1
|
Daidoji T, Sadakane H, Garan K, Kawashita N, Arai Y, Watanabe Y, Nakaya T. The host tropism of current zoonotic H7N9 viruses depends mainly on an acid-labile hemagglutinin with a single amino acid mutation in the stalk region. PLoS Pathog 2024; 20:e1012427. [PMID: 39436936 PMCID: PMC11495601 DOI: 10.1371/journal.ppat.1012427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 07/15/2024] [Indexed: 10/25/2024] Open
Abstract
The incidence of human infection by zoonotic avian influenza viruses, especially H5N1 and H7N9 viruses, has increased. Current zoonotic H7N9 avian influenza viruses (identified since 2013) emerged during reassortment of viruses belonging to different subtypes. Despite analyses of their genetic background, we do not know why current H7N9 viruses are zoonotic. Therefore, there is a need to identify the factor(s) responsible for the extended host tropism that enables these viruses to infect humans as well as birds. To identify H7N9-specific amino acids that confer zoonotic properties on H7N9 viruses, we performed multiple alignment of the hemagglutinin (HA) amino acid sequences of A/Shanghai/1/2013 (H7N9) and A/duck/Zhejiang/12/2011(H7N3) (a putative, non- or less zoonotic HA donor to the zoonotic H7N9 virus). We also analyze the function of an H7N9 HA-specific amino acid with respect to HA acid stability, and evaluated the effect of acid stability on viral infectivity and virulence in a mouse model. HA2-116D, preserved in current zoonotic H7N9 viruses, was crucial for loss of HA acid stability. The acid-labile HA protein in H7 viruses played an important role in infection of human airway epithelial cells; HA2-116D contributed to infection and replication of H7 viruses. Finally, HA2-116D served as a H7 virulence factor in mice. These results suggest that acid-labile HA harboring HA2-116D confers zoonotic characteristics on H7N9 virus and that future novel zoonotic avian viruses could emerge from non-zoonotic H7 viruses via acquisition of mutations that remove HA acid stability.
Collapse
Affiliation(s)
- Tomo Daidoji
- Department of Pathobiology, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, Japan
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroki Sadakane
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kotaro Garan
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | - Yasuha Arai
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yohei Watanabe
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takaaki Nakaya
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
2
|
Larbi I, Arbi M, Souiai O, Tougorti H, Butcher GD, Nsiri J, Badr C, Behi IE, Lachhab J, Ghram A. Phylogeographic Dynamics of H9N2 Avian Influenza Viruses in Tunisia. Virus Res 2024; 344:199348. [PMID: 38467378 PMCID: PMC10995884 DOI: 10.1016/j.virusres.2024.199348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/13/2024]
Abstract
Avian influenza virus subtype H9N2 is endemic in commercial poultry in Tunisia. This subtype affects poultry and wild birds in Tunisia and poses a potential zoonotic risk. Tunisian H9N2 strains carry, in their hemagglutinins, the human-like marker 226 L that is most influential in avian-to-human viral transmission. For a better understanding of how ecological aspects of the H9N2 virus and its circulation in poultry, migratory birds and environment shapes the spread of the dissemination of H9N2 in Tunisia, herein, we investigate the epidemiological, evolutionary and zoonotic potential of seven H9N2 poultry isolates and sequence their whole genome. Phylogeographic and phylodymanic analysis were used to examine viral spread within and among wild birds, poultry and environment at geographical scales. Genetic evolution results showed that the eight gene sequences of Tunisian H9N2 AIV were characterized by molecular markers involved with virulence and mammalian infections. The geographical distribution of avian influenza virus appears as a network interconnecting countries in Europe, Asia, North Africa and West Africa. The spatiotemporal dynamics analysis showed that the H9N2 virus was transmitted from Tunisia to neighboring countries notably Libya and Algeria. Interestingly, this study also revealed, for the first time, that there was a virus transmission between Tunisia and Morocco. Bayesian analysis showed exchanges between H9N2 strains of Tunisia and those of the Middle Eastern countries, analysis of host traits showed that duck, wild birds and environment were ancestry related to chicken. The subtypes phylodynamic showed that PB1 segment was under multiple inter-subtype reassortment events with H10N7, H12N5, H5N2 and H6N1 and that PB2 was also a subject of inter-subtype reassortment with H10N4.
Collapse
Affiliation(s)
- Imen Larbi
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP74, Tunis, Belvédère 1002, Tunisia.
| | - Marwa Arbi
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, LR16IPT09, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Oussama Souiai
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, LR16IPT09, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Halima Tougorti
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP74, Tunis, Belvédère 1002, Tunisia
| | - Gary David Butcher
- College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Jihene Nsiri
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP74, Tunis, Belvédère 1002, Tunisia
| | - Chaima Badr
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP74, Tunis, Belvédère 1002, Tunisia
| | - Imen El Behi
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP74, Tunis, Belvédère 1002, Tunisia
| | - Jihene Lachhab
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP74, Tunis, Belvédère 1002, Tunisia
| | - Abdeljelil Ghram
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP74, Tunis, Belvédère 1002, Tunisia
| |
Collapse
|
3
|
Vigeveno RM, Han AX, de Vries RP, Parker E, de Haan K, van Leeuwen S, Hulme KD, Lauring AS, te Velthuis AJW, Boons GJ, Fouchier RAM, Russell CA, de Jong MD, Eggink D. Long-term evolution of human seasonal influenza virus A(H3N2) is associated with an increase in polymerase complex activity. Virus Evol 2024; 10:veae030. [PMID: 38808037 PMCID: PMC11131032 DOI: 10.1093/ve/veae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/08/2024] [Indexed: 05/30/2024] Open
Abstract
Since the influenza pandemic in 1968, influenza A(H3N2) viruses have become endemic. In this state, H3N2 viruses continuously evolve to overcome immune pressure as a result of prior infection or vaccination, as is evident from the accumulation of mutations in the surface glycoproteins hemagglutinin (HA) and neuraminidase (NA). However, phylogenetic studies have also demonstrated ongoing evolution in the influenza A(H3N2) virus RNA polymerase complex genes. The RNA polymerase complex of seasonal influenza A(H3N2) viruses produces mRNA for viral protein synthesis and replicates the negative sense viral RNA genome (vRNA) through a positive sense complementary RNA intermediate (cRNA). Presently, the consequences and selection pressures driving the evolution of the polymerase complex remain largely unknown. Here, we characterize the RNA polymerase complex of seasonal influenza A(H3N2) viruses representative of nearly 50 years of influenza A(H3N2) virus evolution. The H3N2 polymerase complex is a reassortment of human and avian influenza virus genes. We show that since 1968, influenza A(H3N2) viruses have increased the transcriptional activity of the polymerase complex while retaining a close balance between mRNA, vRNA, and cRNA levels. Interestingly, the increased polymerase complex activity did not result in increased replicative ability on differentiated human airway epithelial (HAE) cells. We hypothesize that the evolutionary increase in polymerase complex activity of influenza A(H3N2) viruses may compensate for the reduced HA receptor binding and avidity that is the result of the antigenic evolution of influenza A(H3N2) viruses.
Collapse
Affiliation(s)
- René M Vigeveno
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Alvin X Han
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Robert P de Vries
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Edyth Parker
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Karen de Haan
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Sarah van Leeuwen
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Katina D Hulme
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Adam S Lauring
- Department of Microbiology and Immunology and Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, 1150 W. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Aartjan J W te Velthuis
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
- Department of Chemistry, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, USA
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus MC, Dr. Molewaterplein 50, Rotterdam 3015 GE, The Netherlands
| | - Colin A Russell
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Menno D de Jong
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Dirk Eggink
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam, The Netherlands
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, Bilthoven 3721 MA, The Netherlands
| |
Collapse
|
4
|
Alruwaili M, Armstrong S, Prince T, Erdmann M, Matthews DA, Luu L, Davidson A, Aljabr W, Hiscox JA. SARS-CoV-2 NSP12 associates with TRiC and the P323L substitution acts as a host adaption. J Virol 2023; 97:e0042423. [PMID: 37929963 PMCID: PMC10688337 DOI: 10.1128/jvi.00424-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/29/2023] [Indexed: 11/07/2023] Open
Abstract
IMPORTANCE SARS-CoV-2 has caused a worldwide health and economic crisis. During the course of the pandemic, genetic changes occurred in the virus, which have resulted in new properties of the virus-particularly around gains in transmission and the ability to partially evade either natural or vaccine-acquired immunity. Some of these viruses have been labeled Variants of Concern (VoCs). At the root of all VoCs are two mutations, one in the viral spike protein that has been very well characterized and the other in the virus polymerase (NSP12). This is the viral protein responsible for replicating the genome. We show that NSP12 associates with host cell proteins that act as a scaffold to facilitate the function of this protein. Furthermore, we found that different variants of NSP12 interact with host cell proteins in subtle and different ways, which affect function.
Collapse
Affiliation(s)
- Muhannad Alruwaili
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Medical Laboratory Technology Department, Northern Border University, Arar City, Saudi Arabia
| | - Stuart Armstrong
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Tessa Prince
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Maximillian Erdmann
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - David A. Matthews
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Lisa Luu
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Andrew Davidson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | | | - Julian A. Hiscox
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- A*STAR Infectious Diseases Laboratories (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore
| |
Collapse
|
5
|
Alasiri A, Soltane R, Hegazy A, Khalil AM, Mahmoud SH, Khalil AA, Martinez-Sobrido L, Mostafa A. Vaccination and Antiviral Treatment against Avian Influenza H5Nx Viruses: A Harbinger of Virus Control or Evolution. Vaccines (Basel) 2023; 11:1628. [PMID: 38005960 PMCID: PMC10675773 DOI: 10.3390/vaccines11111628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Despite the panzootic nature of emergent highly pathogenic avian influenza H5Nx viruses in wild migratory birds and domestic poultry, only a limited number of human infections with H5Nx viruses have been identified since its emergence in 1996. Few countries with endemic avian influenza viruses (AIVs) have implemented vaccination as a control strategy, while most of the countries have adopted a culling strategy for the infected flocks. To date, China and Egypt are the two major sites where vaccination has been adopted to control avian influenza H5Nx infections, especially with the widespread circulation of clade 2.3.4.4b H5N1 viruses. This virus is currently circulating among birds and poultry, with occasional spillovers to mammals, including humans. Herein, we will discuss the history of AIVs in Egypt as one of the hotspots for infections and the improper implementation of prophylactic and therapeutic control strategies, leading to continuous flock outbreaks with remarkable virus evolution scenarios. Along with current pre-pandemic preparedness efforts, comprehensive surveillance of H5Nx viruses in wild birds, domestic poultry, and mammals, including humans, in endemic areas is critical to explore the public health risk of the newly emerging immune-evasive or drug-resistant H5Nx variants.
