1
|
Ma AZ, Yeo YY, Lee JF, Kim CM, Ezzatpour S, Menchaca C, Upadhye V, Annand EJ, Eden JS, Plowright RK, Peel AJ, Buchholz DW, Aguilar HC. Functional assessment of the glycoproteins of a novel Hendra virus variant reveals contrasting fusogenic capacities of the receptor-binding and fusion glycoproteins. mBio 2024:e0348223. [PMID: 39704501 DOI: 10.1128/mbio.03482-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
A novel Hendra virus (HeV) genotype (HeV genotype 2 [HeV-g2]) was recently isolated from a deceased horse, revealing high-sequence conservation and antigenic similarities with the prototypic strain, HeV-g1. As the receptor-binding (G) and fusion (F) glycoproteins of HeV are essential for mediating viral entry, functional characterization of emerging HeV genotypic variants is key to understanding viral entry mechanisms and broader virus-host co-evolution. We first confirmed that HeV-g2 and HeV-g1 glycoproteins share a close phylogenetic relationship, underscoring HeV-g2's relevance to global health. Our in vitro data showed that HeV-g2 glycoproteins induced cell-cell fusion in human cells, shared receptor tropism with HeV-g1, and cross-reacted with antibodies raised against HeV-g1. Despite these similarities, HeV-g2 glycoproteins yielded reduced syncytia formation compared to HeV-g1. By expressing heterotypic combinations of HeV-g2, HeV-g1, and Nipah virus (NiV) glycoproteins, we found that while HeV-g2 G had strong fusion-promoting abilities, HeV-g2 F consistently displayed hypofusogenic properties. These fusion phenotypes were more closely associated with those observed in the related NiV. Further investigation using HeV-g1 and HeV-g2 glycoprotein chimeras revealed that multiple domains may play roles in modulating these fusion phenotypes. Altogether, our findings may establish intrinsic fusogenic capacities of viral glycoproteins as a potential driver behind the emergence of new henipaviral variants. IMPORTANCE HeV is a zoonotic pathogen that causes severe disease across various mammalian hosts, including horses and humans. The identification of unrecognized HeV variants, such as HeV-g2, highlights the need to investigate mechanisms that may drive their evolution, transmission, and pathogenicity. Our study reveals that HeV-g2 and HeV-g1 glycoproteins are highly conserved in identity, function, and receptor tropism, yet they differ in their abilities to induce the formation of multinucleated cells (syncytia), which is a potential marker of viral pathogenesis. By using heterotypic combinations of HeV-g2 with either HeV-g1 or NiV glycoproteins, as well as chimeric HeV-g1/HeV-g2 glycoproteins, we demonstrate that the differences in syncytial formation can be attributed to the intrinsic fusogenic capacities of each glycoprotein. Our data indicate that HeV-g2 glycoproteins have fusion phenotypes closely related to those of NiV and that fusion promotion may be a crucial factor driving the emergence of new henipaviral variants.
