1
|
Paludan SR, Pradeu T, Pichlmair A, Wray KB, Mikkelsen JG, Olagnier D, Mogensen TH. Early host defense against virus infections. Cell Rep 2024; 43:115070. [PMID: 39675007 DOI: 10.1016/j.celrep.2024.115070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/25/2024] [Accepted: 11/22/2024] [Indexed: 12/17/2024] Open
Abstract
Early host defense eliminates many viruses before infections are established while clearing others so they remain subclinical or cause only mild disease. The field of immunology has been shaped by broad concepts, including the pattern recognition theory that currently dominates innate immunology. Focusing on early host responses to virus infections, we analyze the literature to build a working hypothesis for the principles that govern the early line of cellular antiviral defense. Aiming to ultimately arrive at a criteria-based theory with strong explanatory power, we propose that both controlling infection and limiting inflammation are key drivers for the early cellular antiviral response. This response, which we suggest is exerted by a set of "microbe- and inflammation-restricting mechanisms," directly restrict viral replication while also counteracting inflammation. Exploring the mechanisms and physiological importance of the early layer of cellular antiviral defense may open further lines of research in immunology.
Collapse
Affiliation(s)
- Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark; Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Thomas Pradeu
- CNRS UMR 5164 ImmunoConcept, University of Bordeaux, Bordeaux, France; Department of Biological and Medical Sciences, University of Bordeaux, Bordeaux, France; Chapman University, Orange, CA, USA
| | - Andreas Pichlmair
- Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark; Technical University of Munich, School of Medicine, Institute of Virology, Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - K Brad Wray
- Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark; Centre for Science Studies, Aarhus University, Aarhus, Denmark; Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Jacob Giehm Mikkelsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
| | - David Olagnier
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
| | - Trine H Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
2
|
Roubille S, Escure T, Juillard F, Corpet A, Néplaz R, Binda O, Seurre C, Gonin M, Bloor S, Cohen C, Texier P, Haigh O, Pascual O, Ganor Y, Magdinier F, Labetoulle M, Lehner PJ, Lomonte P. The HUSH epigenetic repressor complex silences PML nuclear body-associated HSV-1 quiescent genomes. Proc Natl Acad Sci U S A 2024; 121:e2412258121. [PMID: 39589886 PMCID: PMC11626126 DOI: 10.1073/pnas.2412258121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Herpes simplex virus 1 (HSV-1) latently infected neurons display diverse patterns in the distribution of the viral genomes within the nucleus. A key pattern involves quiescent HSV-1 genomes sequestered in promyelocytic leukemia nuclear bodies (PML NBs) forming viral DNA-containing PML-NBs (vDCP NBs). Using a cellular model that replicates vDCP NB formation, we previously demonstrated that these viral genomes are chromatinized with the H3.3 histone variant modified on its lysine 9 by trimethylation (H3.3K9me3), a mark associated with transcriptional repression. Here, we identify the HUSH complex and its effectors, SETDB1 and MORC2, as crucial for the acquisition of H3K9me3 on PML NB-associated HSV-1 and the maintenance of HSV-1 transcriptional repression. ChIP-seq analyses show H3K9me3 association with the entire viral genome. Inactivating the HUSH-SETDB1-MORC2 complex before infection significantly reduces H3K9me3 on the viral genome, with minimal impact on the cellular genome, aside from expected changes in LINE-1 retroelements. Depletion of HUSH, SETDB1, or MORC2 alleviates HSV-1 repression in infected primary human fibroblasts and human induced pluripotent stem cell-derived sensory neurons (hiPSDN). We found that the viral protein ICP0 induces MORC2 degradation via the proteasome machinery. This process is concurrent with ICP0 and MORC2 depletion capability to reactivate silenced HSV-1 in hiPSDN. Overall, our findings underscore the robust antiviral function of the HUSH-SETDB1-MORC2 repressor complex against a herpesvirus by modulating chromatin marks linked to repression, thus presenting promising avenues for anti-herpesvirus therapeutic strategies.
Collapse
Affiliation(s)
- Simon Roubille
- Université Claude Bernard Lyon 1, Centre national de la recherche scientifique (CNRS) UMR 5261, Institut national de la santé et de la recherche médicale (Inserm) U1315, Laboratoire d’Excellence (LabEx) DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), team “Chromatin dynamics, Nuclear Domains, Virus”, Lyon69008, France
| | - Tristan Escure
- Université Claude Bernard Lyon 1, Centre national de la recherche scientifique (CNRS) UMR 5261, Institut national de la santé et de la recherche médicale (Inserm) U1315, Laboratoire d’Excellence (LabEx) DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), team “Chromatin dynamics, Nuclear Domains, Virus”, Lyon69008, France
| | - Franceline Juillard
- Université Claude Bernard Lyon 1, Centre national de la recherche scientifique (CNRS) UMR 5261, Institut national de la santé et de la recherche médicale (Inserm) U1315, Laboratoire d’Excellence (LabEx) DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), team “Chromatin dynamics, Nuclear Domains, Virus”, Lyon69008, France
- SupBiotech Research Department - CellTechs Laboratory, SupBiotech, Lyon69003, France
| | - Armelle Corpet
- Université Claude Bernard Lyon 1, Centre national de la recherche scientifique (CNRS) UMR 5261, Institut national de la santé et de la recherche médicale (Inserm) U1315, Laboratoire d’Excellence (LabEx) DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), team “Chromatin dynamics, Nuclear Domains, Virus”, Lyon69008, France
- Institut Universitaire de France (IUF), Paris75005, France
| | - Rémi Néplaz
- Université Claude Bernard Lyon 1, Centre national de la recherche scientifique (CNRS) UMR 5261, Institut national de la santé et de la recherche médicale (Inserm) U1315, Laboratoire d’Excellence (LabEx) DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), team “Chromatin dynamics, Nuclear Domains, Virus”, Lyon69008, France
| | - Olivier Binda
- Université Claude Bernard Lyon 1, Centre national de la recherche scientifique (CNRS) UMR 5261, Institut national de la santé et de la recherche médicale (Inserm) U1315, Laboratoire d’Excellence (LabEx) DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), team “Chromatin dynamics, Nuclear Domains, Virus”, Lyon69008, France
- Faculty of Medicine Department of Cellular and Molecular Medicine University of Ottawa, Ottawa, ONK1H 8M5, Canada
| | - Coline Seurre
- Université Claude Bernard Lyon 1, Centre national de la recherche scientifique (CNRS) UMR 5261, Institut national de la santé et de la recherche médicale (Inserm) U1315, Laboratoire d’Excellence (LabEx) DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), team “Chromatin dynamics, Nuclear Domains, Virus”, Lyon69008, France
| | - Mathilde Gonin
- Université Claude Bernard Lyon 1, Centre national de la recherche scientifique (CNRS) UMR 5261, Institut national de la santé et de la recherche médicale (Inserm) U1315, Laboratoire d’Excellence (LabEx) DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), team “Chromatin dynamics, Nuclear Domains, Virus”, Lyon69008, France
| | - Stuart Bloor
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, CambridgeCB2 OAW, United Kingdom
| | - Camille Cohen
- Université Claude Bernard Lyon 1, Centre national de la recherche scientifique (CNRS) UMR 5261, Institut national de la santé et de la recherche médicale (Inserm) U1315, Laboratoire d’Excellence (LabEx) DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), team “Chromatin dynamics, Nuclear Domains, Virus”, Lyon69008, France
- Université Montpellier, Centre national de la recherche scientifique (CNRS) UMR5294, Laboratory of Pathogen Host Interactions (LPHI), team “GATAC-Malaria”, Montpellier34095, France
| | - Pascale Texier
- Université Claude Bernard Lyon 1, Centre national de la recherche scientifique (CNRS) UMR 5261, Institut national de la santé et de la recherche médicale (Inserm) U1315, Laboratoire d’Excellence (LabEx) DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), team “Chromatin dynamics, Nuclear Domains, Virus”, Lyon69008, France
| | - Oscar Haigh
- Université Paris-Saclay, Institut national de la santé et de la recherche médicale (Inserm), U1184, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB). Commissariat à l’Énergie Atomique et aux Énergies renouvelables (CEA), Fontenay-aux-Roses92260, France
| | - Olivier Pascual
- Université Claude Bernard Lyon 1, Centre national de la recherche scientifique (CNRS) UMR 5284, Institut national de la santé et de la recherche médicale (Inserm) U1314, Institut NeuroMyoGène-Mechanisms in Integrated Life Sciences (INMG-MeLiS), Team “Synaptopathies et Autoanticorps”, Lyon69008, France
| | - Yonatan Ganor
- Université Paris Cité, Institut Cochin, Centre national de la recherche scientifique (CNRS) UMR 8104, Institut national de la santé et de la recherche médicale (Inserm) U1016, Paris75014, France
| | - Frédérique Magdinier
- Université Aix-Marseille, Institut national de la santé et de la recherche médicale (Inserm) U1251, Marseille Medical Genetics (MMG), team “Epigenetic and nucleoskeleton dynamics in rare diseases”, Marseille13385, France
| | - Marc Labetoulle
- Université Paris-Saclay, Institut national de la santé et de la recherche médicale (Inserm), U1184, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB). Commissariat à l’Énergie Atomique et aux Énergies renouvelables (CEA), Fontenay-aux-Roses92260, France
- Université Paris-Saclay, Service d’Ophtalmologie, Hôpital Bicêtre, Assistance Publique - Hôpitaux de Paris (AP-HP), Centre de Recherche Maladies Rares (CMR), Centre de référence des maladies rares en ophtalmologie (OPHTARA), Le Kremlin-Bicêtre94270, France
- Service d’Ophtalmologie, Hôpital National de la Vision des Quinze-Vingts, Institut Hospitalo-universitaire (IHU) FOReSIGHT, Paris75012, France
| | - Paul J. Lehner
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, CambridgeCB2 OAW, United Kingdom
| | - Patrick Lomonte
- Université Claude Bernard Lyon 1, Centre national de la recherche scientifique (CNRS) UMR 5261, Institut national de la santé et de la recherche médicale (Inserm) U1315, Laboratoire d’Excellence (LabEx) DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), team “Chromatin dynamics, Nuclear Domains, Virus”, Lyon69008, France
| |
Collapse
|
3
|
Ledvina HE, Whiteley AT. Conservation and similarity of bacterial and eukaryotic innate immunity. Nat Rev Microbiol 2024; 22:420-434. [PMID: 38418927 PMCID: PMC11389603 DOI: 10.1038/s41579-024-01017-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Pathogens are ubiquitous and a constant threat to their hosts, which has led to the evolution of sophisticated immune systems in bacteria, archaea and eukaryotes. Bacterial immune systems encode an astoundingly large array of antiviral (antiphage) systems, and recent investigations have identified unexpected similarities between the immune systems of bacteria and animals. In this Review, we discuss advances in our understanding of the bacterial innate immune system and highlight the components, strategies and pathogen restriction mechanisms conserved between bacteria and eukaryotes. We summarize evidence for the hypothesis that components of the human immune system originated in bacteria, where they first evolved to defend against phages. Further, we discuss shared mechanisms that pathogens use to overcome host immune pathways and unexpected similarities between bacterial immune systems and interbacterial antagonism. Understanding the shared evolutionary path of immune components across domains of life and the successful strategies that organisms have arrived at to restrict their pathogens will enable future development of therapeutics that activate the human immune system for the precise treatment of disease.
