1
|
Li YP, Huang ZP, Yang Y, He XB, Pan RL, He XM, Yang GW, Wu H, Cui LW, Xiao W. Ontogenetic Development of Sexual Dimorphism in Body Mass of Wild Black-and-White Snub-Nosed Monkey ( Rhinopithecus bieti). Animals (Basel) 2023; 13:ani13091576. [PMID: 37174611 PMCID: PMC10177520 DOI: 10.3390/ani13091576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/23/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Sexual dimorphism exists widely in animals, manifesting in different forms, such as body size, color, shape, unique characteristics, behavior, and sound. Of these, body mass dimorphism is the most obvious. Studies of evolutionary and ontogenetic development and adaptation mechanisms of animals' sexual dimorphism in body mass (SDBM), allow us to understand how environment, social group size, diet, and other external factors have driven the selection of sexual dimorphism. There are fewer reports of the ontogenetic development of sexual dimorphism in body mass in Rhinopithecus. This study explores the ontogenetic development pattern of SDBM in wild black-and-white snub-nosed monkeys (R. bieti), and the causes resulting in extreme sexual dimorphism compared to other colobines. A significant dimorphism with a ratio of 1.27 (p < 0.001) appears when females enter the reproductive period around six years old, reaching a peak (1.85, p < 0.001) when males become sexually mature. After the age of eight, the SDBM falls to 1.78, but is still significant (p < 0.001). The results also indicate that males had a longer body mass growth period than females (8 years vs. 5 years); females in larger breeding units had a significantly higher SDBM than those in smaller ones (2.12 vs. 1.93, p < 0.01). A comparative analysis with other colobines further clarifies that Rhinopithecus and Nasalis, which both have multilevel social organization, have the highest degree of SDBM among all colobines. The large SDBM in R. bieti can be explained through Bergman's and Rensch's rules. Overall, environmental adaptation, a distinctive alimentary system, and a complex social structure contribute to R. bieti having such a remarkable SDBM compared to other colobines. In addition, we found that females' choice for males may not be significantly related to the development of SDBM.
Collapse
Affiliation(s)
- Yan-Peng Li
- School of Life Sciences, Central China Normal University, Wuhan 430079, China
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali 671003, China
- International Centre of Biodiversity and Primate Conservation, Dali University, Dali 671003, China
| | - Zhi-Pang Huang
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali 671003, China
- International Centre of Biodiversity and Primate Conservation, Dali University, Dali 671003, China
| | - Yin Yang
- International Centre of Biodiversity and Primate Conservation, Dali University, Dali 671003, China
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650091, China
| | - Xiao-Bin He
- Administration of Baimaxueshan National Nature Reserve, Diqing 674500, China
| | - Ru-Liang Pan
- International Centre of Biodiversity and Primate Conservation, Dali University, Dali 671003, China
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth WA 6009, Australia
| | - Xin-Ming He
- Administration of Baimaxueshan National Nature Reserve, Diqing 674500, China
| | - Gui-Wei Yang
- Administration of Gaoligongshan National Nature Reserve in Nujiang, Nujiang 673200, China
| | - Hua Wu
- School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Liang-Wei Cui
- Key Laboratory of Wildlife Conservation for Minimal Population in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Wen Xiao
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali 671003, China
- International Centre of Biodiversity and Primate Conservation, Dali University, Dali 671003, China
| |
Collapse
|
2
|
Minhós T, Borges F, Parreira B, Oliveira R, Aleixo-Pais I, Leendertz FH, Wittig R, Fernandes CR, Marques Silva GHL, Duarte M, Bruford MW, Ferreira da Silva MJ, Chikhi L. The importance of well protected forests for the conservation genetics of West African colobine monkeys. Am J Primatol 2023; 85:e23453. [PMID: 36468411 PMCID: PMC10078001 DOI: 10.1002/ajp.23453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 12/12/2022]
Abstract
In tropical forests, anthropogenic activities are major drivers of the destruction and degradation of natural habitats, causing severe biodiversity loss. African colobine monkeys (Colobinae) are mainly folivore and strictly arboreal primates that require large forests to subsist, being among the most vulnerable of all nonhuman primates. The Western red colobus Piliocolobus badius and the King colobus Colobus polykomos inhabit highly fragmented West African forests, including the Cantanhez Forests National Park (CFNP) in Guinea-Bissau. Both species are also found in the largest and best-preserved West African forest-the Taï National Park (TNP) in Ivory Coast. Colobine monkeys are hunted for bushmeat in both protected areas, but these exhibit contrasting levels of forest fragmentation, thus offering an excellent opportunity to investigate the importance of well-preserved forests for the maintenance of evolutionary potential in these arboreal primates. We estimated genetic diversity, population structure, and demographic history by using microsatellite loci and mitochondrial DNA. We then compared the genetic patterns of the colobines from TNP with the ones previously obtained for CFNP and found contrasting genetic patterns. Contrary to the colobines from CFNP that showed very low genetic diversity and a strong population decline, the populations in TNP still maintain high levels of genetic diversity and we found no clear signal of population decrease in Western red colobus and a limited decrease in King colobus. These results suggest larger and historically more stable populations in TNP compared to CFNP. We cannot exclude the possibility that the demographic effects resulting from the recent increase of bushmeat hunting are not yet detectable in TNP using genetic data. Nevertheless, the fact that the TNP colobus populations are highly genetically diverse and maintain large effective population sizes suggests that well-preserved forests are crucial for the maintenance of populations, species, and probably for the evolutionary potential in colobines.
Collapse
Affiliation(s)
- Tânia Minhós
- Centre for Research in Anthropology (CRIA-NOVA FCSH), Lisboa, Portugal.,Anthropology Department, School of Social Sciences and Humanities, Universidade Nova de Lisboa (NOVA FCSH), Lisboa, Portugal.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Filipa Borges
- Centre for Research in Anthropology (CRIA-NOVA FCSH), Lisboa, Portugal.,Anthropology Department, School of Social Sciences and Humanities, Universidade Nova de Lisboa (NOVA FCSH), Lisboa, Portugal.,Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Centre for Ecology and Conservation (CEC), University of Exeter, Penryn, UK.,CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Vairão, Portugal
| | | | - Rúben Oliveira
- Senciência, Lda., Palácio Baldaya-CoWork Baldaya, Lisboa, Portugal.,cE3c-Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Isa Aleixo-Pais
- Centre for Research in Anthropology (CRIA-NOVA FCSH), Lisboa, Portugal.,Anthropology Department, School of Social Sciences and Humanities, Universidade Nova de Lisboa (NOVA FCSH), Lisboa, Portugal.,Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Fabien H Leendertz
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany.,Helmholtz Institute for One Health, Greifswald, Germany
| | - Roman Wittig
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,The Ape Social Mind Lab, Institut des Sciences Cognitives, CNRS, Bron, Lyon, France.,Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Ivory Coast
| | - Carlos Rodríguez Fernandes
- cE3c-Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,CHANGE-Global Change and Sustainability Institute, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Faculdade de Psicologia, Universidade de Lisboa, Alameda da Universidade, Lisboa, Portugal
| | - Guilherme Henrique Lima Marques Silva
- Centre for Research in Anthropology (CRIA-NOVA FCSH), Lisboa, Portugal.,Anthropology Department, School of Social Sciences and Humanities, Universidade Nova de Lisboa (NOVA FCSH), Lisboa, Portugal.,Department of Behavioural and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Miguel Duarte
- Centre for Research in Anthropology (CRIA-NOVA FCSH), Lisboa, Portugal.,Anthropology Department, School of Social Sciences and Humanities, Universidade Nova de Lisboa (NOVA FCSH), Lisboa, Portugal.,Department of Anthropology, College of Liberal and Fine Arts, University of Texas at San Antonio (UTSA), San Antonio, Texas, USA
| | - Michael W Bruford
- Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Maria Joana Ferreira da Silva
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Vairão, Portugal.,Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Lounès Chikhi
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS, Toulouse, Cedex 9, France
| |
Collapse
|
3
|
Musashi-1 and miR-147 Precursor Interaction Mediates Synergistic Oncogenicity Induced by Co-Infection of Two Avian Retroviruses. Cells 2022; 11:cells11203312. [PMID: 36291177 PMCID: PMC9600308 DOI: 10.3390/cells11203312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Synergism between avian leukosis virus subgroup J (ALV-J) and reticuloendotheliosis virus (REV) has been reported frequently in co-infected chicken flocks. Although significant progress has been made in understanding the tumorigenesis mechanisms of ALV and REV, how these two simple oncogenic retroviruses induce synergistic oncogenicity remains unclear. In this study, we found that ALV-J and REV synergistically promoted mutual replication, suppressed cellular senescence, and activated epithelial-mesenchymal transition (EMT) in vitro. Mechanistically, structural proteins from ALV-J and REV synergistically activated the expression of Musashi-1(MSI1), which directly targeted pri-miR-147 through its RNA binding site. This inhibited the maturation of miR-147, which relieved the inhibition of NF-κB/KIAA1199/EGFR signaling, thereby suppressing cellular senescence and activating EMT. We revealed a synergistic oncogenicity mechanism induced by ALV-J and REV in vitro. The elucidation of the synergistic oncogenicity of these two simple retroviruses could help in understanding the mechanism of tumorigenesis in ALV-J and REV co-infection and help identify promising molecular targets and key obstacles for the joint control of ALV-J and REV and the development of clinical technologies.
Collapse
|
4
|
Occurrence of Equine Foamy Virus Infection in Horses from Poland. Viruses 2022; 14:v14091973. [PMID: 36146781 PMCID: PMC9504846 DOI: 10.3390/v14091973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/28/2022] Open
Abstract
Equine foamy virus (EFVeca) is a foamy virus of non-primate origin and among the least-studied members of this retroviral subfamily. By sequence comparison, EFVeca shows the highest similarity to bovine foamy virus. In contrast to simian, bovine or feline foamy viruses, knowledge about the epidemiology of EFVeca is still limited. Since preliminary studies suggested EFVeca infections among horses in Poland, we aimed to expand the diagnostics of EFVeca infections by developing specific diagnostic tools and apply them to investigate its prevalence. An ELISA test based on recombinant EFVeca Gag protein was developed for serological investigation, while semi-nested PCR for the detection of EFVeca DNA was established. 248 DNA and serum samples from purebred horses, livestock and saddle horses, Hucul horses and semi-feral Polish primitive horses were analyzed in this study. ELISA was standardized, and cut off value, sensitivity and specificity of the test were calculated using Receiver Operating Characteristic and Bayesian estimation. Based on the calculated cut off, 135 horses were seropositive to EFVeca Gag protein, while EFVeca proviral DNA was detected in 85 animals. The rate of infected individuals varied among the horse groups studied; this is the first report confirming the existence of EFVeca infections in horses from Poland using virus-specific tools.
Collapse
|
5
|
Abstract
Over the last two decades, the viromes of our closest relatives, the African great apes (AGA), have been intensively studied. Comparative approaches have unveiled diverse evolutionary patterns, highlighting both stable host-virus associations over extended evolutionary timescales and much more recent viral emergence events. In this chapter, we summarize these findings and outline how they have shed a new light on the origins and evolution of many human-infecting viruses. We also show how this knowledge can be used to better understand the evolution of human health in relation to viral infections.
Collapse
|
6
|
Russell RM, Bibollet-Ruche F, Liu W, Sherrill-Mix S, Li Y, Connell J, Loy DE, Trimboli S, Smith AG, Avitto AN, Gondim MVP, Plenderleith LJ, Wetzel KS, Collman RG, Ayouba A, Esteban A, Peeters M, Kohler WJ, Miller RA, François-Souquiere S, Switzer WM, Hirsch VM, Marx PA, Piel AK, Stewart FA, Georgiev AV, Sommer V, Bertolani P, Hart JA, Hart TB, Shaw GM, Sharp PM, Hahn BH. CD4 receptor diversity represents an ancient protection mechanism against primate lentiviruses. Proc Natl Acad Sci U S A 2021; 118:e2025914118. [PMID: 33771926 PMCID: PMC8020793 DOI: 10.1073/pnas.2025914118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Infection with human and simian immunodeficiency viruses (HIV/SIV) requires binding of the viral envelope glycoprotein (Env) to the host protein CD4 on the surface of immune cells. Although invariant in humans, the Env binding domain of the chimpanzee CD4 is highly polymorphic, with nine coding variants circulating in wild populations. Here, we show that within-species CD4 diversity is not unique to chimpanzees but found in many African primate species. Characterizing the outermost (D1) domain of the CD4 protein in over 500 monkeys and apes, we found polymorphic residues in 24 of 29 primate species, with as many as 11 different coding variants identified within a single species. D1 domain amino acid replacements affected SIV Env-mediated cell entry in a single-round infection assay, restricting infection in a strain- and allele-specific fashion. Several identical CD4 polymorphisms, including the addition of N-linked glycosylation sites, were found in primate species from different genera, providing striking examples of parallel evolution. Moreover, seven different guenons (Cercopithecus spp.) shared multiple distinct D1 domain variants, pointing to long-term trans-specific polymorphism. These data indicate that the HIV/SIV Env binding region of the primate CD4 protein is highly variable, both within and between species, and suggest that this diversity has been maintained by balancing selection for millions of years, at least in part to confer protection against primate lentiviruses. Although long-term SIV-infected species have evolved specific mechanisms to avoid disease progression, primate lentiviruses are intrinsically pathogenic and have left their mark on the host genome.
