1
|
DeCotiis-Mauro J, Han SM, Mello H, Goyeneche C, Marchesini-Tovar G, Jin L, Bellofatto V, Lukac DM. The cellular Notch1 protein promotes KSHV reactivation in an Rta-dependent manner. J Virol 2024; 98:e0078824. [PMID: 38975769 PMCID: PMC11334469 DOI: 10.1128/jvi.00788-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
The cellular Notch signal transduction pathway is intimately associated with infections by Kaposi's sarcoma-associated herpesvirus (KSHV) and other gamma-herpesviruses. RBP-Jk, the cellular DNA binding component of the canonical Notch pathway, is the key Notch downstream effector protein in virus-infected and uninfected animal cells. Reactivation of KSHV from latency requires the viral lytic switch protein, Rta, to form complexes with RBP-Jk on numerous sites within the viral DNA. Constitutive Notch activity is essential for KSHV pathophysiology in models of Kaposi's sarcoma (KS) and Primary Effusion Lymphoma (PEL), and we demonstrate that Notch1 is also constitutively active in infected Vero cells. Although the KSHV genome contains >100 RBP-Jk DNA motifs, we show that none of the four isoforms of activated Notch can productively reactivate the virus from latency in a highly quantitative trans-complementing reporter virus system. Nevertheless, Notch contributed positively to reactivation because broad inhibition of Notch1-4 with gamma-secretase inhibitor (GSI) or expression of dominant negative mastermind-like1 (dnMAML1) coactivators severely reduced production of infectious KSHV from Vero cells. Reduction of KSHV production is associated with gene-specific reduction of viral transcription in both Vero and PEL cells. Specific inhibition of Notch1 by siRNA partially reduces the production of infectious KSHV, and NICD1 forms promoter-specific complexes with viral DNA during reactivation. We conclude that constitutive Notch activity is required for the robust production of infectious KSHV, and our results implicate activated Notch1 as a pro-viral member of a MAML1/RBP-Jk/DNA complex during viral reactivation. IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) manipulates the host cell oncogenic Notch signaling pathway for viral reactivation from latency and cell pathogenesis. KSHV reactivation requires that the viral protein Rta functionally interacts with RBP-Jk, the DNA-binding component of the Notch pathway, and with promoter DNA to drive transcription of productive cycle genes. We show that the Notch pathway is constitutively active during KSHV reactivation and is essential for robust production of infectious virus progeny. Inhibiting Notch during reactivation reduces the expression of specific viral genes yet does not affect the growth of the host cells. Although Notch cannot reactivate KSHV alone, the requisite expression of Rta reveals a previously unappreciated role for Notch in reactivation. We propose that activated Notch cooperates with Rta in a promoter-specific manner that is partially programmed by Rta's ability to redistribute RBP-Jk DNA binding to the virus during reactivation.
Collapse
Affiliation(s)
- Jennifer DeCotiis-Mauro
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA
| | - Sun M. Han
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA
| | - Helena Mello
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA
| | - Corey Goyeneche
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA
| | - Giuseppina Marchesini-Tovar
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA
| | - Lianhua Jin
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA
| | - Vivian Bellofatto
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA
| | - David M. Lukac
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
2
|
Shi J, Yu X, Li G, Zhao X, Chen J, Fang Y, Yang Y, Wang T, Xu T, Bian L, Lyu L, He Y. DTL promotes head and neck squamous cell carcinoma progression by mediating the degradation of ARGLU1 to regulate the Notch signaling pathway. Int J Biol Macromol 2024; 259:129184. [PMID: 38218284 DOI: 10.1016/j.ijbiomac.2023.129184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 01/15/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, with a high incidence in squamous epithelium. The E3 ubiquitin ligase DTL is a component of the CRL4A complex and is widely involved in tumor progression. We aimed to analyze the role of DTL in HNSCC and to explore its mechanism of action. Through clinical analysis, we found that DTL is upregulated in HNSCC tissues and is associated with the tumor microenvironment and poor survival in patients. Through gain-of-function and loss-of-function assays, we showed that DTL promotes cell proliferation and migration in vitro and tumor growth in vivo. Mass spectrometry analysis and immunoprecipitation assays showed that DTL interacts with ARGLU1 to promote K11-linked ubiquitination-mediated degradation of ARGLU1, thereby promoting the activation of the CSL-dependent Notch signaling pathway. Furthermore, siARGLU1 blocks the inhibitory effects of DTL knockdown on HNSCC cells. In this study, we showed that DTL promotes HNSCC progression through K11-linked ubiquitination of ARGLU1 to activate the CSL-dependent Notch pathway. These findings identify a promising therapeutic target for HNSCC.
Collapse
Affiliation(s)
- Jingpei Shi
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650106, Yunnan, China; Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Xiaonan Yu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650106, Yunnan, China
| | - Guoyu Li
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan, China
| | - Xiaoyu Zhao
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032,Yunnan, China
| | - Jiwen Chen
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Ying Fang
- Department of Infection and Hepatology, The First Affiliated Hospital of Kunming Medical University, 650032, Yunnan, China
| | - Yan Yang
- Department of Hepatobiliary and Pancreatic Surgery and Liver Transplantion, the First People's Hospital of Kunming, Kunming 650011, Yunnan, China
| | - Ting Wang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Tianyong Xu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Li Bian
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China.
| | - Lechun Lyu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, Yunnan, China.
| | - Yongwen He
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650106, Yunnan, China; Qujing Medical College, Qujing 655099, Yunnan, China.
| |
Collapse
|
3
|
Chinna P, Bratl K, Lambarey H, Blumenthal MJ, Schäfer G. The Impact of Co-Infections for Human Gammaherpesvirus Infection and Associated Pathologies. Int J Mol Sci 2023; 24:13066. [PMID: 37685871 PMCID: PMC10487760 DOI: 10.3390/ijms241713066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
The two oncogenic human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) cause significant disease burden, particularly in immunosuppressed individuals. Both viruses display latent and lytic phases of their life cycle with different outcomes for their associated pathologies. The high prevalence of infectious diseases in Sub-Saharan Africa (SSA), particularly HIV/AIDS, tuberculosis, malaria, and more recently, COVID-19, as well as their associated inflammatory responses, could potentially impact either virus' infectious course. However, acute or lytically active EBV and/or KSHV infections often present with symptoms mimicking these predominant diseases leading to misdiagnosis or underdiagnosis of oncogenic herpesvirus-associated pathologies. EBV and/or KSHV infections are generally acquired early in life and remain latent until lytic reactivation is triggered by various stimuli. This review summarizes known associations between infectious agents prevalent in SSA and underlying EBV and/or KSHV infection. While presenting an overview of both viruses' biphasic life cycles, this review aims to highlight the importance of co-infections in the correct identification of risk factors for and diagnoses of EBV- and/or KSHV-associated pathologies, particularly in SSA, where both oncogenic herpesviruses as well as other infectious agents are highly pervasive and can lead to substantial morbidity and mortality.
Collapse
Affiliation(s)
- Prishanta Chinna
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (P.C.); (K.B.); (H.L.); (M.J.B.)
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Katrin Bratl
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (P.C.); (K.B.); (H.L.); (M.J.B.)
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Humaira Lambarey
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (P.C.); (K.B.); (H.L.); (M.J.B.)
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Melissa J. Blumenthal
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (P.C.); (K.B.); (H.L.); (M.J.B.)
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Georgia Schäfer
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (P.C.); (K.B.); (H.L.); (M.J.B.)
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
4
|
Letafati A, Najafi S, Mottahedi M, Karimzadeh M, Shahini A, Garousi S, Abbasi-Kolli M, Sadri Nahand J, Tamehri Zadeh SS, Hamblin MR, Rahimian N, Taghizadieh M, Mirzaei H. MicroRNA let-7 and viral infections: focus on mechanisms of action. Cell Mol Biol Lett 2022; 27:14. [PMID: 35164678 PMCID: PMC8853298 DOI: 10.1186/s11658-022-00317-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are fundamental post-transcriptional modulators of several critical cellular processes, a number of which are involved in host defense mechanisms. In particular, miRNA let-7 functions as an essential regulator of the function and differentiation of both innate and adaptive immune cells. Let-7 is involved in several human diseases, including cancer and viral infections. Several viral infections have found ways to dysregulate the expression of miRNAs. Extracellular vesicles (EV) are membrane-bound lipid structures released from many types of human cells that can transport proteins, lipids, mRNAs, and miRNAs, including let-7. After their release, EVs are taken up by the recipient cells and their contents released into the cytoplasm. Let-7-loaded EVs have been suggested to affect cellular pathways and biological targets in the recipient cells, and can modulate viral replication, the host antiviral response, and the action of cancer-related viruses. In the present review, we summarize the available knowledge concerning the expression of let-7 family members, functions, target genes, and mechanistic involvement in viral pathogenesis and host defense. This may provide insight into the development of new therapeutic strategies to manage viral infections.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Karimzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028 South Africa
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women’s Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
5
|
Dong L, Dong J, Xiang M, Lei P, Li Z, Zhang F, Sun X, Niu D, Bai L, Lan K. NDRG1 facilitates lytic replication of Kaposi's sarcoma-associated herpesvirus by maintaining the stability of the KSHV helicase. PLoS Pathog 2021; 17:e1009645. [PMID: 34077484 PMCID: PMC8202935 DOI: 10.1371/journal.ppat.1009645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/14/2021] [Accepted: 05/14/2021] [Indexed: 01/10/2023] Open
Abstract
The presumed DNA helicase encoded by ORF44 of Kaposi's sarcoma-associated herpesvirus (KSHV) plays a crucial role in unwinding viral double-stranded DNA and initiating DNA replication during lytic reactivation. However, the regulatory mechanism of KSHV ORF44 has not been fully elucidated. In a previous study, we identified that N-Myc downstream regulated gene 1 (NDRG1), a host scaffold protein, facilitates viral genome replication by interacting with proliferating cell nuclear antigen (PCNA) and the latent viral protein latency-associated nuclear antigen (LANA) during viral latency. In the present study, we further demonstrated that NDRG1 can interact with KSHV ORF44 during viral lytic replication. We also found that the mRNA and protein levels of NDRG1 were significantly increased by KSHV ORF50-encoded replication and transcription activator (RTA). Remarkably, knockdown of NDRG1 greatly decreased the protein level of ORF44 and impaired viral lytic replication. Interestingly, NDRG1 enhanced the stability of ORF44 and inhibited its ubiquitin-proteasome-mediated degradation by reducing the polyubiquitination of the lysine residues at positions 79 and 368 in ORF44. In summary, NDRG1 is a novel binding partner of ORF44 and facilitates viral lytic replication by maintaining the stability of ORF44. This study provides new insight into the mechanisms underlying KSHV lytic replication.
Collapse
Affiliation(s)
- Lianghui Dong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jiazhen Dong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Min Xiang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ping Lei
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zixian Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fang Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyi Sun
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Danping Niu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lei Bai
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (LB); (KL)
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (LB); (KL)
| |
Collapse
|
6
|
Nagy PD, Lin W. Taking over Cellular Energy-Metabolism for TBSV Replication: The High ATP Requirement of an RNA Virus within the Viral Replication Organelle. Viruses 2020; 12:v12010056. [PMID: 31947719 PMCID: PMC7019945 DOI: 10.3390/v12010056] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022] Open
Abstract
Recent discoveries on virus-driven hijacking and compartmentalization of the cellular glycolytic and fermentation pathways to support robust virus replication put the spotlight on the energy requirement of viral processes. The active recruitment of glycolytic enzymes in combination with fermentation enzymes by the viral replication proteins emphasizes the advantages of producing ATP locally within viral replication structures. This leads to a paradigm shift in our understanding of how viruses take over host metabolism to support the virus’s energy needs during the replication process. This review highlights our current understanding of how a small plant virus, Tomato bushy stunt virus, exploits a conserved energy-generating cellular pathway during viral replication. The emerging picture is that viruses not only rewire cellular metabolic pathways to obtain the necessary resources from the infected cells but the fast replicating viruses might have to actively hijack and compartmentalize the energy-producing enzymes to provide a readily available source of ATP for viral replication process.