Collapse
Affiliation(s)
- Andrew Z Ma
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Yao Yu Yeo
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Jean F Lee
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Colin M Kim
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Shahrzad Ezzatpour
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Carolina Menchaca
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Viraj Upadhye
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Edward J Annand
- Epidemiology Surveillance and Laboratory Section, Animal Health Policy Branch, Animal Division, Department of Agriculture Fisheries and Forestry, Canberra, Australian Capital Territory, Australia
| | - John-Sebastian Eden
- Westmead Institute for Medical Research, Centre for Virus Research, Westmead, New South Wales, Australia
| | - Raina K Plowright
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Alison J Peel
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Nathan, Queensland, Australia
| | - David W Buchholz
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Hector C Aguilar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
2
|
Branda F, Pavia G, Ciccozzi A, Quirino A, Marascio N, Matera G, Romano C, Locci C, Azzena I, Pascale N, Sanna D, Casu M, Ceccarelli G, Ciccozzi M, Scarpa F. Zoonotic Paramyxoviruses: Evolution, Ecology, and Public Health Strategies in a Changing World. Viruses 2024; 16:1688. [PMID: 39599803 PMCID: PMC11599060 DOI: 10.3390/v16111688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
The family Paramyxoviridae includes a number of negative RNA viruses known for their wide host range and significant zoonotic potential. In recent years, there has been a surge in the identification of emerging zoonotic paramyxoviruses, particularly those hosted by bat species, which serve as key reservoirs. Among these, the genera Henipavirus and Pararubulavirus are of particular concern. Henipaviruses, including the highly pathogenic Hendra and Nipah viruses, have caused severe outbreaks with high mortality rates in both humans and animals. In contrast, zoonotic pararubulaviruses such as the Menangle virus typically induce mild symptoms or remain asymptomatic in human hosts. This review summarizes current knowledge on the evolution, ecology, and epidemiology of emerging zoonotic paramyxoviruses, focusing on recently discovered viruses and their potential to cause future epidemics. We explore the molecular mechanisms underlying host-switching events, viral replication strategies, and immune evasion tactics that facilitate interspecies transmission. In addition, we discuss ecological factors influencing virus emergence, including changes in bat populations and habitats and the role of wildlife-human interfaces. We also examine the public health impact of these emerging viruses, underlining the importance of enhanced surveillance, developing improved diagnostic tools, and implementing proactive strategies to prevent potential outbreaks. By providing a comprehensive overview of recent advances and gaps in knowledge, this review aims to inform future research directions and public health policies related to zoonotic paramyxoviruses.
Collapse
Affiliation(s)
- Francesco Branda
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy (M.C.)
| | - Grazia Pavia
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Græcia” University of Catanzaro—“Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (G.P.); (A.Q.); (N.M.); (G.M.)
| | - Alessandra Ciccozzi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (C.L.); (D.S.)
| | - Angela Quirino
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Græcia” University of Catanzaro—“Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (G.P.); (A.Q.); (N.M.); (G.M.)
| | - Nadia Marascio
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Græcia” University of Catanzaro—“Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (G.P.); (A.Q.); (N.M.); (G.M.)
| | - Giovanni Matera
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Græcia” University of Catanzaro—“Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (G.P.); (A.Q.); (N.M.); (G.M.)
| | - Chiara Romano
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy (M.C.)
| | - Chiara Locci
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (C.L.); (D.S.)
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (I.A.); (N.P.); (M.C.)
| | - Ilenia Azzena
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (I.A.); (N.P.); (M.C.)
| | - Noemi Pascale
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (I.A.); (N.P.); (M.C.)
- Department of Chemical Physical Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| | - Daria Sanna
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (C.L.); (D.S.)
| | - Marco Casu
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (I.A.); (N.P.); (M.C.)
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, University Hospital Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy;
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy (M.C.)
| | - Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (C.L.); (D.S.)
| |
Collapse
|
3
|
Kaza B, Aguilar HC. Pathogenicity and virulence of henipaviruses. Virulence 2023; 14:2273684. [PMID: 37948320 PMCID: PMC10653661 DOI: 10.1080/21505594.2023.2273684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023] Open
Abstract
Paramyxoviruses are a family of single-stranded negative-sense RNA viruses, many of which are responsible for a range of respiratory and neurological diseases in humans and animals. Among the most notable are the henipaviruses, which include the deadly Nipah (NiV) and Hendra (HeV) viruses, the causative agents of outbreaks of severe disease and high case fatality rates in humans and animals. NiV and HeV are maintained in fruit bat reservoirs primarily in the family Pteropus and spillover into humans directly or by an intermediate amplifying host such as swine or horses. Recently, non-chiropteran associated Langya (LayV), Gamak (GAKV), and Mojiang (MojV) viruses have been discovered with confirmed or suspected ability to cause disease in humans or animals. These viruses are less genetically related to HeV and NiV yet share many features with their better-known counterparts. Recent advances in surveillance of wild animal reservoir viruses have revealed a high number of henipaviral genome sequences distributed across most continents, and mammalian orders previously unknown to harbour henipaviruses. In this review, we summarize the current knowledge on the range of pathogenesis observed for the henipaviruses as well as their replication cycle, epidemiology, genomics, and host responses. We focus on the most pathogenic viruses, including NiV, HeV, LayV, and GAKV, as well as the experimentally non-pathogenic CedV. We also highlight the emerging threats posed by these and potentially other closely related viruses.