Collapse
Affiliation(s)
- Ronnie M Russell
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Weimin Liu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Scott Sherrill-Mix
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Yingying Li
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jesse Connell
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Dorothy E Loy
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Stephanie Trimboli
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Andrew G Smith
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Alexa N Avitto
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Marcos V P Gondim
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Lindsey J Plenderleith
- Institute of Evolutionary Biology, University of Edinburgh, EH9 3FL Edinburgh, United Kingdom
- Centre for Immunity, Infection, and Evolution, University of Edinburgh, EH9 3FL Edinburgh, United Kingdom
| | - Katherine S Wetzel
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Ronald G Collman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Ahidjo Ayouba
- Recherche Translationnelle Appliquée au VIH et aux Maladies Infectieuses, Institut de Recherche pour le Développement, University of Montpellier, INSERM, 34090 Montpellier, France
| | - Amandine Esteban
- Recherche Translationnelle Appliquée au VIH et aux Maladies Infectieuses, Institut de Recherche pour le Développement, University of Montpellier, INSERM, 34090 Montpellier, France
| | - Martine Peeters
- Recherche Translationnelle Appliquée au VIH et aux Maladies Infectieuses, Institut de Recherche pour le Développement, University of Montpellier, INSERM, 34090 Montpellier, France
| | - William J Kohler
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Richard A Miller
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | | | - William M Switzer
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329
| | - Vanessa M Hirsch
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Preston A Marx
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70118
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433
| | - Alex K Piel
- Department of Anthropology, University College London, WC1H 0BW London, United Kingdom
| | - Fiona A Stewart
- Department of Anthropology, University College London, WC1H 0BW London, United Kingdom
- School of Biological and Environmental Sciences, Liverpool John Moores University, L3 3AF Liverpool, United Kingdom
| | - Alexander V Georgiev
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138
- School of Biological Sciences, Bangor University, LL57 2UW Bangor, United Kingdom
| | - Volker Sommer
- Department of Anthropology, University College London, WC1H 0BW London, United Kingdom
| | - Paco Bertolani
- Leverhulme Centre for Human Evolutionary Studies, University of Cambridge, CB2 1QH Cambridge, United Kingdom
| | - John A Hart
- Lukuru Wildlife Research Foundation, Tshuapa-Lomami-Lualaba Project, BP 2012, Kinshasa, Democratic Republic of the Congo
| | - Terese B Hart
- Lukuru Wildlife Research Foundation, Tshuapa-Lomami-Lualaba Project, BP 2012, Kinshasa, Democratic Republic of the Congo
| | - George M Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Paul M Sharp
- Institute of Evolutionary Biology, University of Edinburgh, EH9 3FL Edinburgh, United Kingdom
- Centre for Immunity, Infection, and Evolution, University of Edinburgh, EH9 3FL Edinburgh, United Kingdom
| | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104;
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
7
|
Jaguva Vasudevan AA, Becker D, Luedde T, Gohlke H, Münk C. Foamy Viruses, Bet, and APOBEC3 Restriction. Viruses 2021; 13:504. [PMID: 33803830 PMCID: PMC8003144 DOI: 10.3390/v13030504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 01/24/2023] Open
Abstract
Non-human primates (NHP) are an important source of viruses that can spillover to humans and, after adaptation, spread through the host population. Whereas HIV-1 and HTLV-1 emerged as retroviral pathogens in humans, a unique class of retroviruses called foamy viruses (FV) with zoonotic potential are occasionally detected in bushmeat hunters or zookeepers. Various FVs are endemic in numerous mammalian natural hosts, such as primates, felines, bovines, and equines, and other animals, but not in humans. They are apathogenic, and significant differences exist between the viral life cycles of FV and other retroviruses. Importantly, FVs replicate in the presence of many well-defined retroviral restriction factors such as TRIM5α, BST2 (Tetherin), MX2, and APOBEC3 (A3). While the interaction of A3s with HIV-1 is well studied, the escape mechanisms of FVs from restriction by A3 is much less explored. Here we review the current knowledge of FV biology, host restriction factors, and FV-host interactions with an emphasis on the consequences of FV regulatory protein Bet binding to A3s and outline crucial open questions for future studies.
Collapse
Affiliation(s)
- Ananda Ayyappan Jaguva Vasudevan
- Clinic for Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Daniel Becker
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (D.B.); (H.G.)
| | - Tom Luedde
- Clinic for Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (D.B.); (H.G.)
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre & Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|
8
|
van der Kuyl AC. Contemporary Distribution, Estimated Age, and Prehistoric Migrations of Old World Monkey Retroviruses. EPIDEMIOLGIA (BASEL, SWITZERLAND) 2021; 2:46-67. [PMID: 36417189 PMCID: PMC9620922 DOI: 10.3390/epidemiologia2010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/18/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022]
Abstract
Old World monkeys (OWM), simians inhabiting Africa and Asia, are currently affected by at least four infectious retroviruses, namely, simian foamy virus (SFV), simian immunodeficiency virus (SIV), simian T-lymphotropic virus (STLV), and simian type D retrovirus (SRV). OWM also show chromosomal evidence of having been infected in the past with four more retroviral species, baboon endogenous virus (BaEV), Papio cynocephalus endogenous virus (PcEV), simian endogenous retrovirus (SERV), and Rhesus endogenous retrovirus-K (RhERV-K/SERV-K1). For some of the viruses, transmission to other primates still occurs, resulting, for instance, in the HIV pandemic. Retroviruses are intimately connected with their host as they are normally spread by close contact. In this review, an attempt to reconstruct the distribution and history of OWM retroviruses will be made. A literature overview of the species infected by any of the eight retroviruses as well as an age estimation of the pathogens will be given. In addition, primate genomes from databases have been re-analyzed for the presence of endogenous retrovirus integrations. Results suggest that some of the oldest retroviruses, SERV and PcEV, have travelled with their hosts to Asia during the Miocene, when a higher global temperature allowed simian expansions. In contrast, younger viruses, such as SIV and SRV, probably due to the lack of a primate continuum between the continents in later times, have been restricted to Africa and Asia, respectively.
Collapse
Affiliation(s)
- Antoinette C van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
9
|
Halbrook M, Gadoth A, Shankar A, Zheng H, Campbell EM, Hoff NA, Muyembe JJ, Wemakoy EO, Rimoin AW, Switzer WM. Human T-cell lymphotropic virus type 1 transmission dynamics in rural villages in the Democratic Republic of the Congo with high nonhuman primate exposure. PLoS Negl Trop Dis 2021; 15:e0008923. [PMID: 33507996 PMCID: PMC7872225 DOI: 10.1371/journal.pntd.0008923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/09/2021] [Accepted: 10/26/2020] [Indexed: 01/09/2023] Open
Abstract
The Democratic Republic of the Congo (DRC) has a history of nonhuman primate (NHP) consumption and exposure to simian retroviruses yet little is known about the extent of zoonotic simian retroviral infections in DRC. We examined the prevalence of human T-lymphotropic viruses (HTLV), a retrovirus group of simian origin, in a large population of persons with frequent NHP exposures and a history of simian foamy virus infection. We screened plasma from 3,051 persons living in rural villages in central DRC using HTLV EIA and western blot (WB). PCR amplification of HTLV tax and LTR sequences from buffy coat DNA was used to confirm infection and to measure proviral loads (pVLs). We used phylogenetic analyses of LTR sequences to infer evolutionary histories and potential transmission clusters. Questionnaire data was analyzed in conjunction with serological and molecular data. A relatively high proportion of the study population (5.4%, n = 165) were WB seropositive: 128 HTLV-1-like, 3 HTLV-2-like, and 34 HTLV-positive but untypeable profiles. 85 persons had HTLV indeterminate WB profiles. HTLV seroreactivity was higher in females, wives, heads of households, and increased with age. HTLV-1 LTR sequences from 109 persons clustered strongly with HTLV-1 and STLV-1 subtype B from humans and simians from DRC, with most sequences more closely related to STLV-1 from Allenopithecus nigroviridis (Allen's swamp monkey). While 18 potential transmission clusters were identified, most were in different households, villages, and health zones. Three HTLV-1-infected persons were co-infected with simian foamy virus. The mean and median percentage of HTLV-1 pVLs were 5.72% and 1.53%, respectively, but were not associated with age, NHP exposure, village, or gender. We document high HTLV prevalence in DRC likely originating from STLV-1. We demonstrate regional spread of HTLV-1 in DRC with pVLs reported to be associated with HTLV disease, supporting local and national public health measures to prevent spread and morbidity.
Collapse
Affiliation(s)
- Megan Halbrook
- University of California Los Angeles, Fielding School of Public Health, Los Angeles, California, United States of America
| | - Adva Gadoth
- University of California Los Angeles, Fielding School of Public Health, Los Angeles, California, United States of America
| | - Anupama Shankar
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - HaoQiang Zheng
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ellsworth M. Campbell
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Nicole A. Hoff
- University of California Los Angeles, Fielding School of Public Health, Los Angeles, California, United States of America
| | - Jean-Jacques Muyembe
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
| | - Emile Okitolonda Wemakoy
- Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Anne W. Rimoin
- University of California Los Angeles, Fielding School of Public Health, Los Angeles, California, United States of America
| | - William M. Switzer
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
10
|
Genome Analysis and Replication Studies of the African Green Monkey Simian Foamy Virus Serotype 3 Strain FV2014. Viruses 2020; 12:v12040403. [PMID: 32268512 PMCID: PMC7232438 DOI: 10.3390/v12040403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/27/2020] [Accepted: 04/01/2020] [Indexed: 01/23/2023] Open
Abstract
African green monkey (AGM) spumaretroviruses have been less well-studied than other simian foamy viruses (SFVs). We report the biological and genomic characterization of SFVcae_FV2014, which was the first foamy virus isolated from an African green monkey (AGM) and was found to be serotype 3. Infectivity studies in various cell lines from different species (mouse, dog, rhesus monkey, AGM, and human) indicated that like other SFVs, SFVcae_FV2014 had broad species and cell tropism, and in vitro cell culture infection resulted in cytopathic effect (CPE). In Mus dunni (a wild mouse fibroblast cell line), MDCK (Madin-Darby canine kidney cell line), FRhK-4 (a fetal rhesus kidney cell line), and MRC-5 (a human fetal lung cell line), SFVcae_FV2014 infection was productive resulting in CPE, and had delayed or similar replication kinetics compared with SFVmcy_FV21 and SFVmcy_FV34[RF], which are two Taiwanese macaque isolates, designated as serotypes 1 and 2, respectively. However, in Vero (AGM kidney cell line) and A549 (a human lung carcinoma cell line), the replication kinetics of SFVcae_FV2014 and the SFVmcy viruses were discordant: In Vero, SFVcae_FV2014 showed rapid replication kinetics and extensive CPE, and a persistent infection was seen in A549, with delayed, low CPE, which did not progress even upon extended culture (day 55). Nucleotide sequence analysis of the assembled SFVcae_FV2014 genome, obtained by high-throughput sequencing, indicated an overall 80–90% nucleotide sequence identity with SFVcae_LK3, the only available full-length genome sequence of an AGM SFV, and was distinct phylogenetically from other AGM spumaretroviruses, corroborating previous results based on analysis of partial env sequences. Our study confirmed that SFVcae_FV2014 and SFVcae_LK3 are genetically distinct AGM foamy virus (FV) isolates. Furthermore, comparative infectivity studies of SFVcae_FV2014 and SFVmcy isolates showed that although SFVs have a wide host range and cell tropism, regulation of virus replication is complex and depends on the virus strain and cell-specific factors.