Collapse
Affiliation(s)
- Hannah E Ledvina
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Aaron T Whiteley
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
4
|
Zhang S, Guo A, Wang H, Liu J, Dong C, Ren J, Wang G. Oncogenic MORC2 in cancer development and beyond. Genes Dis 2024; 11:861-873. [PMID: 37692502 PMCID: PMC10491978 DOI: 10.1016/j.gendis.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 09/12/2023] Open
Abstract
Microrchidia CW-type zinc finger 2 (MORC2) is a member of the MORC superfamily of nuclear proteins. Growing evidence has shown that MORC2 not only participates in gene transcription and chromatin remodeling but also plays a key in human disease and tumor development by regulating the expression of downstream oncogenes or tumor suppressors. The present review provides an updated overview of MORC2 in the aspect of cancer hallmark and therapeutic resistance and summarizes its upstream regulators and downstream target genes. This systematic review may provide a favorable theoretical basis for emerging players of MORC2 in tumor development and new insight into the potential clinical application of basic science discoveries in the future.
Collapse
Affiliation(s)
- Shan Zhang
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Ayao Guo
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Huan Wang
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Jia Liu
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Chenshuang Dong
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Junyi Ren
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Guiling Wang
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| |
Collapse
|
5
|
Xu Y, Yang Y, Fan S. Research progress on the dermatomyositis specific autoantibodies and malignancy associated dermatomyositis. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:1890-1898. [PMID: 38448383 PMCID: PMC10930743 DOI: 10.11817/j.issn.1672-7347.2023.220594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Indexed: 03/08/2024]
Abstract
Dermatomyositis (DM) is an autoimmune disease often complicated with malignant tumors. More than 50% of DM patients have myositis specific autoantibodies in their bodies. DM specific autoantibodies [including anti-migration inhibitory factor (Mi)-2 antibody, anti-nuclear matrix protein (NXP)-2 antibody, anti-transcription intermediary factor (TIF) 1-γ antibody, and anti-small ubiquitin like modifier activating enzyme (SAE) antibody] play important roles in the pathogenesis of malignancy associated DM. Revealing the role of DM specific autoantibodies in the development of malignant tumors in DM patients can provide important evidence for accurately assessing the risk of developing malignant tumors in DM patients, and also provide new ideas for clinical diagnosis of DM and precise treatment.
Collapse
Affiliation(s)
- Yue Xu
- Department of Pathology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Yang Yang
- Department of Pathology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Songqing Fan
- Department of Pathology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
6
|
Silonov SA, Mokin YI, Nedelyaev EM, Smirnov EY, Kuznetsova IM, Turoverov KK, Uversky VN, Fonin AV. On the Prevalence and Roles of Proteins Undergoing Liquid-Liquid Phase Separation in the Biogenesis of PML-Bodies. Biomolecules 2023; 13:1805. [PMID: 38136675 PMCID: PMC10741438 DOI: 10.3390/biom13121805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The formation and function of membrane-less organelles (MLOs) is one of the main driving forces in the molecular life of the cell. These processes are based on the separation of biopolymers into phases regulated by multiple specific and nonspecific inter- and intramolecular interactions. Among the realm of MLOs, a special place is taken by the promyelocytic leukemia nuclear bodies (PML-NBs or PML bodies), which are the intranuclear compartments involved in the regulation of cellular metabolism, transcription, the maintenance of genome stability, responses to viral infection, apoptosis, and tumor suppression. According to the accepted models, specific interactions, such as SUMO/SIM, the formation of disulfide bonds, etc., play a decisive role in the biogenesis of PML bodies. In this work, a number of bioinformatics approaches were used to study proteins found in the proteome of PML bodies for their tendency for spontaneous liquid-liquid phase separation (LLPS), which is usually caused by weak nonspecific interactions. A total of 205 proteins found in PML bodies have been identified. It has been suggested that UBC9, P53, HIPK2, and SUMO1 can be considered as the scaffold proteins of PML bodies. It was shown that more than half of the proteins in the analyzed proteome are capable of spontaneous LLPS, with 85% of the analyzed proteins being intrinsically disordered proteins (IDPs) and the remaining 15% being proteins with intrinsically disordered protein regions (IDPRs). About 44% of all proteins analyzed in this study contain SUMO binding sites and can potentially be SUMOylated. These data suggest that weak nonspecific interactions play a significantly larger role in the formation and biogenesis of PML bodies than previously expected.
Collapse
Affiliation(s)
- Sergey A. Silonov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Yakov I. Mokin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Eugene M. Nedelyaev
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Eugene Y. Smirnov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Irina M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Konstantin K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Alexander V. Fonin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| |
Collapse
|
7
|
Champion A, Rowland A, Yee L, van den Boomen D, Reeves M, Lehner P, Sinclair J, Poole E. MORC3 represses the HCMV major immediate early promoter in myeloid cells in the absence of PML nuclear bodies. J Med Virol 2023; 95:e29227. [PMID: 38009611 PMCID: PMC10952291 DOI: 10.1002/jmv.29227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/18/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023]
Abstract
Human cytomegalovirus (HCMV) can undergo either a latent or a lytic infection in cells of the myeloid lineage. Whilst the molecular mechanisms which determine the outcome of infection are far from clear, it is well established that a key factor is the differential regulation of the major immediate early promoter (MIEP) responsible for driving lytic immediate early gene expression. Using a myelomonocytic cell line stably transduced with a GFP reporter under the control of the MIEP, which recapitulates MIEP regulation in the context of virus infection, we have used an unbiased CRISPR-Cas9 sub-genomic, epigenetic library screen to identify novel cellular factors involved in MIEP repression during establishment and maintenance of latency in myeloid cells. One such cellular factor identified was MORC3. Consistent with MORC3 being a robust repressor of the MIEP, we show that THP1 cells devoid of MORC3 fail to establish latency. We also show that MORC3 is induced during latent infection, recruited to the MIEP and forms MORC3 nuclear bodies (MORC3-NBs) which, interestingly, co-localize with viral genomes. Finally, we show that the latency-associated functions of MORC3 are regulated by the deSUMOylase activity of the viral latency-associated LUNA protein likely to prevent untimely HCMV reactivation.
Collapse
Affiliation(s)
- Anna Champion
- Department of MedicineUniversity of CambridgeCambridgeUK
| | | | - Levia Yee
- Department of MedicineUniversity of CambridgeCambridgeUK
| | | | - Matthew Reeves
- Divison of Virology, Department of PathologyUniversity of CambridgeCambridgeUK
| | - Paul Lehner
- Department of MedicineUniversity of CambridgeCambridgeUK
| | - John Sinclair
- Department of MedicineUniversity of CambridgeCambridgeUK
| | - Emma Poole
- Department of MedicineUniversity of CambridgeCambridgeUK
- Department of PathologyUniversity of CambridgeCambridgeUK
| |
Collapse
|
8
|
Saribas AS, Bellizzi A, Wollebo HS, Beer T, Tang HY, Safak M. Human neurotropic polyomavirus, JC virus, late coding region encodes a novel nuclear protein, ORF4, which targets the promyelocytic leukemia nuclear bodies (PML-NBs) and modulates their reorganization. Virology 2023; 587:109866. [PMID: 37741199 PMCID: PMC10602023 DOI: 10.1016/j.virol.2023.109866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 09/25/2023]
Abstract
We previously reported the discovery and characterization of two novel proteins (ORF1 and ORF2) generated by the alternative splicing of the JC virus (JCV) late coding region. Here, we report the discovery and partial characterization of three additional novel ORFs from the same coding region, ORF3, ORF4 and ORF5, which potentially encode 70, 173 and 265 amino acid long proteins respectively. While ORF3 protein exhibits a uniform distribution pattern throughout the cells, we were unable to detect ORF5 expression. Surprisingly, ORF4 protein was determined to be the only JCV protein specifically targeting the promyelocytic leukemia nuclear bodies (PML-NBs) and inducing their reorganization in nucleus. Although ORF4 protein has a modest effect on JCV replication, it is implicated to play major roles during the JCV life cycle, perhaps by regulating the antiviral response of PML-NBs against JCV infections and thus facilitating the progression of the JCV-induced disease in infected individuals.
Collapse
Affiliation(s)
- A Sami Saribas
- Department of Microbiology, Immunology, and Inflammation, Laboratory of Molecular Neurovirology, MERB-757, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Anna Bellizzi
- Department of Microbiology, Immunology, and Inflammation, Laboratory of Molecular Neurovirology, MERB-757, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Hassen S Wollebo
- Department of Microbiology, Immunology, and Inflammation, Laboratory of Molecular Neurovirology, MERB-757, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Thomas Beer
- The Wistar Institute Proteomics and Metabolomics Facility Room 252, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Hsin-Yao Tang
- The Wistar Institute Proteomics and Metabolomics Facility Room 252, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Mahmut Safak
- Department of Microbiology, Immunology, and Inflammation, Laboratory of Molecular Neurovirology, MERB-757, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA.
| |
Collapse
|
9
|
Ngo AM, Puschnik AS. Genome-Scale Analysis of Cellular Restriction Factors That Inhibit Transgene Expression from Adeno-Associated Virus Vectors. J Virol 2023; 97:e0194822. [PMID: 36971544 PMCID: PMC10134838 DOI: 10.1128/jvi.01948-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/01/2023] [Indexed: 03/29/2023] Open
Abstract
Adeno-associated virus (AAV) vectors are one of the leading platforms for gene delivery for the treatment of human genetic diseases, but the antiviral cellular mechanisms that interfere with optimal transgene expression are incompletely understood. Here, we performed two genome-scale CRISPR screens to identify cellular factors that restrict transgene expression from recombinant AAV vectors. Our screens revealed several components linked to DNA damage response, chromatin remodeling, and transcriptional regulation. Inactivation of the Fanconi anemia gene FANCA; the human silencing hub (HUSH)-associated methyltransferase SETDB1; and the gyrase, Hsp90, histidine kinase, and MutL (GHKL)-type ATPase MORC3 led to increased transgene expression. Moreover, SETDB1 and MORC3 knockout improved transgene levels of several AAV serotypes as well as other viral vectors, such as lentivirus and adenovirus. Finally, we demonstrated that the inhibition of FANCA, SETDB1, or MORC3 also enhanced transgene expression in human primary cells, suggesting that they could be physiologically relevant pathways that restrict AAV transgene levels in therapeutic settings. IMPORTANCE Recombinant AAV (rAAV) vectors have been successfully developed for the treatment of genetic diseases. The therapeutic strategy often involves the replacement of a defective gene by the expression of a functional copy from the rAAV vector genome. However, cells possess antiviral mechanisms that recognize and silence foreign DNA elements thereby limiting transgene expression and its therapeutic effect. Here, we utilize a functional genomics approach to uncover a comprehensive set of cellular restriction factors that inhibit rAAV-based transgene expression. Genetic inactivation of selected restriction factors increased rAAV transgene expression. Hence, modulation of identified restriction factors has the potential to enhance AAV gene replacement therapies.