Collapse
Affiliation(s)
- Benjamin Kaza
- Department of Microbiology, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Hector C. Aguilar
- Department of Microbiology, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University
| |
Collapse
|
4
|
Li H, Kim JYV, Pickering BS. Henipavirus zoonosis: outbreaks, animal hosts and potential new emergence. Front Microbiol 2023; 14:1167085. [PMID: 37529329 PMCID: PMC10387552 DOI: 10.3389/fmicb.2023.1167085] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023] Open
Abstract
Hendra virus (HeV) and Nipah virus (NiV) are biosafety level 4 zoonotic pathogens causing severe and often fatal neurological and respiratory disease. These agents have been recognized by the World Health Organization as top priority pathogens expected to result in severe future outbreaks. HeV has caused sporadic infections in horses and a small number of human cases in Australia since 1994. The NiV Malaysia genotype (NiV-M) was responsible for the 1998-1999 epizootic outbreak in pigs with spillover to humans in Malaysia and Singapore. Since 2001, the NiV Bangladesh genotype (NiV-B) has been the predominant strain leading to outbreaks almost every year in Bangladesh and India, with hundreds of infections in humans. The natural reservoir hosts of HeV and NiV are fruit bats, which carry the viruses without clinical manifestation. The transmission pathways of henipaviruses from bats to humans remain poorly understood. Transmissions are often bridged by an intermediate animal host, which amplifies and spreads the viruses to humans. Horses and pigs are known intermediate hosts for the HeV outbreaks in Australia and NiV-M epidemic in Malaysia and Singapore, respectively. During the NiV-B outbreaks in Bangladesh, following initial spillover thought to be through the consumption of date palm sap, the spread of infection was largely human-to-human transmission. Spillover of NiV-B in recent outbreaks in India is less understood, with the primary route of transmission from bat reservoir to the initial human infection case(s) unknown and no intermediate host established. This review aims to provide a concise update on the epidemiology of henipaviruses covering their previous and current outbreaks with emphasis on the known and potential role of livestock as intermediate hosts in disease transmission. Also included is an up-to-date summary of newly emerging henipa-like viruses and animal hosts. In these contexts we discuss knowledge gaps and new challenges in the field and propose potential future directions.