Collapse
|
11
|
Simian Foamy Viruses in Central and South America: A New World of Discovery. Viruses 2019; 11:v11100967. [PMID: 31635161 PMCID: PMC6832937 DOI: 10.3390/v11100967] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/16/2022] Open
Abstract
Foamy viruses (FVs) are the only exogenous retrovirus to date known to infect neotropical primates (NPs). In the last decade, an increasing number of strains have been completely or partially sequenced, and molecular evolution analyses have identified an ancient co-speciation with their hosts. In this review, the improvement of diagnostic techniques that allowed the determination of a more accurate prevalence of simian FVs (SFVs) in captive and free-living NPs is discussed. Determination of DNA viral load in American primates indicates that oral tissues are the viral replicative site and that buccal swab collection can be an alternative to diagnose SFV infection in NPs. Finally, the transmission potential of NP SFVs to primate workers in zoos and primate centers of the Americas is examined.
Collapse
|
12
|
Abstract
The full-length sequence of a Papio anubis simian foamy provirus was obtained by using PCR followed by Sanger sequencing. This simian foamy virus from a P. anubis animal (SFVp.anubis) is 13,393 bp long. Like other proviruses, the genome of SFVp.anubis is organized with long terminal repeats (LTRs), as well as gag, pol, env, tas, and bet genes. SFVp.anubis is closer to Old World African strains than to New World ones. The full-length sequence of a Papio anubis simian foamy provirus was obtained by using PCR followed by Sanger sequencing. This simian foamy virus from a P. anubis animal (SFVp.anubis) is 13,393 bp long. Like other proviruses, the genome of SFVp.anubis is organized with long terminal repeats (LTRs), as well as gag, pol, env, tas, and bet genes. SFVp.anubis is closer to Old World African strains than to New World ones.
Collapse
|
13
|
Shankar A, Sibley SD, Goldberg TL, Switzer WM. Molecular Analysis of the Complete Genome of a Simian Foamy Virus Infecting Hylobates pileatus (pileated gibbon) Reveals Ancient Co-Evolution with Lesser Apes. Viruses 2019; 11:E605. [PMID: 31277268 PMCID: PMC6669568 DOI: 10.3390/v11070605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/27/2019] [Accepted: 06/30/2019] [Indexed: 02/07/2023] Open
Abstract
Foamy viruses (FVs) are complex retroviruses present in many mammals, including nonhuman primates, where they are called simian foamy viruses (SFVs). SFVs can zoonotically infect humans, but very few complete SFV genomes are available, hampering the design of diagnostic assays. Gibbons are lesser apes widespread across Southeast Asia that can be infected with SFV, but only two partial SFV sequences are currently available. We used a metagenomics approach with next-generation sequencing of nucleic acid extracted from the cell culture of a blood specimen from a lesser ape, the pileated gibbon (Hylobates pileatus), to obtain the complete SFVhpi_SAM106 genome. We used Bayesian analysis to co-infer phylogenetic relationships and divergence dates. SFVhpi_SAM106 is ancestral to other ape SFVs with a divergence date of ~20.6 million years ago, reflecting ancient co-evolution of the host and SFVhpi_SAM106. Analysis of the complete SFVhpi_SAM106 genome shows that it has the same genetic architecture as other SFVs but has the longest recorded genome (13,885-nt) due to a longer long terminal repeat region (2,071 bp). The complete sequence of the SFVhpi_SAM106 genome fills an important knowledge gap in SFV genetics and will facilitate future studies of FV infection, transmission, and evolutionary history.
Collapse
Affiliation(s)
- Anupama Shankar
- Laboratory Branch, Division of HIV/AIDS Prevention, Center for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Samuel D Sibley
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tony L Goldberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - William M Switzer
- Laboratory Branch, Division of HIV/AIDS Prevention, Center for Disease Control and Prevention, Atlanta, GA 30329, USA.
| |
Collapse
|
14
|
Akoua-Koffi C, Beermann S, Calvignac-Spencer S, Couacy-Hymann E, De Nys H, Ehlers B, Gillespie T, Gilbert J, Gogarten JF, Laney SJ, Lankester F, Leendertz FH, Makepeace B, Nitsche A, Pauli G, Pauly M, Skjerve E, Stern D, Thamm R, Travis D, Unwin S, Wittig R, Wittiger L. Obituary: Siv Aina Jensen Leendertz (Born Siv Aina Jensen: 1973–2018). INT J PRIMATOL 2018. [DOI: 10.1007/s10764-018-0071-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Muniz CP, Zheng H, Jia H, Cavalcante LTF, Augusto AM, Fedullo LP, Pissinatti A, Soares MA, Switzer WM, Santos AF. A non-invasive specimen collection method and a novel simian foamy virus (SFV) DNA quantification assay in New World primates reveal aspects of tissue tropism and improved SFV detection. PLoS One 2017; 12:e0184251. [PMID: 28863180 PMCID: PMC5581185 DOI: 10.1371/journal.pone.0184251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/21/2017] [Indexed: 11/23/2022] Open
Abstract
Simian foamy viruses (SFVs) co-evolved with a wide range of Old World and New World primates (OWPs and NWPs, respectively) and occasionally transmit to humans. Previous studies of OWPs showed that the predominant site of SFV replication is the oral mucosa. However, very little is known about SFV viral loads (VLs) in the oral mucosa or blood of NWPs. NWPs have smaller body sizes, limiting collection of sufficient whole blood volumes to molecularly detect and quantify SFV. Our study evaluated the use of noninvasively collected buccal swabs to detect NWP SFV compared with detection in blood using a new NWP SFV quantitative PCR (qPCR) assay. Buccal and blood samples were collected from 107 captive NWPs in Brazil comprising eleven distinct genera at the Primate Center of Rio de Janeiro (n = 58) and at Fundação Jardim Zoológico da Cidade do Rio Janeiro (n = 49). NWP SFV western blot (WB) testing was performed on a subset of animals for comparison with PCR results. The qPCR assay was validated using distinct SFV polymerase sequences from seven NWP genera (Callithrix, Sapajus, Saimiri, Ateles, Alouatta, Cacajao and Pithecia). Assay sensitivity was 20 copies/106 cells, detectable in 90% of replicates. SFV DNA VLs were higher in buccal swabs (5 log copies/106 cells) compared to peripheral blood mononuclear cells (PBMCs) (3 log copies/106 cells). The qPCR assay was also more sensitive than nested PCR for detection of NWP SFV infection and identified an additional 27 SFV-infected monkeys of which 18 (90%) were WB-positive and three that were WB-negative. We show the utility of using both blood and buccal swabs and our new qPCR assay for detection and quantification of diverse NWP SFV, which will assist a better understanding of the epidemiology of SFV in NWPs and any potential zoonotic infection risk for humans exposed to NWPs.
Collapse
Affiliation(s)
- Cláudia P. Muniz
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - HaoQiang Zheng
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Hongwei Jia
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | | | - Anderson M. Augusto
- Fundação Jardim Zoológico da Cidade do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz P. Fedullo
- Fundação Jardim Zoológico da Cidade do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alcides Pissinatti
- Centro de Primatologia do Rio de Janeiro, Instituto Estadual de Ambiente, Rio de Janeiro, Brazil
| | - Marcelo A. Soares
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Oncovirologia, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - William M. Switzer
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - André F. Santos
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
16
|
Bushmeat Hunting and Zoonotic Transmission of Simian T-Lymphotropic Virus 1 in Tropical West and Central Africa. J Virol 2017; 91:JVI.02479-16. [PMID: 28298599 DOI: 10.1128/jvi.02479-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/21/2017] [Indexed: 01/04/2023] Open
Abstract
Simian T-lymphotropic virus 1 (STLV-1) enters human populations through contact with nonhuman primate (NHP) bushmeat. We tested whether differences in the extent of contact with STLV-1-infected NHP bushmeat foster regional differences in prevalence of human T-lymphotropic virus 1 (HTLV-1). Using serological and PCR assays, we screened humans and NHPs at two Sub-Saharan African sites where subsistence hunting was expected to be less (Taï region, Côte d'Ivoire [CIV]) or more (Bandundu region, Democratic Republic of the Congo [DRC]) developed. Only 0.7% of human participants were infected with HTLV-1 in CIV (n = 574), and 1.3% of humans were infected in DRC (n = 302). Two of the Ivorian human virus sequences were closely related to simian counterparts, indicating ongoing zoonotic transmission. Multivariate analysis of human demographic parameters and behavior confirmed that participants from CIV were less often exposed to NHPs than participants from DRC through direct contact, e.g., butchering. At the same time, numbers of STLV-1-infected NHPs were higher in CIV (39%; n = 111) than in DRC (23%; n = 39). We conclude that similar ultimate risks of zoonotic STLV-1 transmission-defined as the product of prevalence in local NHP and human rates of contact to fresh NHP carcasses-contribute to the observed comparable rates of HTLV-1 infection in humans in CIV and DRC. We found that young adult men and mature women are most likely exposed to NHPs at both sites. In view of the continued difficulties in controlling zoonotic disease outbreaks, the identification of such groups at high risk of NHP exposure may guide future prevention efforts.IMPORTANCE Multiple studies report a high risk for zoonotic transmission of blood-borne pathogens like retroviruses through contact with NHPs, and this risk seems to be particularly high in tropical Africa. Here, we reveal high levels of exposure to NHP bushmeat in two regions of Western and Central tropical Africa. We provide evidence for continued zoonotic origin of HTLV-1 in humans at CIV, and we found that young men and mature women represent risk groups for zoonotic transmission of pathogens from NHPs. Identifying such risk groups can contribute to mitigation of not only zoonotic STLV-1 transmission but also transmission of any blood-borne pathogen onto humans in Sub-Saharan Africa.
Collapse
|
17
|
Lampe K, Rudnick JC, Leendertz F, Bleyer M, Mätz-Rensing K. Intravascular T-cell lymphoma in a patas monkey ( Erythrocebus patas). Primate Biol 2017; 4:39-46. [PMID: 32110691 PMCID: PMC7041513 DOI: 10.5194/pb-4-39-2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 02/13/2017] [Indexed: 11/11/2022] Open
Abstract
A 9-year-old female captive patas monkey (Erythrocebus patas) presented with poor general condition, inability to stand,
petechiae, anaemia, thrombocytopenia, and leukocytosis. Due to poor response
to treatment, the animal was euthanized 16 days later. Postmortem
examination revealed hemorrhages in several organs and bilateral cerebral
infarctions. Histologically, prominent accumulations of large neoplastic
lymphocytes in cerebral and meningeal blood vessels were demonstrated within
the lesions and in other organs (e.g., bone marrow, ovary, intestine).
Immunohistochemically, neoplastic cells expressed CD3 and Ki-67. PCR
revealed a lymphocryptovirus (LCV) infection, while Epstein–Barr nuclear
antigen 2 (EBNA2) could not be demonstrated within neoplastic cells by means
of immunohistochemistry. Based on the pathological findings, an
intravascular lymphoma (IVL) of T-cell origin was diagnosed. To the authors'
knowledge, this is the first report on this rare entity in a nonhuman
primate.
Collapse
Affiliation(s)
- Karen Lampe
- Pathology Unit, German Primate Center, Leibniz-Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | | | | | - Martina Bleyer
- Pathology Unit, German Primate Center, Leibniz-Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Kerstin Mätz-Rensing
- Pathology Unit, German Primate Center, Leibniz-Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| |
Collapse
|
18
|
Reid MJC, Switzer WM, Schillaci MA, Ragonnet-Cronin M, Joanisse I, Caminiti K, Lowenberger CA, Galdikas BMF, Sandstrom PA, Brooks JI. Detailed phylogenetic analysis of primate T-lymphotropic virus type 1 (PTLV-1) sequences from orangutans (Pongo pygmaeus) reveals new insights into the evolutionary history of PTLV-1 in Asia. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2016; 43:434-50. [PMID: 27245152 PMCID: PMC11332081 DOI: 10.1016/j.meegid.2016.05.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 04/28/2016] [Accepted: 05/26/2016] [Indexed: 12/13/2022]
Abstract
While human T-lymphotropic virus type 1 (HTLV-1) originates from ancient cross-species transmission of simian T-lymphotropic virus type 1 (STLV-1) from infected nonhuman primates, much debate exists on whether the first HTLV-1 occurred in Africa, or in Asia during early human evolution and migration. This topic is complicated by a lack of representative Asian STLV-1 to infer PTLV-1 evolutionary histories. In this study we obtained new STLV-1 LTR and tax sequences from a wild-born Bornean orangutan (Pongo pygmaeus) and performed detailed phylogenetic analyses using both maximum likelihood and Bayesian inference of available Asian PTLV-1 and African STLV-1 sequences. Phylogenies, divergence dates and nucleotide substitution rates were co-inferred and compared using six different molecular clock calibrations in a Bayesian framework, including both archaeological and/or nucleotide substitution rate calibrations. We then combined our molecular results with paleobiogeographical and ecological data to infer the most likely evolutionary history of PTLV-1. Based on the preferred models our analyses robustly inferred an Asian source for PTLV-1 with cross-species transmission of STLV-1 likely from a macaque (Macaca sp.) to an orangutan about 37.9-48.9kya, and to humans between 20.3-25.5kya. An orangutan diversification of STLV-1 commenced approximately 6.4-7.3kya. Our analyses also inferred that HTLV-1 was first introduced into Australia ~3.1-3.7kya, corresponding to both genetic and archaeological changes occurring in Australia at that time. Finally, HTLV-1 appears in Melanesia at ~2.3-2.7kya corresponding to the migration of the Lapita peoples into the region. Our results also provide an important future reference for calibrating information essential for PTLV evolutionary timescale inference. Longer sequence data, or full genomes from a greater representation of Asian primates, including gibbons, leaf monkeys, and Sumatran orangutans are needed to fully elucidate these evolutionary dates and relationships using the model criteria suggested herein.