Collapse
Affiliation(s)
- Ashley M. Ngo
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | | |
Collapse
|
10
|
Orzalli MH, Parameswaran P. Effector-triggered immunity in mammalian antiviral defense. Trends Immunol 2022; 43:1006-1017. [PMID: 36369102 DOI: 10.1016/j.it.2022.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 01/12/2023]
Abstract
Effector-triggered immunity (ETI) is a common defense strategy used by mammalian host cells that is engaged upon detection of the enzymatic activities of pathogen-encoded proteins or the effects of their expression on cellular homeostasis. However, in contrast to the effector-triggered responses engaged upon bacterial infection, much less is understood about the activation and consequences of these responses following viral infection. Several recent studies have identified novel mechanisms by which viruses engage ETI, highlighting the importance of these immune responses in antiviral defense. We summarize recent advances in understanding how mammalian cells sense virus-encoded effector proteins, the downstream signaling pathways that are triggered by these sensing events, and how viruses manipulate these pathways to become more successful pathogens.
Collapse
Affiliation(s)
- Megan H Orzalli
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| | - Pooja Parameswaran
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
11
|
Ma XH, Yao YX, Wang XZ, Zhou YP, Huang SN, Li D, Mei MJ, Wu JP, Pan YT, Cheng S, Jiang X, Sun JY, Zeng WB, Gong S, Cheng H, Luo MH, Yang B. MORC3 restricts human cytomegalovirus infection by suppressing the major immediate-early promoter activity. J Med Virol 2022; 94:5492-5506. [PMID: 35879101 DOI: 10.1002/jmv.28025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 12/15/2022]
Abstract
During the long coevolution of human cytomegalovirus (HCMV) and humans, the host has formed a defense system of multiple layers to eradicate the invader, and the virus has developed various strategies to evade host surveillance programs. The intrinsic immunity primarily orchestrated by promyelocytic leukemia (PML) nuclear bodies (PML-NBs) represents the first line of defense against HCMV infection. Here, we demonstrate that microrchidia family CW-type zinc finger 3 (MORC3), a PML-NBs component, is a restriction factor targeting HCMV infection. We show that depletion of MORC3 through knockdown by RNA interference or knockout by CRISPR-Cas9 augmented immediate-early protein 1 (IE1) gene expression and subsequent viral replication, and overexpressing MORC3 inhibited HCMV replication by suppressing IE1 gene expression. To relief the restriction, HCMV induces transient reduction of MORC3 protein level via the ubiquitin-proteasome pathway during the immediate-early to early stage. However, MORC3 transcription is upregulated, and the protein level recovers in the late stages. Further analyses with temporal-controlled MORC3 expression and the major immediate-early promoter (MIEP)-based reporters show that MORC3 suppresses MIEP activity and consequent IE1 expression with the assistance of PML. Taken together, our data reveal that HCMV enforces temporary loss of MORC3 to evade its repression against the initiation of immediate-early gene expression.
Collapse
Affiliation(s)
- Xue-Hui Ma
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Yong-Xuan Yao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xian-Zhang Wang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yue-Peng Zhou
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Sheng-Nan Huang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Dong Li
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Meng-Jie Mei
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jing-Peng Wu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Ting Pan
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shuang Cheng
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Xuan Jiang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jin-Yan Sun
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Wen-Bo Zeng
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Sitang Gong
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Han Cheng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Min-Hua Luo
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Bo Yang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
12
|
Chutani N, Singh AK, Kadumuri RV, Pakala SB, Chavali S. Structural and Functional Attributes of Microrchidia Family of Chromatin Remodelers. J Mol Biol 2022; 434:167664. [PMID: 35659506 DOI: 10.1016/j.jmb.2022.167664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/10/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
Chromatin remodelers affect the spatio-temporal dynamics of global gene-expression by structurally modulating and/or reorganizing the chromatin. Microrchidia (MORC) family is a relatively new addition to the four well studied families of chromatin remodeling proteins. In this review, we discuss the current understanding of the structural aspects of human MORCs as well as their epigenetic functions. From a molecular and systems-level perspective, we explore their participation in phase-separated structures, possible influence on various biological processes through protein-protein interactions, and potential extra-nuclear roles. We describe how dysregulation/dysfunction of MORCs can lead to various pathological conditions. We conclude by emphasizing the importance of undertaking integrated efforts to obtain a holistic understanding of the various biological roles of MORCs.
Collapse
Affiliation(s)
- Namita Chutani
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, Andhra Pradesh, India. https://twitter.com/ChutaniNamita
| | - Anjali Kumari Singh
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, Andhra Pradesh, India. https://twitter.com/anjali_k_s
| | - Rajashekar Varma Kadumuri
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, Andhra Pradesh, India
| | - Suresh B Pakala
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, Andhra Pradesh, India.
| | - Sreenivas Chavali
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, Andhra Pradesh, India.
| |
Collapse
|
13
|
Hou F, Sun Z, Deng Y, Chen S, Yang X, Ji F, Zhou M, Ren K, Pan D. Interactome and Ubiquitinome Analyses Identify Functional Targets of Herpes Simplex Virus 1 Infected Cell Protein 0. Front Microbiol 2022; 13:856471. [PMID: 35516420 PMCID: PMC9062659 DOI: 10.3389/fmicb.2022.856471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) can productively infect multiple cell types and establish latent infection in neurons. Infected cell protein 0 (ICP0) is an HSV-1 E3 ubiquitin ligase crucial for productive infection and reactivation from latency. However, our knowledge about its targets especially in neuronal cells is limited. We confirmed that, like in non-neuronal cells, ICP0-null virus exhibited major replication defects in primary mouse neurons and Neuro-2a cells. We identified many ICP0-interacting proteins in Neuro-2a cells, 293T cells, and human foreskin fibroblasts by mass spectrometry-based interactome analysis. Co-immunoprecipitation assays validated ICP0 interactions with acyl-coenzyme A thioesterase 8 (ACOT8), complement C1q binding protein (C1QBP), ovarian tumour domain-containing protein 4 (OTUD4), sorting nexin 9 (SNX9), and vimentin (VIM) in both Neuro-2a and 293T cells. Overexpression and knockdown experiments showed that SNX9 restricted replication of an ICP0-null but not wild-type virus in Neuro-2a cells. Ubiquitinome analysis by immunoprecipitating the trypsin-digested ubiquitin reminant followed by mass spectrometry identified numerous candidate ubiquitination substrates of ICP0 in infected Neuro-2a cells, among which OTUD4 and VIM were novel substrates confirmed to be ubiquitinated by transfected ICP0 in Neuro-2a cells despite no evidence of their degradation by ICP0. Expression of OTUD4 was induced independently of ICP0 during HSV-1 infection. Overexpressed OTUD4 enhanced type I interferon expression during infection with the ICP0-null but not wild-type virus. In summary, by combining two proteomic approaches followed by confirmatory and functional experiments, we identified and validated multiple novel targets of ICP0 and revealed potential restrictive activities of SNX9 and OTUD4 in neuronal cells.
Collapse
Affiliation(s)
- Fujun Hou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zeyu Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Yue Deng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China
| | - Siyu Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiyuan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China
| | - Feiyang Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Menghao Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Keyi Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongli Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
14
|
Ma Y, Li J, Dong H, Yang Z, Zhou L, Xu P. PML Body Component Sp100A Restricts Wild-Type Herpes Simplex Virus 1 Infection. J Virol 2022; 96:e0027922. [PMID: 35353002 PMCID: PMC9044927 DOI: 10.1128/jvi.00279-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022] Open
Abstract
Sp100 (speckled protein 100 kDa) is a constituent component of nuclear structure PML (promyelocytic leukemia) bodies, playing important roles in mediating intrinsic and innate immunity. The Sp100 gene encodes four isoforms with distinct roles in the transcriptional regulation of both cellular and viral genes. Since Sp100 is a primary intranuclear target of infected-cell protein 0 (ICP0), an immediate early E3 ligase encoded by herpes simplex virus 1 (HSV-1), previous investigations attempting to analyze the functions of individual Sp100 variants during HSV-1 infection mostly avoided using a wild-type virus. Therefore, the role of Sp100 under natural infection by HSV-1 remains to be clarified. Here, we reappraised the antiviral capacity of four Sp100 isoforms during infection by a nonmutated HSV-1, examined the molecular behavior of the Sp100 protein in detail, and revealed the following intriguing observations. First, Sp100 isoform A (Sp100A) inhibited wild-type HSV-1 propagation in HEp-2, Sp100-/-, and PML-/- cells. Second, endogenous Sp100 is located in both the nucleus and the cytoplasm. During HSV-1 infection, the nuclear Sp100 level decreased drastically upon the detection of ICP0 in the same subcellular compartment, but cytosolic Sp100 remained stable. Third, transfected Sp100A showed subcellular localizations similar to those of endogenous Sp100 and matched the protein size of endogenous cytosolic Sp100. Fourth, HSV-1 infection induced increased secretion of endogenous Sp100 and ectopically expressed Sp100A, which copurified with extracellular vesicles (EVs) but not infectious virions. Fifth, the Sp100A level in secreting cells positively correlated with its level in EVs, and EV-associated Sp100A restricted HSV-1 in recipient cells. IMPORTANCE Previous studies show that the PML body component Sp100 protein is immediately targeted by ICP0 of HSV-1 in the nucleus during productive infection. Therefore, extensive studies investigating the interplay of Sp100 isoforms with HSV-1 were conducted using a mutant virus lacking ICP0 or in the absence of infection. The role of Sp100 variants during natural HSV-1 infection remains blurry. Here, we report that Sp100A potently and independently inhibited wild-type HSV-1 and that during HSV-1 infection, cytosolic Sp100 remained stable and was increasingly secreted into the extracellular space, in association with EVs. Furthermore, the Sp100A level in secreting cells positively correlated with its level in EVs and the anti-HSV-1 potency of these EVs in recipient cells. In summary, this study implies an active antiviral role of Sp100A during wild-type HSV-1 infection and reveals a novel mechanism of Sp100A to restrict HSV-1 through extracellular communications.
Collapse
Affiliation(s)
- Yilei Ma
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jingjing Li
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hongchang Dong
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhaoxin Yang
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Lingyue Zhou
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Pei Xu
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
15
|
Fox LE, Lenschow DJ. En garde! The duel functions of MORC3. Cell Host Microbe 2022; 30:8-9. [PMID: 35026136 DOI: 10.1016/j.chom.2021.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Effector-triggered immunity involves "guarded" host processes that, when perturbed by pathogen factors, prompt a secondary response. A recent study published in Nature by Gaidt et al. demonstrates that MORC3 serves as both the guard and the guarded antiviral host factor-creating a "heads, I win; tails, you lose!" scenario.