Collapse
Affiliation(s)
- Ahlam Alasiri
- Department of Basic Sciences, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (A.A.); (R.S.)
| | - Raya Soltane
- Department of Basic Sciences, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (A.A.); (R.S.)
| | - Akram Hegazy
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Giza District, Giza 12613, Egypt;
| | - Ahmed Magdy Khalil
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA;
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Sara H. Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Center, Giza 12622, Egypt;
| | - Ahmed A. Khalil
- Veterinary Sera and Vaccines Research Institute (VSVRI), Agriculture Research Center (ARC), Cairo 11435, Egypt;
| | | | - Ahmed Mostafa
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA;
- Center of Scientific Excellence for Influenza Viruses, National Research Center, Giza 12622, Egypt;
| |
Collapse
|
6
|
Larbi I, Ghedira K, Arbi M, Butcher GD, Rego N, Naya H, Tougorti H, Lachhab J, Behi IE, Nsiri J, Ghram A. Phylogenetic analysis and assessment of the pathogenic potential of the first H9N2 avian influenza viruses isolated from wild birds and Lagoon water in Tunisia. Virus Res 2022; 322:198929. [PMID: 36126884 DOI: 10.1016/j.virusres.2022.198929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/01/2022] [Accepted: 09/14/2022] [Indexed: 12/24/2022]
Abstract
H9N2 avian influenza virus (AIV) has been isolated from various species of wild birds and domestic poultry worldwide. It has been reported since the late 1990s, that H9N2 AIV has infected humans as reported in some Asian and North African countries. This subtype has already been circulating and constituting a serious threat to the poultry industry in Tunisia back in 2009. To investigate zoonotic potential and pathogenicity of H9N2 AIV in chickens and mice in Tunisia, five strains have been isolated during the period from 2014 to 2018. Samples were withdrawn from several wild bird species and environment (Lagoon water) of Maamoura and Korba Lagoons as well as Kuriat Island. Phylogenetic analyzes demonstrated that the isolated H9N2 strains belonged to the G1-like sublineage and were close to AIV H9N2 poultry viruses from North Africa, West Africa and the Middle East. All strains carried in their hemagglutinin the residue 226 L, which is an important marker for avian-to-human viral transmission. The hemagglutinin cleavage site has several motifs: PSKSSR/G, PARSSR/G and HARSSR/G. The neuraminidase showed S372A and R403W substitutions that have been previously detected in H3N2 and H2N2 viruses that were reported in human pandemics. Many mutations associated with mammalian infections have been detected in internal proteins. Pathogenicity evaluation in chickens showed that GF/14 replicates effectively in the lungs, tracheas, spleens, kidneys and brains and that it was transmitted among contact chickens. However, GHG/18 replicates poorly in chickens and has not an efficient transmission in contact chickens. GF/14 and GHG/18 could not kill mice though they replicated in their respiratory tract and caused a significant body weight loss (p < 0.05). This study highlights the importance of H9N2 AIV monitoring in both migratory birds and the environment to prevent virus transmission to humans.
Collapse
Affiliation(s)
- Imen Larbi
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, LR16IPT09, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Marwa Arbi
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Gary David Butcher
- College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Natalia Rego
- Bioinformatics Unit, Institut Pasteur de Montevideo, Mataojo, Montevideo, Uruguay
| | - Hugo Naya
- Bioinformatics Unit, Institut Pasteur de Montevideo, Mataojo, Montevideo, Uruguay; Departmento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República, Uruguay
| | - Halima Tougorti
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Jihene Lachhab
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Imen El Behi
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Jihene Nsiri
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Abdeljelil Ghram
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
7
|
Navarro-Lopez R, Xu W, Gomez-Romero N, Velazquez-Salinas L, Berhane Y. Phylogenetic Inference of the 2022 Highly Pathogenic H7N3 Avian Influenza Outbreak in Northern Mexico. Pathogens 2022; 11:1284. [PMID: 36365034 PMCID: PMC9692817 DOI: 10.3390/pathogens11111284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 02/06/2024] Open
Abstract
The Mexican lineage H7N3 highly pathogenic avian influenza virus (HPAIV) has persisted in Mexican poultry since its first isolation in 2012. To date, the detection of this virus has gradually expanded from the initial one state to 18 states in Mexico. Despite the HPAIV H7N3 outbreak occurring yearly, the transmission pathways have never been studied, disallowing the establishment of effective control measures. We used a phylogenetic approach to unravel the transmission pathways of 2022 H7N3 HPAIVs in the new outbreak areas in Northern Mexico. We present genetic data of H7N3 viruses produced from 18 poultry farms infected in the spring of 2022. Our results indicate that the virus responsible for the current outbreak in Northern Mexico evolved from the Mexican lineage H7N3 HPAIV discovered in 2012. In the current outbreak, we identified five clusters of infection with four noticeably different genetic backgrounds. It is a cluster IV-like virus that was transmitted into one northern state causing an outbreak, then spreading to another neighboring northern state, possibly via a human-mediated mechanical transmission mechanism. The long-distance transmission event highlights the necessity for the more rigorous enforcement of biosafety measures in outbreaks. Additionally, we examined the evolutionary processes shaping the viral genetic and antigenic diversities. It is imperative to enhance active surveillance to include birds, the environment, and humans to detect HPAI in domestic poultry at an earlier point and eliminate it.
Collapse
Affiliation(s)
- Roberto Navarro-Lopez
- United States-Mexico Commission for the Prevention of Foot-and-Mouth Disease and Other Exotic Disease Animals, Mexico City 64590, Mexico
| | - Wanhong Xu
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada
| | - Ninnet Gomez-Romero
- United States-Mexico Commission for the Prevention of Foot-and-Mouth Disease and Other Exotic Disease Animals, Mexico City 64590, Mexico
| | - Lauro Velazquez-Salinas
- Plum Island Animal Disease Center, Agriculture Research Service, USDA, Orient, NY 11944, USA
| | - Yohannes Berhane
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2S2, Canada
| |
Collapse
|
8
|
Śmietanka K, Świętoń E, Wyrostek K, Kozak E, Tarasiuk K, Styś-Fijoł N, Dziadek K, Niemczuk K. Highly Pathogenic Avian Influenza H5Nx in Poland in 2020/2021: a Descriptive Epidemiological Study of a Large-scale Epidemic. J Vet Res 2022; 66:1-7. [PMID: 35582478 PMCID: PMC8959680 DOI: 10.2478/jvetres-2022-0017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/10/2022] [Indexed: 11/20/2022] Open
Abstract
Introduction Highly pathogenic avian influenza (HPAI) outbreaks caused by the Gs/Gd lineage of H5Nx viruses occur in Poland with increased frequency. The article provides an update on the HPAI situation in the 2020/2021 season and studies the possible factors that caused the exceptionally fast spread of the virus. Material and Methods Samples from poultry and wild birds delivered for HPAI diagnosis were tested by real-time RT-PCR and a representative number of detected viruses were submitted for partial or full-genome characterisation. Information yielded by veterinary inspection was used for descriptive analysis of the epidemiological situation. Results The scale of the epidemic in the 2020/2021 season was unprecedented in terms of duration (November 2020-August 2021), number of outbreaks in poultry (n = 357), wild bird events (n = 92) and total number of affected domestic birds (approximately ~14 million). The major drivers of the virus spread were the harsh winter conditions in February 2020 followed by the introduction of the virus to high-density poultry areas in March 2021. All tested viruses belonged to H5 clade 2.3.4.4b with significant intra-clade diversity and in some cases clearly distinguished clusters. Conclusion The HPAI epidemic in 2020/2021 in Poland struck with unprecedented force. The conventional control measures may have limited effectiveness to break the transmission chain in areas with high concentrations of poultry.
Collapse
Affiliation(s)
| | - Edyta Świętoń
- Department of Poultry Diseases, 24-100Puławy, Poland
| | | | - Edyta Kozak
- Department of Poultry Diseases, 24-100Puławy, Poland
| | | | | | | | - Krzysztof Niemczuk
- Director General National Veterinary Research Institute, 24-100Puławy, Poland
| |
Collapse
|
9
|
Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Marangon S, Niqueux É, Staubach C, Terregino C, Aznar I, Muñoz Guajardo I, Baldinelli F. Avian influenza overview May - September 2021. EFSA J 2022; 20:e07122. [PMID: 35079292 PMCID: PMC8777557 DOI: 10.2903/j.efsa.2022.7122] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The 2020-2021 avian influenza epidemic with a total of 3,777 reported highly pathogenic avian influenza (HPAI) detections and approximately 22,900,000 affected poultry birds in 31 European Countries appears to be one of the largest HPAI epidemics that has ever occurred in Europe. Between 15 May and 15 September 2021, 162 HPAI virus detections were reported in 17 EU/EEA countries and the UK in poultry (51), in wild (91) and captive birds (20). The detections in poultry were mainly reported by Kosovo (20), Poland (17) and Albania (6). HPAI virus was detected during the summer months in resident wild bird populations mainly in northern Europe. The data presented in this report indicates that HPAI virus is still circulating in domestic and wild bird populations in some European countries and that the epidemic is not over yet. Based on these observations, it appears that the persistence of HPAI A(H5) in Europe continues to pose a risk of further virus incursions in domestic bird populations. Furthermore, during summer, HPAI viruses were detected in poultry and several wild bird species in areas in Russia that are linked to key migration areas of wild waterbirds; this is of concern due to the possible introduction and spread of novel virus strains via wild birds migrating to the EU countries during the autumn from the eastern breeding to the overwintering sites. Nineteen different virus genotypes have been identified so far in Europe and Central Asia since July 2020, confirming a high propensity for this virus to undergo reassortment events. Since the last report, 15 human infections due to A(H5N6) HPAI and five human cases due to A(H9N2) low pathogenic avian influenza (LPAI) virus have been reported from China. Some of these cases were caused by a virus with an HA gene closely related to the A(H5) viruses circulating in Europe. The viruses characterised to date retain a preference for avian-type receptors; however, the reports of transmission events of A(H5) viruses to mammals and humans in Russia, as well as the recent A(H5N6) human cases in China may indicate a continuous risk of these viruses adapting to mammals. The risk of infection for the general population in the EU/EEA is assessed as very low, and for occupationally exposed people low, with large uncertainty due to the high diversity of circulating viruses in the bird populations.
Collapse
|
10
|
Sapachova M, Kovalenko G, Sushko M, Bezymennyi M, Muzyka D, Usachenko N, Mezhenskyi A, Abramov A, Essen S, Lewis NS, Bortz E. Phylogenetic Analysis of H5N8 Highly Pathogenic Avian Influenza Viruses in Ukraine, 2016–2017. Vector Borne Zoonotic Dis 2021; 21:979-988. [DOI: 10.1089/vbz.2021.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Maryna Sapachova
- State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise (SSRILDVSE), Kyiv, Ukraine
| | - Ganna Kovalenko
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Department of Biological Sciences, University of Alaska Anchorage (UAA), Anchorage, Alaska, USA
| | - Mykola Sushko
- State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise (SSRILDVSE), Kyiv, Ukraine
| | | | - Denys Muzyka
- National Scientific Center Institute for Experimental Clinical and Veterinary Medicine (NSC IECVM), Kharkiv, Ukraine
| | - Natalia Usachenko
- State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise (SSRILDVSE), Kyiv, Ukraine
| | - Andrii Mezhenskyi
- State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise (SSRILDVSE), Kyiv, Ukraine
| | - Artur Abramov
- State Scientific Control Institute of Biotechnology and Strains of Microorganisms (SSCIBSM), Kyiv, Ukraine
| | - Stephen Essen
- OIE/FAO International Reference Laboratory, Animal and Plant Health Agency (APHA), Weybridge, United Kingdom
| | - Nicola S. Lewis
- OIE/FAO International Reference Laboratory, Animal and Plant Health Agency (APHA), Weybridge, United Kingdom
- Royal Veterinary College, University of London, London, United Kingdom
| | - Eric Bortz
- Department of Biological Sciences, University of Alaska Anchorage (UAA), Anchorage, Alaska, USA
- Institute for Veterinary Medicine (IVM), Kyiv, Ukraine
| |
Collapse
|
11
|
Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Marangon S, Niqueux É, Staubach C, Terregino C, Aznar I, Guajardo IM, Lima E, Baldinelli F. Avian influenza overview February - May 2021. EFSA J 2021; 19:e06951. [PMID: 34925560 PMCID: PMC8647004 DOI: 10.2903/j.efsa.2021.6951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The 2020-2021 epidemic with a total of 3,555 reported HPAI detections and around 22,400,000 affected poultry birds in 28 European Countries appears to be one of the largest and most devastating HPAI epidemics ever occurred in Europe. Between 24 February and 14 May 2021, 1,672 highly pathogenic avian influenza (HPAI) virus detections were reported in 24 EU/EEA countries and the UK in poultry (n=580), and in wild (n=1,051) and captive birds (n=41). The majority of the detections in poultry were reported by Poland that accounted for 297 outbreaks occurring in a densely populated poultry area over a short period of time, followed by Germany with 168 outbreaks. Germany accounted for 603 detections in wild birds, followed by Denmark and Poland with 167 and 56 detections, respectively. A second peak of HPAI-associated wild bird mortality was observed from February to April 2021 in north-west Europe. The observed longer persistence of HPAI in wild birds compared to previous years may result in a continuation of the risk for juveniles of wild birds and mammals, as well as for virus entry into poultry farms. Therefore, enhanced awareness among farmers to continue applying stringent biosecurity measures and to monitor and report increases in daily mortality and drops in production parameters, are recommended. Sixteen different genotypes were identified to date in Europe and Russia, suggesting a high propensity of these viruses to reassort. The viruses characterized to date retain a preference for avian-type receptors; however, transmission events to mammals and the identification of sporadic mutations of mammal adaptation, indicate ongoing evolution processes and possible increased ability of viruses within this clade to further adapt and transmit to mammals including humans. Since the last report, two human infections due to A(H5N6) HPAI were reported from China and Laos and 10 human cases due to A(H9N2) low pathogenic avian influenza (LPAI) virus identified in China and Cambodia. The risk of infection for the general population in the EU/EEA is assessed as very low and for occupationally exposed people low. People exposed during avian influenza outbreaks should adhere to protection measures, strictly wear personal protective equipment and get tested immediately when developing respiratory symptoms or conjunctivitis within 10 days after exposure.