Collapse
Affiliation(s)
- Michael J C Reid
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada; Department of Anthropology, University of Toronto, 19 Russell Street, Toronto, Ontario M5S 2S2, Canada.
| | - William M Switzer
- Laboratory Branch, Division of HIV/AIDS Prevention, Center for Disease Control and Prevention, Atlanta, GA, USA 30329.
| | - Michael A Schillaci
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada; Department of Anthropology, University of Toronto, 19 Russell Street, Toronto, Ontario M5S 2S2, Canada.
| | - Manon Ragonnet-Cronin
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, West Mains Road, Edinburgh EH9 3JT, United Kingdom.
| | - Isabelle Joanisse
- National HIV & Retrovirology Laboratories, JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, 745 Logan Avenue, Winnipeg, Manitoba, R3E 3L5, Canada
| | - Kyna Caminiti
- Centre for Biosecurity, Public Health Agency of Canada, 100 Colonnade Road, Ottawa, Ontario, Canada.
| | - Carl A Lowenberger
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada.
| | - Birute Mary F Galdikas
- Department of Archaeology, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada; Orangutan Foundation International, 824 S. Wellesley Ave., Los Angeles, CA 90049, USA.
| | - Paul A Sandstrom
- National HIV & Retrovirology Laboratories, JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Ottawa, Ontario, Canada.
| | - James I Brooks
- National HIV & Retrovirology Laboratories, JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, 745 Logan Avenue, Winnipeg, Manitoba, R3E 3L5, Canada.
| |
Collapse
|
19
|
Locatelli S, Harrigan RJ, Sesink Clee PR, Mitchell MW, McKean KA, Smith TB, Gonder MK. Why Are Nigeria-Cameroon Chimpanzees (Pan troglodytes ellioti) Free of SIVcpz Infection? PLoS One 2016; 11:e0160788. [PMID: 27505066 PMCID: PMC4978404 DOI: 10.1371/journal.pone.0160788] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/24/2016] [Indexed: 12/26/2022] Open
Abstract
Simian immunodeficiency virus (SIV) naturally infects two subspecies of chimpanzee: Pan troglodytes troglodytes from Central Africa (SIVcpzPtt) and P. t. schweinfurtii from East Africa (SIVcpzPts), but is absent in P. t. verus from West Africa and appears to be absent in P. t. ellioti inhabiting Nigeria and western Cameroon. One explanation for this pattern is that P. t. troglodytes and P. t schweinfurthii may have acquired SIVcpz after their divergence from P. t. verus and P. t. ellioti. However, all of the subspecies, except P. t. verus, still occasionally exchange migrants making the absence of SIVcpz in P. t. ellioti puzzling. Sampling of P. t. ellioti has been minimal to date, particularly along the banks of the Sanaga River, where its range abuts that of P. t. troglodytes. This study had three objectives. First, we extended the sampling of SIVcpz across the range of chimpanzees north of the Sanaga River to address whether under-sampling might account for the absence of evidence for SIVcpz infection in P. t. ellioti. Second, we investigated how environmental variation is associated with the spread and prevalence of SIVcpz in the two chimpanzee subspecies inhabiting Cameroon since environmental variation has been shown to contribute to their divergence from one another. Finally, we compared the prevalence and distribution of SIVcpz with that of Simian Foamy Virus (SFV) to examine the role of ecology and behavior in shaping the distribution of diseases in wild host populations. The dataset includes previously published results on SIVcpz infection and SFVcpz as well as newly collected data, and represents over 1000 chimpanzee fecal samples from 41 locations across Cameroon. Results revealed that none of the 181 P. t. ellioti fecal samples collected across the range of P. t. ellioti tested positive for SIVcpz. In addition, species distribution models suggest that environmental variation contributes to differences in the distribution and prevalence of SIVcpz and SFVcpz. The ecological niches of these two viruses are largely non-overlapping, although stronger statistical support for this conclusion will require more sampling. Overall this study demonstrates that SIVcpz infection is absent or very rare in P. t. ellioti, despite multiple opportunities for transmission. The reasons for its absence remain unclear, but might be explained by one or more factors, including environmental variation, viral competition, and/or local adaptation—all of which should be explored in greater detail through continued surveillance of this region.
Collapse
Affiliation(s)
- Sabrina Locatelli
- Unité Mixte Internationale 233, Institut de Recherche pour le Développement, INSERM U1175, and University of Montpellier, 34394 Montpellier, France
- Department of Biological Sciences, University at Albany – State University of New York, Albany, NY, 12222, United States of America
- * E-mail:
| | - Ryan J. Harrigan
- Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA, 90095, United States of America
| | - Paul R. Sesink Clee
- Department of Biological Sciences, University at Albany – State University of New York, Albany, NY, 12222, United States of America
- Department of Biology, Drexel University, Philadelphia, PA, 19104, United States of America
| | - Matthew W Mitchell
- Department of Biological Sciences, University at Albany – State University of New York, Albany, NY, 12222, United States of America
- Department of Biology, Drexel University, Philadelphia, PA, 19104, United States of America
| | - Kurt A. McKean
- Department of Biological Sciences, University at Albany – State University of New York, Albany, NY, 12222, United States of America
| | - Thomas B. Smith
- Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA, 90095, United States of America
| | - Mary Katherine Gonder
- Department of Biological Sciences, University at Albany – State University of New York, Albany, NY, 12222, United States of America
- Department of Biology, Drexel University, Philadelphia, PA, 19104, United States of America
| |
Collapse
|
20
|
The well-tempered SIV infection: Pathogenesis of SIV infection in natural hosts in the wild, with emphasis on virus transmission and early events post-infection that may contribute to protection from disease progression. INFECTION GENETICS AND EVOLUTION 2016; 46:308-323. [PMID: 27394696 DOI: 10.1016/j.meegid.2016.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 12/25/2022]
Abstract
African NHPs are infected by over 40 different simian immunodeficiency viruses. These viruses have coevolved with their hosts for long periods of time and, unlike HIV in humans, infection does not generally lead to disease progression. Chronic viral replication is maintained for the natural lifespan of the host, without loss of overall immune function. Lack of disease progression is not correlated with transmission, as SIV infection is highly prevalent in many African NHP species in the wild. The exact mechanisms by which these natural hosts of SIV avoid disease progression are still unclear, but a number of factors might play a role, including: (i) avoidance of microbial translocation from the gut lumen by preventing or repairing damage to the gut epithelium; (ii) control of immune activation and apoptosis following infection; (iii) establishment of an anti-inflammatory response that resolves chronic inflammation; (iv) maintenance of homeostasis of various immune cell populations, including NK cells, monocytes/macrophages, dendritic cells, Tregs, Th17 T-cells, and γδ T-cells; (v) restriction of CCR5 availability at mucosal sites; (vi) preservation of T-cell function associated with down-regulation of CD4 receptor. Some of these mechanisms might also be involved in protection of natural hosts from mother-to-infant SIV transmission during breastfeeding. The difficulty of performing invasive studies in the wild has prohibited investigation of the exact events surrounding transmission in natural hosts. Increased understanding of the mechanisms of SIV transmission in natural hosts, and of the early events post-transmission which may contribute to avoidance of disease progression, along with better comprehension of the factors involved in protection from SIV breastfeeding transmission in the natural hosts, could prove invaluable for the development of new prevention strategies for HIV.
Collapse
|
21
|
Switzer WM, Tang S, Zheng H, Shankar A, Sprinkle PS, Sullivan V, Granade TC, Heneine W. Dual Simian Foamy Virus/Human Immunodeficiency Virus Type 1 Infections in Persons from Côte d'Ivoire. PLoS One 2016; 11:e0157709. [PMID: 27310836 PMCID: PMC4911074 DOI: 10.1371/journal.pone.0157709] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 05/06/2016] [Indexed: 11/18/2022] Open
Abstract
Zoonotic transmission of simian retroviruses in West-Central Africa occurring in primate hunters has resulted in pandemic spread of human immunodeficiency viruses (HIVs) and human T-lymphotropic viruses (HTLVs). While simian foamy virus (SFV) and simian T- lymphotropic virus (STLV)-like infection were reported in healthy persons exposed to nonhuman primates (NHPs) in West-Central Africa, less is known about the distribution of these viruses in Western Africa and in hospitalized populations. We serologically screened for SFV and STLV infection using 1,529 specimens collected between 1985 and 1997 from Côte d'Ivoire patients with high HIV prevalence. PCR amplification and analysis of SFV, STLV, and HIV/SIV sequences from PBMCs was used to investigate possible simian origin of infection. We confirmed SFV antibodies in three persons (0.2%), two of whom were HIV-1-infected. SFV polymerase (pol) and LTR sequences were detected in PBMC DNA available for one HIV-infected person. Phylogenetic comparisons with new SFV sequences from African guenons showed infection likely originated from a Chlorocebus sabaeus monkey endemic to Côte d'Ivoire. 4.6% of persons were HTLV seropositive and PCR testing of PBMCs from 15 HTLV seroreactive persons identified nine with HTLV-1 and one with HTLV-2 LTR sequences. Phylogenetic analysis showed that two persons had STLV-1-like infections, seven were HTLV-1, and one was an HTLV-2 infection. 310/858 (53%), 8/858 (0.93%), and 18/858 (2.1%) were HIV-1, HIV-2, and HIV-positive but undifferentiated by serology, respectively. No SIV sequences were found in persons with HIV-2 antibodies (n = 1) or with undifferentiated HIV results (n = 7). We document SFV, STLV-1-like, and dual SFV/HIV infection in Côte d'Ivoire expanding the geographic range for zoonotic simian retrovirus transmission to West Africa. These findings highlight the need to define the public health consequences of these infections. Studying dual HIV-1/SFV infections in immunocompromised populations may provide a new opportunity to better understand SFV pathogenicity and transmissibility in humans.
Collapse
Affiliation(s)
- William M. Switzer
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329, United States of America
| | - Shaohua Tang
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329, United States of America
| | - HaoQiang Zheng
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329, United States of America
| | - Anupama Shankar
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329, United States of America
| | - Patrick S. Sprinkle
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329, United States of America
| | - Vickie Sullivan
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329, United States of America
| | - Timothy C. Granade
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329, United States of America
| | - Walid Heneine
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329, United States of America
| |
Collapse
|
22
|
Abstract
Zoonotic diseases are the main contributor to emerging infectious diseases (EIDs) and present a major threat to global public health. Bushmeat is an important source of protein and income for many African people, but bushmeat-related activities have been linked to numerous EID outbreaks, such as Ebola, HIV, and SARS. Importantly, increasing demand and commercialization of bushmeat is exposing more people to pathogens and facilitating the geographic spread of diseases. To date, these linkages have not been systematically assessed. Here we review the literature on bushmeat and EIDs for sub-Saharan Africa, summarizing pathogens (viruses, fungi, bacteria, helminths, protozoan, and prions) by bushmeat taxonomic group to provide for the first time a comprehensive overview of the current state of knowledge concerning zoonotic disease transmission from bushmeat into humans. We conclude by drawing lessons that we believe are applicable to other developing and developed regions and highlight areas requiring further research to mitigate disease risk.