Collapse
Affiliation(s)
- Lindsey E Fox
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Deborah J Lenschow
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA; Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
16
|
Gaidt MM, Morrow A, Fairgrieve MR, Karr JP, Yosef N, Vance RE. Self-guarding of MORC3 enables virulence factor-triggered immunity. Nature 2021; 600:138-142. [PMID: 34759314 PMCID: PMC9045311 DOI: 10.1038/s41586-021-04054-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 09/23/2021] [Indexed: 01/08/2023]
Abstract
Pathogens use virulence factors to inhibit the immune system1. The guard hypothesis2,3 postulates that hosts monitor (or 'guard') critical innate immune pathways such that their disruption by virulence factors provokes a secondary immune response1. Here we describe a 'self-guarded' immune pathway in human monocytes, in which guarding and guarded functions are combined in one protein. We find that this pathway is triggered by ICP0, a key virulence factor of herpes simplex virus type 1, resulting in robust induction of anti-viral type I interferon (IFN). Notably, induction of IFN by ICP0 is independent of canonical immune pathways and the IRF3 and IRF7 transcription factors. A CRISPR screen identified the ICP0 target MORC34 as an essential negative regulator of IFN. Loss of MORC3 recapitulates the IRF3- and IRF7-independent IFN response induced by ICP0. Mechanistically, ICP0 degrades MORC3, which leads to de-repression of a MORC3-regulated DNA element (MRE) adjacent to the IFNB1 locus. The MRE is required in cis for IFNB1 induction by the MORC3 pathway, but is not required for canonical IFN-inducing pathways. As well as repressing the MRE to regulate IFNB1, MORC3 is also a direct restriction factor of HSV-15. Our results thus suggest a model in which the primary anti-viral function of MORC3 is self-guarded by its secondary IFN-repressing function-thus, a virus that degrades MORC3 to avoid its primary anti-viral function will unleash the secondary anti-viral IFN response.
Collapse
Affiliation(s)
- Moritz M Gaidt
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| | - Alyssa Morrow
- Electrical Engineering and Computer Science Department, University of California, Berkeley, CA, USA
| | - Marian R Fairgrieve
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Jonathan P Karr
- Division of Genetics, Genomics and Development, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Nir Yosef
- Electrical Engineering and Computer Science Department, University of California, Berkeley, CA, USA
- Center for Computational Biology, University of California, Berkeley, CA, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, MA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Russell E Vance
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- Cancer Research Laboratory and the Immunotherapeutics and Vaccine Research Initiative, University of California, Berkeley, CA, USA.
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA.
| |
Collapse
|
17
|
MORC protein family-related signature within human disease and cancer. Cell Death Dis 2021; 12:1112. [PMID: 34839357 PMCID: PMC8627505 DOI: 10.1038/s41419-021-04393-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 10/06/2021] [Accepted: 11/03/2021] [Indexed: 01/03/2023]
Abstract
The microrchidia (MORC) family of proteins is a highly conserved nuclear protein superfamily, whose members contain common domain structures (GHKL-ATPase, CW-type zinc finger and coiled-coil domain) yet exhibit diverse biological functions. Despite the advancing research in previous decades, much of which focuses on their role as epigenetic regulators and in chromatin remodeling, relatively little is known about the role of MORCs in tumorigenesis and pathogenesis. MORCs were first identified as epigenetic regulators and chromatin remodelers in germ cell development. Currently, MORCs are regarded as disease genes that are involved in various human disorders and oncogenes in cancer progression and are expected to be the important biomarkers for diagnosis and treatment. A new paradigm of expanded MORC family function has raised questions regarding the regulation of MORCs and their biological role at the subcellular level. Here, we systematically review the progress of researching MORC members with respect to their domain architectures, diverse biological functions, and distribution characteristics and discuss the emerging roles of the aberrant expression or mutation of MORC family members in human disorders and cancer development. Furthermore, the illustration of related mechanisms of the MORC family has made MORCs promising targets for developing diagnostic tools and therapeutic treatments for human diseases, including cancers.
Collapse
|
18
|
Abstract
Two of the most prevalent human viruses worldwide, herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2, respectively), cause a variety of diseases, including cold sores, genital herpes, herpes stromal keratitis, meningitis and encephalitis. The intrinsic, innate and adaptive immune responses are key to control HSV, and the virus has developed mechanisms to evade them. The immune response can also contribute to pathogenesis, as observed in stromal keratitis and encephalitis. The fact that certain individuals are more prone than others to suffer severe disease upon HSV infection can be partially explained by the existence of genetic polymorphisms in humans. Like all herpesviruses, HSV has two replication cycles: lytic and latent. During lytic replication HSV produces infectious viral particles to infect other cells and organisms, while during latency there is limited gene expression and lack of infectious virus particles. HSV establishes latency in neurons and can cause disease both during primary infection and upon reactivation. The mechanisms leading to latency and reactivation and which are the viral and host factors controlling these processes are not completely understood. Here we review the HSV life cycle, the interaction of HSV with the immune system and three of the best-studied pathologies: Herpes stromal keratitis, herpes simplex encephalitis and genital herpes. We also discuss the potential association between HSV-1 infection and Alzheimer's disease.
Collapse
Affiliation(s)
- Shuyong Zhu
- Institute of Virology, Hannover Medical School, Cluster of Excellence RESIST (Exc 2155), Hannover Medical School, Hannover, Germany
| | - Abel Viejo-Borbolla
- Institute of Virology, Hannover Medical School, Cluster of Excellence RESIST (Exc 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
19
|
Morc3 silences endogenous retroviruses by enabling Daxx-mediated histone H3.3 incorporation. Nat Commun 2021; 12:5996. [PMID: 34650047 PMCID: PMC8516933 DOI: 10.1038/s41467-021-26288-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 09/22/2021] [Indexed: 11/08/2022] Open
Abstract
Endogenous retroviruses (ERVs) comprise a significant portion of mammalian genomes. Although specific ERV loci feature regulatory roles for host gene expression, most ERV integrations are transcriptionally repressed by Setdb1-mediated H3K9me3 and DNA methylation. However, the protein network which regulates the deposition of these chromatin modifications is still incompletely understood. Here, we perform a genome-wide single guide RNA (sgRNA) screen for genes involved in ERV silencing and identify the GHKL ATPase protein Morc3 as a top-scoring hit. Morc3 knock-out (ko) cells display de-repression, reduced H3K9me3, and increased chromatin accessibility of distinct ERV families. We find that the Morc3 ATPase cycle and Morc3 SUMOylation are important for ERV chromatin regulation. Proteomic analyses reveal that Morc3 mutant proteins fail to interact with the histone H3.3 chaperone Daxx. This interaction depends on Morc3 SUMOylation and Daxx SUMO binding. Notably, in Morc3 ko cells, we observe strongly reduced histone H3.3 on Morc3 binding sites. Thus, our data demonstrate Morc3 as a critical regulator of Daxx-mediated histone H3.3 incorporation to ERV regions. Endogenous retroviruses (ERVs) compose a significant portion of mammalian genomes; however, how ERVs are regulated is not well known. Here the authors performed a genome-wide sgRNA screen to identify Morc3 as a mediator of ERV silencing. They show Morc3 associates with the H3.3 chaperone Daxx, and that loss of Morc3 leads to reduced H3.3 at ERVs.
Collapse
|
20
|
Patra U, Müller S. A Tale of Usurpation and Subversion: SUMO-Dependent Integrity of Promyelocytic Leukemia Nuclear Bodies at the Crossroad of Infection and Immunity. Front Cell Dev Biol 2021; 9:696234. [PMID: 34513832 PMCID: PMC8430037 DOI: 10.3389/fcell.2021.696234] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022] Open
Abstract
Promyelocytic leukemia nuclear bodies (PML NBs) are multi-protein assemblies representing distinct sub-nuclear structures. As phase-separated molecular condensates, PML NBs exhibit liquid droplet-like consistency. A key organizer of the assembly and dynamics of PML NBs is the ubiquitin-like SUMO modification system. SUMO is covalently attached to PML and other core components of PML NBs thereby exhibiting a glue-like function by providing multivalent interactions with proteins containing SUMO interacting motifs (SIMs). PML NBs serve as the catalytic center for nuclear SUMOylation and SUMO-SIM interactions are essential for protein assembly within these structures. Importantly, however, formation of SUMO chains on PML and other PML NB-associated proteins triggers ubiquitylation and proteasomal degradation which coincide with disruption of these nuclear condensates. To date, a plethora of nuclear activities such as transcriptional and post-transcriptional regulation of gene expression, apoptosis, senescence, cell cycle control, DNA damage response, and DNA replication have been associated with PML NBs. Not surprisingly, therefore, SUMO-dependent PML NB integrity has been implicated in regulating many physiological processes including tumor suppression, metabolism, drug-resistance, development, cellular stemness, and anti-pathogen immune response. The interplay between PML NBs and viral infection is multifaceted. As a part of the cellular antiviral defense strategy, PML NB components are crucial restriction factors for many viruses and a mutual positive correlation has been found to exist between PML NBs and the interferon response. Viruses, in turn, have developed counterstrategies for disarming PML NB associated immune defense measures. On the other end of the spectrum, certain viruses are known to usurp specific PML NB components for successful replication and disruption of these sub-nuclear foci has recently been linked to the stimulation rather than curtailment of antiviral gene repertoire. Importantly, the ability of invading virions to manipulate the host SUMO modification machinery is essential for this interplay between PML NB integrity and viruses. Moreover, compelling evidence is emerging in favor of bacterial pathogens to negotiate with the SUMO system thereby modulating PML NB-directed intrinsic and innate immunity. In the current context, we will present an updated account of the dynamic intricacies between cellular PML NBs as the nuclear SUMO modification hotspots and immune regulatory mechanisms in response to viral and bacterial pathogens.