Collapse
|
7
|
Gonzalez-Lopez O, DeCotiis J, Goyeneche C, Mello H, Vicente-Ortiz BA, Shin HJ, Driscoll KE, Du P, Palmeri D, Lukac DM. A herpesvirus transactivator and cellular POU proteins extensively regulate DNA binding of the host Notch signaling protein RBP-Jκ to the virus genome. J Biol Chem 2019; 294:13073-13092. [PMID: 31308175 DOI: 10.1074/jbc.ra118.007331] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 07/10/2019] [Indexed: 12/11/2022] Open
Abstract
Reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV) from latency requires the viral transactivator Rta to contact the host protein Jκ recombination signal-binding protein (RBP-Jκ or CSL). RBP-Jκ normally binds DNA sequence-specifically to determine the transcriptional targets of the Notch-signaling pathway, yet Notch alone cannot reactivate KSHV. We previously showed that Rta stimulates RBP-Jκ DNA binding to the viral genome. On a model viral promoter, this function requires Rta to bind to multiple copies of an Rta DNA motif (called "CANT" or Rta-c) proximal to an RBP-Jκ motif. Here, high-resolution ChIP/deep sequencing from infected primary effusion lymphoma cells revealed that RBP-Jκ binds nearly exclusively to different sets of viral genome sites during latency and reactivation. RBP-Jκ bound DNA frequently, but not exclusively, proximal to Rta bound to single, but not multiple, Rta-c motifs. To discover additional regulators of RBP-Jκ DNA binding, we used bioinformatics to identify cellular DNA-binding protein motifs adjacent to either latent or reactivation-specific RBP-Jκ-binding sites. Many of these cellular factors, including POU class homeobox (POU) proteins, have known Notch or herpesvirus phenotypes. Among a set of Rta- and RBP-Jκ-bound promoters, Rta transactivated only those that also contained POU motifs in conserved positions. On some promoters, POU factors appeared to inhibit RBP-Jκ DNA binding unless Rta bound to a proximal Rta-c motif. Moreover, POU2F1/Oct-1 expression was induced during KSHV reactivation, and POU2F1 knockdown diminished infectious virus production. Our results suggest that Rta and POU proteins broadly regulate DNA binding of RBP-Jκ during KSHV reactivation.
Collapse
Affiliation(s)
- Olga Gonzalez-Lopez
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103; Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103
| | - Jennifer DeCotiis
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103; Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103
| | - Corey Goyeneche
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103; Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103
| | - Helena Mello
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103; Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103
| | - Bryan Alexis Vicente-Ortiz
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103
| | - Hye Jin Shin
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103; Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103
| | - Kyla E Driscoll
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103
| | - Peicheng Du
- High Performance and Research Computing, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103
| | - Diana Palmeri
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103
| | - David M Lukac
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103; Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103.
| |
Collapse
|
8
|
Qi Y, Zheng G, Di C, Zhang J, Wang X, Hong Y, Song Y, Chen R, Yang Y, Yan Y, Xu L, Tan X, Yang L. Latency-associated nuclear antigen inhibits lytic replication of Kaposi's sarcoma-associated herpesvirus by regulating let-7a/RBPJ signaling. Virology 2019; 531:69-78. [PMID: 30856484 DOI: 10.1016/j.virol.2019.02.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 10/27/2022]
Abstract
Latency-associated nuclear antigen (LANA) is the key factor in the establishment and maintenance of latency of Kaposi's sarcoma-associated herpesvirus (KSHV). A cellular protein, recombination signal binding protein for immunoglobulin kappa J region (RBPJ), is essential for the lytic reactivation of KSHV. However, whether RBPJ expression is regulated by KSHV is not clear. Here, we show that LANA upregulates let-7a and its primary transcripts in parallel with its reduction of RBPJ expression. An increase in notch intracellular domain (NICD) and the downregulation of NF-κB and LIN28B contribute to the upregulation of let-7a by LANA. Let-7a represses RBPJ expression by directly binding the 3' untranslated region of RBPJ. Let-7a overexpression or RBPJ knockdown led to a dose- and time-dependent inhibition of lytic reactivation of KSHV. Collectively, these findings support a model wherein LANA inhibits the lytic replication of KSHV by regulating let-7a/RBPJ signaling.
Collapse
Affiliation(s)
- Yan Qi
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Guoxia Zheng
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Chunhong Di
- Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Jinxia Zhang
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaobo Wang
- Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Yu Hong
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Yang Song
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Rong Chen
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Yi Yang
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Yutao Yan
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Liangwen Xu
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaohua Tan
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China.
| | - Lei Yang
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
9
|
Genome-Wide Identification of Direct RTA Targets Reveals Key Host Factors for Kaposi's Sarcoma-Associated Herpesvirus Lytic Reactivation. J Virol 2019; 93:JVI.01978-18. [PMID: 30541837 DOI: 10.1128/jvi.01978-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/28/2018] [Indexed: 12/28/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a human oncogenic virus, which maintains the persistent infection of the host by intermittently reactivating from latently infected cells to produce viral progenies. While it is established that the replication and transcription activator (RTA) viral transcription factor is required for the induction of lytic viral genes for KSHV lytic reactivation, it is still unknown to what extent RTA alters the host transcriptome to promote KSHV lytic cycle and viral pathogenesis. To address this question, we performed a comprehensive time course transcriptome analysis during KSHV reactivation in B-cell lymphoma cells and determined RTA-binding sites on both the viral and host genomes, which resulted in the identification of the core RTA-induced host genes (core RIGs). We found that the majority of RTA-binding sites at core RIGs contained the canonical RBP-Jκ-binding DNA motif. Subsequently, we demonstrated the vital role of the Notch signaling transcription factor RBP-Jκ for RTA-driven rapid host gene induction, which is consistent with RBP-Jκ being essential for KSHV lytic reactivation. Importantly, many of the core RIGs encode plasma membrane proteins and key regulators of signaling pathways and cell death; however, their contribution to the lytic cycle is largely unknown. We show that the cell cycle and chromatin regulator geminin and the plasma membrane protein gamma-glutamyltransferase 6, two of the core RIGs, are required for efficient KSHV reactivation and virus production. Our results indicate that host genes that RTA rapidly and directly induces can be pivotal for driving the KSHV lytic cycle.IMPORTANCE The lytic cycle of KSHV is involved not only in the dissemination of the virus but also viral oncogenesis, in which the effect of RTA on the host transcriptome is still unclear. Using genomics approaches, we identified a core set of host genes which are rapidly and directly induced by RTA in the early phase of KSHV lytic reactivation. We found that RTA does not need viral cofactors but requires its host cofactor RBP-Jκ for inducing many of its core RIGs. Importantly, we show a critical role for two of the core RIGs in efficient lytic reactivation and replication, highlighting their significance in the KSHV lytic cycle. We propose that the unbiased identification of RTA-induced host genes can uncover potential therapeutic targets for inhibiting KSHV replication and viral pathogenesis.
Collapse
|
10
|
Yan Q, Zhao R, Shen C, Wang F, Li W, Gao SJ, Lu C. Upregulation of MicroRNA 711 Mediates HIV-1 Vpr Promotion of Kaposi's Sarcoma-Associated Herpesvirus Latency and Induction of Pro-proliferation and Pro-survival Cytokines by Targeting the Notch/NF-κB-Signaling Axis. J Virol 2018; 92:JVI.00580-18. [PMID: 29976660 PMCID: PMC6146700 DOI: 10.1128/jvi.00580-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/21/2018] [Indexed: 02/05/2023] Open
Abstract
Coinfection with HIV-1 and Kaposi's sarcoma-associated herpesvirus (KSHV) often leads to AIDS-related malignancies, including Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL). The interaction between HIV and KSHV plays a pivotal role in the progression of these malignancies. We have previously demonstrated that, by upregulating miR-942-5p, HIV-1 viral protein R (Vpr) inhibits KSHV lytic replication by targeting IκBα to activate the NF-κB signaling (Q. Yan, C. Shen, J. Qin, W. Li, M. Hu, H. Lu, D. Qin, J. Zhu, S. J. Gao, C. Lu, J Virol 90:8739-8753, 2016). Here, we show that Vpr inactivates Notch signaling, resulting in inhibition of KSHV lytic replication and induction of pro-proliferative and -survival cytokines, including interleukin-2 (IL-2), TIMP-1, IGF-1, and NT-4. Mechanistically, Vpr upregulates miR-711, which directly targets the Notch1 3' untranslated region. Suppression of miR-711 relieved Notch1 and reduced Vpr inhibition of KSHV lytic replication and Vpr induction of pro-proliferation and -survival cytokines, while overexpression of miR-711 exhibited the opposite effect. Finally, overexpression of Notch1 reduced Vpr induction of NF-κB activity by promoting IκBα promoter activity. Our novel findings reveal that by upregulating miR-711 to target Notch1, Vpr silences Notch signaling to activate the NF-κB pathway by reducing IκBα expression, leading to inhibition of KSHV lytic replication and induction of pro-proliferation and -survival cytokines. Therefore, the miR-711/Notch/NF-κB axis is important in the pathogenesis of AIDS-related malignancies and could be an attractive therapeutic target.IMPORTANCE HIV-1 infection significantly increases the risk of KS and PEL in KSHV-infected individuals. Our previous study has shown that HIV-1 Vpr regulates the KSHV life cycle by targeting IκBα to activate NF-κB signaling through upregulating cellular miR-942-5p. In this study, we have further found that Vpr inactivates Notch signaling to promote KSHV latency and production of pro-proliferation and -survival cytokines. Another Vpr-upregulated cellular microRNA, miR-711, participates in this process by directly targeting Notch1. As a result, Notch1 upregulation of the IκBα promoter activity is attenuated, resulting in reduced levels of IκBα transcript and protein. Overall, these results illustrate an alternative mechanism of HIV-1 Vpr regulation of KSHV latency and aberrant cytokines through the miR-711/Notch/NF-κB axis. Our novel findings further demonstrate the role of an HIV-1-secreted regulatory protein in the KSHV life cycle and KSHV-related malignancies.
Collapse
Affiliation(s)
- Qin Yan
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, People's Republic of China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, People's Republic of China
- Department of Microbiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Runran Zhao
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, People's Republic of China
- Department of Microbiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Chenyou Shen
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, People's Republic of China
- Department of Microbiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Fei Wang
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, People's Republic of China
- Department of Microbiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Wan Li
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, People's Republic of China
- Department of Microbiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Shou-Jiang Gao
- Department of Microbiology, Nanjing Medical University, Nanjing, People's Republic of China
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chun Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, People's Republic of China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, People's Republic of China
- Department of Microbiology, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
11
|
Glaser LV, Rieger S, Thumann S, Beer S, Kuklik-Roos C, Martin DE, Maier KC, Harth-Hertle ML, Grüning B, Backofen R, Krebs S, Blum H, Zimmer R, Erhard F, Kempkes B. EBF1 binds to EBNA2 and promotes the assembly of EBNA2 chromatin complexes in B cells. PLoS Pathog 2017; 13:e1006664. [PMID: 28968461 PMCID: PMC5638620 DOI: 10.1371/journal.ppat.1006664] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 10/12/2017] [Accepted: 09/22/2017] [Indexed: 12/26/2022] Open
Abstract
Epstein-Barr virus (EBV) infection converts resting human B cells into permanently proliferating lymphoblastoid cell lines (LCLs). The Epstein-Barr virus nuclear antigen 2 (EBNA2) plays a key role in this process. It preferentially binds to B cell enhancers and establishes a specific viral and cellular gene expression program in LCLs. The cellular DNA binding factor CBF1/CSL serves as a sequence specific chromatin anchor for EBNA2. The ubiquitous expression of this highly conserved protein raises the question whether additional cellular factors might determine EBNA2 chromatin binding selectively in B cells. Here we used CBF1 deficient B cells to identify cellular genes up or downregulated by EBNA2 as well as CBF1 independent EBNA2 chromatin binding sites. Apparently, CBF1 independent EBNA2 target genes and chromatin binding sites can be identified but are less frequent than CBF1 dependent EBNA2 functions. CBF1 independent EBNA2 binding sites are highly enriched for EBF1 binding motifs. We show that EBNA2 binds to EBF1 via its N-terminal domain. CBF1 proficient and deficient B cells require EBF1 to bind to CBF1 independent binding sites. Our results identify EBF1 as a co-factor of EBNA2 which conveys B cell specificity to EBNA2. Epstein-Barr virus (EBV) infection is closely linked to cancer development. At particular risk are immunocompromised individuals like post-transplant patients which can develop B cell lymphomas. In healthy individuals EBV preferentially infects B cells and establishes a latent infection without causing apparent clinical symptoms in most cases. Upon infection, Epstein-Barr virus nuclear antigen 2 (EBNA2) initiates a B cell specific gene expression program that causes activation and proliferation of the infected cells. EBNA2 is a transcription factor well known to use a cellular protein, CBF1/CSL, as a DNA adaptor. CBF1/CSL is a sequence specific DNA binding protein robustly expressed in all tissues. Here we show that EBNA2 can form complexes with early B cell factor 1 (EBF1), a B cell specific DNA binding transcription factor, and EBF1 stabilizes EBNA2 chromatin binding. This EBNA2/EBF1 complex might serve as a novel target to develop future small molecule strategies that act as antivirals in latent B cell infection.