Collapse
|
23
|
Mossoun A, Pauly M, Akoua-Koffi C, Couacy-Hymann E, Leendertz SAJ, Anoh AE, Gnoukpoho AH, Leendertz FH, Schubert G. Contact to Non-human Primates and Risk Factors for Zoonotic Disease Emergence in the Taï Region, Côte d'Ivoire. ECOHEALTH 2015; 12:580-91. [PMID: 26302959 DOI: 10.1007/s10393-015-1056-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/23/2015] [Accepted: 07/31/2015] [Indexed: 05/25/2023]
Abstract
Elevated exposure levels to non-human primates (NHP) and NHP bushmeat represent major risk factors for zoonotic disease transmission in sub-Saharan Africa. Demography can affect personal nutritional behavior, and thus rates of contact to NHP bushmeat. Here, we analyzed demographic and NHP contact data from 504 participants of differing demographic backgrounds living in proximity to the Taï National Park in Western Côte d'Ivoire (CI) to identify factors impacting the risk of NHP exposure. Overall, participants' contact rates to NHP were high, and increased along a gradient of bushmeat processing (e.g., 7.7% hunted, but 61.9% consumed monkeys). Contact to monkeys was significantly more frequent than to chimpanzees, most likely a reflection of meat availability and hunting effort. 17.2% of participants reported previous interaction with NHP pets. Generalized linear mixed model analysis revealed significant effects of sex, country of birth or ethnicity on rates of NHP bushmeat contact, with male participants from CI being at particular risk of exposure to NHP. The presence of zoonotic pathogens in humans and NHP in Taï further highlights the risk for zoonotic disease emergence in this region. Our results are relevant for formulating prevention strategies to reduce zoonotic pathogen burden in tropical Africa.
Collapse
Affiliation(s)
- Arsène Mossoun
- Laboratoire National d`appui au Développement Agricole/Laboratoire Central de Pathologie Animale, 206, Bingerville, Côte d'Ivoire
- Université Felix Houphouët Boigny, 01 BP V34, Abidjan, Côte d'Ivoire
| | - Maude Pauly
- Project Group "Epidemiology of Highly Pathogenic Microorganisms", Robert Koch Institute, Nordufer 20, 13353, Berlin, Germany.
- Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, 4354, Esch-Sur-Alzette, Luxembourg.
| | - Chantal Akoua-Koffi
- Centre de Recherche pour le Développement, Université Alassane Ouattara of Bouaké, 01 BP V18, Bouaké, Côte d'Ivoire
| | - Emmanuel Couacy-Hymann
- Laboratoire National d`appui au Développement Agricole/Laboratoire Central de Pathologie Animale, 206, Bingerville, Côte d'Ivoire
| | - Siv Aina J Leendertz
- Project Group "Epidemiology of Highly Pathogenic Microorganisms", Robert Koch Institute, Nordufer 20, 13353, Berlin, Germany
| | - Augustin E Anoh
- Laboratoire National d`appui au Développement Agricole/Laboratoire Central de Pathologie Animale, 206, Bingerville, Côte d'Ivoire
- Centre de Recherche pour le Développement, Université Alassane Ouattara of Bouaké, 01 BP V18, Bouaké, Côte d'Ivoire
| | - Ange H Gnoukpoho
- Laboratoire National d`appui au Développement Agricole/Laboratoire Central de Pathologie Animale, 206, Bingerville, Côte d'Ivoire
- Centre de Recherche pour le Développement, Université Alassane Ouattara of Bouaké, 01 BP V18, Bouaké, Côte d'Ivoire
| | - Fabian H Leendertz
- Project Group "Epidemiology of Highly Pathogenic Microorganisms", Robert Koch Institute, Nordufer 20, 13353, Berlin, Germany
| | - Grit Schubert
- Project Group "Epidemiology of Highly Pathogenic Microorganisms", Robert Koch Institute, Nordufer 20, 13353, Berlin, Germany
| |
Collapse
|
24
|
Muniz CP, Jia H, Shankar A, Troncoso LL, Augusto AM, Farias E, Pissinatti A, Fedullo LP, Santos AF, Soares MA, Switzer WM. An expanded search for simian foamy viruses (SFV) in Brazilian New World primates identifies novel SFV lineages and host age-related infections. Retrovirology 2015; 12:94. [PMID: 26576961 PMCID: PMC4650395 DOI: 10.1186/s12977-015-0217-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/20/2015] [Indexed: 11/19/2022] Open
Abstract
Background While simian foamy viruses have co-evolved with their primate hosts for millennia, most scientific studies have focused on understanding infection in Old World primates with little knowledge available on the epidemiology and natural history of SFV infection in New World primates (NWPs). To better understand the geographic and species distribution and evolutionary history of SFV in NWPs we extend our previous studies in Brazil by screening 15 genera consisting of 29 NWP species (140 monkeys total), including five genera (Brachyteles, Cacajao, Callimico, Mico, and Pithecia) not previously analyzed. Monkey blood specimens were tested using a combination of both serology and PCR to more accurately estimate prevalence and investigate transmission patterns. Sequences were phylogenetically analyzed to infer SFV and host evolutionary histories. Results The overall serologic and molecular prevalences were 42.8 and 33.6 %, respectively, with a combined assay prevalence of 55.8 %. Discordant serology and PCR results were observed for 28.5 % of the samples, indicating that both methods are currently necessary for estimating NWP SFV prevalence. SFV prevalence in sexually mature NWPs with a positive result in any of the WB or PCR assays was 51/107 (47.7 %) compared to 20/33 (61 %) for immature animals. Epidemiological analyses revealed an increase in SFV prevalence with age in captive Cebus monkeys. Phylogenetic analysis identified novel SFVs in Cacajao,Leontopithecus, and Chiropotes species that had 6–37 % nucleotide divergence to other NWP SFV. Comparison of host and SFV phylogenies showed an overall cospeciation evolutionary history with rare ancient and contemporaneous host-switching for Saimiri and Leontopithecus and Cebus xanthosternos, respectively. Conclusions We identified novel SFV in four neotropical monkey genera in Brazil and demonstrate that SFV prevalence increases with age in Cebus monkeys. Importantly, our test results suggest that both molecular and serological screening are currently required to accurately determine infection with NWP SFV. Our study significantly expands knowledge of the epidemiology and natural history of NWP SFVs. The tools and information provided in our study will facilitate further investigation of SFV in NWPs and the potential for zoonotic infection with these viruses.
Collapse
Affiliation(s)
- Cláudia P Muniz
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. .,Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, 1600 Clifton Rd., MS G45, Atlanta, 30329, USA.
| | - Hongwei Jia
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, 1600 Clifton Rd., MS G45, Atlanta, 30329, USA.
| | - Anupama Shankar
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, 1600 Clifton Rd., MS G45, Atlanta, 30329, USA.
| | - Lian L Troncoso
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | - Elisabete Farias
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | | | - André F Santos
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Marcelo A Soares
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. .,Programa de Genética, Instituto Nacional de Câncer, Rio de Janeiro, Brazil.
| | - William M Switzer
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, 1600 Clifton Rd., MS G45, Atlanta, 30329, USA.
| |
Collapse
|
25
|
Yoshikawa R, Nakagawa S, Okamoto M, Miyazawa T. Construction of an infectious clone of simian foamy virus of Japanese macaque (SFVjm) and phylogenetic analyses of SFVjm isolates. Gene 2014; 548:149-54. [PMID: 25017058 DOI: 10.1016/j.gene.2014.07.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/30/2014] [Accepted: 07/10/2014] [Indexed: 01/08/2023]
Abstract
Foamy viruses belong to the genus Spumavirus of the family Retroviridae and have been isolated from many mammalian species. It was reported that simian foamy viruses (SFVs) have co-evolved with host species. In this study, we isolated four strains (WK1, WK2, AR1 and AR2) of SFV (named SFVjm) from Japanese macaques (Macaca fuscata) in main island Honshu of Japan. We constructed an infectious molecular clone of SFVjm strain WK1, termed pJM356. The virus derived from the clone replicated and induced syncytia in human (human embryonic kidney 293T cells), African green monkey (Vero cells) and mouse cell lines (Mus dunni tail fibroblast cells). Phylogenetic analysis also revealed that these four SFVjm strains formed two distinct SFVjm clusters. SFVjm strains WK1 and WK2 and SFV isolated from Taiwanese macaques (Macaca cyclopis) formed one cluster, whereas strains AR1 and AR2 formed the other cluster with SFV isolated from a rhesus macaque (Macaca mulatta).
Collapse
Affiliation(s)
- Rokusuke Yoshikawa
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, Kyoto 606-8507, Japan; Laboratory of Virolution, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, Kyoto 606-8507, Japan
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| | - Munehiro Okamoto
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Takayuki Miyazawa
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, Kyoto 606-8507, Japan; Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, Kyoto 606-8507, Japan.
| |
Collapse
|
26
|
Gogarten JF, Akoua-Koffi C, Calvignac-Spencer S, Leendertz SAJ, Weiss S, Couacy-Hymann E, Koné I, Peeters M, Wittig RM, Boesch C, Hahn BH, Leendertz FH. The ecology of primate retroviruses - an assessment of 12 years of retroviral studies in the Taï national park area, Côte d׳Ivoire. Virology 2014; 460-461:147-53. [PMID: 25010280 DOI: 10.1016/j.virol.2014.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 03/24/2014] [Accepted: 05/09/2014] [Indexed: 01/10/2023]
Abstract
The existence and genetic make-up of most primate retroviruses was revealed by studies of bushmeat and fecal samples from unhabituated primate communities. For these, detailed data on intra- and within-species contact rates are generally missing, which makes identification of factors influencing transmission a challenging task. Here we present an assessment of 12 years of research on primate retroviruses in the Taï National Park area, Côte d'Ivoire. We discuss insights gained into the prevalence, within- and cross-species transmission of primate retroviruses (including towards local human populations) and the importance of virus-host interactions in determining cross-species transmission risk. Finally we discuss how retroviruses ecology and evolution may change in a shifting environment and identify avenues for future research.
Collapse
Affiliation(s)
- Jan F Gogarten
- Research group Epidemiology of Highly Pathogenic Microorganisms RKI, Berlin, Germany; Primatology department, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany; Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Chantal Akoua-Koffi
- Reseach Center for the Development and Teaching Hospital, Université Alassane Ouattara de Bouake, Cote d׳Ivoire
| | | | - Siv Aina J Leendertz
- Research group Epidemiology of Highly Pathogenic Microorganisms RKI, Berlin, Germany
| | - Sabrina Weiss
- Research group Epidemiology of Highly Pathogenic Microorganisms RKI, Berlin, Germany
| | | | - Inza Koné
- Taï Monkey Project, Centre Suisse de Recherches Scientifiques, B.P. 1303 Abidjan, Côte d'Ivoire and Laboratory of Zoology, University of Cocody, 22 B.P. 582, Abidjan 22, Côte d׳Ivoire
| | - Martine Peeters
- UMI 233, TransVIHMI, Institute for Research and Development (IRD) and University of Montpellier 1, Montpellier, France
| | - Roman M Wittig
- Primatology department, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Christophe Boesch
- Primatology department, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Beatrice H Hahn
- Department of Microbiology and Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Fabian H Leendertz
- Research group Epidemiology of Highly Pathogenic Microorganisms RKI, Berlin, Germany.
| |
Collapse
|
27
|
Tennie C, O'Malley RC, Gilby IC. Why do chimpanzees hunt? Considering the benefits and costs of acquiring and consuming vertebrate versus invertebrate prey. J Hum Evol 2014; 71:38-45. [DOI: 10.1016/j.jhevol.2014.02.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 02/16/2014] [Accepted: 02/16/2014] [Indexed: 11/30/2022]
|
28
|
|
29
|
Peeters M, D’Arc M, Delaporte E. Origin and diversity of human retroviruses. AIDS Rev 2014; 16:23-34. [PMID: 24584106 PMCID: PMC4289907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Simian immunodeficiency viruses, simian T‑cell lymphotropic viruses, and simian foamy viruses from nonhuman primates have crossed the species barrier to humans at several time points, leading to the HIV and human T lymphotropic virus epidemic and to sporadic cases of human infections with simian foamy viruses, respectively. Efficient infection and spread in humans differs between simian foamy virus, simian lymphotropic virus, and simian immunodeficiency virus, but seems also to differ among the different viruses from the same simian lineage, as illustrated by the different spread of HIV‑1 M, N O, P or for the different HIV‑2 groups. Among the four HIV‑1 groups, only HIV‑1 group M has spread worldwide, and the actual diversity within HIV‑1 M (subtypes, circulating recombinants) is the result of subsequent evolution and spread in the human population. HIV‑2 only spread to some extent in West Africa, and similarly as for HIV‑1, the nine HIV‑2 groups have also a different epidemic history. Four types of human T lymphotropic virus, type 1 to 4, have been described in humans and for three of them simian counterparts (simian T lymphotropic virus‑1, ‑2, ‑3) have been identified in multiple nonhuman primate species. The majority of human infections are with human T lymphotropic virus‑1, which is present throughout the world as clusters of high endemicity. Humans are susceptible to a wide variety of simian foamy viruses and seem to acquire these viruses more readily than simian immunodeficiency viruses or simian T lymphotropic viruses, but neither signs of disease in humans nor human‑to‑human transmission of simian foamy virus have been documented yet. The current HIV‑1 M epidemic illustrates the impact of a single cross‑species transmission. The recent discovery of HIV‑1 P, HIV‑2 I, new human T lymphotropic virus‑1 and ‑3 variants, as well as simian foamy virus infections in humans in Central Africa, show that our knowledge of genetic diversity and cross‑species transmissions of simian retroviruses is still incomplete.