Collapse
|
12
|
Nguyen ATV, Hoang VT, Sung HW, Yeo SJ, Park H. Genetic Characterization and Pathogenesis of Three Novel Reassortant H5N2 Viruses in South Korea, 2018. Viruses 2021; 13:v13112192. [PMID: 34834997 PMCID: PMC8619638 DOI: 10.3390/v13112192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/03/2022] Open
Abstract
The outbreaks of H5N2 avian influenza viruses have occasionally caused the death of thousands of birds in poultry farms. Surveillance during the 2018 winter season in South Korea revealed three H5N2 isolates in feces samples collected from wild birds (KNU18-28: A/Wild duck/South Korea/KNU18-28/2018, KNU18-86: A/Bean Goose/South Korea/KNU18-86/2018, and KNU18-93: A/Wild duck/South Korea/KNU18-93/2018). Phylogenetic tree analysis revealed that these viruses arose from reassortment events among various virus subtypes circulating in South Korea and other countries in the East Asia–Australasian Flyway. The NS gene of the KNU18-28 and KNU18-86 isolates was closely related to that of China’s H10N3 strain, whereas the KNU18-93 strain originated from the H12N2 strain in Japan, showing two different reassortment events and different from a low pathogenic H5N3 (KNU18-91) virus which was isolated at the same day and same place with KNU18-86 and KNU18-93. These H5N2 isolates were characterized as low pathogenic avian influenza viruses. However, many amino acid changes in eight gene segments were identified to enhance polymerase activity and increase adaptation and virulence in mice and mammals. Experiments reveal that viral replication in MDCK cells was quite high after 12 hpi, showing the ability to replicate in mouse lungs. The hematoxylin and eosin-stained (H&E) lung sections indicated different degrees of pathogenicity of the three H5N2 isolates in mice compared with that of the control H1N1 strain. The continuing circulation of these H5N2 viruses may represent a potential threat to mammals and humans. Our findings highlight the need for intensive surveillance of avian influenza virus circulation in South Korea to prevent the risks posed by these reassortment viruses to animal and public health.
Collapse
Affiliation(s)
- Anh Thi Viet Nguyen
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54538, Korea; (A.T.V.N.); (V.T.H.)
| | - Vui Thi Hoang
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54538, Korea; (A.T.V.N.); (V.T.H.)
| | - Haan Woo Sung
- College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea;
| | - Seon-Ju Yeo
- Department of Tropical Medicine and Parasitology, College of Medicine, Seoul National University, Seoul 03080, Korea
- Correspondence: (S.-J.Y.); (H.P.)
| | - Hyun Park
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54538, Korea; (A.T.V.N.); (V.T.H.)
- Correspondence: (S.-J.Y.); (H.P.)
| |
Collapse
|
13
|
Yeo SJ, Hoang VT, Duong TB, Nguyen NM, Tuong HT, Azam M, Sung HW, Park H. Emergence of a Novel Reassortant H5N3 Avian Influenza Virus in Korean Mallard Ducks in 2018. Intervirology 2021; 65:1-16. [PMID: 34438407 DOI: 10.1159/000517057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 04/29/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The avian influenza (AI) virus causes a highly contagious disease which is common in wild and domestic birds and sporadic in humans. Mutations and genetic reassortments among the 8 negative-sense RNA segments of the viral genome alter its pathogenic potential, demanding well-targeted, active surveillance for infection control. METHODS Wild duck fecal samples were collected during the 2018 bird health annual surveillance in South Korea for tracking variations of the AI virus. One low-pathogenic avian influenza H5N3 reassortment virus (A/mallard duck/South Korea/KNU18-91/2018 [H5N3]) was isolated and genomically characterized by phylogenetic and molecular analyses in this study. RESULTS It was devoid of polybasic amino acids at the hemagglutinin (HA) cleavage site and exhibited a stalk region without deletion in the neuraminidase (NA) gene and NA inhibitor resistance-linked E/D627K/N and D701N marker mutations in the PB2 gene, suggesting its low-pathogenic AI. It showed a potential of a reassortment where only HA originated from the H5N3 poultry virus of China and other genes were derived from Mongolia. In phylogenetic analysis, HA was different from that of the isolate of H5N3 in Korea, 2015. In addition, this novel virus showed adaptation in Madin-Darby canine kidney cells, with 8.05 ± 0.14 log10 50% tissue culture infectious dose (TCID50) /mL at 36 h postinfection. However, it could not replicate in mice well, showing positive growth at 3 days postinfection (dpi) (2.1 ± 0.13 log10 TCID50/mL) but not at 6 dpi. CONCLUSIONS The HA antigenic relationship of A/mallard duck/South Korea/KNU18-91/2018 (H5N3) showed differences toward one of the old low-pathogenic H5N3 viruses in Korea. These results indicated that a novel reassortment low-pathogenic avian influenza H5N3 subtype virus emerged in South Korea in 2018 via novel multiple reassortments with Eurasian viruses, rather than one of old Korean H5N3 strains.
Collapse
Affiliation(s)
- Seon-Ju Yeo
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul, Republic of Korea,
| | - Vui Thi Hoang
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Tuan Bao Duong
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Ngoc Minh Nguyen
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Hien Thi Tuong
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Mudsser Azam
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Haan Woo Sung
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Hyun Park
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| |
Collapse
|
14
|
Guo F, Roy A, Wang R, Yang J, Zhang Z, Luo W, Shen X, Chen RA, Irwin DM, Shen Y. Host Adaptive Evolution of Avian-Origin H3N2 Canine Influenza Virus. Front Microbiol 2021; 12:655228. [PMID: 34194404 PMCID: PMC8236823 DOI: 10.3389/fmicb.2021.655228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/11/2021] [Indexed: 11/13/2022] Open
Abstract
Since its first isolation in around 2007, the avian-origin H3N2 canine influenza virus (CIV) has become established and continues to circulate in dog populations. This virus serves as a useful model for deciphering the complex evolutionary process of interspecies transmission of influenza A virus (IAV) from one species to its subsequent circulation in another mammalian host. The present investigation is a comprehensive effort to identify and characterize genetic changes that accumulated in the avian-origin H3N2 CIV during its circulation in the dog. We revealed that H3N2 CIV experiences greater selection pressure with extremely high global non-synonymous to synonymous substitution ratios per codon (dN/dS ratio) for each gene compared to the avian reservoir viruses. A total of 54 amino acid substitutions were observed to have accumulated and become fixed in the H3N2 CIV population based on our comprehensive codon-based frequency diagram analysis. Of these substitutions, 11 sites also display high prevalence in H3N8 CIV, indicating that convergent evolution has occurred on different lineages of CIV. Notably, six substitutions, including HA-G146S, M1-V15I, NS1-E227K, PA-C241Y, PB2-K251R, and PB2-G590S, have been reported to play imperative roles in facilitating the transmission and spillover of IAVs across species barriers. Most of these substitutions were found to have become fixed in around 2015, which might have been a favorable factor that facilitating the spread of these CIV lineages from South Asia to North America and subsequent further circulation in these areas. We also detected 12 sites in six viral genes with evidence for positive selection by comparing the rates of non-synonymous and synonymous substitutions at each site. Besides, our study reports trends of enhanced ongoing adaptation of H3N2 CIV to their respective host cellular systems, based on the codon adaptation index analysis, which points toward increasing fitness for efficient viral replication. In addition, a reduction in the abundance of the CpG motif, as evident from an analysis of relative dinucleotide abundance, may contribute to the successful evasion of host immune recognition. The present study provides key insights into the adaptive changes that have accumulated in the avian-origin H3N2 viral genomes during its establishment and circulation into dog populations.
Collapse
Affiliation(s)
- Fucheng Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ayan Roy
- Department of Biotechnology, Lovely Professional University, Phagwara, India
| | - Ruichen Wang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jinjin Yang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhipeng Zhang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wen Luo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xuejuan Shen
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| | - Rui-Ai Chen
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Yongyi Shen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| |
Collapse
|
15
|
Sun H, Liu J, Xiao Y, Duan Y, Yang J, Chen Y, Yu Y, Li H, Zhao Y, Pu J, Sun Y, Liu J, Sun H. Pathogenicity of novel reassortant Eurasian avian-like H1N1 influenza virus in pigs. Virology 2021; 561:28-35. [PMID: 34139638 DOI: 10.1016/j.virol.2021.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/15/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
Reassortant Eurasian avian-like (EA) H1N1 virus, possessing 2009 pandemic (pdm/09) and triple-reassortant (TR)-derived internal genes, namely G4 genotype, has replaced the G1 genotype EA H1N1 virus (all the genes were of EA origin) and become predominant in swine populations in China. Understanding the pathogenicity of G4 viruses in pigs is of great importance for disease control. Here, we conducted comprehensive analyses of replication and pathogenicity of G4 and G1 EA H1N1 viruses in pigs. G4 virus exhibited enhanced replication, increased duration of virus shedding, and caused more severe respiratory lesions in pigs compared with G1 virus. G4 virus, with viral ribonucleoprotein (vRNP) complex genes of pdm/09 origin, exhibited higher levels of nuclear accumulation and higher polymerase activity, which is essential for improved replication of G4 virus. These findings indicate that G4 virus poses a great threat to both swine industry and public health, and control measures should be urgently implemented.