Collapse
Affiliation(s)
- Upayan Patra
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany
| | - Stefan Müller
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany
| |
Collapse
|
21
|
Schweininger J, Scherer M, Rothemund F, Schilling EM, Wörz S, Stamminger T, Muller YA. Cytomegalovirus immediate-early 1 proteins form a structurally distinct protein class with adaptations determining cross-species barriers. PLoS Pathog 2021; 17:e1009863. [PMID: 34370791 PMCID: PMC8376021 DOI: 10.1371/journal.ppat.1009863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/19/2021] [Accepted: 08/03/2021] [Indexed: 01/12/2023] Open
Abstract
Restriction factors are potent antiviral proteins that constitute a first line of intracellular defense by blocking viral replication and spread. During co-evolution, however, viruses have developed antagonistic proteins to modulate or degrade the restriction factors of their host. To ensure the success of lytic replication, the herpesvirus human cytomegalovirus (HCMV) expresses the immediate-early protein IE1, which acts as an antagonist of antiviral, subnuclear structures termed PML nuclear bodies (PML-NBs). IE1 interacts directly with PML, the key protein of PML-NBs, through its core domain and disrupts the dot-like multiprotein complexes thereby abrogating the antiviral effects. Here we present the crystal structures of the human and rat cytomegalovirus core domain (IE1CORE). We found that IE1CORE domains, also including the previously characterized IE1CORE of rhesus CMV, form a distinct class of proteins that are characterized by a highly similar and unique tertiary fold and quaternary assembly. This contrasts to a marked amino acid sequence diversity suggesting that strong positive selection evolved a conserved fold, while immune selection pressure may have fostered sequence divergence of IE1. At the same time, we detected specific differences in the helix arrangements of primate versus rodent IE1CORE structures. Functional characterization revealed a conserved mechanism of PML-NB disruption, however, primate and rodent IE1 proteins were only effective in cells of the natural host species but not during cross-species infection. Remarkably, we observed that expression of HCMV IE1 allows rat cytomegalovirus replication in human cells. We conclude that cytomegaloviruses have evolved a distinct protein tertiary structure of IE1 to effectively bind and inactivate an important cellular restriction factor. Furthermore, our data show that the IE1 fold has been adapted to maximize the efficacy of PML targeting in a species-specific manner and support the concept that the PML-NBs-based intrinsic defense constitutes a barrier to cross-species transmission of HCMV. Cytomegaloviruses have evolved in very close association with their hosts resulting in a highly species-specific replication. Cell-intrinsic proteins, known as restriction factors, constitute important barriers for cross-species infection of viruses. All cytomegaloviruses characterized so far express an abundant immediate-early protein, termed IE1, that binds to the cellular restriction factor promyelocytic leukemia protein (PML) and antagonizes its repressive activity on viral gene expression. Here, we present the crystal structures of the PML-binding domains of rat and human cytomegalovirus IE1. Despite low amino-acid sequence identity both proteins share a highly similar and unique fold forming a distinct protein class. Functional characterization revealed a common mechanism of PML antagonization. However, we also detected that the respective IE1 proteins only interact with PML proteins of the natural host species. Interestingly, expression of HCMV IE1 allows rat cytomegalovirus infection in human cells. This indicates that the cellular restriction factor PML forms an important barrier for cross-species infection of cytomegaloviruses that might be overcome by adaptation of IE1 protein function. Our data suggest that the cytomegalovirus IE1 structure represents an evolutionary optimized protein fold targeting PML proteins via coiled-coil interactions.
Collapse
Affiliation(s)
- Johannes Schweininger
- Division of Biotechnology, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Myriam Scherer
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | | | | | - Sonja Wörz
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | - Thomas Stamminger
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
- * E-mail: (TS); (YAM)
| | - Yves A. Muller
- Division of Biotechnology, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- * E-mail: (TS); (YAM)
| |
Collapse
|
22
|
Abstract
The abundance, localization, modifications, and protein-protein interactions of many host cell and virus proteins can change dynamically throughout the course of any viral infection. Studying these changes is critical for a comprehensive understanding of how viruses replicate and cause disease, as well as for the development of antiviral therapeutics and vaccines. Previously, we developed a mass spectrometry-based technique called quantitative temporal viromics (QTV), which employs isobaric tandem mass tags (TMTs) to allow precise comparative quantification of host and virus proteomes through a whole time course of infection. In this review, we discuss the utility and applications of QTV, exemplified by numerous studies that have since used proteomics with a variety of quantitative techniques to study virus infection through time. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
| | - Michael P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom;
| |
Collapse
|
23
|
Turnier JL, Pachman LM, Lowe L, Tsoi LC, Elhaj S, Menon R, Amoruso MC, Morgan GA, Gudjonsson JE, Berthier CC, Kahlenberg JM. Comparison of Lesional Juvenile Myositis and Lupus Skin Reveals Overlapping Yet Unique Disease Pathophysiology. Arthritis Rheumatol 2021; 73:1062-1072. [PMID: 33305541 DOI: 10.1002/art.41615] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Skin inflammation heralds systemic disease in juvenile myositis, yet we lack an understanding of pathogenic mechanisms driving skin inflammation in this disease. We undertook this study to define cutaneous gene expression signatures in juvenile myositis and identify key genes and pathways that differentiate skin disease in juvenile myositis from childhood-onset systemic lupus erythematosus (SLE). METHODS We used formalin-fixed paraffin-embedded skin biopsy samples from 15 patients with juvenile myositis (9 lesional, 6 nonlesional), 5 patients with childhood-onset SLE, and 8 controls to perform transcriptomic analysis and identify significantly differentially expressed genes (DEGs; q ≤ 5%) between patient groups. We used Ingenuity Pathway Analysis (IPA) to highlight enriched biologic pathways and validated DEGs by immunohistochemistry and quantitative real-time polymerase chain reaction. RESULTS Comparison of lesional juvenile myositis to control samples revealed 221 DEGs, with the majority of up-regulated genes representing interferon (IFN)-stimulated genes. CXCL10, CXCL9, and IFI44L represented the top 3 DEGs (fold change 23.2, 13.3, and 13.0, respectively; q < 0.0001). IPA revealed IFN signaling as the top canonical pathway. When compared to childhood-onset SLE, lesional juvenile myositis skin shared a similar gene expression pattern, with only 28 unique DEGs, including FBLN2, CHKA, and SLURP1. Notably, patients with juvenile myositis who were positive for nuclear matrix protein 2 (NXP-2) autoantibodies exhibited the strongest IFN signature and also demonstrated the most extensive Mx-1 immunostaining, both in keratinocytes and perivascular regions. CONCLUSION Lesional juvenile myositis skin demonstrates a striking IFN signature similar to that previously reported in juvenile myositis muscle and peripheral blood. Further investigation into the association of a higher IFN score with NXP-2 autoantibodies may provide insight into disease endotypes and pathogenesis.
Collapse
Affiliation(s)
| | - Lauren M Pachman
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | | | | | - Maria C Amoruso
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | | | | |
Collapse
|
24
|
Lork M, Lieber G, Hale BG. Proteomic Approaches to Dissect Host SUMOylation during Innate Antiviral Immune Responses. Viruses 2021; 13:528. [PMID: 33806893 PMCID: PMC8004987 DOI: 10.3390/v13030528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/21/2022] Open
Abstract
SUMOylation is a highly dynamic ubiquitin-like post-translational modification that is essential for cells to respond to and resolve various genotoxic and proteotoxic stresses. Virus infections also constitute a considerable stress scenario for cells, and recent research has started to uncover the diverse roles of SUMOylation in regulating virus replication, not least by impacting antiviral defenses. Here, we review some of the key findings of this virus-host interplay, and discuss the increasingly important contribution that large-scale, unbiased, proteomic methodologies are making to discoveries in this field. We highlight the latest proteomic technologies that have been specifically developed to understand SUMOylation dynamics in response to cellular stresses, and comment on how these techniques might be best applied to dissect the biology of SUMOylation during innate immunity. Furthermore, we showcase a selection of studies that have already used SUMO proteomics to reveal novel aspects of host innate defense against viruses, such as functional cross-talk between SUMO proteins and other ubiquitin-like modifiers, viral antagonism of SUMO-modified antiviral restriction factors, and an infection-triggered SUMO-switch that releases endogenous retroelement RNAs to stimulate antiviral interferon responses. Future research in this area has the potential to provide new and diverse mechanistic insights into host immune defenses.
Collapse
Affiliation(s)
| | | | - Benjamin G. Hale
- Institute of Medical Virology, University of Zürich, 8057 Zürich, Switzerland; (M.L.); (G.L.)
| |
Collapse
|
25
|
Collados Rodríguez M. The Fate of Speckled Protein 100 (Sp100) During Herpesviruses Infection. Front Cell Infect Microbiol 2021; 10:607526. [PMID: 33598438 PMCID: PMC7882683 DOI: 10.3389/fcimb.2020.607526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/14/2020] [Indexed: 12/27/2022] Open
Abstract
The constitutive expression of Speckled-100 (Sp100) is known to restrict the replication of many clinically important DNA viruses. This pre-existing (intrinsic) immune defense to virus infection can be further upregulated upon interferon (IFN) stimulation as a component of the innate immune response. In humans, Sp100 is encoded by a single gene locus, which can produce alternatively spliced isoforms. The widely studied Sp100A, Sp100B, Sp100C and Sp100HMG have functions associated with the transcriptional regulation of viral and cellular chromatin, either directly through their characteristic DNA-binding domains, or indirectly through post-translational modification (PTM) and associated protein interaction networks. Sp100 isoforms are resident component proteins of promyelocytic leukemia-nuclear bodies (PML-NBs), dynamic nuclear sub-structures which regulate host immune defenses against many pathogens. In the case of human herpesviruses, multiple protein antagonists are expressed to relieve viral DNA genome transcriptional silencing imposed by PML-NB and Sp100-derived proteinaceous structures, thereby stimulating viral propagation, pathogenesis, and transmission to new hosts. This review details how different Sp100 isoforms are manipulated during herpesviruses HSV1, VZV, HCMV, EBV, and KSHV infection, identifying gaps in our current knowledge, and highlighting future areas of research.
Collapse
|
26
|
Lin KM, Nightingale K, Soday L, Antrobus R, Weekes MP. Rapid Degradation Pathways of Host Proteins During HCMV Infection Revealed by Quantitative Proteomics. Front Cell Infect Microbiol 2021; 10:578259. [PMID: 33585265 PMCID: PMC7873559 DOI: 10.3389/fcimb.2020.578259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/08/2020] [Indexed: 12/30/2022] Open
Abstract
Human cytomegalovirus (HCMV) is an important pathogen in immunocompromised individuals and neonates, and a paradigm for viral immune evasion. We previously developed a quantitative proteomic approach that identified 133 proteins degraded during the early phase of HCMV infection, including known and novel antiviral factors. The majority were rescued from degradation by MG132, which is known to inhibit lysosomal cathepsins in addition to the proteasome. Global definition of the precise mechanisms of host protein degradation is important both to improve our understanding of viral biology, and to inform novel antiviral therapeutic strategies. We therefore developed and optimized a multiplexed comparative proteomic analysis using the selective proteasome inhibitor bortezomib in addition to MG132, to provide a global mechanistic view of protein degradation. Of proteins rescued from degradation by MG132, 34-47 proteins were also rescued by bortezomib, suggesting both that the predominant mechanism of protein degradation employed by HCMV is via the proteasome, and that alternative pathways for degradation are nevertheless important. Our approach and data will enable improved mechanistic understanding of HCMV and other viruses, and provide a shortlist of candidate restriction factors for further analysis.
Collapse
Affiliation(s)
| | | | | | | | - Michael P. Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
27
|
Intrinsic Immune Mechanisms Restricting Human Cytomegalovirus Replication. Viruses 2021; 13:v13020179. [PMID: 33530304 PMCID: PMC7911179 DOI: 10.3390/v13020179] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
Cellular restriction factors (RFs) act as important constitutive innate immune barriers against viruses. In 2006, the promyelocytic leukemia protein was described as the first RF against human cytomegalovirus (HCMV) infection which is antagonized by the viral immediate early protein IE1. Since then, at least 15 additional RFs against HCMV have been identified, including the chromatin regulatory protein SPOC1, the cytidine deaminase APOBEC3A and the dNTP triphosphohydrolase SAMHD1. These RFs affect distinct steps of the viral replication cycle such as viral entry, gene expression, the synthesis of progeny DNA or egress. This review summarizes our current knowledge on intrinsic immune mechanisms restricting HCMV replication as well as on the viral strategies to counteract the inhibitory effects of RFs. Detailed knowledge on the interplay between host RFs and antagonizing viral factors will be fundamental to develop new approaches to combat HCMV infection.