Collapse
Affiliation(s)
- Martine Peeters
- UMI 233, Institut de Recherche pour le Développement (IRD) and University of Montpellier 1, Montpellier, France
- Computational Biology Institute, Montpellier, France
| | - Mirela D’Arc
- UMI 233, Institut de Recherche pour le Développement (IRD) and University of Montpellier 1, Montpellier, France
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eric Delaporte
- UMI 233, Institut de Recherche pour le Développement (IRD) and University of Montpellier 1, Montpellier, France
- Universitary Hospital Gui de Chauliac, Montpellier, France
| |
Collapse
|
30
|
Evidence for continuing cross-species transmission of SIVsmm to humans: characterization of a new HIV-2 lineage in rural Côte d'Ivoire. AIDS 2013; 27:2488-91. [PMID: 23939239 DOI: 10.1097/01.aids.0000432443.22684.50] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
HIV types 1 and 2 (HIV-1 and HIV-2) are the result of multiple cross-species transmissions of their simian counterparts (SIVs) to humans. We studied whether new SIVs lineages have been transmitted to humans in rural Côte d'Ivoire and identified a novel HIV-2 variant (HIV-2-07IC-TNP03) not related to any of the previously defined HIV-2 groups. This finding shows that sooty mangabey viruses continue to be transmitted to humans, causing new zoonotic outbreaks.
Collapse
|
31
|
Muniz CP, Troncoso LL, Moreira MA, Soares EA, Pissinatti A, Bonvicino CR, Seuánez HN, Sharma B, Jia H, Shankar A, Switzer WM, Santos AF, Soares MA. Identification and characterization of highly divergent simian foamy viruses in a wide range of new world primates from Brazil. PLoS One 2013; 8:e67568. [PMID: 23844033 PMCID: PMC3701081 DOI: 10.1371/journal.pone.0067568] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 05/18/2013] [Indexed: 01/08/2023] Open
Abstract
Foamy viruses naturally infect a wide range of mammals, including Old World (OWP) and New World primates (NWP), which are collectively called simian foamy viruses (SFV). While NWP species in Central and South America are highly diverse, only SFV from captive marmoset, spider monkey, and squirrel monkey have been genetically characterized and the molecular epidemiology of SFV infection in NWPs remains unknown. We tested a large collection of genomic DNA (n = 332) comprising 14 genera of NWP species for the presence of SFV polymerase (pol) sequences using generic PCR primers. Further molecular characterization of positive samples was carried out by LTR-gag and larger pol sequence analysis. We identified novel SFVs infecting nine NWP genera. Prevalence rates varied between 14-30% in different species for which at least 10 specimens were tested. High SFV genetic diversity among NWP up to 50% in LTR-gag and 40% in pol was revealed by intragenus and intrafamilial comparisons. Two different SFV strains infecting two captive yellow-breasted capuchins did not group in species-specific lineages but rather clustered with SFVs from marmoset and spider monkeys, indicating independent cross-species transmission events. We describe the first SFV epidemiology study of NWP, and the first evidence of SFV infection in wild NWPs. We also document a wide distribution of distinct SFVs in 14 NWP genera, including two novel co-speciating SFVs in capuchins and howler monkeys, suggestive of an ancient evolutionary history in NWPs for at least 28 million years. A high SFV genetic diversity was seen among NWP, yet these viruses seem able to jump between NWP species and even genera. Our results raise concerns for the risk of zoonotic transmission of NWP SFV to humans as these primates are regularly hunted for food or kept as pets in forest regions of South America.
Collapse
Affiliation(s)
- Cláudia P. Muniz
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lian L. Troncoso
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Miguel A. Moreira
- Programa de Genética, Instituto Nacional de Câncer, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Esmeralda A. Soares
- Programa de Genética, Instituto Nacional de Câncer, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alcides Pissinatti
- Centro de Primatologia do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cibele R. Bonvicino
- Programa de Genética, Instituto Nacional de Câncer, Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Héctor N. Seuánez
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Genética, Instituto Nacional de Câncer, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bechan Sharma
- Department of Biochemistry, University of Allahabad, Allahabad, India
| | - Hongwei Jia
- Division of HIV/AIDS Prevention, Center for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Anupama Shankar
- Division of HIV/AIDS Prevention, Center for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - William M. Switzer
- Division of HIV/AIDS Prevention, Center for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - André F. Santos
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo A. Soares
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Genética, Instituto Nacional de Câncer, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Kirchner S, Mätz-Rensing K, Dorner MB, Leendertz FH, Dorner BG, Leendertz SAJ. Necrotizing endometritis and isolation of an alpha-toxin producing strain of Clostridium septicum in a wild sooty mangabey from Côte d'Ivoire. J Med Primatol 2013; 42:220-4. [PMID: 23617545 DOI: 10.1111/jmp.12047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2013] [Indexed: 11/30/2022]
Abstract
Few lethal pathogens in wild-living primates have been described, and little is known about infectious diseases of the reproductive tract and their possible impact on health and reproduction. This report describes the pathology and isolation of an alpha-toxin producing strain of Clostridium septicum in a case of necrotizing endometritis in a wild sooty mangabey found dead in a tropical rainforest of West Africa.
Collapse
Affiliation(s)
- S Kirchner
- Centre for Biological Threats and Special Pathogens- Biological Toxins (ZBS3), Robert Koch-Institut, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Ayouba A, Duval L, Liégeois F, Ngin S, Ahuka-Mundeke S, Switzer WM, Delaporte E, Ariey F, Peeters M, Nerrienet E. Nonhuman primate retroviruses from Cambodia: high simian foamy virus prevalence, identification of divergent STLV-1 strains and no evidence of SIV infection. INFECTION GENETICS AND EVOLUTION 2013; 18:325-34. [PMID: 23612320 DOI: 10.1016/j.meegid.2013.04.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/05/2013] [Accepted: 04/06/2013] [Indexed: 10/26/2022]
Abstract
Nonhuman primates (NHPs) carry retroviruses such as simian immunodeficiency viruses (SIV), simian T-cell lymphotropic viruses (STLV) and simian foamy viruses (SFV). Here, we revisited NHPs from Cambodia to assess the prevalence and diversity of these retroviruses using updated viral detection tools. We screened blood from 118 NHPs consisting of six species (Macaca fascicularis (n=91), Macaca leonine (n=8), Presbytis cristata (n=3), Nycticebus coucang (n=1), Hylobates pileatus (n=14), and Pongo pygmaeus) (n=1) by using a Luminex-based multiplex serology assay that allows the detection of all known SIV/HIV and SFV lineages. We also used highly sensitive PCR assays to detect each simian retrovirus group. Positive PCR products were sequenced and phylogenetically analyzed to infer evolutionary histories. Fifty-three of 118 (44.9%) NHPs tested positive for SFV by serology and 8/52 (15.4%), all from M. fascicularis, were PCR-confirmed. The 8 novel SFV sequences formed a highly supported distinct lineage within a clade composed of other macaque SFV. We observed no serological or molecular evidence of SIV infection among the 118 NHP samples tested. Four of 118 (3.3%) NHPs were PCR-positive for STLV, including one M. fascicularis, one P. cristata, and two H. pileatus. Phylogenetic analyses revealed that the four novel STLV belonged to the PTLV-1 lineage, outside the African radiation of PTLV-1, like all Asian PTLV identified so far. Sequence analysis of the whole STLV-1 genome from a H. pileatus (C578_Hp) revealed a genetic structure characteristic of PTLV. Similarity analysis comparing the STLV-1 (C578_Hp) sequence with prototype PTLVs showed that C578_Hp is closer to PTLV-1s than to all other types across the entire genome. In conclusion, we showed a high frequency of SFV infection but found no evidence of SIV infection in NHPs from Cambodia. We identified for the first time STLV-1 in a P. cristata and in two H. pileatus.
Collapse
Affiliation(s)
- Ahidjo Ayouba
- UM1 233, Institut de Recherche pour le Développement-IRD and University of Montpellier 1, Montpellier, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mother-offspring transmission and age-dependent accumulation of simian foamy virus in wild chimpanzees. J Virol 2013; 87:5193-204. [PMID: 23449796 DOI: 10.1128/jvi.02743-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simian foamy viruses (SFVs) are thought to infect virtually any adult nonhuman primate (NHP). While many data have accumulated about patterns of codivergence with their hosts and cross-species transmission events, little is known about the modalities of SFV transmission within NHP species, especially in the wild. Here we provide a detailed investigation of the dynamics of SFV circulation in a wild community of Western chimpanzees (Pan troglodytes verus). We demonstrate that mother-offspring (vertical) SFV transmission is common and hypothesize that it accounts for a number of primary infections. We also show that multiple infections with several chimpanzee-specific SFV strains (i.e., superinfection) commonly happen in adult chimpanzees, which might point to adult-specific aggressive behaviors as a lifelong source of SFV infection. Our data give evidence for complex SFV dynamics in wild chimpanzees, even at a single community scale, and show that linking wild NHP social interactions and their microorganisms' dynamics is feasible.
Collapse
|
35
|
Gessain A, Rua R, Betsem E, Turpin J, Mahieux R. HTLV-3/4 and simian foamy retroviruses in humans: discovery, epidemiology, cross-species transmission and molecular virology. Virology 2013; 435:187-99. [PMID: 23217627 PMCID: PMC7111966 DOI: 10.1016/j.virol.2012.09.035] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 09/28/2012] [Indexed: 12/20/2022]
Abstract
Non-human primates are considered to be likely sources of viruses that can infect humans and thus pose a significant threat to human population. This is well illustrated by some retroviruses, as the simian immunodeficiency viruses and the simian T lymphotropic viruses, which have the ability to cross-species, adapt to a new host and sometimes spread. This leads to a pandemic situation for HIV-1 or an endemic one for HTLV-1. Here, we present the available data on the discovery, epidemiology, cross-species transmission and molecular virology of the recently discovered HTLV-3 and HTLV-4 deltaretroviruses, as well as the simian foamy retroviruses present in different human populations at risk, especially in central African hunters. We discuss also the natural history in humans of these retroviruses of zoonotic origin (magnitude and geographical distribution, possible inter-human transmission). In Central Africa, the increase of the bushmeat trade during the last decades has opened new possibilities for retroviral emergence in humans, especially in immuno-compromised persons.
Collapse
Affiliation(s)
- Antoine Gessain
- Institut Pasteur, Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, France, Département de Virologie, Institut Pasteur, 25-28 rue du Dr Roux, 75724 Paris, Cedex 15, France.
| | | | | | | | | |
Collapse
|
36
|
Calvignac-Spencer S, Adjogoua EV, Akoua-Koffi C, Hedemann C, Schubert G, Ellerbrok H, Leendertz SAJ, Pauli G, Leendertz FH. Origin of human T-lymphotropic virus type 1 in rural Côte d'Ivoire. Emerg Infect Dis 2013; 18:830-3. [PMID: 22516514 PMCID: PMC3358045 DOI: 10.3201/eid1805.111663] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Simian T-lymphotropic virus type 1 (STLV-1) strains occasionally infect humans. However, the frequency of such infections is unknown. We show that direct transmission of STLV-1 from nonhuman primates to humans may be responsible for a substantial proportion of human T-lymphotropic virus type 1 infections in rural Côte d'Ivoire, where primate hunting is common.