Collapse
Affiliation(s)
- Haoran Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Jiyu Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Yihong Xiao
- Department of Fundamental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 271000, Tai'an, China
| | - Yuhong Duan
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Jizhe Yang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Yu Chen
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Yinghui Yu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Han Li
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Yuzhong Zhao
- Department of Fundamental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 271000, Tai'an, China
| | - Juan Pu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Yipeng Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Jinhua Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China.
| | - Honglei Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
16
|
Genetic Characterization and Pathogenesis of Avian Influenza Virus H7N3 Isolated from Spot-Billed Ducks in South Korea, Early 2019. Viruses 2021; 13:v13050856. [PMID: 34067187 PMCID: PMC8151380 DOI: 10.3390/v13050856] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 11/29/2022] Open
Abstract
Low-pathogenicity avian influenza viruses (LPAIV) introduced by migratory birds circulate in wild birds and can be transmitted to poultry. These viruses can mutate to become highly pathogenic avian influenza viruses causing severe disease and death in poultry. In March 2019, an H7N3 avian influenza virus—A/Spot-billed duck/South Korea/WKU2019-1/2019 (H7N3)—was isolated from spot-billed ducks in South Korea. This study aimed to evaluate the phylogenetic and mutational analysis of this isolate. Molecular analysis revealed that the genes for HA (hemagglutinin) and NA (neuraminidase) of this strain belonged to the Central Asian lineage, whereas genes for other internal proteins such as polymerase basic protein 1 (PB1), PB2, nucleoprotein, polymerase acidic protein, matrix protein, and non-structural protein belonged to that of the Korean lineage. In addition, a monobasic amino acid (PQIEPR/GLF) at the HA cleavage site, and the non-deletion of the stalk region in the NA gene indicated that this isolate was a typical LPAIV. Nucleotide sequence similarity analysis of HA revealed that the highest homology (99.51%) of this isolate is to that of A/common teal/Shanghai/CM1216/2017 (H7N7), and amino acid sequence of NA (99.48%) was closely related to that of A/teal/Egypt/MB-D-487OP/2016 (H7N3). An in vitro propagation of the A/Spot-billed duck/South Korea/WKU2019-1/2019 (H7N3) virus showed highest (7.38 Log10 TCID50/mL) virus titer at 60 h post-infection, and in experimental mouse lungs, the virus was detected at six days’ post-infection. Our study characterizes genetic mutations, as well as pathogenesis in both in vitro and in vivo model of a new Korea H7N3 viruses in 2019, carrying multiple potential mutations to become highly pathogenic and develop an ability to infect humans; thus, emphasizing the need for routine surveillance of avian influenza viruses in wild birds.
Collapse
|
17
|
Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Marangon S, Niqueux É, Staubach C, Terregino C, Muñoz Guajardo I, Lima E, Baldinelli F. Avian influenza overview December 2020 - February 2021. EFSA J 2021; 19:e06497. [PMID: 33717356 PMCID: PMC7927793 DOI: 10.2903/j.efsa.2021.6497] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Between 8 December 2020 and 23 February 2021, 1,022 highly pathogenic avian influenza (HPAI) virus detectionswere reported in 25 EU/EEA countries and the UK in poultry (n=592), wild (n=421) and captive birds (n=9).The majority of the detections were reported by Francethat accounted for 442 outbreaks in poultry,mostly located inthe Landes regionandaffecting the foie gras production industry,and six wild bird detections; Germany,who reported 207 detections in wild birds and 50 poultry outbreaks; Denmark,with 63 detections in wild birds and one poultry outbreak; and Poland,with 37 poultry outbreaks and 24 wild bird detections. Due to the continued presence of HPAI A(H5) viruses in wild birds and the environment,there is still a risk of avian influenza incursions with the potential further spread between establishments, primarily in areas with high poultry densities. As the currently circulating HPAI A(H5N8) virus cancause high mortality also in affected duck farms, mortality eventscan be seen as a good indicator of virus presence. However,also subclinical virusspread in this type of poultry production system have been reported.To improve early detection of infection in poultry within the surveillance zone, the clinical inspection of duck establishments should be complemented by encouraging farmers to collect dead birds to be pooled and tested weekly (bucket sampling).Six different genotypes were identified to date in Europe and Russia, suggesting a high propensity of these viruses to undergo multiple reassortment events. To date, no evidence of fixation of known mutations previously described as associated to zoonotic potential has been observed in HPAI viruses currently circulanting in Europe based on the available sequences.Seven cases due to A(H5N8) HPAI virus have been reported from Russia, all were poultry workerswith mild or no symptoms. Five human cases due to A(H5N6) HPAI and 10 cases due to A(H9N2) LPAI viruseshave been reported from China. The risk for the general population as well as travel-related imported human cases is assessed as very lowand the risk forpeople occupationally exposedpeople as low.Any human infections with avian influenza viruses are notifiablewithin 24 hoursthrough the Early Warning and Response System (EWRS) and the International Health Regulations (IHR) notification system.
Collapse
|
18
|
Laleye AT, Bianco A, Shittu I, Sulaiman L, Fusaro A, Inuwa B, Oyetunde J, Zecchin B, Bakam J, Pastori A, Olawuyi K, Schivo A, Meseko C, Vakuru C, Fortin A, Monne I, Joannis T. Genetic characterization of highly pathogenic avian Influenza H5Nx clade 2.3.4.4b reveals independent introductions in nigeria. Transbound Emerg Dis 2021; 69:423-433. [PMID: 33480188 DOI: 10.1111/tbed.14000] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/26/2020] [Accepted: 01/17/2021] [Indexed: 12/30/2022]
Abstract
Among recurrent sanitary emergencies able to spread rapidly worldwide, avian influenza is one of the main constraints for animal health and food security. In West Africa, Nigeria has been experiencing repeated outbreaks of different strains of avian influenza virus (AIV) since 2006 and is also recognized as a hot spot in the region for the introduction of emerging strains by migratory wild birds. Here, we generated complete genomes of 20 highly pathogenic avian influenza (HPAI) H5N8 viruses collected during active surveillance in Nigerian live bird markets (LBM) and from outbreaks reported in the country between 2016 and 2019. Phylogenetic analysis reveals that the Nigerian viruses cluster into four separate genetic groups within HPAI H5 clade 2.3.4.4b. The first group includes 2016-2017 Nigerian viruses with high genetic similarity to H5N8 viruses detected in Central African countries, while the second includes Nigerian viruses collected both in LBM and poultry farms (2018-2019), as well as in Cameroon, Egypt and Siberia. A natural reassortant strain identified in 2019 represents the third group: H5N8 viruses with the same gene constellation were identified in 2018 in South Africa. Finally, the fourth introduction represents the first detection in the African continent of the H5N6 subtype, which is related to European viruses. Bayesian phylogeographic analyses confirmed that the four introductions originated from different sources and provide evidence of the virus spread within Nigeria, as well as diffusion beyond its borders. The multiple epidemiological links between Nigeria, Central and Southern African countries highlight the need for harmonized and coordinated surveillance system to control AIV impact. Improved surveillance at the Wetlands, LBMs and early warning of outbreaks are crucial for prevention and control of AIV, which can be potentially zoonotic and be a threat to human health.
Collapse
Affiliation(s)
| | - Alice Bianco
- Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy
| | | | | | - Alice Fusaro
- Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy
| | - Bitrus Inuwa
- National Veterinary Research Institute, Vom, Nigeria
| | | | - Bianca Zecchin
- Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy
| | - Judith Bakam
- National Veterinary Research Institute, Vom, Nigeria
| | - Ambra Pastori
- Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy
| | | | - Alessia Schivo
- Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy
| | | | - Columba Vakuru
- Federal Ministry of Agriculture and Rural Development, Abuja, Nigeria
| | - Andrea Fortin
- Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy
| | - Isabella Monne
- Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy
| | - Tony Joannis
- National Veterinary Research Institute, Vom, Nigeria
| |
Collapse
|
19
|
Trinh TTT, Duong BT, Nguyen ATV, Tuong HT, Hoang VT, Than DD, Nam S, Sung HW, Yun KJ, Yeo SJ, Park H. Emergence of Novel Reassortant H1N1 Avian Influenza Viruses in Korean Wild Ducks in 2018 and 2019. Viruses 2020; 13:v13010030. [PMID: 33375376 PMCID: PMC7823676 DOI: 10.3390/v13010030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/19/2020] [Accepted: 12/24/2020] [Indexed: 02/08/2023] Open
Abstract
Influenza A virus subtype H1N1 has caused global pandemics like the “Spanish flu” in 1918 and the 2009 H1N1 pandemic several times. H1N1 remains in circulation and survives in multiple animal sources, including wild birds. Surveillance during the winter of 2018–2019 in Korea revealed two H1N1 isolates in samples collected from wild bird feces: KNU18-64 (A/Greater white-fronted goose/South Korea/KNU18-64/2018(H1N1)) and WKU19-4 (A/wild bird/South Korea/WKU19-4/2019(H1N1)). Phylogenetic analysis indicated that M gene of KNU18-64(H1N1) isolate resembles that of the Alaskan avian influenza virus, whereas WKU19-4(H1N1) appears to be closer to the Mongolian virus. Molecular characterization revealed that they harbor the amino acid sequence PSIQRS↓GLF and are low-pathogenicity influenza viruses. In particular, the two isolates harbored three different mutation sites, indicating that they have different virulence characteristics. The mutations in the PB1-F2 and PA protein of WKU19-4(H1N1) indicate increasing polymerase activity. These results corroborate the kinetic growth data for WKU19-4 in MDCK cells: a dramatic increase in the viral titer after 12 h post-inoculation compared with that in the control group H1N1 (CA/04/09(pdm09)). The KNU18-64(H1N1) isolate carries mutations indicating an increase in mammal adaptation; this characterization was confirmed by the animal study in mice. The KNU18-64(H1N1) group showed the presence of viruses in the lungs at days 3 and 6 post-infection, with titers of 2.71 ± 0.16 and 3.71 ± 0.25 log10(TCID50/mL), respectively, whereas the virus was only detected in the WKU19-4(H1N1) group at day 6 post-infection, with a lower titer of 2.75 ± 0.51 log10(TCID50/mL). The present study supports the theory that there is a relationship between Korea and America with regard to reassortment to produce novel viral strains. Therefore, there is a need for increased surveillance of influenza virus circulation in free-flying and wild land-based birds in Korea, particularly with regard to Alaskan and Asian strains.
Collapse
Affiliation(s)
- Thuy-Tien Thi Trinh
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (T.-T.T.T.); (B.T.D.); (A.T.V.N.); (H.T.T.); (V.T.H.); (D.D.T.)
| | - Bao Tuan Duong
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (T.-T.T.T.); (B.T.D.); (A.T.V.N.); (H.T.T.); (V.T.H.); (D.D.T.)
| | - Anh Thi Viet Nguyen
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (T.-T.T.T.); (B.T.D.); (A.T.V.N.); (H.T.T.); (V.T.H.); (D.D.T.)
| | - Hien Thi Tuong
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (T.-T.T.T.); (B.T.D.); (A.T.V.N.); (H.T.T.); (V.T.H.); (D.D.T.)
| | - Vui Thi Hoang
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (T.-T.T.T.); (B.T.D.); (A.T.V.N.); (H.T.T.); (V.T.H.); (D.D.T.)
| | - Duong Duc Than
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (T.-T.T.T.); (B.T.D.); (A.T.V.N.); (H.T.T.); (V.T.H.); (D.D.T.)
| | - SunJeong Nam
- Division of EcoScience, Ewha University, Seoul 03760, Korea;
| | - Haan Woo Sung
- College of Veterinary Medicine, Kangwon National University, Chuncheon 200-701, Korea;
| | - Ki-Jung Yun
- Department of Pathology, School of Medicine, Wonkwang University, Iksan 570-749, Korea;
| | - Seon-Ju Yeo
- Department of Tropical Medicine and Parasitology, College of Medicine, Seoul National University, Seoul 03080, Korea
- Correspondence: (S.-J.Y.); (H.P.)
| | - Hyun Park
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (T.-T.T.T.); (B.T.D.); (A.T.V.N.); (H.T.T.); (V.T.H.); (D.D.T.)