Collapse
Affiliation(s)
- Hongzhao Li
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Ji-Young V. Kim
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Bradley S. Pickering
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
5
|
May AJ, Pothula KR, Janowska K, Acharya P. Structures of Langya Virus Fusion Protein Ectodomain in Pre- and Postfusion Conformation. J Virol 2023; 97:e0043323. [PMID: 37278642 PMCID: PMC10308951 DOI: 10.1128/jvi.00433-23] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/13/2023] [Indexed: 06/07/2023] Open
Abstract
Langya virus (LayV) is a paramyxovirus in the Henipavirus genus, closely related to the deadly Nipah (NiV) and Hendra (HeV) viruses, that was identified in August 2022 through disease surveillance following animal exposure in eastern China. Paramyxoviruses present two glycoproteins on their surface, known as attachment and fusion proteins, that mediate entry into cells and constitute the primary antigenic targets for immune response. Here, we determine cryo-electron microscopy (cryo-EM) structures of the uncleaved LayV fusion protein (F) ectodomain in pre- and postfusion conformations. The LayV-F protein exhibits pre- and postfusion architectures that, despite being highly conserved across paramyxoviruses, show differences in their surface properties, in particular at the apex of the prefusion trimer, that may contribute to antigenic variability. While dramatic conformational changes were visualized between the pre- and postfusion forms of the LayV-F protein, several domains remained invariant, held together by highly conserved disulfides. The LayV-F fusion peptide (FP) is buried within a highly conserved, hydrophobic interprotomer pocket in the prefusion state and is notably less flexible than the rest of the protein, highlighting its "spring-loaded" state and suggesting that the mechanism of pre-to-post transition must involve perturbations to the pocket and release of the fusion peptide. Together, these results offer a structural basis for how the Langya virus fusion protein compares to its Henipavirus relatives and propose a mechanism for the initial step of pre- to postfusion conversion that may apply more broadly to paramyxoviruses. IMPORTANCE The Henipavirus genus is quickly expanding into new animal hosts and geographic locations. This study compares the structure and antigenicity of the Langya virus fusion protein to other henipaviruses, which have important vaccine and therapeutic development implications. Furthermore, the study proposes a new mechanism to explain the early steps of the fusion initiation process that can be more broadly applied to the Paramyxoviridae family.
Collapse
Affiliation(s)
- Aaron J. May
- Duke Human Vaccine Institute, Durham, North Carolina, USA
- Duke University, Department of Biochemistry, Durham, North Carolina, USA
| | | | | | - Priyamvada Acharya
- Duke Human Vaccine Institute, Durham, North Carolina, USA
- Duke University, Department of Biochemistry, Durham, North Carolina, USA
- Duke University, Department of Surgery, Durham, North Carolina, USA
| |
Collapse
|
6
|
Amaya M, Yin R, Yan L, Borisevich V, Adhikari BN, Bennett A, Malagon F, Cer RZ, Bishop-Lilly KA, Dimitrov AS, Cross RW, Geisbert TW, Broder CC. A Recombinant Chimeric Cedar Virus-Based Surrogate Neutralization Assay Platform for Pathogenic Henipaviruses. Viruses 2023; 15:1077. [PMID: 37243163 PMCID: PMC10223282 DOI: 10.3390/v15051077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
The henipaviruses, Nipah virus (NiV), and Hendra virus (HeV) can cause fatal diseases in humans and animals, whereas Cedar virus is a nonpathogenic henipavirus. Here, using a recombinant Cedar virus (rCedV) reverse genetics platform, the fusion (F) and attachment (G) glycoprotein genes of rCedV were replaced with those of NiV-Bangladesh (NiV-B) or HeV, generating replication-competent chimeric viruses (rCedV-NiV-B and rCedV-HeV), both with and without green fluorescent protein (GFP) or luciferase protein genes. The rCedV chimeras induced a Type I interferon response and utilized only ephrin-B2 and ephrin-B3 as entry receptors compared to rCedV. The neutralizing potencies of well-characterized cross-reactive NiV/HeV F and G specific monoclonal antibodies against rCedV-NiV-B-GFP and rCedV-HeV-GFP highly correlated with measurements obtained using authentic NiV-B and HeV when tested in parallel by plaque reduction neutralization tests (PRNT). A rapid, high-throughput, and quantitative fluorescence reduction neutralization test (FRNT) using the GFP-encoding chimeras was established, and monoclonal antibody neutralization data derived by FRNT highly correlated with data derived by PRNT. The FRNT assay could also measure serum neutralization titers from henipavirus G glycoprotein immunized animals. These rCedV chimeras are an authentic henipavirus-based surrogate neutralization assay that is rapid, cost-effective, and can be utilized outside high containment.