Collapse
Affiliation(s)
- Laura V Glaser
- Department of Gene Vectors, Helmholtz Center Munich, Munich, Germany
| | - Simone Rieger
- Department of Gene Vectors, Helmholtz Center Munich, Munich, Germany
| | - Sybille Thumann
- Department of Gene Vectors, Helmholtz Center Munich, Munich, Germany
| | - Sophie Beer
- Department of Gene Vectors, Helmholtz Center Munich, Munich, Germany
| | | | | | | | | | - Björn Grüning
- Bioinformatics, Institute for Informatics, Albert-Ludwigs-University, Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics, Institute for Informatics, Albert-Ludwigs-University, Freiburg, Germany
| | - Stefan Krebs
- Gene Center, Ludwig-Maximilians-University, Munich, Germany
| | - Helmut Blum
- Gene Center, Ludwig-Maximilians-University, Munich, Germany
| | - Ralf Zimmer
- Teaching and Research Unit Bioinformatics, Institute of Informatics, Ludwig-Maximilians-University, Munich, Germany
| | - Florian Erhard
- Teaching and Research Unit Bioinformatics, Institute of Informatics, Ludwig-Maximilians-University, Munich, Germany
| | - Bettina Kempkes
- Department of Gene Vectors, Helmholtz Center Munich, Munich, Germany
| |
Collapse
|
12
|
DeCotiis JL, Ortiz NC, Vega BA, Lukac DM. An easily transfectable cell line that produces an infectious reporter virus for routine and robust quantitation of Kaposi's sarcoma-associated herpesvirus reactivation. J Virol Methods 2017; 247:99-106. [PMID: 28602767 PMCID: PMC5543414 DOI: 10.1016/j.jviromet.2017.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/26/2017] [Accepted: 04/29/2017] [Indexed: 12/29/2022]
Abstract
Reactivation of Kaposi's sarcoma-associated herpesvirus (KHSV; also known as Human herpesvirus (HHV)-8) from latency is associated with progression to disease. The primary experimental models for studying KSHV reactivation are B lymphocyte cell lines derived from patients with primary effusion lymphoma (PEL). PEL models have remained essential tools for understanding molecular details of latency and reactivation, yet they have shortcomings. In particular, PEL cells are difficult to transfect with plasmid DNA, which limits their routine use in studies that require introduction of exogenous DNA. Moreover, PELs produce poorly infectious virus, which limits functional quantitation of the ultimate step in KSHV reactivation. In this study, we show that a recently published reporter virus system overcomes inherent difficulties of using PELs for studying viral reactivation. Vero rKSHV.294 cells harbor a recombinant reporter KSHV clone and produce infectious virus whose quantitation is strictly dependent on passage to naïve 293 cells. We show that the cells are easily transfectable, and produce significant amount of infectious virus in response to ectopically-expressed lytic switch protein Rta. In thus study, we derive optimal conditions to measure fold reactivation by varying experimental time periods and media volumes in infections and reporter enzyme reactions, and by eliminating background cellular and media activities. By measuring production of infectious virus, we demonstrate that Rta, but not the cellular transactivator Notch Intracellular Domain (NICD)-1, is sufficient to reactivate KSHV from latency. These data confirm previous studies that were limited to measuring viral gene expression in PELs as indicators of reactivation.
Collapse
Affiliation(s)
- Jennifer L DeCotiis
- Dept. of Microbiology, Biochemistry, and Molecular Genetics, Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences, Rutgers University, New Jersey Medical School, 225 Warren St., ICPH E 350C, Newark, NJ, 07103, USA
| | - Noelle C Ortiz
- Dept. of Microbiology, Biochemistry, and Molecular Genetics, Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences, Rutgers University, New Jersey Medical School, 225 Warren St., ICPH E 350C, Newark, NJ, 07103, USA
| | - Brian A Vega
- Dept. of Microbiology, Biochemistry, and Molecular Genetics, Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences, Rutgers University, New Jersey Medical School, 225 Warren St., ICPH E 350C, Newark, NJ, 07103, USA
| | - David M Lukac
- Dept. of Microbiology, Biochemistry, and Molecular Genetics, Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences, Rutgers University, New Jersey Medical School, 225 Warren St., ICPH E 350C, Newark, NJ, 07103, USA.
| |
Collapse
|
13
|
KSHV and the Role of Notch Receptor Dysregulation in Disease Progression. Pathogens 2017; 6:pathogens6030034. [PMID: 28777778 PMCID: PMC5617991 DOI: 10.3390/pathogens6030034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/17/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of two human cancers, Kaposi's Sarcoma (KS) and primary effusion lymphoma (PEL), and a lymphoproliferation, Multicentric Castleman's Disease (MCD). Progression to tumor development in KS is dependent upon the reactivation of the virus from its latent state. We, and others, have shown that the Replication and transcriptional activator (Rta) protein is the only viral gene product that is necessary and sufficient for viral reactivation. To induce the reactivation and transcription of viral genes, Rta forms a complex with the cellular DNA binding component of the canonical Notch signaling pathway, recombination signal binding protein for Jk (RBP-Jk). Formation of this Rta:RBP-Jk complex is necessary for viral reactivation to occur. Expression of activated Notch has been shown to be dysregulated in KSHV infected cells and to be necessary for cell growth and disease progression. Studies into the involvement of activated Notch in viral reactivation have yielded varied results. In this paper, we review the current literature regarding Notch dysregulation by KSHV and its role in viral infection and cellular pathogenesis.
Collapse
|
14
|
Aneja KK, Yuan Y. Reactivation and Lytic Replication of Kaposi's Sarcoma-Associated Herpesvirus: An Update. Front Microbiol 2017; 8:613. [PMID: 28473805 PMCID: PMC5397509 DOI: 10.3389/fmicb.2017.00613] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/27/2017] [Indexed: 12/30/2022] Open
Abstract
The life cycle of Kaposi’s sarcoma-associated herpesvirus (KSHV) consists of two phases, latent and lytic. The virus establishes latency as a strategy for avoiding host immune surveillance and fusing symbiotically with the host for lifetime persistent infection. However, latency can be disrupted and KSHV is reactivated for entry into the lytic replication. Viral lytic replication is crucial for efficient dissemination from its long-term reservoir to the sites of disease and for the spread of the virus to new hosts. The balance of these two phases in the KSHV life cycle is important for both the virus and the host and control of the switch between these two phases is extremely complex. Various environmental factors such as oxidative stress, hypoxia, and certain chemicals have been shown to switch KSHV from latency to lytic reactivation. Immunosuppression, unbalanced inflammatory cytokines, and other viral co-infections also lead to the reactivation of KSHV. This review article summarizes the current understanding of the initiation and regulation of KSHV reactivation and the mechanisms underlying the process of viral lytic replication. In particular, the central role of an immediate-early gene product RTA in KSHV reactivation has been extensively investigated. These studies revealed multiple layers of regulation in activation of RTA as well as the multifunctional roles of RTA in the lytic replication cascade. Epigenetic regulation is known as a critical layer of control for the switch of KSHV between latency and lytic replication. The viral non-coding RNA, PAN, was demonstrated to play a central role in the epigenetic regulation by serving as a guide RNA that brought chromatin remodeling enzymes to the promoters of RTA and other lytic genes. In addition, a novel dimension of regulation by microPeptides emerged and has been shown to regulate RTA expression at the protein level. Overall, extensive investigation of KSHV reactivation and lytic replication has revealed a sophisticated regulation network that controls the important events in KSHV life cycle.
Collapse
Affiliation(s)
- Kawalpreet K Aneja
- Department of Microbiology, University of Pennsylvania School of Dental Medicine, PhiladelphiaPA, USA
| | - Yan Yuan
- Department of Microbiology, University of Pennsylvania School of Dental Medicine, PhiladelphiaPA, USA
| |
Collapse
|
15
|
Kaposi's Sarcoma-Associated Herpesvirus Reduces Cellular Myeloid Differentiation Primary-Response Gene 88 (MyD88) Expression via Modulation of Its RNA. J Virol 2015; 90:180-8. [PMID: 26468534 DOI: 10.1128/jvi.02342-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/02/2015] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) is a human gammaherpesvirus associated with several human malignancies. The replication and transcription activator (RTA) is necessary and sufficient for the switch from KSHV latency to lytic replication. Interleukin 1 (IL-1) is a major mediator for inflammation and plays an important role in both innate and adaptive immunity. Myeloid differentiation primary response gene 88 (MyD88) is an essential adaptor molecule for IL-1 as well as most Toll-like receptor signaling. In this study, we identified a novel mechanism by which KSHV interferes with host inflammation and immunity. KSHV RTA specifically reduces the steady-state protein levels of MyD88, and physiological levels of MyD88 are downregulated during KSHV lytic replication when RTA is expressed. The N-terminal region of RTA is required for the reduction of MyD88. Additional studies demonstrated that RTA targets MyD88 expression at the RNA level, inhibits RNA synthesis of MyD88, and may bind MyD88 RNA. Finally, RTA inhibits IL-1-mediated activation of NF-κB. Because IL-1 is abundant in the KS microenvironment and inhibits KSHV replication, this work may expand our understanding of how KSHV evades host inflammation and immunity for its survival in vivo. IMPORTANCE MyD88 is an important molecule for IL-1-mediated inflammation and Toll-like receptor (TLR) signaling. This work shows that KSHV inhibits MyD88 expression through a novel mechanism. KSHV RTA may bind to MyD88 RNA, suppresses RNA synthesis of MyD88, and inhibits IL-1-mediated signaling. This work may expand our understanding of how KSHV evades host inflammation and immunity.
Collapse
|
16
|
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) primarily persists as a latent episome in infected cells. During latent infection, only a limited number of viral genes are expressed that help to maintain the viral episome and prevent lytic reactivation. The latent KSHV genome persists as a highly ordered chromatin structure with bivalent chromatin marks at the promoter-regulatory region of the major immediate-early gene promoter. Various stimuli can induce chromatin modifications to an active euchromatic epigenetic mark, leading to the expression of genes required for the transition from the latent to the lytic phase of KSHV life cycle. Enhanced replication and transcription activator (RTA) gene expression triggers a cascade of events, resulting in the modulation of various cellular pathways to support viral DNA synthesis. RTA also binds to the origin of lytic DNA replication to recruit viral, as well as cellular, proteins for the initiation of the lytic DNA replication of KSHV. In this review we will discuss some of the pivotal genetic and epigenetic factors that control KSHV reactivation from the transcriptionally restricted latent program.
Collapse
|
17
|
KSHV reactivation and novel implications of protein isomerization on lytic switch control. Viruses 2015; 7:72-109. [PMID: 25588053 PMCID: PMC4306829 DOI: 10.3390/v7010072] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/30/2014] [Indexed: 12/26/2022] Open
Abstract
In Kaposi’s sarcoma-associated herpesvirus (KSHV) oncogenesis, both latency and reactivation are hypothesized to potentiate tumor growth. The KSHV Rta protein is the lytic switch for reactivation. Rta transactivates essential genes via interactions with cofactors such as the cellular RBP-Jk and Oct-1 proteins, and the viral Mta protein. Given that robust viral reactivation would facilitate antiviral responses and culminate in host cell lysis, regulation of Rta’s expression and function is a major determinant of the latent-lytic balance and the fate of infected cells. Our lab recently showed that Rta transactivation requires the cellular peptidyl-prolyl cis/trans isomerase Pin1. Our data suggest that proline‑directed phosphorylation regulates Rta by licensing binding to Pin1. Despite Pin1’s ability to stimulate Rta transactivation, unchecked Pin1 activity inhibited virus production. Dysregulation of Pin1 is implicated in human cancers, and KSHV is the latest virus known to co-opt Pin1 function. We propose that Pin1 is a molecular timer that can regulate the balance between viral lytic gene expression and host cell lysis. Intriguing scenarios for Pin1’s underlying activities, and the potential broader significance for isomerization of Rta and reactivation, are highlighted.