- Correspondence: (S.-J.Y.); (H.P.)
| |
Collapse
|
20
|
Nguyen NM, Sung HW, Yun KJ, Park H, Yeo SJ. Genetic Characterization of a Novel North American-Origin Avian Influenza A (H6N5) Virus Isolated from Bean Goose of South Korea in 2018. Viruses 2020; 12:v12070774. [PMID: 32709116 PMCID: PMC7411716 DOI: 10.3390/v12070774] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022] Open
Abstract
The complex overlap in waterfowl migratory pathways across the world has established numerous occurrences of genetic reassortment and intercontinental spread of avian influenza virus (AIV) over long distances, thereby calling for huge efforts and targeted surveillance for infection control. During annual surveillance in South Korea in 2018, a novel avian influenza H6N5 (K6) subtype was isolated from the fecal sample of wild bird. Genomic characterization using a phylogenetic tree indicated the K6 virus to be of North American-origin, with partial homology to an H6N5 strain, A/Aix galericulata/South Korea/K17-1638-5/2017 (K17). A monobasic residue at the HA cleavage site and absence of a notable mutation at the HA receptor-binding site suggested the isolate to be of low pathogenicity. However, molecular analysis revealed the E119V mutation in the NA gene and a human host marker mutation E382D in the polymerase acidic (PA) gene, implying their susceptibility to neuraminidase inhibitors and potential infectivity in humans, respectively. For comparison, K6 and K17 were found to be dissimilar for various mutations, such as A274T of PB2, S375N/T of PB1, or V105M of NP, each concerning the increased virulence of K6 in mammalian system. Moreover, kinetic data presented the highest viral titer of this H6N5 isolate at 106.37 log10TCID50 after 48 h of infection, thus proving efficient adaptability for replication in a mammalian system in vitro. The mouse virus challenge study showed insignificant influence on the total body weight, while viral load shedding in lungs peaked at 1.88 ± 0.21 log10 TICD50/mL, six days post infection. The intercontinental transmission of viruses from North America may continuously be present in Korea, thereby providing constant opportunities for virus reassortment with local resident AIVs; these results hint at the increased potential risk of host jumping capabilities of the new isolates. Our findings reinforce the demand for regular surveillance, not only in Korea but also along the flyways in Alaska.
Collapse
Affiliation(s)
- Ngoc Minh Nguyen
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea;
| | - Haan Woo Sung
- College of Veterinary Medicine, Kangwon National University, Chuncheon 200-701, Korea;
| | - Ki-Jung Yun
- Department of Pathology, School of Medicine, Wonkwang University, Iksan 570-749, Korea;
| | - Hyun Park
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea;
- Correspondence: (H.P.); (S.-J.Y.)
| | - Seon-Ju Yeo
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea;
- Correspondence: (H.P.); (S.-J.Y.)
| |
Collapse
|
21
|
Arbi M, Souiai O, Rego N, Larbi I, Naya H, Ghram A, Houimel M. Historical origins and zoonotic potential of avian influenza virus H9N2 in Tunisia revealed by Bayesian analysis and molecular characterization. Arch Virol 2020; 165:1527-1540. [PMID: 32335769 DOI: 10.1007/s00705-020-04624-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/24/2020] [Indexed: 01/08/2023]
Abstract
During 2009-2012, several outbreaks of avian influenza virus H9N2 were reported in Tunisian poultry. The circulating strains carried in their hemagglutinins the human-like marker 226L, which is known to be important for avian-to-human viral transmission. To investigate the origins and zoonotic potential of the Tunisian H9N2 viruses, five new isolates were identified during 2012-2016 and their whole genomes were sequenced. Bayesian-based phylogeny showed that the HA, NA, M and NP segments belong to the G1-like lineage. The PB1, PB2, PA and NS segments appeared to have undergone multiple intersubtype reassortments and to be only distantly related to all of the Eurasian lineages (G1-like, Y280-like and Korean-like). The spatiotemporal dynamic of virus spread revealed that the H9N2 virus was transferred to Tunisia from the UAE through Asian and European pathways. As indicated by Bayesian analysis of host traits, ducks and terrestrial birds played an important role in virus transmission to Tunisia. The subtype phylodynamics showed that the history of the PB1 and PB2 segments was marked by intersubtype reassortments with H4N6, H10N4 and H2N2 subtypes. Most of these transitions between locations, hosts and subtypes were statistically supported (BF > 3) and not influenced by sampling bias. Evidence of genetic evolution was observed in the predicted amino acid sequences of the viral proteins of recent Tunisian H9N2 viruses, which were characterized by the acquisition of new mutations involved in virus adaptation to avian and mammalian hosts and amantadine resistance. This study is the first comprehensive analysis of the evolutionary history of Tunisian H9N2 viruses and highlights the zoonotic risk associated with their circulation in poultry, indicating the need for continuous surveillance of their molecular evolution.
Collapse
Affiliation(s)
- Marwa Arbi
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University Tunis El Manar, 13, Place Pasteur, BP74, 1002, Tunis, Belvedere, Tunisia
| | - Oussema Souiai
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, LR16IPT09, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Natalia Rego
- Bioinformatics Unit, Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay
| | - Imen Larbi
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University Tunis El Manar, 13, Place Pasteur, BP74, 1002, Tunis, Belvedere, Tunisia
| | - Hugo Naya
- Bioinformatics Unit, Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay
- Departmento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República, Av. Gral. Eugenio Garzón 780, 12900, Montevideo, Uruguay
| | - Abdeljelil Ghram
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University Tunis El Manar, 13, Place Pasteur, BP74, 1002, Tunis, Belvedere, Tunisia
| | - Mehdi Houimel
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University Tunis El Manar, 13, Place Pasteur, BP74, 1002, Tunis, Belvedere, Tunisia.
| |
Collapse
|
22
|
Hassan KE, Saad N, Abozeid HH, Shany S, El-Kady MF, Arafa A, El-Sawah AAA, Pfaff F, Hafez HM, Beer M, Harder T. Genotyping and reassortment analysis of highly pathogenic avian influenza viruses H5N8 and H5N2 from Egypt reveals successive annual replacement of genotypes. INFECTION GENETICS AND EVOLUTION 2020; 84:104375. [PMID: 32454245 DOI: 10.1016/j.meegid.2020.104375] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 02/03/2023]
Abstract
Highly pathogenic (HP) H5N1, clade 2.2.1, and low pathogenic avian influenza (LPAI) H9N2 viruses, G1-B lineage, are endemic in poultry in Egypt and have co-circulated for almost a decade. Surprisingly, no inter-subtypic reassortment events have been reported from the field during that time. After the introduction of HPAIV H5N8, clade 2.3.4.4b, in Egyptian poultry in 2016, suddenly HP H5N2 reassortants with H9N2 viruses emerged. The current analyses focussed on studying 32 duck flocks, 4 broiler chicken flocks, and 1 turkey flock, suffering from respiratory manifestations with moderate to high mortality reared in two Egyptian governorates during 2019. Real-time RT-PCR substantiated the presence of HP H5N8 in 21 of the 37 investigated flocks with mixed infection of H9N2 in two of them. HP H5N1 was not detected. Full hemagglutinin (HA) sequencing of 10 samples with full-genome sequencing of three of them revealed presence of a single genotype. Very few substituting mutations in the HA protein were detected versus previous Egyptian HA sequences of that clade. Interestingly, amino acid substitutions in the Matrix (M2) and the Neuraminidase (NA) proteins associated with conferring both Amantadine and Oseltamivir resistance were present. Systematic reassortment analysis of all publicly available Egyptian whole genome sequences of HP H5N8 (n = 23), reassortant HP H5N2 (n = 2) and LP H9N2 (n = 53) viruses revealed presence of at least seven different genotypes of HPAI H5Nx viruses of clade 2.3.4.4b in Egypt since 2016. For H9N2 viruses, at least three genotypes were distinguishable. Heat mapping and tanglegram analyses suggested that several internal gene segments in both HP H5Nx and H9N2 viruses originated from avian influenza viruses circulating in wild bird species in Egypt. Based on the limited set of whole genome sequences available, annual replacement patterns of HP H5Nx genotypes emerged and suggested selective advantages of certain genotypes since 2016.
Collapse
Affiliation(s)
- Kareem E Hassan
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald, Riems, Germany; Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Noha Saad
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, 12618, Dokki, Giza, Egypt
| | - Hassanein H Abozeid
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Salama Shany
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Magdy F El-Kady
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Abdelsatar Arafa
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, 12618, Dokki, Giza, Egypt
| | - Azza A A El-Sawah
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Florian Pfaff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald, Riems, Germany
| | - Hafez M Hafez
- Institute of Poultry Diseases, Free University Berlin, Berlin, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald, Riems, Germany
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald, Riems, Germany.
| |
Collapse
|
23
|
Lutz MM, Dunagan MM, Kurebayashi Y, Takimoto T. Key Role of the Influenza A Virus PA Gene Segment in the Emergence of Pandemic Viruses. Viruses 2020; 12:v12040365. [PMID: 32224899 PMCID: PMC7232137 DOI: 10.3390/v12040365] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 03/24/2020] [Indexed: 12/18/2022] Open
Abstract
Influenza A viruses (IAVs) are a significant human pathogen that cause seasonal epidemics and occasional pandemics. Avian waterfowl are the natural reservoir of IAVs, but a wide range of species can serve as hosts. Most IAV strains are adapted to one host species and avian strains of IAV replicate poorly in most mammalian hosts. Importantly, IAV polymerases from avian strains function poorly in mammalian cells but host adaptive mutations can restore activity. The 2009 pandemic H1N1 (H1N1pdm09) virus acquired multiple mutations in the PA gene that activated polymerase activity in mammalian cells, even in the absence of previously identified host adaptive mutations in other polymerase genes. These mutations in PA localize within different regions of the protein suggesting multiple mechanisms exist to activate polymerase activity. Additionally, an immunomodulatory protein, PA-X, is expressed from the PA gene segment. PA-X expression is conserved amongst many IAV strains but activity varies between viruses specific for different hosts, suggesting that PA-X also plays a role in host adaptation. Here, we review the role of PA in the emergence of currently circulating H1N1pdm09 viruses and the most recent studies of host adaptive mutations in the PA gene that modulate polymerase activity and PA-X function.
Collapse
Affiliation(s)
- Michael M. Lutz
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA (M.M.D.); (Y.K.)
| | - Megan M. Dunagan
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA (M.M.D.); (Y.K.)
| | - Yuki Kurebayashi
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA (M.M.D.); (Y.K.)
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi 422-8526, Japan
| | - Toru Takimoto
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA (M.M.D.); (Y.K.)
- Correspondence: ; Tel.: +1-585-273-2856
| |
Collapse
|
24
|
Suttie A, Deng YM, Greenhill AR, Dussart P, Horwood PF, Karlsson EA. Inventory of molecular markers affecting biological characteristics of avian influenza A viruses. Virus Genes 2019; 55:739-768. [PMID: 31428925 PMCID: PMC6831541 DOI: 10.1007/s11262-019-01700-z] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/09/2019] [Indexed: 12/20/2022]
Abstract
Avian influenza viruses (AIVs) circulate globally, spilling over into domestic poultry and causing zoonotic infections in humans. Fortunately, AIVs are not yet capable of causing sustained human-to-human infection; however, AIVs are still a high risk as future pandemic strains, especially if they acquire further mutations that facilitate human infection and/or increase pathogenesis. Molecular characterization of sequencing data for known genetic markers associated with AIV adaptation, transmission, and antiviral resistance allows for fast, efficient assessment of AIV risk. Here we summarize and update the current knowledge on experimentally verified molecular markers involved in AIV pathogenicity, receptor binding, replicative capacity, and transmission in both poultry and mammals with a broad focus to include data available on other AIV subtypes outside of A/H5N1 and A/H7N9.