Collapse
|
28
|
Dogrammatzis C, Waisner H, Kalamvoki M. "Non-Essential" Proteins of HSV-1 with Essential Roles In Vivo: A Comprehensive Review. Viruses 2020; 13:E17. [PMID: 33374862 PMCID: PMC7824580 DOI: 10.3390/v13010017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Viruses encode for structural proteins that participate in virion formation and include capsid and envelope proteins. In addition, viruses encode for an array of non-structural accessory proteins important for replication, spread, and immune evasion in the host and are often linked to virus pathogenesis. Most virus accessory proteins are non-essential for growth in cell culture because of the simplicity of the infection barriers or because they have roles only during a state of the infection that does not exist in cell cultures (i.e., tissue-specific functions), or finally because host factors in cell culture can complement their absence. For these reasons, the study of most nonessential viral factors is more complex and requires development of suitable cell culture systems and in vivo models. Approximately half of the proteins encoded by the herpes simplex virus 1 (HSV-1) genome have been classified as non-essential. These proteins have essential roles in vivo in counteracting antiviral responses, facilitating the spread of the virus from the sites of initial infection to the peripheral nervous system, where it establishes lifelong reservoirs, virus pathogenesis, and other regulatory roles during infection. Understanding the functions of the non-essential proteins of herpesviruses is important to understand mechanisms of viral pathogenesis but also to harness properties of these viruses for therapeutic purposes. Here, we have provided a comprehensive summary of the functions of HSV-1 non-essential proteins.
Collapse
Affiliation(s)
| | | | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.D.); (H.W.)
| |
Collapse
|
29
|
PML Regulates the Epidermal Differentiation Complex and Skin Morphogenesis during Mouse Embryogenesis. Genes (Basel) 2020; 11:genes11101130. [PMID: 32992884 PMCID: PMC7600374 DOI: 10.3390/genes11101130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 11/17/2022] Open
Abstract
The promyelocytic leukemia (PML) protein is an essential component of nuclear compartments called PML bodies. This protein participates in several cellular processes, including growth control, senescence, apoptosis, and differentiation. Previous studies have suggested that PML regulates gene expression at a subset of loci through a function in chromatin remodeling. Here we have studied global gene expression patterns in mouse embryonic skin derived from Pml depleted and wild type mouse embryos. Differential gene expression analysis at different developmental stages revealed a key role of PML in regulating genes involved in epidermal stratification. In particular, we observed dysregulation of the late cornified envelope gene cluster, which is a sub-region of the epidermal differentiation complex. In agreement with these data, PML body numbers are elevated in basal keratinocytes during embryogenesis, and we observed reduced epidermal thickness and defective hair follicle development in PML depleted mouse embryos.
Collapse
|
30
|
Singh A, Kazer SW, Roider J, Krista KC, Millar J, Asowata OE, Ngoepe A, Ramsuran D, Fardoos R, Ardain A, Muenchhoff M, Kuhn W, Karim F, Ndung'u T, Shalek AK, Goulder P, Leslie A, Kløverpris HN. Innate Lymphoid Cell Activation and Sustained Depletion in Blood and Tissue of Children Infected with HIV from Birth Despite Antiretroviral Therapy. Cell Rep 2020; 32:108153. [PMID: 32937142 PMCID: PMC7495043 DOI: 10.1016/j.celrep.2020.108153] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 03/14/2020] [Accepted: 08/25/2020] [Indexed: 12/04/2022] Open
Abstract
Innate lymphoid cells (ILCs) are important for response to infection and for immune development in early life. HIV infection in adults depletes circulating ILCs, but the impact on children infected from birth remains unknown. We study vertically HIV-infected children from birth to adulthood and find severe and persistent depletion of all circulating ILCs that, unlike CD4+ T cells, are not restored by long-term antiretroviral therapy unless initiated at birth. Remaining ILCs upregulate genes associated with cellular activation and metabolic perturbation. Unlike HIV-infected adults, ILCs are also profoundly depleted in tonsils of vertically infected children. Transcriptional profiling of remaining ILCs reveals ongoing cell-type-specific activity despite antiretroviral therapy. Collectively, these data suggest an important and ongoing role for ILCs in lymphoid tissue of HIV-infected children from birth, where persistent depletion and sustained transcriptional activity are likely to have long-term immune consequences that merit further investigation.
Collapse
Affiliation(s)
- Alveera Singh
- Africa Health Research Institute (AHRI), Durban 4001, South Africa
| | - Samuel W Kazer
- Institute for Medical Engineering and Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139
| | - Julia Roider
- Africa Health Research Institute (AHRI), Durban 4001, South Africa; Department of Paediatrics, Peter Medawar Building for Pathogen Research, South Parks Rd, Oxford OX1 3SY, UK; HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban 4001, South Africa; Medizinische Klinik IV, Department of Infectious Diseases, Ludwig-Maximilians-University, Munich 80802, Germany
| | - Kami C Krista
- Institute for Medical Engineering and Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139
| | - Jane Millar
- Department of Paediatrics, Peter Medawar Building for Pathogen Research, South Parks Rd, Oxford OX1 3SY, UK; HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban 4001, South Africa
| | | | - Abigail Ngoepe
- Africa Health Research Institute (AHRI), Durban 4001, South Africa
| | - Duran Ramsuran
- Africa Health Research Institute (AHRI), Durban 4001, South Africa
| | - Rabiah Fardoos
- Africa Health Research Institute (AHRI), Durban 4001, South Africa; Department of Immunology and Microbiology, University of Copenhagen, Copenhagen 2200N, Denmark
| | - Amanda Ardain
- Africa Health Research Institute (AHRI), Durban 4001, South Africa; School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Maximilian Muenchhoff
- Department of Paediatrics, Peter Medawar Building for Pathogen Research, South Parks Rd, Oxford OX1 3SY, UK; Max von Pettenkofer Institute, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich 81377, Germany; German Center for Infection Research (DZIF), partner site Munich 80333, Germany
| | - Warren Kuhn
- ENT Department General Justice Gizenga Mpanza Regional Hospital (Stanger Hospital), University of KwaZulu-Natal, Durban 4001, South Africa
| | - Farina Karim
- Africa Health Research Institute (AHRI), Durban 4001, South Africa
| | - Thumbi Ndung'u
- Africa Health Research Institute (AHRI), Durban 4001, South Africa; HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban 4001, South Africa; University College London, Division of Infection and Immunity, London WC1E 6AE, UK; Max Planck Institute for Infection Biology, Berlin 10117, Germany
| | - Alex K Shalek
- Institute for Medical Engineering and Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139
| | - Philip Goulder
- Africa Health Research Institute (AHRI), Durban 4001, South Africa; Department of Paediatrics, Peter Medawar Building for Pathogen Research, South Parks Rd, Oxford OX1 3SY, UK; HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Alasdair Leslie
- Africa Health Research Institute (AHRI), Durban 4001, South Africa; University College London, Division of Infection and Immunity, London WC1E 6AE, UK; School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Henrik N Kløverpris
- Africa Health Research Institute (AHRI), Durban 4001, South Africa; Department of Immunology and Microbiology, University of Copenhagen, Copenhagen 2200N, Denmark; University College London, Division of Infection and Immunity, London WC1E 6AE, UK; School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4001, South Africa.
| |
Collapse
|
31
|
Swine Promyelocytic Leukemia Isoform II Inhibits Pseudorabies Virus Infection by Suppressing Viral Gene Transcription in Promyelocytic Leukemia Nuclear Bodies. J Virol 2020; 94:JVI.01197-20. [PMID: 32641476 DOI: 10.1128/jvi.01197-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 11/20/2022] Open
Abstract
Promyelocytic leukemia nuclear bodies (PML-NBs) possess an important intrinsic antiviral activity against alphaherpesvirus infection. PML is the structural backbone of NBs, comprising different isoforms. However, the contribution of each isoform to alphaherpesvirus restriction is not well understood. Here, we report the role of PML-NBs and swine PML (sPML) isoforms in pseudorabies virus (PRV) infection in its natural host swine cells. We found that sPML-NBs exhibit an anti-PRV activity in the context of increasing the expression level of endogenous sPML. Of four sPML isoforms cloned and examined, only isoforms sPML-II and -IIa, not sPML-I and -IVa, expressed in a sPML knockout cells inhibit PRV infection. Both the unique 7b region of sPML-II and the sumoylation-dependent normal formation of PML-NBs are required. 7b possesses a transcriptional repression activity and suppresses viral gene transcription during PRV infection with the cysteine residues 589 and 599 being critically involved. We conclude that sPML-NBs inhibit PRV infection partly by repressing viral gene transcription through the 7b region of sPML-II.IMPORTANCE PML-NBs are nuclear sites that mediate the antiviral restriction of alphaherpesvirus gene expression and replication. However, the contribution of each PML isoform to this activity of PML-NBs is not well characterized. Using PRV and its natural host swine cells as a system, we have discovered that the unique C terminus of sPML isoform II is required for PML-NBs to inhibit PRV infection by directly engaging in repression of viral gene transcription. Our study not only confirms in swine cells that PML-NBs have an antiviral function but also presents a mechanism to suggest that PML-NBs inhibit viral infection in an isoform specific manner.
Collapse
|
32
|
The HSV-1 ubiquitin ligase ICP0: Modifying the cellular proteome to promote infection. Virus Res 2020; 285:198015. [PMID: 32416261 PMCID: PMC7303953 DOI: 10.1016/j.virusres.2020.198015] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022]
Abstract
ICP0 is a viral E3 ubiquitin ligase that promotes HSV-1 infection. ICP0 interacts with multiple component proteins of the ubiquitin pathway. ICP0 disrupts multiple cellular processes activated in response to infection ICP0 remodels the SUMO proteome to counteract host immune defences to infection. ICP0 is an attractive drug target for the development of antiviral HSV-1 therapeutics.
Herpes simplex virus 1 (HSV-1) hijacks ubiquitination machinery to modify the cellular proteome to create an environment permissive for virus replication. HSV-1 encodes its own RING-finger E3 ubiquitin (Ub) ligase, Infected Cell Protein 0 (ICP0), that directly interfaces with component proteins of the Ub pathway to inactivate host immune defences and cellular processes that restrict the progression of HSV-1 infection. Consequently, ICP0 plays a critical role in the infectious cycle of HSV-1 that is required to promote the efficient onset of lytic infection and productive reactivation of viral genomes from latency. This review will describe the current knowledge regarding the biochemical properties and known substrates of ICP0 during HSV-1 infection. We will highlight the gaps in the characterization of ICP0 function and propose future areas of research required to understand fully the biological properties of this important HSV-1 regulatory protein.