Collapse
|
18
|
The cellular peptidyl-prolyl cis/trans isomerase Pin1 regulates reactivation of Kaposi's sarcoma-associated herpesvirus from latency. J Virol 2013; 88:547-58. [PMID: 24173213 DOI: 10.1128/jvi.02877-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) causes Kaposi's sarcoma and primary effusion lymphoma. KSHV-infected cells are predominantly latent, with a subset undergoing lytic reactivation. Rta is the essential lytic switch protein that reactivates virus by forming transactivation-competent complexes with the Notch effector protein RBP-Jk and promoter DNA. Strikingly, Rta homolog analysis reveals that prolines constitute 17% of conserved residues. Rta is also highly phosphorylated in vivo. We previously demonstrated that proline content determines Rta homotetramerization and function. We hypothesize that proline-directed modifications regulate Rta function by controlling binding to peptidyl-prolyl cis/trans isomerases (PPIases). Cellular PPIase Pin1 binds specifically to phosphoserine- or phosphothreonine-proline (pS/T-P) motifs in target proteins. Pin1 dysregulation is implicated in myriad human cancers and can be subverted by viruses. Our data show that KSHV Rta protein contains potential pS/T-P motifs and binds directly to Pin1. Rta transactivation is enhanced by Pin1 at two delayed early viral promoters in uninfected cells. Pin1's effect, however, suggests a rheostat-like influence on Rta function. We show that in infected cells, endogenous Pin1 is active during reactivation and enhances Rta-dependent early protein expression induced by multiple signals, as well as DNA replication. Surprisingly, ablation of Pin1 activity by the chemical juglone or dominant-negative Pin1 enhanced late gene expression and production of infectious virus, while ectopic Pin1 showed inhibitory effects. Our data thus suggest that Pin1 is a unique, dose-dependent molecular timer that enhances Rta protein function, but inhibits late gene synthesis and virion production, during KSHV lytic reactivation.
Collapse
|
19
|
Scholz BA, Harth-Hertle ML, Malterer G, Haas J, Ellwart J, Schulz TF, Kempkes B. Abortive lytic reactivation of KSHV in CBF1/CSL deficient human B cell lines. PLoS Pathog 2013; 9:e1003336. [PMID: 23696732 PMCID: PMC3656114 DOI: 10.1371/journal.ppat.1003336] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/20/2013] [Indexed: 11/25/2022] Open
Abstract
Since Kaposi's sarcoma associated herpesvirus (KSHV) establishes a persistent infection in human B cells, B cells are a critical compartment for viral pathogenesis. RTA, the replication and transcription activator of KSHV, can either directly bind to DNA or use cellular DNA binding factors including CBF1/CSL as DNA adaptors. In addition, the viral factors LANA1 and vIRF4 are known to bind to CBF1/CSL and modulate RTA activity. To analyze the contribution of CBF1/CSL to reactivation in human B cells, we have successfully infected DG75 and DG75 CBF1/CSL knock-out cell lines with recombinant KSHV.219 and selected for viral maintenance by selective medium. Both lines maintained the virus irrespective of their CBF1/CSL status. Viral reactivation could be initiated in both B cell lines but viral genome replication was attenuated in CBF1/CSL deficient lines, which also failed to produce detectable levels of infectious virus. Induction of immediate early, early and late viral genes was impaired in CBF1/CSL deficient cells at multiple stages of the reactivation process but could be restored to wild-type levels by reintroduction of CBF1/CSL. To identify additional viral RTA target genes, which are directly controlled by CBF1/CSL, we analyzed promoters of a selected subset of viral genes. We show that the induction of the late viral genes ORF29a and ORF65 by RTA is strongly enhanced by CBF1/CSL. Orthologs of ORF29a in other herpesviruses are part of the terminase complex required for viral packaging. ORF65 encodes the small capsid protein essential for capsid shell assembly. Our study demonstrates for the first time that in human B cells viral replication can be initiated in the absence of CBF1/CSL but the reactivation process is severely attenuated at all stages and does not lead to virion production. Thus, CBF1/CSL acts as a global hub which is used by the virus to coordinate the lytic cascade. Kaposi's sarcoma associated herpesvirus (KSHV) establishes a life-long persistent infection in B cells, which constitute the viral reservoir for reactivation and production of progeny virus. Viral reactivation is associated with multiple AIDS related malignancies including Kaposi's sarcoma, an endothelial tumor, and two B cell lymphoproliferative malignancies, the primary effusion lymphoma and the multicentric Castleman's disease. CBF1/CSL is a cellular DNA binding protein that can recruit transactivators or repressors to regulatory sites in the viral and cellular genome. The replication and transcription activator (RTA) plays an essential role in the switch between latency and lytic reactivation. RTA can either bind to DNA directly or is recruited to DNA via anchor proteins like CBF1/CSL and activates transcription. In this study we used a novel cell culture model to analyze the contribution of the CBF1/CSL protein to the process of viral reactivation in human B cells. Two isogenic CBF1/CSL proficient or deficient B cell lines were latently infected with recombinant KSHV. Lytic viral gene expression, viral replication and virus production were compared. Our results suggest that viral lytic gene expression is severely attenuated but not abolished at multiple stages before and after the onset of lytic replication while virus production is below detection levels in CBF1/CSL deficient B cells.
Collapse
Affiliation(s)
- Barbara A. Scholz
- Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Marie L. Harth-Hertle
- Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Georg Malterer
- Division of Pathway Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Juergen Haas
- Division of Pathway Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Joachim Ellwart
- Institute of Molecular Immunology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Thomas F. Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Bettina Kempkes
- Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- * E-mail:
| |
Collapse
|
20
|
Cheng F, Pekkonen P, Ojala PM. Instigation of Notch signaling in the pathogenesis of Kaposi's sarcoma-associated herpesvirus and other human tumor viruses. Future Microbiol 2013; 7:1191-205. [PMID: 23030424 DOI: 10.2217/fmb.12.95] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Notch pathway is a highly conserved signaling circuit with a critical role in cell-fate determination and tumor initiation. Notch is reported to regulate various key events in tumor progression, such as angiogenesis, maintenance of cancer stem cells, resistance to therapeutic agents and metastasis. This review describes the intimate interplay of human tumor viruses with the Notch signaling pathway. Special attention is paid to Kaposi's sarcoma-associated herpesvirus, the etiological agent of Kaposi's sarcoma and rare lymphoproliferative disorders. The past decade of active research has led to significant advances in understanding how Kaposi's sarcoma-associated herpesvirus exploits the Notch pathway to regulate its replication phase and to modulate the host cellular microenvironment to make it more favorable for viral persistence and spreading.
Collapse
Affiliation(s)
- Fang Cheng
- Institute of Biotechnology & Research Programs Unit, Genome-Scale Biology, University of Helsinki, PO Box 56 (Viikinkaari 9), 00014 University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
21
|
Manghera M, Douville RN. Endogenous retrovirus-K promoter: a landing strip for inflammatory transcription factors? Retrovirology 2013; 10:16. [PMID: 23394165 PMCID: PMC3598470 DOI: 10.1186/1742-4690-10-16] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 02/01/2013] [Indexed: 12/24/2022] Open
Abstract
Humans are symbiotic organisms; our genome is populated with a substantial number of endogenous retroviruses (ERVs), some remarkably intact, while others are remnants of their former selves. Current research indicates that not all ERVs remain silent passengers within our genomes; re-activation of ERVs is often associated with inflammatory diseases. ERVK is the most recently endogenized and transcriptionally active ERV in humans, and as such may potentially contribute to the pathology of inflammatory disease. Here, we showcase the transcriptional regulation of ERVK. Expression of ERVs is regulated in part by epigenetic mechanisms, but also depends on transcriptional regulatory elements present within retroviral long terminal repeats (LTRs). These LTRs are responsive to both viral and cellular transcription factors; and we are just beginning to appreciate the full complexity of transcription factor interaction with the viral promoter. In this review, an exploration into the inflammatory transcription factor sites within the ERVK LTR will highlight the possible mechanisms by which ERVK is induced in inflammatory diseases.
Collapse
Affiliation(s)
- Mamneet Manghera
- Department of Biology, The University of Winnipeg, Winnipeg, MB, Canada
| | | |
Collapse
|
22
|
Aras S, Pak O, Sommer N, Finley R, Hüttemann M, Weissmann N, Grossman LI. Oxygen-dependent expression of cytochrome c oxidase subunit 4-2 gene expression is mediated by transcription factors RBPJ, CXXC5 and CHCHD2. Nucleic Acids Res 2013; 41:2255-66. [PMID: 23303788 PMCID: PMC3575822 DOI: 10.1093/nar/gks1454] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cytochrome c oxidase (COX) is the terminal enzyme of the electron transport chain, made up of 13 subunits encoded by both mitochondrial and nuclear DNA. Subunit 4 (COX4), a key regulatory subunit, exists as two isoforms, the ubiquitous isoform 1 and the tissue-specific (predominantly lung) isoform 2 (COX4I2). COX4I2 renders lung COX about 2-fold more active compared with liver COX, which lacks COX4I2. We previously identified a highly conserved 13-bp sequence in the proximal promoter of COX4I2 that functions as an oxygen responsive element (ORE), maximally active at a 4% oxygen concentration. Here, we have identified three transcription factors that bind this conserved ORE, namely recombination signal sequence–binding protein Jκ (RBPJ), coiled-coil-helix-coiled-coil-helix domain 2 (CHCHD2) and CXXC finger protein 5 (CXXC5). We demonstrate that RBPJ and CHCHD2 function towards activating the ORE at 4% oxygen, whereas CXXC5 functions as an inhibitor. To validate results derived from cultured cells, we show using RNA interference a similar effect of these transcription factors in the gene regulation of COX4I2 in primary pulmonary arterial smooth muscle cells. Depending on the oxygen tension, a concerted action of the three transcription factors regulates the expression of COX4I2 that, as we discuss, could augment both COX activity and its ability to cope with altered cellular energy requirements.
Collapse
Affiliation(s)
- Siddhesh Aras
- Center for Molecular Medicine and Genetics, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Quantitative analysis of the bidirectional viral G-protein-coupled receptor and lytic latency-associated nuclear antigen promoter of Kaposi's sarcoma-associated herpesvirus. J Virol 2012; 86:9683-95. [PMID: 22740392 DOI: 10.1128/jvi.00881-12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) establishes sustained latent persistence in susceptible cells. This is dependent on the latency-associated nuclear antigen (LANA). Understanding how LANA transcription is regulated thus aids our fundamental understanding of KSHV biology. Two hundred ninety-four base pairs are sufficient to regulate LANA transcription in response to the viral RTA protein and RBPjκ. The same region controls K14/viral G-protein-coupled receptor (vGPCR) transcription in the opposite direction. We used a quantitative analysis in conjunction with specific nucleotide substitutions and defined gain-of-function and loss-of-function RTA mutants to dissect this region. We used a bidirectional reporter driving red and green luciferase to study the LANApi and K14p promoters simultaneously. This established that LANApi/K14p functions as a canonical bidirectional promoter. Both were TATA dependent. K14p was favored by ∼50-fold in this context. Eliminating the distal LANApi TATA box increased maximal output and lowered the induction threshold (T) of K14p even further. Two RBPjκ binding sites were independently required; however, at high concentrations of RTA, direct interactions with an RTA-responsive element (RRE) could complement the loss of one RBPjκ binding site. Intracellular Notch (ICN) was no longer able to activate RBPjκ in the viral context. This suggests a model whereby KSHV alters ICN-RBPjκ gene regulation. When the architecture of this pair of head-to-head RBPjκ binding sites is changed, the sites now respond exclusively to the viral transactivator RTA and no longer to the host mediator ICN.