Collapse
Affiliation(s)
- Annika Suttie
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, 5 Monivong Blvd, PO Box #983, Phnom Penh, Cambodia
- School of Health and Life Sciences, Federation University, Churchill, Australia
- World Health Organization Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Yi-Mo Deng
- World Health Organization Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Andrew R Greenhill
- School of Health and Life Sciences, Federation University, Churchill, Australia
| | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, 5 Monivong Blvd, PO Box #983, Phnom Penh, Cambodia
| | - Paul F Horwood
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Erik A Karlsson
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, 5 Monivong Blvd, PO Box #983, Phnom Penh, Cambodia.
| |
Collapse
|
25
|
Qu N, Zhao B, Chen Z, He Z, Li W, Liu Z, Wang X, Huang J, Zhang Y, He W, Sun J, Qin Z, Liao M, Jiao P. Genetic characteristics, pathogenicity and transmission of H5N6 highly pathogenic avian influenza viruses in Southern China. Transbound Emerg Dis 2019; 66:2411-2425. [PMID: 31328387 DOI: 10.1111/tbed.13299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 01/29/2023]
Abstract
Since 2014, H5 highly pathogenic avian influenza viruses (HPAIVs) from clade 2.3.4.4 have been persistently circulating in Southern China. This has caused huge losses in the poultry industry. In this study, we analysed the genetic characteristics of seven H5N6 HPAIVs of clade 2.3.4.4 that infected birds in Southern China in 2016. Phylogenetic analysis grouped the HA, PB2, PA, M and NS genes as MIX-like, and the NA genes grouped into the Eurasian lineage. The PB1 genes of the GS24, GS25, CK46 and GS74 strains belonged to the VN 2014-like group and the others were grouped as MIX-like. The NP genes of GS24 and GS25 strains belonged to the ZJ-like group, but the others were MIX-like. Thus, these viruses came from different genotypes, and the GS24, GS25, CK46 and GS74 strains displayed genotype recombination. Additionally, our results showed that the mean death time of all chickens inoculated with 105 EID50 of CK46 or GS74 viruses was 3 and 3.38 days, respectively. The viruses replicated at high titers in all tested tissues of the inoculated chickens. They also replicated in all tested tissues of naive contact chickens, but their replication titers in some tissues were significantly different (p < 0.05). Thus, the viruses displayed high pathogenicity and variable transmission in chickens. Therefore, it is necessary to focus on the pathogenic variation and molecular evolution of H5N6 HPAIVs in order to prevent and control avian influenza in China.
Collapse
Affiliation(s)
- Nannan Qu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Bingbing Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zuxian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhuoliang He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Weiqiang Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhiting Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xia Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jianni Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - You Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wanting He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jie Sun
- Shenzhen Academy of Inspection and Quarantine, Shenzhen, China
| | - Zhifeng Qin
- Shenzhen Academy of Inspection and Quarantine, Shenzhen, China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Peirong Jiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
26
|
Klingen TR, Loers J, Stanelle-Bertram S, Gabriel G, McHardy AC. Structures and functions linked to genome-wide adaptation of human influenza A viruses. Sci Rep 2019; 9:6267. [PMID: 31000776 PMCID: PMC6472403 DOI: 10.1038/s41598-019-42614-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/27/2019] [Indexed: 11/12/2022] Open
Abstract
Human influenza A viruses elicit short-term respiratory infections with considerable mortality and morbidity. While H3N2 viruses circulate for more than 50 years, the recent introduction of pH1N1 viruses presents an excellent opportunity for a comparative analysis of the genome-wide evolutionary forces acting on both subtypes. Here, we inferred patches of sites relevant for adaptation, i.e. being under positive selection, on eleven viral protein structures, from all available data since 1968 and correlated these with known functional properties. Overall, pH1N1 have more patches than H3N2 viruses, especially in the viral polymerase complex, while antigenic evolution is more apparent for H3N2 viruses. In both subtypes, NS1 has the highest patch and patch site frequency, indicating that NS1-mediated viral attenuation of host inflammatory responses is a continuously intensifying process, elevated even in the longtime-circulating subtype H3N2. We confirmed the resistance-causing effects of two pH1N1 changes against oseltamivir in NA activity assays, demonstrating the value of the resource for discovering functionally relevant changes. Our results represent an atlas of protein regions and sites with links to host adaptation, antiviral drug resistance and immune evasion for both subtypes for further study.
Collapse
MESH Headings
- Drug Resistance, Viral/genetics
- Evolution, Molecular
- Genome, Viral/genetics
- Humans
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/pathogenicity
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/pathogenicity
- Influenza, Human/genetics
- Influenza, Human/pathology
- Influenza, Human/virology
- Oseltamivir/therapeutic use
- Respiratory Tract Infections/genetics
- Respiratory Tract Infections/virology
- Viral Nonstructural Proteins/genetics
- Virus Replication/genetics
Collapse
Affiliation(s)
- Thorsten R Klingen
- Department for Computational Biology of Infection Research, Helmholtz Center for Infection Research (HZI), Braunschweig, Germany
| | - Jens Loers
- Department for Computational Biology of Infection Research, Helmholtz Center for Infection Research (HZI), Braunschweig, Germany
| | | | - Gülsah Gabriel
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- University of Veterinary Medicine, Hannover, Germany
| | - Alice C McHardy
- Department for Computational Biology of Infection Research, Helmholtz Center for Infection Research (HZI), Braunschweig, Germany.
- German Center for Infection Research (DZIF), Braunschweig, Germany.
| |
Collapse
|
27
|
Wade A, Jumbo SD, Zecchin B, Fusaro A, Taiga T, Bianco A, Rodrigue PN, Salomoni A, Kameni JMF, Zamperin G, Nenkam R, Foupouapouognigni Y, Abdoulkadiri S, Aboubakar Y, Wiersma L, Cattoli G, Monne I. Highly Pathogenic Avian Influenza A(H5N8) Virus, Cameroon, 2017. Emerg Infect Dis 2019; 24:1367-1370. [PMID: 29912710 PMCID: PMC6038759 DOI: 10.3201/eid2407.172120] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Highly pathogenic avian influenza A(H5N8) viruses of clade 2.3.4.4 spread into West Africa in late 2016 during the autumn bird migration. Genetic characterization of the complete genome of these viruses detected in wild and domestic birds in Cameroon in January 2017 demonstrated the occurrence of multiple virus introductions.
Collapse
|
28
|
Ndumu D, Zecchin B, Fusaro A, Arinaitwe E, Erechu R, Kidega E, Kayiwa J, Muwanga E, Kirumira M, Kirembe G, Lutwama J, Monne I. Highly pathogenic avian influenza H5N8 Clade 2.3.4.4B virus in Uganda, 2017. INFECTION GENETICS AND EVOLUTION 2018; 66:269-271. [PMID: 30342095 DOI: 10.1016/j.meegid.2018.10.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/02/2018] [Accepted: 10/16/2018] [Indexed: 12/01/2022]
Abstract
In early January 2017, outbreaks of H5N8 highly pathogenic avian influenza (HPAI) were reported for the first time in wild and domestic birds along the shores and on some islands of Lake Victoria, in central-southern Uganda. Our whole-genome phylogenetic analyses revealed that the H5N8 viruses recovered from the outbreak in Uganda belonged to genetic clade 2.3.4.4 group-B and clustered with viruses collected in 2017 in the Democratic Republic of the Congo and in West Africa. Our results suggested that infected migratory wild birds might have played a crucial role in the introduction of HPAI H5N8 into this region.
Collapse
Affiliation(s)
- Deo Ndumu
- Directorate of Animal Resources, Ministry of Agriculture, Animal Industry and Fisheries (MAAIF), P.O. Box 513, Entebbe, Uganda
| | - Bianca Zecchin
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università, 10, 35020, Legnaro, Padova, Italy
| | - Alice Fusaro
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università, 10, 35020, Legnaro, Padova, Italy
| | - Eugene Arinaitwe
- Directorate of Animal Resources, Ministry of Agriculture, Animal Industry and Fisheries (MAAIF), P.O. Box 513, Entebbe, Uganda
| | - Richard Erechu
- Directorate of Animal Resources, Ministry of Agriculture, Animal Industry and Fisheries (MAAIF), P.O. Box 513, Entebbe, Uganda
| | - Eugene Kidega
- Directorate of Animal Resources, Ministry of Agriculture, Animal Industry and Fisheries (MAAIF), P.O. Box 513, Entebbe, Uganda
| | - John Kayiwa
- Uganda Virus Research Institute (UVRI), P. O. Box 49, Entebbe, Uganda
| | - Edward Muwanga
- Directorate of Animal Resources, Ministry of Agriculture, Animal Industry and Fisheries (MAAIF), P.O. Box 513, Entebbe, Uganda
| | - Mukasa Kirumira
- Directorate of Animal Resources, Ministry of Agriculture, Animal Industry and Fisheries (MAAIF), P.O. Box 513, Entebbe, Uganda
| | - Gerald Kirembe
- Directorate of Animal Resources, Ministry of Agriculture, Animal Industry and Fisheries (MAAIF), P.O. Box 513, Entebbe, Uganda
| | - Julius Lutwama
- Uganda Virus Research Institute (UVRI), P. O. Box 49, Entebbe, Uganda
| | - Isabella Monne
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università, 10, 35020, Legnaro, Padova, Italy.
| |
Collapse
|
29
|
Voronina O, Ryzhova N, Aksenova E, Kunda M, Sharapova N, Fedyakina I, Chvala I, Borisevich S, Logunov DY, Gintsburg A. Genetic features of highly pathogenic avian influenza viruses A(H5N8), isolated from the European part of the Russian Federation. INFECTION GENETICS AND EVOLUTION 2018; 63:144-150. [DOI: 10.1016/j.meegid.2018.05.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 05/16/2018] [Accepted: 05/23/2018] [Indexed: 11/26/2022]
|
30
|
Chen W, Xu Q, Zhong Y, Yu H, Shu J, Ma T, Li Z. Genetic variation and co-evolutionary relationship of RNA polymerase complex segments in influenza A viruses. Virology 2017; 511:193-206. [PMID: 28866238 DOI: 10.1016/j.virol.2017.07.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 11/19/2022]
Abstract
The RNA polymerase complex (RNApc) in influenza A viruses (IVs) is composed of the PB2, PB1 and PA subunits, which are encoded by the three longest genome segments (Seg1-3) and are responsible for the replication of vRNAs and transcription of viral mRNAs. However, the co-evolutionary relationships of the three segments from the known 126 subtypes IVs are unclear. In this study, we performed a detailed analysis based on a total number of 121,191 nucleotide sequences. Three segment sequences were aligned before the repeated, incomplete and mixed sequences were removed for homologous and phylogenetic analyses. Subsequently, the estimated substitution rates and TMRCAs (Times for Most Recent Common Ancestor) were calculated by 175 representative IVs. Tracing the cladistic distribution of three segments from these IVs, co-evolutionary patterns and trajectories could be inferred. The further correlation analysis of six internal protein coding segments reflect the RNApc segments have the closer correlation than others during continuous reassortments. This global approach facilitates the establishment of a fast antiviral strategy and monitoring of viral variation.
Collapse
Affiliation(s)
- Wentian Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Qi Xu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Yaogang Zhong
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Jian Shu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Tianran Ma
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China.
| |
Collapse
|
31
|
Establishment of MDCK/FX Cell for Efficient Replication of Influenza Viruses. Jundishapur J Microbiol 2017. [DOI: 10.5812/jjm.44891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
32
|
Hu M, Yuan S, Ye ZW, Singh K, Li C, Shuai H, Fai N, Chow BKC, Chu H, Zheng BJ. PAN substitutions A37S, A37S/I61T and A37S/V63I attenuate the replication of H7N7 influenza A virus by impairing the polymerase and endonuclease activities. J Gen Virol 2017; 98:364-373. [PMID: 28113045 DOI: 10.1099/jgv.0.000717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Substitutions in the PA N-terminus (PAN) of influenza A viruses are associated with viral pathogenicity. During our previous study, which identified PAN-V63I and -A37S/I61T/V63I/V100A substitutions as virulence determinants, we observed a severe decrease in virus growth and transcription/replication capacity posed by PAN-A37S/V100A substitution. To further delineate the significance of substitutions at these positions, we generated mutant H7N7 viruses bearing the substitutions PAN-A37S, -A37S/I61T, -A37S/V63I, -V100A, -I61T/V100A and -V63I/V100A by reverse genetics. Our results showed that all mutant viruses except PAN-V100A showed a significantly reduced growth capability in infected cells. At the same time, the PAN-A37S, -A37S/I61T and -A37S/V63I mutant viruses displayed decreased viral transcription and replication by diminishing virus RNA synthesis activity. Biochemical assays indicated that the substitutions PAN-A37S, -A37S/I61T and -A37S/V63I suppressed the polymerase and endonuclease activities when compared with those of the wild-type. Together, our results demonstrated that the PAN-A37S, -A37S/I61T and -A37S/V63I substitutions contributed to a decreased pathogenicity of avian H7N7 influenza A virus.