Collapse
|
33
|
Dell'Oste V, Biolatti M, Galitska G, Griffante G, Gugliesi F, Pasquero S, Zingoni A, Cerboni C, De Andrea M. Tuning the Orchestra: HCMV vs. Innate Immunity. Front Microbiol 2020; 11:661. [PMID: 32351486 PMCID: PMC7174589 DOI: 10.3389/fmicb.2020.00661] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/23/2020] [Indexed: 12/20/2022] Open
Abstract
Understanding how the innate immune system keeps human cytomegalovirus (HCMV) in check has recently become a critical issue in light of the global clinical burden of HCMV infection in newborns and immunodeficient patients. Innate immunity constitutes the first line of host defense against HCMV as it involves a complex array of cooperating effectors – e.g., inflammatory cytokines, type I interferon (IFN-I), natural killer (NK) cells, professional antigen-presenting cells (APCs) and phagocytes – all capable of disrupting HCMV replication. These factors are known to trigger a highly efficient adaptive immune response, where cellular restriction factors (RFs) play a major gatekeeping role. Unlike other innate immunity components, RFs are constitutively expressed in many cell types, ready to act before pathogen exposure. Nonetheless, the existence of a positive regulatory feedback loop between RFs and IFNs is clear evidence of an intimate cooperation between intrinsic and innate immunity. In the course of virus-host coevolution, HCMV has, however, learned how to manipulate the functions of multiple cellular players of the host innate immune response to achieve latency and persistence. Thus, HCMV acts like an orchestra conductor able to piece together and rearrange parts of a musical score (i.e., innate immunity) to obtain the best live performance (i.e., viral fitness). It is therefore unquestionable that innovative therapeutic solutions able to prevent HCMV immune evasion in congenitally infected infants and immunocompromised individuals are urgently needed. Here, we provide an up-to-date review of the mechanisms regulating the interplay between HCMV and innate immunity, focusing on the various strategies of immune escape evolved by this virus to gain a fitness advantage.
Collapse
Affiliation(s)
- Valentina Dell'Oste
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Matteo Biolatti
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Ganna Galitska
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Gloria Griffante
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Francesca Gugliesi
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Selina Pasquero
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Alessandra Zingoni
- Department of Molecular Immunology and Immunopathology, "Sapienza" University of Rome, Rome, Italy
| | - Cristina Cerboni
- Department of Molecular Immunology and Immunopathology, "Sapienza" University of Rome, Rome, Italy
| | - Marco De Andrea
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy.,Center for Translational Research on Autoimmune and Allergic Disease - CAAD, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
34
|
Alandijany T. Host Intrinsic and Innate Intracellular Immunity During Herpes Simplex Virus Type 1 (HSV-1) Infection. Front Microbiol 2019; 10:2611. [PMID: 31781083 PMCID: PMC6856869 DOI: 10.3389/fmicb.2019.02611] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/28/2019] [Indexed: 12/20/2022] Open
Abstract
When host cells are invaded by viruses, they deploy multifaceted intracellular defense mechanisms to control infections and limit the damage they may cause. Host intracellular antiviral immunity can be classified into two main branches: (i) intrinsic immunity, an interferon (IFN)-independent antiviral response mediated by constitutively expressed cellular proteins (so-called intrinsic host restriction factors); and (ii) innate immunity, an IFN-dependent antiviral response conferred by IFN-stimulated gene (ISG) products, which are (as indicated by their name) upregulated in response to IFN secretion following the recognition of pathogen-associated molecular patterns (PAMPs) by host pattern recognition receptors (PRRs). Recent evidence has demonstrated temporal regulation and specific viral requirements for the induction of these two arms of immunity during herpes simplex virus type 1 (HSV-1) infection. Moreover, they exert differential antiviral effects to control viral replication. Although they are distinct from one another, the words "intrinsic" and "innate" have been interchangeably and/or simultaneously used in the field of virology. Hence, the aims of this review are to (1) elucidate the current knowledge about host intrinsic and innate immunity during HSV-1 infection, (2) clarify the recent advances in the understanding of their regulation and address the distinctions between them with respect to their induction requirements and effects on viral infection, and (3) highlight the key roles of the viral E3 ubiquitin ligase ICP0 in counteracting both aspects of immunity. This review emphasizes that intrinsic and innate immunity are temporally and functionally distinct arms of host intracellular immunity during HSV-1 infection; the findings are likely pertinent to other clinically important viral infections.
Collapse
Affiliation(s)
- Thamir Alandijany
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
35
|
Hölzer M, Schoen A, Wulle J, Müller MA, Drosten C, Marz M, Weber F. Virus- and Interferon Alpha-Induced Transcriptomes of Cells from the Microbat Myotis daubentonii. iScience 2019; 19:647-661. [PMID: 31465999 PMCID: PMC6718828 DOI: 10.1016/j.isci.2019.08.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/10/2019] [Accepted: 08/07/2019] [Indexed: 12/25/2022] Open
Abstract
Antiviral interferons (IFN-alpha/beta) are possibly responsible for the high tolerance of bats to zoonotic viruses. Previous studies focused on the IFN system of megabats (suborder Yinpterochiroptera). We present statistically robust RNA sequencing (RNA-seq) data on transcriptomes of cells from the “microbat” Myotis daubentonii (suborder Yangochiroptera) responding at 6 and 24 h to either an IFN-inducing virus or treatment with IFN. Our data reveal genes triggered only by virus, either in both humans and Myotis (CCL4, IFNL3, CH25H), or exclusively in Myotis (STEAP4). Myotis cells also express a series of conserved IFN-stimulated genes (ISGs) and an unusually high paralog number of the antiviral ISG BST2 (tetherin) but lack several ISGs that were described for megabats (EMC2, FILIP1, IL17RC, OTOGL, SLC24A1). Also, in contrast to megabats, we detected neither different IFN-alpha subtypes nor an unusually high baseline expression of IFNs. Thus, Yangochiroptera microbats, represented by Myotis, may possess an IFN system with distinctive features. Virus- and IFN-responsive transcriptomes of the microbat Myotis daubentonii CCL4, IFNL3, CH25H, STEAP4 are IFNB-like genes triggered by virus only Microbats encode more paralogs of BST2 (tetherin) than any other mammal Clear differences between the IFN systems of microbats and megabats
Collapse
Affiliation(s)
- Martin Hölzer
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Jena, Germany; European Virus Bioinformatics Center, Jena, Germany
| | - Andreas Schoen
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany; Institute for Virology, Philipps University Marburg, Marburg, Germany; German Centre for Infection Research (DZIF), partner sites Marburg, Giessen, and Charité Berlin, Germany
| | - Julia Wulle
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany; Institute for Virology, Philipps University Marburg, Marburg, Germany; German Centre for Infection Research (DZIF), partner sites Marburg, Giessen, and Charité Berlin, Germany
| | - Marcel A Müller
- German Centre for Infection Research (DZIF), partner sites Marburg, Giessen, and Charité Berlin, Germany; Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | - Christian Drosten
- German Centre for Infection Research (DZIF), partner sites Marburg, Giessen, and Charité Berlin, Germany; Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Jena, Germany; European Virus Bioinformatics Center, Jena, Germany.
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany; Institute for Virology, Philipps University Marburg, Marburg, Germany; German Centre for Infection Research (DZIF), partner sites Marburg, Giessen, and Charité Berlin, Germany.
| |
Collapse
|
36
|
Zhang Y, Bertulat B, Tencer AH, Ren X, Wright GM, Black J, Cardoso MC, Kutateladze TG. MORC3 Forms Nuclear Condensates through Phase Separation. iScience 2019; 17:182-189. [PMID: 31284181 PMCID: PMC6614601 DOI: 10.1016/j.isci.2019.06.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/03/2019] [Accepted: 06/19/2019] [Indexed: 12/27/2022] Open
Abstract
Phase separation can produce local structures with specific functionality in the cell, and in the nucleus, this can lead to chromatin reorganization. Microrchidia 3 (MORC3) is a human ATPase that has been implicated in autoimmune disorders and cancer. Here, we show that MORC3 forms phase-separated condensates with liquid-like properties in the cell nucleus. Fluorescence live-cell imaging reveals that the MORC3 condensates are heterogeneous and undergo dynamic morphological changes during the cell cycle. The ATPase activity of MORC3 drives its phase separation in vitro and requires DNA binding and releasing the MORC3 CW domain-dependent autoinhibition through association with histone H3. Our findings suggest a mechanism by which the ATPase function of MORC3 mediates MORC3 nuclear compartmentalization. MORC3 forms nuclear condensates with liquid-like characteristics Morphology of the MORC3 condensates changes during the cell cycle Phase separation depends on the MORC3 ATPase activity and DNA binding CW impedes the ability of MORC3 to form condensates
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pharmacology, University of Colorado School of Medicine, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Bianca Bertulat
- Department of Biology, Technische Universität Darmstadt, Darmstadt, 64287, Germany
| | - Adam H Tencer
- Department of Pharmacology, University of Colorado School of Medicine, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Xiaojun Ren
- Department of Chemistry, University of Colorado, Denver, CO 80217, USA
| | - Gregory M Wright
- Department of Pharmacology, University of Colorado School of Medicine, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Joshua Black
- Department of Pharmacology, University of Colorado School of Medicine, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - M Cristina Cardoso
- Department of Biology, Technische Universität Darmstadt, Darmstadt, 64287, Germany
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, 12801 East 17th Avenue, Aurora, CO 80045, USA.