Collapse
|
24
|
Martínez FP, Tang Q. Leucine zipper domain is required for Kaposi sarcoma-associated herpesvirus (KSHV) K-bZIP protein to interact with histone deacetylase and is important for KSHV replication. J Biol Chem 2012; 287:15622-34. [PMID: 22416134 DOI: 10.1074/jbc.m111.315861] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Kaposi sarcoma-associated herpesvirus (KSHV; or human herpesvirus-8)-encoded protein called K-bZIP (also named K8) was found to be multifunctional. In this study, we discovered that K-bZIP interacts with histone deacetylase (HDAC) 1/2 in 12-O-tetradecanoylphorbol-13-acetate-stimulated BCBL-1 lymphocyte cells. K-bZIP appears to repress HDAC activity through this interaction, which we determined to be independent of K-bZIP SUMOylation. We dissected the domains of K-bZIP and found that the leucine zipper (LZ) domain is essential for the interaction of K-bZIP and HDAC. In addition, we constructed a KSHV bacterial artificial chromosome (BAC) with LZ domain-deleted K-bZIP (KSHVdLZ) and transfected this mutated KSHV BAC DNA into HEK 293T cells. As a result, it was consistently found that K-bZIP without its LZ domain failed to interact with HDAC2. We also showed that the interaction between K-bZIP and HDAC is necessary for the inhibition of the lytic gene promoters (ORF50 and OriLyt) of KSHV by K-bZIP. Furthermore, we found that the LZ domain is also important for the interaction of K-bZIP with the promoters of ORF50 and OriLyt. Most interestingly, although it was found to have suppressive effects on the promoters of ORF50 and OriLyt, KSHVdLZ replicates at a significantly lower level than its BAC-derived revertant (KSHVdLZRev) or KSHVWT (BAC36) in HEK 293T cells. The defectiveness of KSHVdLZ replication can be partially rescued by siRNA against HDAC2. Our results suggest that the function of K-bZIP interaction with HDAC is two-layered. 1) K-bZIP inhibits HDAC activity generally so that KSHVdLZ replicates at a lower level than does KSHVWT. 2) K-bZIP can recruit HDAC to the promoters of OriLyt and ORF50 through interaction with HDAC for K-bZIP to have a temporary repressive effect on the two promoters.
Collapse
Affiliation(s)
- Francisco Puerta Martínez
- Department of Microbiology/Research Centers in Minority Institutions (RCMI) Program, Ponce School of Medicine, Ponce, Puerto Rico
| | | |
Collapse
|
25
|
Guito J, Lukac DM. KSHV Rta Promoter Specification and Viral Reactivation. Front Microbiol 2012; 3:30. [PMID: 22347875 PMCID: PMC3278982 DOI: 10.3389/fmicb.2012.00030] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 01/18/2012] [Indexed: 11/27/2022] Open
Abstract
Viruses are obligate intracellular pathogens whose biological success depends upon replication and packaging of viral genomes, and transmission of progeny viruses to new hosts. The biological success of herpesviruses is enhanced by their ability to reproduce their genomes without producing progeny viruses or killing the host cells, a process called latency. Latency permits a herpesvirus to remain undetected in its animal host for decades while maintaining the potential to reactivate, or switch, to a productive life cycle when host conditions are conducive to generating viral progeny. Direct interactions between many host and viral molecules are implicated in controlling herpesviral reactivation, suggesting complex biological networks that control the decision. One viral protein that is necessary and sufficient to switch latent Kaposi’s sarcoma-associated herpesvirus (KSHV) into the lytic infection cycle is called K-Rta. K-Rta is a transcriptional activator that specifies promoters by binding DNA directly and interacting with cellular proteins. Among these cellular proteins, binding of K-Rta to RBP-Jk is essential for viral reactivation. In contrast to the canonical model for Notch signaling, RBP-Jk is not uniformly and constitutively bound to the latent KSHV genome, but rather is recruited to DNA by interactions with K-Rta. Stimulation of RBP-Jk DNA binding requires high affinity binding of Rta to repetitive and palindromic “CANT DNA repeats” in promoters, and formation of ternary complexes with RBP-Jk. However, while K-Rta expression is necessary for initiating KSHV reactivation, K-Rta’s role as the switch is inefficient. Many factors modulate K-Rta’s function, suggesting that KSHV reactivation can be significantly regulated post-Rta expression and challenging the notion that herpesviral reactivation is bistable. This review analyzes rapidly evolving research on KSHV K-Rta to consider the role of K-Rta promoter specification in regulating the progression of KSHV reactivation.
Collapse
Affiliation(s)
- Jonathan Guito
- Graduate School of Biomedical Sciences, New Jersey Medical School, University of Medicine and Dentistry of New Jersey Newark, NJ, USA
| | | |
Collapse
|
26
|
Liu M, Lee DF, Chen CT, Yen CJ, Li LY, Lee HJ, Chang CJ, Chang WC, Hsu JM, Kuo HP, Xia W, Wei Y, Chiu PC, Chou CK, Du Y, Dhar D, Karin M, Chen CH, Hung MC. IKKα activation of NOTCH links tumorigenesis via FOXA2 suppression. Mol Cell 2012; 45:171-84. [PMID: 22196886 PMCID: PMC3268914 DOI: 10.1016/j.molcel.2011.11.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 09/27/2011] [Accepted: 11/01/2011] [Indexed: 12/15/2022]
Abstract
Proinflammatory cytokine TNFα plays critical roles in promoting malignant cell proliferation, angiogenesis, and tumor metastasis in many cancers. However, the mechanism of TNFα-mediated tumor development remains unclear. Here, we show that IKKα, an important downstream kinase of TNFα, interacts with and phosphorylates FOXA2 at S107/S111, thereby suppressing FOXA2 transactivation activity and leading to decreased NUMB expression, and further activates the downstream NOTCH pathway and promotes cell proliferation and tumorigenesis. Moreover, we found that levels of IKKα, pFOXA2 (S107/111), and activated NOTCH1 were significantly higher in hepatocellular carcinoma tumors than in normal liver tissues and that pFOXA2 (S107/111) expression was positively correlated with IKKα and activated NOTCH1 expression in tumor tissues. Therefore, dysregulation of NUMB-mediated suppression of NOTCH1 by TNFα/IKKα-associated FOXA2 inhibition likely contributes to inflammation-mediated cancer pathogenesis. Here, we report a TNFα/IKKα/FOXA2/NUMB/NOTCH1 pathway that is critical for inflammation-mediated tumorigenesis and may provide a target for clinical intervention in human cancer.
Collapse
Affiliation(s)
- Mo Liu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Dung-Fang Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Chun-Te Chen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Chia-Jui Yen
- National Cheng Kung University Hospital, Department of Internal Medicine, No. 138, Sheng-Li Road, Tainan City 701, Taiwan
| | - Long-Yuan Li
- Graduate Institute of Cancer Biology, Center for Molecular Medicine, China Medical University, Taichung 447, Taiwan
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Hong-Jen Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Chun-Ju Chang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei-Chao Chang
- Graduate Institute of Cancer Biology, Center for Molecular Medicine, China Medical University, Taichung 447, Taiwan
- The Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 105, Taiwan
| | - Jung-Mao Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Hsu-Ping Kuo
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Weiya Xia
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yongkun Wei
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pei-Chun Chiu
- Graduate Institute of Cancer Biology, Center for Molecular Medicine, China Medical University, Taichung 447, Taiwan
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Chao-Kai Chou
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Yi Du
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Debanjan Dhar
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Chung-Hsuan Chen
- The Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 105, Taiwan
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
- Graduate Institute of Cancer Biology, Center for Molecular Medicine, China Medical University, Taichung 447, Taiwan
| |
Collapse
|
27
|
Kaposi's sarcoma-associated herpesvirus Rta tetramers make high-affinity interactions with repetitive DNA elements in the Mta promoter to stimulate DNA binding of RBP-Jk/CSL. J Virol 2011; 85:11901-15. [PMID: 21880753 DOI: 10.1128/jvi.05479-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV; also known as human herpesvirus 8 [HHV-8]) is the etiologic agent of Kaposi's sarcoma (KS) and lymphoproliferative diseases. We previously demonstrated that the KSHV lytic switch protein Rta stimulates DNA binding of the cellular RBP-Jk/CSL protein, the nuclear component of the Notch pathway, on Rta target promoters. In the current study, we define the promoter requirements for formation of transcriptionally productive Rta/RBP-Jk/DNA complexes. We show that highly pure Rta footprints 7 copies of a previously undescribed repetitive element in the promoter of the essential KSHV Mta gene. We have termed this element the "CANT repeat." CANT repeats are found on both strands of DNA and have a consensus sequence of ANTGTAACANT(A/T)(A/T)T. We demonstrate that Rta tetramers make high-affinity interactions (i.e., nM) with 64 bp of the Mta promoter but not single CANT units. The number of CANT repeats, their presence in palindromes, and their positions relative to the RBP-Jk binding site determine the optimal target for Rta stimulation of RBP-Jk DNA binding and formation of ternary Rta/RBP-Jk/DNA complexes. DNA binding and tetramerization mutants of Rta fail to stimulate RBP-Jk DNA binding. Our chromatin immunoprecipitation assays show that RBP-Jk DNA binding is broadly, but selectively, stimulated across the entire KSHV genome during reactivation. We propose a model in which tetramerization of Rta allows it to straddle RBP-Jk and contact repeat units on both sides of RBP-Jk. Our study integrates high-affinity Rta DNA binding with the requirement for a cellular transcription factor in Rta transactivation.
Collapse
|
28
|
EBV nuclear antigen EBNALP dismisses transcription repressors NCoR and RBPJ from enhancers and EBNA2 increases NCoR-deficient RBPJ DNA binding. Proc Natl Acad Sci U S A 2011; 108:7808-13. [PMID: 21518914 DOI: 10.1073/pnas.1104991108] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
EBV nuclear antigen 2 (EBNA2) and EBV nuclear antigen LP (EBNALP) are critical for B-lymphocyte transformation to lymphoblastoid cell lines (LCLs). EBNA2 activates transcription through recombination signal-binding immunoglobulin κJ region (RBPJ), a transcription factor associated with NCoR repressive complexes, and EBNALP is implicated in repressor relocalization. EBNALP coactivation with EBNA2 was found to dominate over NCoR repression. EBNALP associated with NCoR and dismissed NCoR, NCoR and RBPJ, or NCoR, RBPJ, and EBNA2 from matrix-associated deacetylase (MAD) bodies. In non-EBV-infected BJAB B lymphoma cells that stably express EBNA2, EBNALP, or EBNA2 and EBNALP, EBNALP was associated with hairy and enhancer of split 1 (hes1), cd21, cd23, and arginine and glutamate-rich 1 (arglu1) enhancer or promoter DNA and was associated minimally with coding DNA. With the exception of RBPJ at the arglu1 enhancer, NCoR and RBPJ were significantly decreased at enhancer and promoter sites in EBNALP or EBNA2 and EBNALP BJAB cells. EBNA2 DNA association was unaffected by EBNALP, and EBNALP was unaffected by EBNA2. EBNA2 markedly increased RBPJ at enhancer sites without increasing NCoR. EBNALP further increased hes1 and arglu1 RNA levels with EBNA2 but did not further increase cd21 or cd23 RNA levels. EBNALP in which the 45 C-terminal residues critical for transformation and transcriptional activation were deleted associated with NCoR but was deficient in dismissing NCoR from MAD bodies and from enhancer and promoter sites. These data strongly support a model in which EBNA2 association with NCoR-deficient RBPJ enhances transcription and EBNALP dismisses NCoR and RBPJ repressive complexes from enhancers to coactivate hes1 and arglu1 but not cd21 or cd23.
Collapse
|
29
|
Workman A, Sinani D, Pittayakhajonwut D, Jones C. A protein (ORF2) encoded by the latency-related gene of bovine herpesvirus 1 interacts with Notch1 and Notch3. J Virol 2011; 85:2536-46. [PMID: 21191019 PMCID: PMC3067920 DOI: 10.1128/jvi.01937-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 12/17/2010] [Indexed: 12/12/2022] Open
Abstract
Like other Alphaherpesvirinae subfamily members, bovine herpesvirus 1 (BHV-1) establishes latency in sensory neurons. The latency-related RNA (LR-RNA) is abundantly expressed in latently infected sensory neurons. An LR mutant virus with stop codons at the amino terminus of the first open reading frame (ORF) in the LR gene (ORF2) does not reactivate from latency, in part because it induces higher levels of apoptosis in infected neurons. ORF2 is not the only viral product expressed during latency, but it is important for the latency reactivation cycle because it inhibits apoptosis. In this study, a yeast 2-hybrid screen revealed that ORF2 interacted with two cellular transcription factors, Notch1 and Notch3. These interactions were confirmed in mouse neuroblastoma cells by confocal microscopy and in an in vitro "pulldown" assay. During reactivation from latency, Notch3 RNA levels in trigeminal ganglia were higher than those during latency, suggesting that Notch family members promote reactivation from latency or that reactivation promotes Notch expression. A plasmid expressing the Notch1 intercellular domain (ICD) stimulated productive infection and promoters that encode the viral transcription factor bICP0. The Notch3 ICD did not stimulate productive infection as efficiently as the Notch1 ICD and had no effect on bICP0 promoter activity. Plasmids expressing the Notch1 ICD or the Notch3 ICD trans-activated a late promoter encoding glycoprotein C. ORF2 reduced the trans-activation potential of Notch1 and Notch3, suggesting that ORF2 interfered with the trans-activation potential of Notch. These studies provide evidence that ORF2, in addition to inhibiting apoptosis, has the potential to promote establishment and maintenance of latency by sequestering cellular transcription factors.