Collapse
|
37
|
Abstract
Simian foamy viruses (SFVs) are retroviruses that are widespread among nonhuman primates (NHPs). SFVs actively replicate in their oral cavity and can be transmitted to humans after NHP bites, giving rise to a persistent infection even decades after primary infection. Very few data on the genetic structure of such SFVs found in humans are available. In the framework of ongoing studies searching for SFV-infected humans in south Cameroon rainforest villages, we studied 38 SFV-infected hunters whose times of infection had presumably been determined. By long-term cocultures of peripheral blood mononuclear cells with BHK-21 cells, we isolated five new SFV strains and obtained complete genomes of SFV strains from chimpanzee (Pan troglodytes troglodytes; strains BAD327 and AG15), monkey (Cercopithecus nictitans; strain AG16), and gorilla (Gorilla gorilla; strains BAK74 and BAD468). These zoonotic strains share a very high degree of similarity with their NHP counterparts and have a high degree of conservation of the genetic elements important for viral replication. Interestingly, analysis of FV DNA sequences obtained before cultivation revealed variants with deletions in both the U3 region and tas that may correlate with in vivo chronicity in humans. Genomic changes in bet (a premature stop codon) and gag were also observed. To determine if such changes were specific to zoonotic strains, we studied local SFV-infected chimpanzees and found the same genomic changes. Our study reveals that natural polymorphism of SFV strains does exist at both the intersubspecies level (gag, bet) and the intrasubspecies (U3, tas) levels but does not seem to reflect a viral adaptation specific to zoonotic SFV strains.
Collapse
|
38
|
Abstract
Infectious disease plays a major role in the lives of wild primates, and the past decade has witnessed significant strides in our understanding of primate disease ecology. In this review, I briefly describe some key findings from phylogenetic comparative approaches, focusing on analyses of parasite richness that use the Global Mammal Parasite Database. While these studies have provided new answers to fundamental questions, new questions have arisen, including questions about the underlying epidemiological mechanisms that produce the broader phylogenetic patterns. I discuss two examples in which theoretical models have given us new traction on these comparative questions. First, drawing on findings of a positive association between range use intensity and the richness of helminth parasites, we developed a spatially explicit agent-based model to investigate the underlying drivers of this pattern. From this model, we are gaining deeper understanding of how range use intensity results in greater exposure to parasites, thus producing higher prevalence in the simulated populations-and, plausibly, higher parasite richness in comparative analyses. Second, I show how a model of disease spread on social networks provides solid theoretical foundations for understanding the effects of sociality and group size on parasitism across primate species. This study further revealed that larger social groups are more subdivided, which should slow the spread of infectious diseases. This effect could offset the increased disease risk expected in larger social groups, which has yet to receive strong empirical support in our comparative analyses. In addition to these examples, I discuss the need for more meta-analyses of individual-level phenomena documented in the field, and for greater linkage between theoretical modeling and field research.
Collapse
Affiliation(s)
- Charles L Nunn
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
39
|
Huang F, Wang H, Jing S, Zeng W. Simian foamy virus prevalence in Macaca mulatta and zookeepers. AIDS Res Hum Retroviruses 2012; 28:591-3. [PMID: 22236106 DOI: 10.1089/aid.2011.0305] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The simian foamy virus (SFV) has been reported to be transmissible among humans occupationally exposed to nonhuman primates. Nevertheless, epidemiological and genotypic data on the SFV in Macaca mulatta and zookeepers in China are limited. In the present study, SFV proviral DNA was detected in 74 blood samples from M. mulatta and 12 saliva specimens from zookeepers by nested polymerase chain reaction. A total of 29 blood samples from M. mulatta (29/74, 39.19%) and two saliva specimens from zookeepers (2/12, 16.67%) were positive. The phylogenetic analysis indicated that these SFV strains shared the highest homology with Macaca fascicularis (93.4%). The two SFV strains infected human beings, and shared the highest homology of 98.6% with each other as well as 90.8-99.5% with M. mulatta. The investigation revealed the high prevalence of the SFV in M. mulatta in China and its zoonotic transmission to humans.
Collapse
Affiliation(s)
- Fen Huang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Huixuan Wang
- Kunming General Hospital of Chengdu Military Region, Kunming, China
| | - Shenrong Jing
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Weikun Zeng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
40
|
Ahuka-Mundeke S, Mbala-Kingebeni P, Liegeois F, Ayouba A, Lunguya-Metila O, Demba D, Bilulu G, Mbenzo-Abokome V, Inogwabini BI, Muyembe-Tamfum JJ, Delaporte E, Peeters M. Identification and molecular characterization of new simian T cell lymphotropic viruses in nonhuman primates bushmeat from the Democratic Republic of Congo. AIDS Res Hum Retroviruses 2012; 28:628-35. [PMID: 21827287 DOI: 10.1089/aid.2011.0211] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Four types of human T cell lymphotropic viruses (HTLV) have been described (HTLV-1 to HTLV-4) with three of them having closely related simian virus analogues named STLV-1, -2, and -3. To assess the risk of cross-species transmissions of STLVs from nonhuman primates to humans in the Democratic Republic of Congo, a total of 330 samples, derived from primate bushmeat, were collected at remote forest sites where people rely on bushmeat for subsistence. STLV prevalences and genetic diversity were estimated by PCR and sequence analysis of tax-rex and LTR fragments. Overall, 7.9% of nonhuman primate bushmeat is infected with STLVs. We documented new STLV-1 and STLV-3 variants in six out of the seven species tested and showed for the first time STLV infection in C. mona wolfi, C. ascanius whitesidei, L. aterrimus aterrimus, C. angolensis, and P. tholloni. Our results provide increasing evidence that the diversity and geographic distribution of PTLVs are much greater than previously thought.
Collapse
Affiliation(s)
- Steve Ahuka-Mundeke
- UM1 233, Institut de Recherche pour le Developpement (IRD) and University of Montpellier 1, Montpellier, France
- Institut National de Recherche Biomédicales, Kinshasa, Democratic Republic of Congo
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Placide Mbala-Kingebeni
- Institut National de Recherche Biomédicales, Kinshasa, Democratic Republic of Congo
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Florian Liegeois
- UM1 233, Institut de Recherche pour le Developpement (IRD) and University of Montpellier 1, Montpellier, France
| | - Ahidjo Ayouba
- UM1 233, Institut de Recherche pour le Developpement (IRD) and University of Montpellier 1, Montpellier, France
| | - Octavie Lunguya-Metila
- Institut National de Recherche Biomédicales, Kinshasa, Democratic Republic of Congo
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Didace Demba
- Zone de Santé de Kole, Sankuru, Kasai Oriental, Democratic Republic of Congo
| | - Guy Bilulu
- Zone de Santé de Kole, Sankuru, Kasai Oriental, Democratic Republic of Congo
| | | | | | - Jean-Jacques Muyembe-Tamfum
- Institut National de Recherche Biomédicales, Kinshasa, Democratic Republic of Congo
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Eric Delaporte
- UM1 233, Institut de Recherche pour le Developpement (IRD) and University of Montpellier 1, Montpellier, France
| | - Martine Peeters
- UM1 233, Institut de Recherche pour le Developpement (IRD) and University of Montpellier 1, Montpellier, France
| |
Collapse
|
41
|
Goffe AS, Blasse A, Mundry R, Leendertz FH, Calvignac-Spencer S. Detection of retroviral super-infection from non-invasive samples. PLoS One 2012; 7:e36570. [PMID: 22590569 PMCID: PMC3348140 DOI: 10.1371/journal.pone.0036570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 04/10/2012] [Indexed: 01/08/2023] Open
Abstract
While much attention has been focused on the molecular epidemiology of retroviruses in wild primate populations, the correlated question of the frequency and nature of super-infection events, i.e., the simultaneous infection of the same individual host with several strains of the same virus, has remained largely neglected. In particular, methods possibly allowing the investigation of super-infection from samples collected non-invasively (such as faeces) have never been properly compared. Here, we fill in this gap by assessing the costs and benefits of end-point dilution PCR (EPD-PCR) and multiple bulk-PCR cloning, as applied to a case study focusing on simian foamy virus super-infection in wild chimpanzees (Pan troglodytes). We show that, although considered to be the gold standard, EPD-PCR can lead to massive consumption of biological material when only low copy numbers of the target are expected. This constitutes a serious drawback in a field in which rarity of biological material is a fundamental constraint. In addition, we demonstrate that EPD-PCR results (single/multiple infection; founder strains) can be well predicted from multiple bulk-PCR clone experiments, by applying simple statistical and network analyses to sequence alignments. We therefore recommend the implementation of the latter method when the focus is put on retroviral super-infection and only low retroviral loads are encountered.
Collapse
Affiliation(s)
- Adeelia S. Goffe
- Research Group Emerging Zoonoses, Robert Koch-Institut, Berlin, Germany
- Wildlife Conservation Research Unit, University of Oxford, Oxford, United Kingdom
| | - Anja Blasse
- Research Group Emerging Zoonoses, Robert Koch-Institut, Berlin, Germany
| | - Roger Mundry
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | | |
Collapse
|
42
|
New STLV-3 strains and a divergent SIVmus strain identified in non-human primate bushmeat in Gabon. Retrovirology 2012; 9:28. [PMID: 22462797 PMCID: PMC3413610 DOI: 10.1186/1742-4690-9-28] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 03/30/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Human retroviral infections such as Human Immunodeficiency Virus (HIV) or Human T-cell Lymphotropic Virus (HTLV) are the result of simian zoonotic transmissions through handling and butchering of Non-Human Primates (NHP) or by close contact with pet animals. Recent studies on retroviral infections in NHP bushmeat allowed for the identification of numerous Simian Immunodeficiency Viruses (SIV) and Simian T-cell Lymphotropic Viruses (STLV) to which humans are exposed. Nevertheless, today, data on simian retroviruses at the primate/hunter interface remain scarce. We conducted a pilot study on 63 blood and/or tissues samples derived from NHP bushmeat seized by the competent authorities in different locations across the country. RESULTS SIV and STLV were detected by antibodies to HIV and HTLV antigens, and PCRs were performed on samples with an HIV or/and HTLV-like or indeterminate profile. Fourteen percent of the samples cross-reacted with HIV antigens and 44% with HTLV antigens. We reported STLV-1 infections in five of the seven species tested. STLV-3 infections, including a new STLV-3 subtype, STLV-1 and -3 co-infections, and triple SIV, STLV-1, STLV-3 infections were observed in red-capped mangabeys (C.torquatus). We confirmed SIV infections by PCR and sequence analyses in mandrills, red-capped mangabeys and showed that mustached monkeys in Gabon are infected with a new SIV strain basal to the SIVgsn/mus/mon lineage that did not fall into the previously described SIVmus lineages reported from the corresponding species in Cameroon. The same monkey (sub)species can thus be carrier of, at least, three distinct SIVs. Overall, the minimal prevalence observed for both STLV and SIV natural infections were 26.9% and 11.1% respectively. CONCLUSIONS Overall, these data, obtained from a restricted sampling, highlight the need for further studies on simian retroviruses in sub-Saharan Africa to better understand their evolutionary history and to document SIV strains to which humans are exposed. We also show that within one species, a high genetic diversity may exist for SIVs and STLVs and observe a high genetic diversity in the SIVgsn/mon/mus lineage, ancestor of HIV-1/SIVcpz/SIVgor.
Collapse
|
43
|
Cross-species transmission of simian retroviruses: how and why they could lead to the emergence of new diseases in the human population. AIDS 2012; 26:659-73. [PMID: 22441170 DOI: 10.1097/qad.0b013e328350fb68] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The HIV-1 group M epidemic illustrates the extraordinary impact and consequences resulting from a single zoonotic transmission. Exposure to blood or other secretions of infected animals, through hunting and butchering of bushmeat, or through bites and scratches inflicted by pet nonhuman primates (NHPs), represent the most plausible source for human infection with simian immunodeficiency virus (SIV), simian T-cell lymphotropic virus (STLV) and simian foamy virus. The chance for cross-species transmissions could increase when frequency of exposure and retrovirus prevalence is high. According to the most recent data, human exposure to SIV or STLV appears heterogeneous across the African countries surveyed. Exposure is not sufficient to trigger disease: viral and host molecular characteristics and compatibility are fundamental factors to establish infection. A successful species jump is achieved when the pathogen becomes transmissible between individuals within the new host population. To spread efficiently, HIV likely required changes in human behavior. Given the increasing exposure to NHP pathogens through hunting and butchering, it is likely that SIV and other simian viruses are still transmitted to the human population. The behavioral and socio-economic context of the twenty-first century provides favorable conditions for the emergence and spread of new epidemics. Therefore, it is important to evaluate which retroviruses the human population is exposed to and to better understand how these viruses enter, infect, adapt and spread to its new host.
