagosome formation. However, treatment with cytochalasin D also increased the protein level of p62 under starvation conditions, suggesting that depolymerization of F-actin impaired autophagosome maturation and that the intact F-actin network is required for basal and starvation-induced autophagy. Our results demonstrate a close relationship between F-actin and autophagy and provide the basis for further investigation of their interactions.
Collapse
|