Collapse
Affiliation(s)
- Aspen Workman
- School of Biological Sciences, School of Veterinary Medicine and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Morisson Life Science Center, Rm. 234, Lincoln, Nebraska 68583-0900
| | - Devis Sinani
- School of Biological Sciences, School of Veterinary Medicine and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Morisson Life Science Center, Rm. 234, Lincoln, Nebraska 68583-0900
| | - Daraporn Pittayakhajonwut
- School of Biological Sciences, School of Veterinary Medicine and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Morisson Life Science Center, Rm. 234, Lincoln, Nebraska 68583-0900
| | - Clinton Jones
- School of Biological Sciences, School of Veterinary Medicine and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Morisson Life Science Center, Rm. 234, Lincoln, Nebraska 68583-0900
| |
Collapse
|
30
|
Clyde K, Glaunsinger BA. Getting the message direct manipulation of host mRNA accumulation during gammaherpesvirus lytic infection. Adv Virus Res 2011; 78:1-42. [PMID: 21040830 DOI: 10.1016/b978-0-12-385032-4.00001-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Gammaherpesvirinae subfamily of herpesviruses comprises lymphotropic viruses, including the oncogenic human pathogens Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus. During lytic infection, gammaherpesviruses manipulate host gene expression to optimize the cellular environment for viral replication and to evade the immune response. Additionally, although a lytically infected cell will itself be killed in the process of viral replication, lytic infection can contribute to pathogenesis by inducing the secretion of paracrine factors with functions in cell survival and proliferation, and angiogenesis. The mechanisms by which these viruses manipulate host gene expression are varied and target the accumulation of cellular mRNAs and their translation, signaling pathways, and protein stability. Here, we discuss how gammaherpesviral proteins directly influence host mRNA biogenesis and stability, either selectively or globally, in order to fine-tune the cellular environment to the advantage of the virus. Appreciation of the mechanisms by which these viruses interface with and adapt normal cellular processes continues to inform our understanding of gammaherpesviral biology and the regulation of mRNA accumulation and turnover in our own cells.
Collapse
Affiliation(s)
- Karen Clyde
- Department of Plant and Microbial Biology, University of California, Berkeley, USA
| | | |
Collapse
|
31
|
Ahmad H, Gubbels R, Ehlers E, Meyer F, Waterbury T, Lin R, Zhang L. Kaposi sarcoma-associated herpesvirus degrades cellular Toll-interleukin-1 receptor domain-containing adaptor-inducing beta-interferon (TRIF). J Biol Chem 2011; 286:7865-7872. [PMID: 21212282 DOI: 10.1074/jbc.m110.191452] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) is a human γ-herpesvirus associated with several human malignancies. The replication and transcription activator (RTA) is necessary and sufficient for the switch from KSHV latency to lytic replication. Toll-interleukin-1 receptor (TIR) domain-containing adaptor-inducing β-interferon (TRIF, also called TIR-domain-containing adaptor molecule-1 (TICAM-1)) is a signaling adaptor molecule that is critically involved in the Toll-like receptor 3 (TLR-3) and TLR-4 signaling pathways for type I interferon (IFN) production, a key component of innate immunity against microbial infection. In this report, we find a new mechanism by which RTA blocks innate immunity by targeting cellular TRIF. RTA specifically degrades TRIF by shortening the half-life of TRIF protein. This RTA-mediated degradation is at least partially mediated through the ubiquitin-proteasome pathway because proteasome inhibitors as well as knockdown of cellular ubiquitin expression alleviate the degradation. RTA may not directly interact with TRIF and may activate TRIF degradation indirectly through an unknown mediator(s). RTA targets multiple regions of TRIF and may use its ubiquitin ligase domain for the degradation. In addition, physiological levels of TRIF protein are down-regulated during KSHV lytic replication when RTA is expressed. Finally, RTA down-regulates double-stranded RNA-initiated activation of TLR-3 pathway, in the absence of degradation of IFN regulatory factor 7 (IRF-7). Taken together, these data suggest that KSHV employs a novel mechanism to block the innate immunity by degrading TRIF protein. This work may contribute to our understandings on how KSHV evades host immunity for its survival in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | - Rongtuan Lin
- the Lady Davis Institute for Medical Research, Department of Medicine, McGill University, Montreal, Quebec H3A 2T5, Canada
| | - Luwen Zhang
- From the School of Biological Sciences and; Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68588 and.
| |
Collapse
|
32
|
Abstract
The life cycle of Kaposi's sarcoma-associated herpesvirus (KSHV) consists of latent and lytic replication phases. During latent infection, only a limited number of KSHV genes are expressed. However, this phase of replication is essential for persistent infection, evasion of host immune response, and induction of KSHV-related malignancies. KSHV reactivation from latency produces a wide range of viral products and infectious virions. The resulting de novo infection and viral lytic products modulate diverse cellular pathways and stromal microenvironment, which promote the development of Kaposi's sarcoma (KS). The mechanisms controlling KSHV latency and reactivation are complex, involving both viral and host factors, and are modulated by diverse environmental factors. Here, we review the cellular and molecular basis of KSHV latency and reactivation with a focus on the most recent advancements in the field.
Collapse
|
33
|
Ohe EMDN, Padilha MHVDQ, Enokihara MMSS, Almeida FAD, Porro AM. Fatal outcome in classic Kaposi's sarcoma. An Bras Dermatol 2010; 85:375-9. [PMID: 20676474 DOI: 10.1590/s0365-05962010000300014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 09/21/2008] [Indexed: 11/22/2022] Open
Abstract
First described in 1872, Kaposi's sarcoma is defined as a rare multifocal tumor that originates in the endothelial cells and presents with cutaneous and extracutaneous manifestations. The classic form is most common in elderly men and progression is slow. This tumor responds well to chemotherapy and radiotherapy. This report describes a classic case of Kaposi's sarcoma in a woman with skin and visceral manifestations in whom the disease rapidly progressed to a fatal outcome.
Collapse
|
34
|
Foldi J, Chung AY, Xu H, Zhu J, Outtz HH, Kitajewski J, Li Y, Hu X, Ivashkiv LB. Autoamplification of Notch signaling in macrophages by TLR-induced and RBP-J-dependent induction of Jagged1. THE JOURNAL OF IMMUNOLOGY 2010; 185:5023-31. [PMID: 20870935 DOI: 10.4049/jimmunol.1001544] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Several signaling pathways, including the Notch pathway, can modulate TLR activation to achieve responses most appropriate for the environment. One mechanism of TLR-Notch cross-talk is TLR-induced expression of Notch ligands Jagged and Delta that feed back to engage Notch receptors on TLR-activated cells. In this study, we investigated mechanisms by which TLRs induce Notch ligand expression in primary macrophages. TLRs induced Jagged1 expression rapidly and independently of new protein synthesis. Jagged1 induction was augmented by IFN-γ, was partially dependent on canonical TLR-activated NF-κB and MAPK signaling pathways, and elevated Jagged1 expression augmented TLR-induced IL-6 production. Strikingly, TLR-induced Jagged1 expression was strongly dependent on the Notch master transcriptional regulator RBP-J and also on upstream components of the Notch pathway γ-secretase and Notch1 and Notch2 receptors. Thus, Jagged1 is an RBP-J target gene that is activated in a binary manner by TLR and Notch pathways. Early and direct cooperation between TLR and Notch pathways leads to Jagged1-RBP-J-mediated autoamplification of Notch signaling that can modulate later phases of the TLR response.
Collapse
Affiliation(s)
- Julia Foldi
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, Hospital for Special Surgery, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Convergence of Kaposi's sarcoma-associated herpesvirus reactivation with Epstein-Barr virus latency and cellular growth mediated by the notch signaling pathway in coinfected cells. J Virol 2010; 84:10488-500. [PMID: 20686042 DOI: 10.1128/jvi.00894-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of primary effusion lymphoma (PEL). All PEL cell lines are infected with KSHV, and 70% are coinfected with Epstein-Barr virus (EBV). KSHV reactivation from latency requires promoter-specific transactivation by the KSHV Rta protein through interactions with RBP-Jk (CSL), the cellular DNA-binding component of the Notch signal transduction pathway. EBV transformation of primary B cells requires EBV nuclear antigen 2 (EBNA-2) to interact with RBP-Jk to direct the latent viral and cellular gene expression program. Although KSHV Rta and EBV EBNA-2 both require RBP-Jk for transactivation, previous studies have suggested that RBP-Jk-dependent transactivators do not function identically. We have found that the EBV latent protein LMP-1 is expressed in less than 5% of KSHV(+)/EBV(+) PEL cells but is induced in an Rta-dependent fashion when KSHV reactivates. KSHV Rta transactivates the EBV latency promoters in an RBP-Jk-dependent fashion and forms a ternary complex with RBP-Jk on the promoters. In B cells that are conditionally transformed by EBV alone, we show that KSHV Rta complements a short-term EBNA-2 growth deficiency in an autocrine/paracrine manner. Complementation of EBNA-2 deficiency by Rta depends on RBP-Jk and LMP-1, and Rta transactivation is required for optimal growth of KSHV(+)/EBV(+) PEL lines. Our data suggest that Rta can contribute to EBV-driven cellular growth by transactivating RBP-Jk-dependent EBV latency genes. However, our data also suggest that EBNA-2 and Rta induce distinct alterations in the cellular proteomes that contribute to the growth of infected cells.
Collapse
|
36
|
Kovall RA, Blacklow SC. Mechanistic insights into Notch receptor signaling from structural and biochemical studies. Curr Top Dev Biol 2010; 92:31-71. [PMID: 20816392 DOI: 10.1016/s0070-2153(10)92002-4] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Notch proteins are the receptors in a highly conserved signal transduction system used to communicate signals between cells that contact each other. Studies investigating structure-function relationships in Notch signaling have gained substantial momentum in recent years. Here, we summarize the current understanding of the molecular logic of Notch signal transduction, emphasizing structural and biochemical studies of Notch receptors, their ligands, and complexes of intracellular Notch proteins with their target transcription factors. Recent advances in the structure-based modulation of Notch-signaling activity are also discussed.
Collapse
Affiliation(s)
- Rhett A Kovall
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, USA
| | | |
Collapse
|
37
|
Chang PJ, Boonsiri J, Wang SS, Chen LY, Miller G. Binding of RBP-Jkappa (CSL) protein to the promoter of the Kaposi's sarcoma-associated herpesvirus ORF47 (gL) gene is a critical but not sufficient determinant of transactivation by ORF50 protein. Virology 2009; 398:38-48. [PMID: 20006367 DOI: 10.1016/j.virol.2009.11.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 09/24/2009] [Accepted: 11/10/2009] [Indexed: 12/21/2022]
Abstract
ORF50 protein activates the KSHV lytic cycle. The promoter of an early lytic-cycle gene ORF47, encoding envelope protein gL, is activated by an interaction between ORF50 protein and RBP-Jkappa. In ORF47p only one of two sequences fitting the consensus RBP-Jkappa recognition site strongly binds RBP-Jkappa and confers a response to ORF50 protein. Flanking sequences 5' to the RBP-Jkappa binding site are required to confer a maximal response to ORF50 protein. Not all mutant ORF50 response elements in the ORF47p that are bound by RBP-Jkappa are sufficient to confer maximal ORF50 responsiveness. Four sequences containing an RBP-Jkappa site and flanking sequences characteristic of the ORF50 response element in ORF47p were identified in human DNA. All bound RBP-Jkappa, but only one responded robustly to ORF50 protein. We propose models for the possible function of ancillary sequences flanking the RBP-Jkappa-binding element which are crucial for mediating ORF50 transactivation.