| |
Collapse
|
37
|
Zhang Y, Ahn J, Green KJ, Vann KR, Black J, Brooke CB, Kutateladze TG. MORC3 Is a Target of the Influenza A Viral Protein NS1. Structure 2019; 27:1029-1033.e3. [PMID: 31006586 PMCID: PMC11514443 DOI: 10.1016/j.str.2019.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/04/2019] [Accepted: 03/15/2019] [Indexed: 12/19/2022]
Abstract
Microrchidia 3 (MORC3), a human ATPase linked to several autoimmune disorders, has been characterized both as a negative and positive regulator of influenza A virus. Here, we report that the CW domain of MORC3 (MORC3-CW) is targeted by the C-terminal tail of the influenza H3N2 protein NS1. The crystal structure of the MORC3-CW:NS1 complex shows that NS1 occupies the same binding site in CW that is normally occupied by histone H3, a physiological ligand of MORC3-CW. Comparable binding affinities of MORC3-CW to H3 and NS1 peptides and to the adjacent catalytic ATPase domain suggest that the viral protein can compete with the host histone for the association with CW, releasing MORC3 autoinhibition and activating the catalytic function of MORC3. Our structural, biochemical, and cellular analyses suggest that MORC3 might affect the infectivity of influenza virus and therefore has a role in cell immune response.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - JaeWoo Ahn
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kelsie J Green
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | - Kendra R Vann
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Joshua Black
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Christopher B Brooke
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
38
|
McFarlane S, Orr A, Roberts APE, Conn KL, Iliev V, Loney C, da Silva Filipe A, Smollett K, Gu Q, Robertson N, Adams PD, Rai TS, Boutell C. The histone chaperone HIRA promotes the induction of host innate immune defences in response to HSV-1 infection. PLoS Pathog 2019; 15:e1007667. [PMID: 30901352 PMCID: PMC6472835 DOI: 10.1371/journal.ppat.1007667] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 04/18/2019] [Accepted: 02/27/2019] [Indexed: 12/20/2022] Open
Abstract
Host innate immune defences play a critical role in restricting the intracellular propagation and pathogenesis of invading viral pathogens. Here we show that the histone H3.3 chaperone HIRA (histone cell cycle regulator) associates with promyelocytic leukaemia nuclear bodies (PML-NBs) to stimulate the induction of innate immune defences against herpes simplex virus 1 (HSV-1) infection. Following the activation of innate immune signalling, HIRA localized at PML-NBs in a Janus-Associated Kinase (JAK), Cyclin Dependent Kinase (CDK), and Sp100-dependent manner. RNA-seq analysis revealed that HIRA promoted the transcriptional upregulation of a broad repertoire of host genes that regulate innate immunity to HSV-1 infection, including those involved in MHC-I antigen presentation, cytokine signalling, and interferon stimulated gene (ISG) expression. ChIP-seq analysis revealed that PML, the principle scaffolding protein of PML-NBs, was required for the enrichment of HIRA onto ISGs, identifying a role for PML in the HIRA-dependent regulation of innate immunity to virus infection. Our data identifies independent roles for HIRA in the intrinsic silencing of viral gene expression and the induction of innate immune defences to restrict the initiation and propagation of HSV-1 infection, respectively. These intracellular host defences are antagonized by the HSV-1 ubiquitin ligase ICP0, which disrupts the stable recruitment of HIRA to infecting viral genomes and PML-NBs at spatiotemporally distinct phases of infection. Our study highlights the importance of histone chaperones to regulate multiple phases of intracellular immunity to virus infection, findings that are likely to be highly pertinent in the cellular restriction of many clinically important viral pathogens. Host innate immune defences play critical roles in the cellular restriction of invading viral pathogens and the stimulation of adaptive immune responses. A key component in the regulation of this arm of host immunity is the rapid induction of cytokine signalling and the expression of interferon stimulated gene products (ISGs), which confer a refractory antiviral state to limit virus propagation and pathogenesis. While the signal transduction cascades that activate innate immune defences are well established, little is known about the cellular host factors that expedite the expression of this broad repertoire of antiviral host genes in response to pathogen invasion. Here we show that HIRA, a histone H3.3 chaperone, associates with PML-NBs to stimulate the induction of innate immune defences in response to HSV-1 infection. Our study highlights the importance of histone chaperones in the coordinated regulation of multiple phases of host immunity in response to pathogen invasion and identifies a key role for HIRA in the induction of innate immunity to virus infection.
Collapse
Affiliation(s)
- Steven McFarlane
- MRC-University of Glasgow Centre for Virus Research (CVR), Garscube Campus, Glasgow, Scotland, United Kingdom
| | - Anne Orr
- MRC-University of Glasgow Centre for Virus Research (CVR), Garscube Campus, Glasgow, Scotland, United Kingdom
| | - Ashley P. E. Roberts
- MRC-University of Glasgow Centre for Virus Research (CVR), Garscube Campus, Glasgow, Scotland, United Kingdom
| | - Kristen L. Conn
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatoon, CA
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, CA
| | - Victor Iliev
- MRC-University of Glasgow Centre for Virus Research (CVR), Garscube Campus, Glasgow, Scotland, United Kingdom
| | - Colin Loney
- MRC-University of Glasgow Centre for Virus Research (CVR), Garscube Campus, Glasgow, Scotland, United Kingdom
| | - Ana da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research (CVR), Garscube Campus, Glasgow, Scotland, United Kingdom
| | - Katherine Smollett
- MRC-University of Glasgow Centre for Virus Research (CVR), Garscube Campus, Glasgow, Scotland, United Kingdom
| | - Quan Gu
- MRC-University of Glasgow Centre for Virus Research (CVR), Garscube Campus, Glasgow, Scotland, United Kingdom
| | - Neil Robertson
- Beatson Institute for Cancer Research, Glasgow, Scotland, United Kingdom
| | - Peter D. Adams
- Beatson Institute for Cancer Research, Glasgow, Scotland, United Kingdom
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, United States of America
| | - Taranjit Singh Rai
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, Londonderry, United Kingdom
| | - Chris Boutell
- MRC-University of Glasgow Centre for Virus Research (CVR), Garscube Campus, Glasgow, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
39
|
Nightingale K, Lin KM, Ravenhill BJ, Davies C, Nobre L, Fielding CA, Ruckova E, Fletcher-Etherington A, Soday L, Nichols H, Sugrue D, Wang ECY, Moreno P, Umrania Y, Huttlin EL, Antrobus R, Davison AJ, Wilkinson GWG, Stanton RJ, Tomasec P, Weekes MP. High-Definition Analysis of Host Protein Stability during Human Cytomegalovirus Infection Reveals Antiviral Factors and Viral Evasion Mechanisms. Cell Host Microbe 2018; 24:447-460.e11. [PMID: 30122656 PMCID: PMC6146656 DOI: 10.1016/j.chom.2018.07.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/01/2018] [Accepted: 06/25/2018] [Indexed: 12/03/2022]
Abstract
Human cytomegalovirus (HCMV) is an important pathogen with multiple immune evasion strategies, including virally facilitated degradation of host antiviral restriction factors. Here, we describe a multiplexed approach to discover proteins with innate immune function on the basis of active degradation by the proteasome or lysosome during early-phase HCMV infection. Using three orthogonal proteomic/transcriptomic screens to quantify protein degradation, with high confidence we identified 35 proteins enriched in antiviral restriction factors. A final screen employed a comprehensive panel of viral mutants to predict viral genes that target >250 human proteins. This approach revealed that helicase-like transcription factor (HLTF), a DNA helicase important in DNA repair, potently inhibits early viral gene expression but is rapidly degraded during infection. The functionally unknown HCMV protein UL145 facilitates HLTF degradation by recruiting the Cullin4 E3 ligase complex. Our approach and data will enable further identifications of innate pathways targeted by HCMV and other viruses. Multiplexed viral screens uncover host proteins targeted by early HCMV infection Finding host proteins targeted for degradation by HCMV reveals immune evasion strategies A screen of HCMV deletion mutants discovers viral factors that target >250 host proteins HLTF is an antiviral restriction factor that is targeted for degradation by HCMV UL145
Collapse
Affiliation(s)
- Katie Nightingale
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Kai-Min Lin
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Benjamin J Ravenhill
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Colin Davies
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Luis Nobre
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Ceri A Fielding
- Cardiff University School of Medicine, Division of Infection and Immunity, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK
| | - Eva Ruckova
- Regional Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Zluty Kopec 7, 65653 Brno, Czech Republic
| | | | - Lior Soday
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Hester Nichols
- Cardiff University School of Medicine, Division of Infection and Immunity, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK
| | - Daniel Sugrue
- Cardiff University School of Medicine, Division of Infection and Immunity, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK
| | - Eddie C Y Wang
- Cardiff University School of Medicine, Division of Infection and Immunity, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK
| | - Pablo Moreno
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Yagnesh Umrania
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Edward L Huttlin
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Andrew J Davison
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - Gavin W G Wilkinson
- Cardiff University School of Medicine, Division of Infection and Immunity, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK
| | - Richard J Stanton
- Cardiff University School of Medicine, Division of Infection and Immunity, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK
| | - Peter Tomasec
- Cardiff University School of Medicine, Division of Infection and Immunity, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK
| | - Michael P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
40
|
Staněk D, Fox AH. Nuclear bodies: news insights into structure and function. Curr Opin Cell Biol 2017; 46:94-101. [PMID: 28577509 DOI: 10.1016/j.ceb.2017.05.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 04/20/2017] [Accepted: 05/10/2017] [Indexed: 02/07/2023]
Abstract
The cell nucleus contains a number of different dynamic bodies that are variously composed of proteins and generally, but not always, specific RNA molecules. Recent studies have revealed new understanding about nuclear body formation and function in different aspects of nuclear metabolism. Here, we focus on findings describing the role of nuclear bodies in the biogenesis of specific ribonucleoprotein complexes, processing of key mRNAs, and subnuclear sequestration of protein factors. We highlight how nuclear bodies are involved in stress responses, innate immunity and tumorigenesis. We further review organization of nuclear bodies and principles that govern their assembly, highlighting the pivotal role of scaffolding noncoding RNAs, and liquid-liquid phase separation, which are transforming our picture of nuclear body formation.
Collapse
Affiliation(s)
- David Staněk
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Archa H Fox
- School of Human Sciences and Molecular Sciences, The University of Western Australia and Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Crawley, 6009 Western Australia, Australia.
| |
Collapse
|
41
|
Koch A, Kang HG, Steinbrenner J, Dempsey DA, Klessig DF, Kogel KH. MORC Proteins: Novel Players in Plant and Animal Health. FRONTIERS IN PLANT SCIENCE 2017; 8:1720. [PMID: 29093720 PMCID: PMC5651269 DOI: 10.3389/fpls.2017.01720] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/20/2017] [Indexed: 05/02/2023]
Abstract
Microrchidia (MORC) proteins comprise a family of proteins that have been identified in prokaryotes and eukaryotes. They are defined by two hallmark domains: a GHKL-type ATPase and an S5 fold. MORC proteins in plants were first discovered via a genetic screen for Arabidopsis mutants compromised for resistance to a viral pathogen. Subsequent studies expanded their role in plant immunity and revealed their involvement in gene silencing and transposable element repression. Emerging data suggest that MORC proteins also participate in pathogen-induced chromatin remodeling and epigenetic gene regulation. In addition, biochemical analyses recently demonstrated that plant MORCs have topoisomerase II (topo II)-like DNA modifying activities that may be important for their function. Interestingly, animal MORC proteins exhibit many parallels with their plant counterparts, as they have been implicated in disease development and gene silencing. In addition, human MORCs, like plant MORCs, bind salicylic acid and this inhibits some of their topo II-like activities. In this review, we will focus primarily on plant MORCs, although relevant comparisons with animal MORCs will be provided.
Collapse
Affiliation(s)
- Aline Koch
- Centre for BioSystems, Land Use and Nutrition, Institute for Phytopathology, Justus Liebig University Giessen, Giessen, Germany
| | - Hong-Gu Kang
- Department of Biology, Texas State University, San Marcos, TX, United States
| | - Jens Steinbrenner
- Centre for BioSystems, Land Use and Nutrition, Institute for Phytopathology, Justus Liebig University Giessen, Giessen, Germany
| | | | - Daniel F. Klessig
- Boyce Thompson Institute for Plant Research, Ithaca, NY, United States
- *Correspondence: Daniel F. Klessig
| | - Karl-Heinz Kogel
- Centre for BioSystems, Land Use and Nutrition, Institute for Phytopathology, Justus Liebig University Giessen, Giessen, Germany
- Karl-Heinz Kogel
| |
Collapse
|