Collapse
Affiliation(s)
- Meng Hu
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, PR China
| | - Shuofeng Yuan
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, PR China
| | - Zi-Wei Ye
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, PR China
| | - Kailash Singh
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, PR China
| | - Cun Li
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, PR China
| | - Huiping Shuai
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, PR China
| | - Ng Fai
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, PR China
| | - Billy K C Chow
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, PR China
| | - Hin Chu
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, PR China
| | - Bo-Jian Zheng
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong SAR, PR China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR, PR China.,Department of Microbiology, The University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|
33
|
Cloning the Horse RNA Polymerase I Promoter and Its Application to Studying Influenza Virus Polymerase Activity. Viruses 2016; 8:v8060119. [PMID: 27258298 PMCID: PMC4926170 DOI: 10.3390/v8060119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/24/2016] [Accepted: 05/26/2016] [Indexed: 12/20/2022] Open
Abstract
An influenza virus polymerase reconstitution assay based on the human, dog, or chicken RNA polymerase I (PolI) promoter has been developed and widely used to study the polymerase activity of the influenza virus in corresponding cell types. Although it is an important member of the influenza virus family and has been known for sixty years, no studies have been performed to clone the horse PolI promoter or to study the polymerase activity of equine influenza virus (EIV) in horse cells. In our study, the horse RNA PolI promoter was cloned from fetal equine lung cells. Using the luciferase assay, it was found that a 500 bp horse RNA PolI promoter sequence was required for efficient transcription. Then, using the developed polymerase reconstitution assay based on the horse RNA PolI promoter, the polymerase activity of two EIV strains was compared, and equine myxovirus resistance A protein was identified as having the inhibiting EIV polymerase activity function in horse cells. Our study enriches our knowledge of the RNA PolI promoter of eukaryotic species and provides a useful tool for the study of influenza virus polymerase activity in horse cells.
Collapse
|
34
|
Quantifying the risk of pandemic influenza virus evolution by mutation and re-assortment. Vaccine 2015; 33:6955-66. [PMID: 26603954 DOI: 10.1016/j.vaccine.2015.10.056] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 12/27/2022]
Abstract
Large outbreaks of zoonotic influenza A virus (IAV) infections may presage an influenza pandemic. However, the likelihood that an airborne-transmissible variant evolves upon zoonotic infection or co-infection with zoonotic and seasonal IAVs remains poorly understood, as does the relative importance of accumulating mutations versus re-assortment in this process. Using discrete-time probabilistic models, we determined quantitative probability ranges that transmissible variants with 1-5 mutations and transmissible re-assortants evolve after a given number of zoonotic IAV infections. The systematic exploration of a large population of model parameter values was designed to account for uncertainty and variability in influenza virus infection, epidemiological and evolutionary processes. The models suggested that immunocompromised individuals are at high risk of generating IAV variants with pandemic potential by accumulation of mutations. Yet, both immunocompetent and immunocompromised individuals could generate high viral loads of single and double mutants, which may facilitate their onward transmission and the subsequent accumulation of additional 1-2 mutations in newly-infected individuals. This may result in the evolution of a full transmissible genotype along short chains of contact transmission. Although co-infection with zoonotic and seasonal IAVs was shown to be a rare event, it consistently resulted in high viral loads of re-assortants, which may facilitate their onward transmission among humans. The prevention or limitation of zoonotic IAV infection in immunocompromised and contact individuals, including health care workers, as well as vaccination against seasonal IAVs-limiting the risk of co-infection-should be considered fundamental tools to thwart the evolution of a novel pandemic IAV by accumulation of mutations and re-assortment.
Collapse
|
35
|
Sediri H, Schwalm F, Gabriel G, Klenk HD. Adaptive mutation PB2 D701N promotes nuclear import of influenza vRNPs in mammalian cells. Eur J Cell Biol 2015; 94:368-74. [DOI: 10.1016/j.ejcb.2015.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
36
|
Additional Evidence That the Polymerase Subunits Contribute to the Viral Replication and the Virulence of H5N1 Avian Influenza Virus Isolates in Mice. PLoS One 2015; 10:e0124422. [PMID: 25938456 PMCID: PMC4418698 DOI: 10.1371/journal.pone.0124422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/13/2015] [Indexed: 11/23/2022] Open
Abstract
Genetically similar H5N1 viruses circulating in the avian reservoir exhibit different levels of pathogenicity in mice. In this study, we characterized two highly pathogenic H5N1 avian isolates—A/Hunan/316/2005 (HN05), which is highly pathogenic in mice, and A/Hubei/489/2004 (HB04), which is nonpathogenic. In mammalian cells, HN05 replicates more efficiently than HB04, although both viruses have similar growth kinetics in avian cells. We used reverse genetics to generate recombinant H5N1 strains containing genes from HN05 and HB04 and examined their virulence. HN05 genes encoding the polymerase complex determine pathogenicity and viral replication ability both in vitro and in vivo. The PB2 subunit plays an important role in enhancing viral replication, and the PB1 and PA subunits contribute mainly to pathogenicity in mice. These results can be used to elucidate host-range expansion and the molecular basis of the high virulence of H5N1 viruses in mammalian species.
Collapse
|
37
|
Swine Influenza Virus PA and Neuraminidase Gene Reassortment into Human H1N1 Influenza Virus Is Associated with an Altered Pathogenic Phenotype Linked to Increased MIP-2 Expression. J Virol 2015; 89:5651-67. [PMID: 25762737 DOI: 10.1128/jvi.00087-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/04/2015] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED Swine are susceptible to infection by both avian and human influenza viruses, and this feature is thought to contribute to novel reassortant influenza viruses. In this study, the influenza virus reassortment rate in swine and human cells was determined. Coinfection of swine cells with 2009 pandemic H1N1 virus (huH1N1) and an endemic swine H1N2 (A/swine/Illinois/02860/09) virus (swH1N2) resulted in a 23% reassortment rate that was independent of α2,3- or α2,6-sialic acid distribution on the cells. The reassortants had altered pathogenic phenotypes linked to introduction of the swine virus PA and neuraminidase (NA) into huH1N1. In mice, the huH1N1 PA and NA mediated increased MIP-2 expression early postinfection, resulting in substantial pulmonary neutrophilia with enhanced lung pathology and disease. The findings support the notion that swine are a mixing vessel for influenza virus reassortants independent of sialic acid distribution. These results show the potential for continued reassortment of the 2009 pandemic H1N1 virus with endemic swine viruses and for reassortants to have increased pathogenicity linked to the swine virus NA and PA genes which are associated with increased pulmonary neutrophil trafficking that is related to MIP-2 expression. IMPORTANCE Influenza A viruses can change rapidly via reassortment to create a novel virus, and reassortment can result in possible pandemics. Reassortments among subtypes from avian and human viruses led to the 1957 (H2N2 subtype) and 1968 (H3N2 subtype) human influenza pandemics. Recent analyses of circulating isolates have shown that multiple genes can be recombined from human, avian, and swine influenza viruses, leading to triple reassortants. Understanding the factors that can affect influenza A virus reassortment is needed for the establishment of disease intervention strategies that may reduce or preclude pandemics. The findings from this study show that swine cells provide a mixing vessel for influenza virus reassortment independent of differential sialic acid distribution. The findings also establish that circulating neuraminidase (NA) and PA genes could alter the pathogenic phenotype of the pandemic H1N1 virus, resulting in enhanced disease. The identification of such factors provides a framework for pandemic modeling and surveillance.
Collapse
|
38
|
Kamal RP, Katz JM, York IA. Molecular determinants of influenza virus pathogenesis in mice. Curr Top Microbiol Immunol 2015; 385:243-74. [PMID: 25038937 DOI: 10.1007/82_2014_388] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mice are widely used for studying influenza virus pathogenesis and immunology because of their low cost, the wide availability of mouse-specific reagents, and the large number of mouse strains available, including knockout and transgenic strains. However, mice do not fully recapitulate the signs of influenza infection of humans: transmission of influenza between mice is much less efficient than in humans, and influenza viruses often require adaptation before they are able to efficiently replicate in mice. In the process of mouse adaptation, influenza viruses acquire mutations that enhance their ability to attach to mouse cells, replicate within the cells, and suppress immunity, among other functions. Many such mouse-adaptive mutations have been identified, covering all 8 genomic segments of the virus. Identification and analysis of these mutations have provided insight into the molecular determinants of influenza virulence and pathogenesis, not only in mice but also in humans and other species. In particular, several mouse-adaptive mutations of avian influenza viruses have proved to be general mammalian-adaptive changes that are potential markers of pre-pandemic viruses. As well as evaluating influenza pathogenesis, mice have also been used as models for evaluation of novel vaccines and anti-viral therapies. Mice can be a useful animal model for studying influenza biology as long as differences between human and mice infections are taken into account.
Collapse
Affiliation(s)
- Ram P Kamal
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA,
| | | | | |
Collapse
|
39
|
Abstract
The influenza A virus causes a highly contagious respiratory disease that significantly impacts our economy and health. Its replication and transcription is catalyzed by the viral RNA polymerase. This enzyme is also crucial for the virus, because it is involved in the adaptation of zoonotic strains. It is thus of major interest for the development of antiviral therapies and is being intensively studied. In this article, we will discuss recent advances that have improved our knowledge of the structure of the RNA polymerase and how mutations in the polymerase help the virus to spread effectively among new hosts.
Collapse
Affiliation(s)
- Thomas M Stubbs
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK ; Babraham Institute, Brabraham Research Campus, Cambridge, CB22 3AT, UK
| | - Aartjan Jw Te Velthuis
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| |
Collapse
|
40
|
Cauldwell AV, Long JS, Moncorgé O, Barclay WS. Viral determinants of influenza A virus host range. J Gen Virol 2014; 95:1193-1210. [DOI: 10.1099/vir.0.062836-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Typical avian influenza A viruses are restricted from replicating efficiently and causing disease in humans. However, an avian virus can become adapted to humans by mutating or recombining with currently circulating human viruses. These viruses have the potential to cause pandemics in an immunologically naïve human population. It is critical that we understand the molecular basis of host-range restriction and how this can be overcome. Here, we review our current understanding of the mechanisms by which influenza viruses adapt to replicate efficiently in a new host. We predominantly focus on the influenza polymerase, which remains one of the least understood host-range barriers.
Collapse
Affiliation(s)
- Anna V. Cauldwell
- Imperial College London, Faculty of Medicine, Division of Infectious Disease, Norfolk Place, London W2 1PG, UK
| | - Jason S. Long
- Imperial College London, Faculty of Medicine, Division of Infectious Disease, Norfolk Place, London W2 1PG, UK
| | - Olivier Moncorgé
- Imperial College London, Faculty of Medicine, Division of Infectious Disease, Norfolk Place, London W2 1PG, UK
| | - Wendy S. Barclay
- Imperial College London, Faculty of Medicine, Division of Infectious Disease, Norfolk Place, London W2 1PG, UK
| |
Collapse
|
41
|
Belser JA, Tumpey TM. Mammalian models for the study of H7 virus pathogenesis and transmission. Curr Top Microbiol Immunol 2014; 385:275-305. [PMID: 24996862 DOI: 10.1007/82_2014_383] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mammalian models, most notably the mouse and ferret, have been instrumental in the assessment of avian influenza virus pathogenicity and transmissibility, and have been used widely to characterize the molecular determinants that confer H5N1 virulence in mammals. However, while H7 influenza viruses have typically been associated with conjunctivitis and/or mild respiratory disease in humans, severe disease and death is also possible, as underscored by the recent emergence of H7N9 viruses in China. Despite the public health need to understand the pandemic potential of this virus subtype, H7 virus pathogenesis and transmission has not been as extensively studied. In this review, we discuss the heterogeneity of H7 subtype viruses isolated from humans, and the characterization of mammalian models to study the virulence of H7 subtype viruses associated with human infection, including viruses of both high and low pathogenicity and following multiple inoculation routes. The use of the ferret transmission model to assess the influence of receptor binding preference among contemporary H7 influenza viruses is described. These models have enabled the study of preventative and therapeutic agents, including vaccines and antivirals, to reduce disease burden, and have permitted a greater appreciation that not all highly pathogenic influenza viruses are created equal.