Collapse
Affiliation(s)
- Pey-Jium Chang
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan, Taiwan
| | | | | | | | | |
Collapse
|
38
|
Role of defective Oct-2 and OCA-B expression in immunoglobulin production and Kaposi's sarcoma-associated herpesvirus lytic reactivation in primary effusion lymphoma. J Virol 2009; 83:4308-15. [PMID: 19224997 DOI: 10.1128/jvi.02196-08] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Primary effusion lymphoma (PEL) is a distinct type of B-cell non-Hodgkin lymphoma characterized by the presence of Kaposi's sarcoma-associated herpesvirus (KSHV/human herpesvirus 8). Despite having a genotype and gene expression signature of highly differentiated B cells, PEL does not usually express surface or cytoplasmic immunoglobulin (Ig). We show the lack of Oct-2 and OCA-B transcription factors to be responsible, at least in part, for this defect in Ig production. Like Ig genes, ORF50, the key regulator of the switch from latency to lytic reactivation, contains an octamer motif within its promoter. We therefore examined the impact of Oct-2 and OCA-B on ORF50 activation. The binding of Oct-1 to the ORF50 promoter has been shown to significantly enhance ORF50 transactivation. We found that Oct-2, on the other hand, inhibited ORF50 expression and consequently lytic reactivation by competing with Oct-1 for the octamer motif in the ORF50 promoter. Our data suggest that Oct-2 downregulation in infected cells would be favorable to KSHV in allowing for efficient viral reactivation.
Collapse
|
39
|
Wen HJ, Minhas V, Wood C. Identification and characterization of a new Kaposi's sarcoma-associated herpesvirus replication and transcription activator (RTA)-responsive element involved in RTA-mediated transactivation. J Gen Virol 2009; 90:944-953. [PMID: 19223488 DOI: 10.1099/vir.2008.006817-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) replication and transcription activator (RTA) is well established as a key transcriptional activator that regulates the KSHV life cycle from latency to lytic replication. It is expressed immediately after infection and activates a number of viral genes leading to virus replication. The RTA-responsive element (RRE) in the RTA target gene promoters is critical for RTA to mediate this transactivation. A number of non-conserved RREs have been identified in various RTA-responsive promoters, and AT-rich sequences have been proposed to serve as RTA targets, but no consensus RRE sequence has been identified so far. Two non-conserved RREs (RRE1 and RRE2) containing AT-rich sequences have been identified previously in the promoter of one of the KSHV lytic genes, ORF57, which can be strongly activated by RTA. Based on homology with the consensus sequence of the Epstein-Barr virus Rta RRE, this study identified a third RTA-responsive element (RRE3) in the ORF57 promoter. This RRE comprised a GC-rich sequence that could bind RTA both in vitro and in vivo, and plays a role in RTA-mediated transactivation of the ORF57 promoter. The presence of two of the three RREs in close proximity to each other was required for optimal RTA-mediated transactivation of the ORF57 promoter, even though the presence of only one RRE is needed for RTA binding. These results suggest that the ability of RTA to mediate transcriptional activation is distinct from its ability to bind to its target elements.
Collapse
Affiliation(s)
- Hui-Ju Wen
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Veenu Minhas
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Charles Wood
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
40
|
Schwartz RA, Micali G, Nasca MR, Scuderi L. Kaposi sarcoma: a continuing conundrum. J Am Acad Dermatol 2008; 59:179-206; quiz 207-8. [PMID: 18638627 DOI: 10.1016/j.jaad.2008.05.001] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 04/20/2008] [Accepted: 05/05/2008] [Indexed: 12/11/2022]
Abstract
UNLABELLED Kaposi sarcoma (KS) remains a challenge. Its classic or Mediterranean form tends to be benign. In transplant recipients it may be less so. As part of the AIDS pandemic, of which it was an original defining component, it may be life-threatening. It is due to human herpesvirus-8, which is necessary but not sufficient to produce the disease. KS has a low prevalence in the general population of the United States and United Kingdom, with an intermediate rate in Italy and Greece, and a high one in parts of Africa. In Italy, hot spots include its southern regions, the Po River Valley, and Sardinia, possibly related to a high density of blood-sucking insects. An important challenge is to treat KS patients without immunocompromising them. The potential of effective anti-herpes virus therapy and the use of sirolimus in transplantation recipients have added new opportunities for KS prevention. LEARNING OBJECTIVES At the conclusion of this learning activity, participants should be able to provide the most recent information about Kaposi sarcoma in the context in which it occurs. Its classic or Mediterranean form, its pattern in transplant recipients and others iatrogenically immunosuppressed, and its occurrence as a potentially life-threatening part of the AIDS pandemic will be stressed. Its etiology and transmission will be discussed in detail to facilitate understanding of Kaposi sarcoma and of human herpesvirus-8 infection in the general population of the United States and United Kingdom, in Italy and Greece, and in certain parts of Africa. Its therapy, including the concept of doing it without immunocompromising the patient, will be stressed. New opportunities for Kaposi sarcoma prevention will also be discussed.
Collapse
Affiliation(s)
- Robert A Schwartz
- Department of Dermatology, New Jersey Medical School, Newark, New Jersey 07103-2714, USA.
| | | | | | | |
Collapse
|
41
|
Identification of direct transcriptional targets of the Kaposi's sarcoma-associated herpesvirus Rta lytic switch protein by conditional nuclear localization. J Virol 2008; 82:10709-23. [PMID: 18715905 DOI: 10.1128/jvi.01012-08] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Lytic reactivation from latency is critical for the pathogenesis of Kaposi's sarcoma-associated herpesvirus (KSHV). We previously demonstrated that the 691-amino-acid (aa) KSHV Rta transcriptional transactivator is necessary and sufficient to reactivate the virus from latency. Viral lytic cycle genes, including those expressing additional transactivators and putative oncogenes, are induced in a cascade fashion following Rta expression. In this study, we sought to define Rta's direct targets during reactivation by generating a conditionally nuclear variant of Rta. Wild-type Rta protein is constitutively localized to cell nuclei and contains two putative nuclear localization signals (NLSs). Only one NLS (NLS2; aa 516 to 530) was required for the nuclear localization of Rta, and it relocalized enhanced green fluorescent protein exclusively to cell nuclei. The results of analyses of Rta NLS mutants demonstrated that proper nuclear localization of Rta was required for transactivation and the stimulation of viral reactivation. RTA with NLS1 and NLS2 deleted was fused to the hormone-binding domain of the murine estrogen receptor to generate an Rta variant whose nuclear localization and ability to transactivate and induce reactivation were tightly controlled posttranslationally by the synthetic hormone tamoxifen. We used this strategy in KSHV-infected cells treated with protein synthesis inhibitors to identify direct transcriptional targets of Rta. Rta activated only eight KSHV genes in the absence of de novo protein synthesis. These direct transcriptional targets of Rta were transactivated to different levels and included the genes nut-1/PAN, ORF57/Mta, ORF56/Primase, K2/viral interleukin-6 (vIL-6), ORF37/SOX, K14/vOX, K9/vIRF1, and ORF52. Our data suggest that the induction of most of the KSHV lytic cycle genes requires additional protein expression after the expression of Rta.
Collapse
|
42
|
Abstract
The switch from Epstein-Barr virus (EBV) latent infection to lytic replication is governed by two transcriptional regulators, Zta and Rta. We previously reported that the EBV protein encoded by the LF2 gene binds to Rta and can inhibit Rta activity in reporter gene assays. We now report that LF2 associates with Rta in the context of EBV-infected cells induced for lytic replication. LF2 inhibition of Rta occurs in both epithelial and B cells, and this downregulation is promoter specific: LF2 decreases Rta activation of the BALF2, BMLF1, and BMRF1 promoters by 60 to 90% but does not significantly decrease Rta activation of its own promoter (Rp). LF2 decreases Rta activation by at least two mechanisms: decreased DNA binding and interference with transcriptional activation by the Rta acidic activation domain. Coexpression of LF2 also specifically induces modification of Rta by the small ubiquitin-like modifiers SUMO2 and SUMO3. We further demonstrate that LF2 overexpression blocks lytic activation in EBV-infected cells induced with Rta or Zta. Our results demonstrate that LF2, a gene deleted from the EBV reference strain B95-8, encodes a potent inhibitor of EBV replication, and they suggest that future studies of EBV replication need to account for the potential effects of LF2 on Rta activity.
Collapse
|
43
|
Grigorian A, Hurford R, Chao Y, Patrick C, Langford TD. Alterations in the Notch4 pathway in cerebral endothelial cells by the HIV aspartyl protease inhibitor, nelfinavir. BMC Neurosci 2008; 9:27. [PMID: 18302767 PMCID: PMC2268698 DOI: 10.1186/1471-2202-9-27] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 02/26/2008] [Indexed: 11/12/2022] Open
Abstract
Background Aspartyl protease inhibitors (PIs) used to treat HIV belong to an important group of drugs that influence significantly endothelial cell functioning and angiogenic capacity, although specific mechanisms are poorly understood. Recently, PIs, particularly Nelfinavir, were reported to disrupt Notch signaling in the HIV-related endothelial cell neoplasm, Kaposi's sarcoma. Given the importance of maintaining proper cerebral endothelial cell signaling at the blood brain barrier during HIV infection, we considered potential signaling pathways such as Notch, that may be vulnerable to dysregulation during exposure to PI-based anti-retroviral regimens. Notch processing by γ-secretase results in cleavage of the notch intracellular domain that travels to the nucleus to regulate expression of genes such as vascular endothelial cell growth factor and NFκB that are critical in endothelial cell functioning. Since, the effects of HIV PIs on γ-secretase substrate pathways in cerebral endothelial cell signaling have not been addressed, we sought to determine the effects of HIV PIs on Notch and amyloid precursor protein. Results Exposure to reported physiological levels of Saquinavir, Indinavir, Nelfinavir and Ritonavir, significantly increased reactive oxygen species in cerebral endothelial cells, but had no effect on cell survival. Likewise, PIs decreased Notch 4-protein expression, but had no effect on Notch 1 or amyloid precursor protein expression. On the other hand, only Nelfinavir increased significantly Notch 4 processing, Notch4 intracellular domain nuclear localization and the expression of notch intracellular domain targets NFκB and matrix metalloproteinase 2. Pre-treatment with the antioxidant Vitamin E prevented PI-induced reactive oxygen species generation and partially prevented Nelfinavir-induced changes in both Notch 4 processing, and cellular localization patterns. Moreover, in support of increased expression of pro-angiogenic genes after Nelfinavir treatment, Nelfinavir did not inhibit angiogenic capacity. Conclusion Nelfinavir affects Notch 4 processing that results in induction of expression of the pro-angiogenic genes NFκB and matrix metalloproteinase 2 in cerebral endothelial cells.
Collapse
Affiliation(s)
- Aline Grigorian
- Department of Pathology, University of California San Diego, La Jolla, USA.
| | | | | | | | | |
Collapse
|
44
|
Jiang Y, Xu D, Zhao Y, Zhang L. Mutual inhibition between Kaposi's sarcoma-associated herpesvirus and Epstein-Barr virus lytic replication initiators in dually-infected primary effusion lymphoma. PLoS One 2008; 3:e1569. [PMID: 18253508 PMCID: PMC2215330 DOI: 10.1371/journal.pone.0001569] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 01/11/2008] [Indexed: 01/15/2023] Open
Abstract
Background Both Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) are members of the human gamma herpesvirus family: each is associated with various human cancers. The majority of AIDS-associated primary effusion lymphoma (PEL) are co-infected with both KSHV and EBV. Dually-infected PELs selectively switch from latency to lytic replication of either KSHV or EBV in response to chemical stimuli. KSHV replication and transcription activator (K-RTA) is necessary and sufficient for the switch from KSHV latency to lytic replication, while EBV BZLF1 gene product (EBV-Z) is a critical initiator for induction of EBV lytic replication. Methodology/Principal Findings We show K-RTA and EBV-Z are co-localized and physically interact with each other in dually-infected PELs. K-RTA inhibits the EBV lytic replication by nullifying EBV-Z-mediated EBV lytic gene activation. EBV-Z inhibits KSHV lytic gene expression by blocking K-RTA-mediated transactivations. The physical interaction between K-RTA and EBV-Z are required for the mutual inhibition of the two molecules. The leucine heptapeptide repeat (LR) region in K-RTA and leucine zipper region in EBV-Z are involved in the physical interactions of the two molecules. Finally, initiation of KSHV lytic gene expression is correlated with the reduction of EBV lytic gene expression in the same PEL cells. Conclusions/Significance In this report, how the two viruses interact with each other in dually infected PELs is addressed. Our data may provide a possible mechanism for maintaining viral latency and for selective lytic replication in dually infected PELs, i.e., through mutual inhibition of two critical lytic replication initiators. Our data about putative interactions between EBV and KSHV would be applicable to the majority of AIDS-associated PELs and may be relevant to the pathogenesis of PELs.