Collapse
|
44
|
Djoko CF, Wolfe ND, Aghokeng AF, Lebreton M, Liegeois F, Tamoufe U, Schneider BS, Ortiz N, Mbacham WF, Carr JK, Rimoin AW, Fair JN, Pike BL, Mpoudi-Ngole E, Delaporte E, Burke DS, Peeters M. Failure to detect simian immunodeficiency virus infection in a large Cameroonian cohort with high non-human primate exposure. ECOHEALTH 2012; 9:17-23. [PMID: 22395958 DOI: 10.1007/s10393-012-0751-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 01/31/2012] [Accepted: 02/03/2012] [Indexed: 05/31/2023]
Abstract
Hunting and butchering of wildlife in Central Africa are known risk factors for a variety of human diseases, including HIV/AIDS. Due to the high incidence of human exposure to body fluids of non-human primates, the significant prevalence of simian immunodeficiency virus (SIV) in non-human primates, and hunting/butchering associated cross-species transmission of other retroviruses in Central Africa, it is possible that SIV is actively transmitted to humans from primate species other than mangabeys, chimpanzees, and/or gorillas. We evaluated SIV transmission to humans by screening 2,436 individuals that hunt and butcher non-human primates, a population in which simian foamy virus and simian T-lymphotropic virus were previously detected. We identified 23 individuals with high seroreactivity to SIV. Nucleic acid sequences of SIV genes could not be detected, suggesting that SIV infection in humans could occur at a lower frequency than infections with other retroviruses, including simian foamy virus and simian T-lymphotropic virus. Additional studies on human populations at risk for non-human primate zoonosis are necessary to determine whether these results are due to viral/host characteristics or are indicative of low SIV prevalence in primate species consumed as bushmeat as compared to other retroviruses in Cameroon.
Collapse
|
45
|
Schaumburg F, Alabi AS, Köck R, Mellmann A, Kremsner PG, Boesch C, Becker K, Leendertz FH, Peters G. Highly divergent Staphylococcus aureus isolates from African non-human primates. ENVIRONMENTAL MICROBIOLOGY REPORTS 2012; 4:141-146. [PMID: 23757241 DOI: 10.1111/j.1758-2229.2011.00316.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Staphylococcus aureus is a bacterium that colonizes and infects both humans and animals. As little is known about the phenotypic and molecular characteristics of S. aureus from wild animals in sub-Saharan Africa, the objective of the study was to characterize S. aureus isolates from wildlife and to analyse if they differed from those found among humans. The resistance to penicillin was low in S. aureus isolates from non-human primates (2.9%). Phylogenetic analysis based on the concatenated sequences from multilocus sequence typing revealed two highly divergent groups of isolates. One group was predominated by S. aureus that belonged to known human-related STs (ST1, ST9 and ST601) and mainly derived from great apes. A second clade comprised isolates with novel STs. These isolates were different from classical human S. aureus strains and mainly derived from monkeys. Our findings provide the basis for future studies addressing the inter- and intra-species transmission of S. aureus in Africa.
Collapse
Affiliation(s)
- F Schaumburg
- Institutes of Medical Microbiology Hygiene, University Hospital Münster, Münster, Germany. Medical Research Unit, Albert Schweitzer Hospital, Lambaréné, Gabon. Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany. Department of Primatology, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany. Research Group Emerging Zoonoses, Robert-Koch-Institut, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Chareza S, Slavkovic Lukic D, Liu Y, Räthe AM, Münk C, Zabogli E, Pistello M, Löchelt M. Molecular and functional interactions of cat APOBEC3 and feline foamy and immunodeficiency virus proteins: different ways to counteract host-encoded restriction. Virology 2012; 424:138-46. [PMID: 22265237 DOI: 10.1016/j.virol.2011.12.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 12/23/2011] [Accepted: 12/26/2011] [Indexed: 11/28/2022]
Abstract
Defined host-encoded feline APOBEC3 (feA3) cytidine deaminases efficiently restrict the replication and spread of exogenous retroviruses like Feline Immunodeficiency Virus (FIV) and Feline Foamy Virus (FFV) which developed different feA3 counter-acting strategies. Here we characterize the molecular interaction of FFV proteins with the diverse feA3 proteins. The FFV accessory protein Bet is the virus-encoded defense factor which is shown here to bind all feA3 proteins independent of whether they restrict FFV, a feature shared with FIV Vif that induces degradation of all feA3s including those that do not inactivate FIV. In contrast, only some feA3 proteins bind to FFV Gag, a pattern that in part reflects the restriction pattern detected. Additionally, one-domain feA3 proteins can homo- and hetero-dimerize in vitro, but a trans-dominant phenotype of any of the low-activity feA3 forms on FFV restriction by one of the highly-active feA3Z2 proteins was not detectable.
Collapse
Affiliation(s)
- Sarah Chareza
- German Cancer Research Center (DKFZ), Research Program Infection and Cancer, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Betsem E, Rua R, Tortevoye P, Froment A, Gessain A. Frequent and recent human acquisition of simian foamy viruses through apes' bites in central Africa. PLoS Pathog 2011; 7:e1002306. [PMID: 22046126 PMCID: PMC3203161 DOI: 10.1371/journal.ppat.1002306] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 08/24/2011] [Indexed: 02/05/2023] Open
Abstract
Human infection by simian foamy viruses (SFV) can be acquired by persons occupationally exposed to non-human primates (NHP) or in natural settings. This study aimed at getting better knowledge on SFV transmission dynamics, risk factors for such a zoonotic infection and, searching for intra-familial dissemination and the level of peripheral blood (pro)viral loads in infected individuals. We studied 1,321 people from the general adult population (mean age 49 yrs, 640 women and 681 men) and 198 individuals, mostly men, all of whom had encountered a NHP with a resulting bite or scratch. All of these, either Pygmies (436) or Bantus (1085) live in villages in South Cameroon. A specific SFV Western blot was used and two nested PCRs (polymerase, and LTR) were done on all the positive/borderline samples by serology. In the general population, 2/1,321 (0.2%) persons were found to be infected. In the second group, 37/198 (18.6%) persons were SFV positive. They were mostly infected by apes (37/39) FV (mainly gorilla). Infection by monkey FV was less frequent (2/39). The viral origin of the amplified sequences matched with the history reported by the hunters, most of which (83%) are aged 20 to 40 years and acquired the infection during the last twenty years. The (pro)viral load in 33 individuals infected by a gorilla FV was quite low (<1 to 145 copies per 105 cells) in the peripheral blood leucocytes. Of the 30 wives and 12 children from families of FV infected persons, only one woman was seropositive in WB without subsequent viral DNA amplification. We demonstrate a high level of recent transmission of SFVs to humans in natural settings specifically following severe gorilla bites during hunting activities. The virus was found to persist over several years, with low SFV loads in infected persons. Secondary transmission remains an open question. Most of the viral pathogens that have emerged in humans during the last decades have a zoonotic origin. After the initial interspecies transmission, these viruses have followed different evolutionary routes and have spread among humans through distinct mechanisms. The understanding of the initial steps of the emergence of several viruses and associated diseases often remains quite poor. Human infection by simian foamy viruses (SFV) can be acquired by persons occupationally exposed to non-human primates (NHP) or in natural settings. Epidemiological and microbiological studies in specific high-risk populations are necessary to gain new insights into the early events of the emergence process, and the potential to spread or cause disease among humans. The present study found that hunting is still a very common and risky activity for SFV infection in forest areas of South Cameroon. Indeed, recent interspecies transmission of SFVs to young adults is still very frequent, as 1 person out of 5 among the hunters who have reported a bite or scratch by a non-human primate and 2 persons out of a thousand in the general population are persistently infected by a SFV, mostly from an ape. Secondary transmission to other family members and presence of a disease in infected persons are still open questions that are being investigated.
Collapse
Affiliation(s)
- Edouard Betsem
- Unit of Epidemiology and Pathophysiology of Oncogenic Viruses, Department of Virology, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique (CNRS), URA 3015, Paris, France
- Faculty of Medicine and Biomedical Sciences, University of Yaounde I, Yaounde, Cameroun
- * E-mail: (AG); (EB)
| | - Réjane Rua
- Unit of Epidemiology and Pathophysiology of Oncogenic Viruses, Department of Virology, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique (CNRS), URA 3015, Paris, France
| | - Patricia Tortevoye
- Unit of Epidemiology and Pathophysiology of Oncogenic Viruses, Department of Virology, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique (CNRS), URA 3015, Paris, France
| | - Alain Froment
- Institute of Research for Development, Musée de l'Homme, Paris, France
| | - Antoine Gessain
- Unit of Epidemiology and Pathophysiology of Oncogenic Viruses, Department of Virology, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique (CNRS), URA 3015, Paris, France
- * E-mail: (AG); (EB)
| |
Collapse
|
48
|
Leendertz SAJ, Locatelli S, Boesch C, Kücherer C, Formenty P, Liegeois F, Ayouba A, Peeters M, Leendertz FH. No evidence for transmission of SIVwrc from western red colobus monkeys (Piliocolobus badius badius) to wild West African chimpanzees (Pan troglodytes verus) despite high exposure through hunting. BMC Microbiol 2011; 11:24. [PMID: 21284842 PMCID: PMC3041994 DOI: 10.1186/1471-2180-11-24] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 02/01/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Simian Immunodeficiency Viruses (SIVs) are the precursors of Human Immunodeficiency Viruses (HIVs) which have led to the worldwide HIV/AIDS pandemic. By studying SIVs in wild primates we can better understand the circulation of these viruses in their natural hosts and habitat, and perhaps identify factors that influence susceptibility and transmission within and between various host species. We investigated the SIV status of wild West African chimpanzees (Pan troglodytes verus) which frequently hunt and consume the western red colobus monkey (Piliocolobus badius badius), a species known to be infected to a high percentage with its specific SIV strain (SIVwrc). RESULTS Blood and plasma samples from 32 wild chimpanzees were tested with INNO-LIA HIV I/II Score kit to detect cross-reactive antibodies to HIV antigens. Twenty-three of the samples were also tested for antibodies to 43 specific SIV and HIV lineages, including SIVwrc. Tissue samples from all but two chimpanzees were tested for SIV by PCRs using generic SIV primers that detect all known primate lentiviruses as well as primers designed to specifically detect SIVwrc. Seventeen of the chimpanzees showed varying degrees of cross-reactivity to the HIV specific antigens in the INNO-LIA test; however no sample had antibodies to SIV or HIV strain- and lineage-specific antigens in the Luminex test. No SIV DNA was found in any of the samples. CONCLUSIONS We could not detect any conclusive trace of SIV infection from the red colobus monkeys in the chimpanzees, despite high exposure to this virus through frequent hunting. The results of our study raise interesting questions regarding the host-parasite relationship of SIVwrc and wild chimpanzees in their natural habitat.
Collapse
|
49
|
Lack of Evidence of Simian Immunodeficiency Virus Infection Among Nonhuman Primates in Taï National Park, Côte d'Ivoire: Limitations of Noninvasive Methods and SIV Diagnostic Tools for Studies of Primate Retroviruses. INT J PRIMATOL 2010; 32:288-307. [PMID: 23950618 DOI: 10.1007/s10764-010-9466-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
It is now well established that the human immunodeficiency viruses, HIV-1 and HIV-2, are the results of cross-species transmissions of simian immunodeficiency viruses (SIV) naturally infecting nonhuman primates in sub-Saharan Africa. SIVs are found in many African primates, and humans continue to be exposed to these viruses by hunting and handling primate bushmeat. Sooty mangabeys (Cercocebus atys) and western red colobus (Piliocolobus badius badius) are infected with SIV at a high rate in the Taï Forest, Côte d'Ivoire. We investigated the SIV infection and prevalence in 6 other monkey species living in the Taï Forest using noninvasive methods. We collected 127 fecal samples from 2 colobus species (Colobus polykomos and Procolobus verus) and 4 guenon species (C. diana, C. campbelli, C. petaurista, and C. nictitans). We tested these samples for HIV cross-reactive antibodies and performed reverse transcriptase-polymerase chain reactions (RT-PCR) targeting the gag, pol, and env regions of the SIV genome. We screened 16 human microsatellites for use in individual discrimination and identified 4-6 informative markers per species. Serological analysis of 112 samples yielded negative (n=86) or uninterpretable (n=26) results. PCR analysis on 74 samples confirmed the negative results. These results may reflect either the limited number of individuals sampled or a low prevalence of infection. Further research is needed to improve the sensitivity of noninvasive methods for SIV detection.
Collapse
|