Collapse
Affiliation(s)
- Moushimi Amaya
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Randy Yin
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20814, USA
| | - Lianying Yan
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20814, USA
| | - Viktoriya Borisevich
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Bishwo N. Adhikari
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Command–Frederick, Fort Detrick, Frederick, MD 21702, USA
- Defense Threat Reduction Agency, Fort Belvoir, VA 22060, USA
| | - Andrew Bennett
- Defense Threat Reduction Agency, Fort Belvoir, VA 22060, USA
- Leidos, Inc., Reston, VA 20190, USA
| | - Francisco Malagon
- Defense Threat Reduction Agency, Fort Belvoir, VA 22060, USA
- Leidos, Inc., Reston, VA 20190, USA
| | - Regina Z. Cer
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Command–Frederick, Fort Detrick, Frederick, MD 21702, USA
| | - Kimberly A. Bishop-Lilly
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Command–Frederick, Fort Detrick, Frederick, MD 21702, USA
| | - Antony S. Dimitrov
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20814, USA
| | - Robert W. Cross
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Thomas W. Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| |
Collapse
|
7
|
IFITM3 promotes NiV envelope protein-mediated entry into MDCK cells and interacts with the fusion subunit of the F protein. Int J Biochem Cell Biol 2022; 153:106325. [DOI: 10.1016/j.biocel.2022.106325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/03/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
|
8
|
Gamble A, Yeo YY, Butler AA, Tang H, Snedden CE, Mason CT, Buchholz DW, Bingham J, Aguilar HC, Lloyd-Smith JO. Drivers and Distribution of Henipavirus-Induced Syncytia: What Do We Know? Viruses 2021; 13:1755. [PMID: 34578336 PMCID: PMC8472861 DOI: 10.3390/v13091755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/21/2021] [Accepted: 08/25/2021] [Indexed: 12/20/2022] Open
Abstract
Syncytium formation, i.e., cell-cell fusion resulting in the formation of multinucleated cells, is a hallmark of infection by paramyxoviruses and other pathogenic viruses. This natural mechanism has historically been a diagnostic marker for paramyxovirus infection in vivo and is now widely used for the study of virus-induced membrane fusion in vitro. However, the role of syncytium formation in within-host dissemination and pathogenicity of viruses remains poorly understood. The diversity of henipaviruses and their wide host range and tissue tropism make them particularly appropriate models with which to characterize the drivers of syncytium formation and the implications for virus fitness and pathogenicity. Based on the henipavirus literature, we summarized current knowledge on the mechanisms driving syncytium formation, mostly acquired from in vitro studies, and on the in vivo distribution of syncytia. While these data suggest that syncytium formation widely occurs across henipaviruses, hosts, and tissues, we identified important data gaps that undermined our understanding of the role of syncytium formation in virus pathogenesis. Based on these observations, we propose solutions of varying complexity to fill these data gaps, from better practices in data archiving and publication for in vivo studies, to experimental approaches in vitro.
Collapse
Affiliation(s)
- Amandine Gamble
- Department of Ecology & Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.A.B.); (H.T.); (C.E.S.); (J.O.L.-S.)
| | - Yao Yu Yeo
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY 14850, USA; (Y.Y.Y.); (D.W.B.); (H.C.A.)
| | - Aubrey A. Butler
- Department of Ecology & Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.A.B.); (H.T.); (C.E.S.); (J.O.L.-S.)
| | - Hubert Tang
- Department of Ecology & Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.A.B.); (H.T.); (C.E.S.); (J.O.L.-S.)
| | - Celine E. Snedden
- Department of Ecology & Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.A.B.); (H.T.); (C.E.S.); (J.O.L.-S.)
| | - Christian T. Mason
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - David W. Buchholz
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY 14850, USA; (Y.Y.Y.); (D.W.B.); (H.C.A.)
| | - John Bingham
- CSIRO Australian Centre for Disease Preparedness, Geelong, VIC 3220, Australia;
| | - Hector C. Aguilar
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY 14850, USA; (Y.Y.Y.); (D.W.B.); (H.C.A.)
| | - James O. Lloyd-Smith
- Department of Ecology & Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.A.B.); (H.T.); (C.E.S.); (J.O.L.-S.)
| |
Collapse
|