Collapse
Affiliation(s)
- Yanjun Jiang
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Dongsheng Xu
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Yong Zhao
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Luwen Zhang
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, United States of America
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
- *E-mail:
| |
Collapse
|
45
|
Anderson LJ, Longnecker R. An auto-regulatory loop for EBV LMP2A involves activation of Notch. Virology 2007; 371:257-66. [PMID: 17980397 DOI: 10.1016/j.virol.2007.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 06/25/2007] [Accepted: 10/10/2007] [Indexed: 12/11/2022]
Abstract
LMP2A is consistently detected in Hodgkin's lymphoma, nasopharyngeal carcinoma and has also been detected in Burkitt's lymphoma. Interestingly, LMP2A is detected in the absence of the transcriptional activator EBNA2, suggesting that an alternative mechanism is responsible for LMP2A expression. The intracellular domain of Notch (Notch-IC) and EBNA2 are functional homologs and recent microarray analysis indicates that LMP2A may constitutively activate the Notch pathway in vivo. Coupled with evidence that Notch-IC can bind to and activate the LMP2A promoter, we hypothesized that expression of LMP2A results in the constitutive activation of the Notch pathway to auto-regulate its promoter. Our data indicate that LMP2A constitutively activates the Notch pathway in B cells and epithelial cells. Expression of LMP2A alone is sufficient to activate its own expression and the amino-terminal signaling domain is required as LMP2B is unable to activate the LMP2A promoter. In addition, point mutations in tyrosines 31, 101 and 112 each results in a significant decrease in LMP2A promoter activation. Deletion of the RBP-Jkappa consensus sequences results in a significant decrease in promoter activity. The observation that LMP2A activates its own promoter suggests that LMP2A exploits the Notch pathway in order to control its own expression and may explain EBNA2-independent expression of LMP2A in EBV-associated malignancies.
Collapse
Affiliation(s)
- Leah J Anderson
- Department of Microbiology and Immunology, Northwestern University, Chicago, Illinois 60611, USA
| | | |
Collapse
|
46
|
Masa SR, Lando R, Sarid R. Transcriptional regulation of the open reading frame 35 encoded by Kaposi's sarcoma-associated herpesvirus. Virology 2007; 371:14-31. [PMID: 17963810 DOI: 10.1016/j.virol.2007.08.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 07/16/2007] [Accepted: 08/17/2007] [Indexed: 11/26/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a member of the Gammaherpesvirinae and is causally associated with Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. The KSHV genome encodes over 85 genes; the function of some is entirely unknown. We have characterized the transcriptional regulation of a conserved and uncharacterized Gammaherpesvirinae open reading frame, orf35, which lies in a cluster of several overlapping genes, orf34 to orf38. We identified the transcription start site and analyzed upstream sequences. We found that expression of the KSHV lytic replication and transcription activator (RTA) strongly increased the orf35 promoter activity through a 46-nucleotide region which includes a conserved AP-1 binding site. Electrophoretic mobility shift assay demonstrated direct binding of cJUN and cFOS to the predicted AP-1 binding site. Finally, using a mutated promoter lacking the AP-1 site and dominant-negative cFOS, we established that the RTA-mediated orf35 transactivation is AP-1-dependent.
Collapse
Affiliation(s)
- Shiri-Rivka Masa
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, 52900, Israel
| | | | | |
Collapse
|
47
|
Palmeri D, Spadavecchia S, Carroll KD, Lukac DM. Promoter- and cell-specific transcriptional transactivation by the Kaposi's sarcoma-associated herpesvirus ORF57/Mta protein. J Virol 2007; 81:13299-314. [PMID: 17913801 PMCID: PMC2168867 DOI: 10.1128/jvi.00732-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Kaposi's sarcoma-associated herpesvirus (KSHV) Mta protein, encoded by open reading frame 57, is a transactivator of gene expression that is essential for productive viral replication. Previous studies have suggested both transcriptional and posttranscriptional roles for Mta, but little is known regarding Mta's transcriptional function. In this study, we demonstrate that Mta cooperates with the KSHV lytic switch protein, Rta, to reactivate KSHV from latency, but Mta has little effect on reactivation when expressed alone. We demonstrate that the Mta and Rta proteins are expressed with similar but distinct kinetics during KSHV reactivation. In single-cell analyses, Mta expression coincides tightly with progression to full viral reactivation. We demonstrate with promoter reporter assays that while Rta activates transcription in all cell lines tested, Mta's ability to transactivate promoters, either alone or synergistically with Rta, is cell and promoter specific. In particular, Mta robustly transactivates the nut-1/PAN promoter independently of Rta in 293 and Akata-31 cells. Using nuclear run-on assays, we demonstrate that Mta stimulates transcriptional initiation in 293 cells. Rta and Mta physically interact in infected cell extracts, and this interaction requires the intact leucine repeat and central region of Rta in vitro. We demonstrate that Mta also binds to the nut-1/PAN promoter DNA in vitro and in infected cells. An Mta mutant with a lesion in a putative A/T hook domain is altered in DNA binding and debilitated in transactivation. We propose that one molecular mechanism of Mta-mediated transactivation is a direct effect on transcription by direct and indirect promoter association.
Collapse
Affiliation(s)
- Diana Palmeri
- Department of Microbiology and Molecular Genetics and Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey/New Jersey Medical School, Newark, New Jersey, USA
| | | | | | | |
Collapse
|
48
|
Papugani A, Coleman T, Jones C, Zhang L. The interaction between KSHV RTA and cellular RBP-Jkappa and their subsequent DNA binding are not sufficient for activation of RBP-Jkappa. Virus Res 2007; 131:1-7. [PMID: 17850910 PMCID: PMC2225583 DOI: 10.1016/j.virusres.2007.07.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 07/30/2007] [Accepted: 07/30/2007] [Indexed: 10/22/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) replication and transcription activator (RTA) is necessary and sufficient for the switch from KSHV latency to lytic replication. RTA activates promoters by several mechanisms. RTA can bind to sequences in viral promoters and activate transcription. In addition, RTA interacts with the cellular recombination signal sequence-binding protein-J kappa (RBP-Jkappa), a transcriptional repressor, converts the repressor into an activator and activates viral promoters via RBP-Jkappa. Because RBP-Jkappa is required for RTA to activate lytic replication, it is important to understand how RTA cooperates with RBP-Jkappa protein to activate KSHV lytic replication program. Previously, we identified an RTA mutant, RTA-K152E, which has a defect in its direct DNA-binding activity. In this report, the effect of the mutant RTA on KSHV activation via RBP-Jkappa protein is examined. We demonstrate that RTA-K152E interacts with RBP-Jkappa physically and the mutant RTA and RBP-Jkappa complex binds to target DNA properly in vivo and in vitro. However, the complex of RTA-K152E and RBP-Jkappa does not activate transcription. Furthermore, the RTA mutant (RTA-K12E) inhibits cellular Notch-mediated RBP-Jkappa activation. These data collectively suggest that the complex between KSHV RTA and cellular RBP-Jkappa and the subsequent DNA binding by the complex are not sufficient for the activation of RBP-Jkappa protein. Other factor(s) whether additional cofactor(s) in the complex or the intrinsic conformation of RTA, are predicted to be required for the activation of RBP-Jkappa protein by RTA.
Collapse
Affiliation(s)
- Anil Papugani
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588
| | - Tricia Coleman
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68588
| | - Clinton Jones
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68588
- Department of Veterinary Biomedical Sciences, University of Nebraska, Lincoln, Nebraska 68588
| | - Luwen Zhang
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68588
- * Corresponding author: E141 Beadle Center, Nebraska Center for Virology, University of Nebraska, 1901 Vine St., Lincoln, NE 68588. USA. Phone: 01-402-472-5905; Fax: 01-402-472-8722; E-mail:
| |
Collapse
|
49
|
Carroll KD, Khadim F, Spadavecchia S, Palmeri D, Lukac DM. Direct interactions of Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 ORF50/Rta protein with the cellular protein octamer-1 and DNA are critical for specifying transactivation of a delayed-early promoter and stimulating viral reactivation. J Virol 2007; 81:8451-67. [PMID: 17537858 PMCID: PMC1951345 DOI: 10.1128/jvi.00265-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The Kaposi's sarcoma-associated herpesvirus (KSHV) delayed-early K-bZIP promoter contains an ORF50/Rta binding site whose sequence is conserved with the ORF57 promoter. Mutation of the site in the full-length K-bZIP promoter reduced Rta-mediated transactivation by greater than 80%. The K-bZIP element contains an octamer (Oct) binding site that overlaps the Rta site and is well conserved with Oct elements found in the immediate-early promoters of herpes simplex virus type 1(HSV-1). The cellular protein Oct-1, but not Oct-2, binds to the K-bZIP element in a sequence-specific fashion in vitro and in vivo and stimulates Rta binding to the promoter DNA. The coexpression of Oct-1 enhances Rta-mediated transactivation of the wild type but not the mutant K-bZIP promoter, and Oct-1 and Rta proteins bind to each other directly in vitro. Mutations of Rta within an amino acid sequence conserved with HSV-1 virion protein 16 eliminate Rta's interactions with Oct-1 and K-bZIP promoter DNA but not RBP-Jk. The binding of Rta to both Oct-1 and DNA contributes to the transactivation of the K-bZIP promoter and viral reactivation, and Rta mutants deficient for both interactions are completely debilitated. Our data suggest that the Rta/Oct-1 interaction is essential for optimal KSHV reactivation. Transfections of mouse embryo fibroblasts and an endothelial cell line suggest cell-specific differences in the requirement for Oct-1 or RBP-Jk in Rta-mediated transactivation of the K-bZIP promoter. We propose a model in which Rta transactivation of the promoter is specified by the combination of DNA binding and interactions with several cellular DNA binding proteins including Oct-1.
Collapse
Affiliation(s)
- Kyla Driscoll Carroll
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey/New Jersey Medical School, 225 Warren Street, Newark, NJ 07103, USA
| | | | | | | | | |
Collapse
|
50
|
Bu W, Carroll KD, Palmeri D, Lukac DM. Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 ORF50/Rta lytic switch protein functions as a tetramer. J Virol 2007; 81:5788-806. [PMID: 17392367 PMCID: PMC1900300 DOI: 10.1128/jvi.00140-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Kaposi's sarcoma-associated herpesvirus open reading frame 50 (ORF50) protein (called Rta), is necessary and sufficient for reactivation of the virus from latency. We previously demonstrated that a truncated mutant of ORF50 lacking its C-terminal transcriptional activation domain, called ORF50DeltaSTAD, formed mixed multimers with wild-type (WT) ORF50 and functioned as a dominant negative inhibitor of reactivation. For this report, we investigated the requirements for multimerization of ORF50/Rta in transactivation and viral reactivation. We analyzed multimerization of WT, mutant, and chimeric ORF50 proteins, using Blue Native polyacrylamide gel electrophoresis and size exclusion chromatography. WT and mutant ORF50 proteins form tetramers and higher-order multimers, but not monomers, in solution. The proline-rich, N-terminal leucine heptapeptide repeat (LR) of ORF50 (amino acids [aa] 244 to 275) is necessary but not sufficient for oligomer formation and functions in concert with the central portion of ORF50/Rta (aa 245 to 414). The dominant negative mutant ORF50DeltaSTAD requires the LR to form mixed multimers with WT ORF50 and inhibit its function. In the context of the WT ORF50/Rta protein, mutagenesis of the LR, or replacement of the LR by heterologous multimerization domains from the GCN4 or p53 proteins, demonstrates that tetramers of Rta are sufficient for transactivation and viral reactivation. Mutants of Rta that are unable to form tetramers but retain the ability to form higher-order multimers are reduced in function or are nonfunctional. We concluded that the proline content, but not the leucine content, of the LR is critical for determining the oligomeric state of Rta.
Collapse
Affiliation(s)
- Wei Bu
- University of Medicine and Dentistry of New Jersey/New Jersey Medical School, Department of Microbiology and Molecular Genetics and Graduate School of Biomedical Sciences, Newark, NJ 07103, USA
| | | | | | | |
Collapse
|