Collapse
Affiliation(s)
- Jessica A Belser
- Influenza Division, MS G-16, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA, 30333, USA
| | | |
Collapse
|
42
|
Critical role of segment-specific packaging signals in genetic reassortment of influenza A viruses. Proc Natl Acad Sci U S A 2013; 110:E3840-8. [PMID: 24043788 DOI: 10.1073/pnas.1308649110] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The fragmented nature of the influenza A genome allows the exchange of gene segments when two or more influenza viruses infect the same cell, but little is known about the rules underlying this process. Here, we studied genetic reassortment between the A/Moscow/10/99 (H3N2, MO) virus originally isolated from human and the avian A/Finch/England/2051/91 (H5N2, EN) virus and found that this process is strongly biased. Importantly, the avian HA segment never entered the MO genetic background alone but always was accompanied by the avian PA and M fragments. Introduction of the 5' and 3' packaging sequences of HA(MO) into an otherwise HA(EN) backbone allowed efficient incorporation of the chimerical viral RNA (vRNA) into the MO genetic background. Furthermore, forcing the incorporation of the avian M segment or introducing five silent mutations into the human M segment was sufficient to drive coincorporation of the avian HA segment into the MO genetic background. These silent mutations also strongly affected the genotype of reassortant viruses. Taken together, our results indicate that packaging signals are crucial for genetic reassortment and that suboptimal compatibility between the vRNA packaging signals, which are detected only when vRNAs compete for packaging, limit this process.
Collapse
|
43
|
Evaluation of phenotypic markers in full genome sequences of avian influenza isolates from California. Comp Immunol Microbiol Infect Dis 2013; 36:521-36. [DOI: 10.1016/j.cimid.2013.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 06/14/2013] [Accepted: 06/19/2013] [Indexed: 12/20/2022]
|
44
|
Gabriel G, Czudai-Matwich V, Klenk HD. Adaptive mutations in the H5N1 polymerase complex. Virus Res 2013; 178:53-62. [PMID: 23732876 DOI: 10.1016/j.virusres.2013.05.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 04/04/2013] [Accepted: 05/20/2013] [Indexed: 12/28/2022]
Abstract
Adaptation of the viral polymerase to host factors plays an important role in interspecies transmission of H5N1 viruses. Several adaptive mutations have been identified that, in general, determine not only host range, but also pathogenicity and transmissibility of the virus. The available evidence indicates that most of these mutations are found in the PB2 subunit of the polymerase. Particularly prominent mutations are located in the C-terminal domain of PB2 involving the amino acid exchanges E627K and D701N. Both mutations, that are also responsible for the adaptation of other avian viruses to mammalian hosts, have been described in human H5N1 isolates. In animal models, it could be demonstrated that they enhance pathogenicity in mice and induce contact transmission in guinea pigs. Mutation E627K has also been identified as a determinant of air-borne H5N1 transmission in ferrets. We are only beginning to understand the underlying mechanisms at the molecular level. Thus, mutation D701N promotes importin-α mediated nuclear transport in mammalian cells. Mutation E627K also enhances the replication rate in an importin-α dependent fashion in mammalian cells, yet without affecting nuclear entry of PB2. Numerous other adaptive mutations, some of which compensate for the lack of PB2 E627K, have been observed in PB2 as well as in the polymerase subunit PB1, the nucleoprotein NP, and the nuclear export protein NEP (NS2).
Collapse
Affiliation(s)
- Gülsah Gabriel
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | | | | |
Collapse
|
45
|
Adaptation of avian influenza A virus polymerase in mammals to overcome the host species barrier. J Virol 2013; 87:7200-9. [PMID: 23616660 DOI: 10.1128/jvi.00980-13] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Avian influenza A viruses, such as the highly pathogenic avian H5N1 viruses, sporadically enter the human population but often do not transmit between individuals. In rare cases, however, they establish a new lineage in humans. In addition to well-characterized barriers to cell entry, one major hurdle which avian viruses must overcome is their poor polymerase activity in human cells. There is compelling evidence that these viruses overcome this obstacle by acquiring adaptive mutations in the polymerase subunits PB1, PB2, and PA and the nucleoprotein (NP) as well as in the novel polymerase cofactor nuclear export protein (NEP). Recent findings suggest that synthesis of the viral genome may represent the major defect of avian polymerases in human cells. While the precise mechanisms remain to be unveiled, it appears that a broad spectrum of polymerase adaptive mutations can act collectively to overcome this defect. Thus, identification and monitoring of emerging adaptive mutations that further increase polymerase activity in human cells are critical to estimate the pandemic potential of avian viruses.
Collapse
|
46
|
Runstadler J, Hill N, Hussein ITM, Puryear W, Keogh M. Connecting the study of wild influenza with the potential for pandemic disease. INFECTION GENETICS AND EVOLUTION 2013; 17:162-87. [PMID: 23541413 DOI: 10.1016/j.meegid.2013.02.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 02/25/2013] [Accepted: 02/28/2013] [Indexed: 01/08/2023]
Abstract
Continuing outbreaks of pathogenic (H5N1) and pandemic (SOIVH1N1) influenza have underscored the need to understand the origin, characteristics, and evolution of novel influenza A virus (IAV) variants that pose a threat to human health. In the last 4-5years, focus has been placed on the organization of large-scale surveillance programs to examine the phylogenetics of avian influenza virus (AIV) and host-virus relationships in domestic and wild animals. Here we review the current gaps in wild animal and environmental surveillance and the current understanding of genetic signatures in potentially pandemic strains.
Collapse
|
47
|
Complete Genome Sequences of Six Avian-Like H1N1 Swine Influenza Viruses from Northwestern China. GENOME ANNOUNCEMENTS 2013; 1:genomeA00098-12. [PMID: 23405304 PMCID: PMC3569291 DOI: 10.1128/genomea.00098-12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 11/19/2012] [Indexed: 11/20/2022]
Abstract
Very little is known about swine influenza in northwestern China. Here, we report the complete genomic sequences of six avian-like H1N1 swine influenza viruses (SIVs) isolated in pigs in northwestern China. Phylogenetic analyses of the sequences of eight genomic segments demonstrated that they are avian-like H1N1 SIVs.
Collapse
|
48
|
Cauldwell AV, Moncorgé O, Barclay WS. Unstable polymerase-nucleoprotein interaction is not responsible for avian influenza virus polymerase restriction in human cells. J Virol 2013; 87:1278-84. [PMID: 23115299 PMCID: PMC3554100 DOI: 10.1128/jvi.02597-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 10/27/2012] [Indexed: 11/20/2022] Open
Abstract
Avian-origin influenza virus polymerase activity can be dramatically increased in human cells with the PB2 E627K mutation. Previously, others have proposed that this mutation increases the stability of the viral ribonucleoprotein complex (vRNP) measured by the interaction between PB2 and NP. However, we demonstrate here that a variety of PB2 adaptive mutations, including E627K, do not enhance the stability of the vRNP but rather increase the amount of replicated RNA that results in more PB2-NP coprecipitation.
Collapse
Affiliation(s)
- Anna V Cauldwell
- Imperial College London, Faculty of Medicine, Division of Infectious Disease, London, United Kingdom
| | | | | |
Collapse
|
49
|
Abstract
A novel swine-origin H1N1 influenza virus [A(H1N1)pdm09 virus] caused the 2009 influenza pandemic. Most patients exhibited mild symptoms similar to seasonal influenza, but some experienced severe clinical signs and, in the worst cases, died. Such differences in symptoms are generally associated with preexisting medical conditions, but recent reports indicate the possible involvement of viral factors in clinical severity. To better understand the mechanism of pathogenicity of the A(H1N1)pdm09 virus, here, we compared five viruses that are genetically similar but were isolated from patients with either severe or mild symptoms. In a mouse model, A/Norway/3487/2009 (Norway3487) virus exhibited greater pathogenicity than did A/Osaka/164/2009 (Osaka164) virus. By exploiting reassortant viruses between these two viruses, we found that viruses possessing the hemagglutinin (HA) gene of Norway3487 in the genetic background of Osaka164 were more pathogenic in mice than other reassortant viruses, indicating a role for HA in the high virulence of Norway3487 virus. Intriguingly, a virus possessing HA, NA, and NS derived from Norway3487 exhibited greater pathogenicity in mice in concert with PB2 and PB1 derived from Osaka164 than did the parental Norway3487 virus. These findings demonstrate that reassortment between A(H1N1)pdm09 viruses can lead to increased pathogenicity and highlight the need for continued surveillance of A(H1N1)pdm09 viruses.
Collapse
|
50
|
Farooqui A, Leon AJ, Lei Y, Wang P, Huang J, Tenorio R, Dong W, Rubino S, Lin J, Li G, Zhao Z, Kelvin DJ. Heterogeneous virulence of pandemic 2009 influenza H1N1 virus in mice. Virol J 2012; 9:104. [PMID: 22672588 PMCID: PMC3444956 DOI: 10.1186/1743-422x-9-104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Accepted: 05/10/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Understanding the pathogenesis of influenza infection is a key factor leading to the prevention and control of future outbreaks. Pandemic 2009 Influenza H1N1 infection, although frequently mild, led to a severe and fatal form of disease in certain cases that make its virulence nature debatable. Much effort has been made toward explaining the determinants of disease severity; however, no absolute reason has been established. RESULTS This study presents the heterogeneous virulence of clinically similar strains of pandemic 2009 influenza virus in human alveolar adenocarcinoma cells and mice. The viruses were obtained from patients who were admitted in a local hospital in China with a similar course of infection and recovered. The A/Nanchang/8002/2009 and A/Nanchang/8011/2009 viruses showed efficient replication and high lethality in mice while infection with A/Nanchang/8008/2009 was not lethal with impaired viral replication, minimal pathology and modest proinflammatory activity in lungs. Sequence analysis displayed prominent differences between polymerase subunits (PB2 and PA) of viral genomes that might correlate with their different phenotypic behavior. CONCLUSIONS The study confirms that biological heterogeneity, linked with the extent of viral replication, exists among pandemic H1N1 strains that may serve as a benchmark for future investigations on influenza pathogenesis.
Collapse
Affiliation(s)
- Amber Farooqui
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong, 515041, China
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, ON, M5G 1 L7, Canada
| | - Alberto J Leon
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong, 515041, China
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, ON, M5G 1 L7, Canada
| | - Yanchang Lei
- Division of Viral Hepatitis and Liver Failure, Infectious Disease Hospital, Nanchang University, Nanchang 9th Hospital, 167 Hongdu Middle Road, Nanchang, Jiangxi, 330002, China
| | - Pusheng Wang
- Center for Disease Control and Prevention of Shantou, 58 Shanfen Road, Shantou, Guangdong, 515041, China
| | - Jianyun Huang
- Center for Disease Control and Prevention of Shantou, 58 Shanfen Road, Shantou, Guangdong, 515041, China
| | - Raquel Tenorio
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong, 515041, China
| | - Wei Dong
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong, 515041, China
| | - Salvatore Rubino
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Center for Biotechnology Development and Biodiversity Research, University of Sassari, Sassari, Italy
| | - Jie Lin
- Center for Disease Control and Prevention of Shantou, 58 Shanfen Road, Shantou, Guangdong, 515041, China
| | - Guishuang Li
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong, 515041, China
| | - Zhen Zhao
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong, 515041, China
| | - David J Kelvin
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong, 515041, China
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, ON, M5G 1 L7, Canada
| |
Collapse
|