1
|
Chen X, Li RT, Chen RY, Shi PD, Liu ZX, Lou YN, Wu M, Zhang RR, Tang W, Li XF, Qin CF. The subgenomic flaviviral RNA suppresses RNA interference through competing with siRNAs for binding RISC components. J Virol 2024; 98:e0195423. [PMID: 38289102 PMCID: PMC10878275 DOI: 10.1128/jvi.01954-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 02/21/2024] Open
Abstract
During the life cycle of mosquito-borne flaviviruses, substantial subgenomic flaviviral RNA (sfRNA) is produced via incomplete degradation of viral genomic RNA by host XRN1. Zika virus (ZIKV) sfRNA has been detected in mosquito and mammalian somatic cells. Human neural progenitor cells (hNPCs) in the developing brain are the major target cells of ZIKV, and antiviral RNA interference (RNAi) plays a critical role in hNPCs. However, whether ZIKV sfRNA was produced in ZIKV-infected hNPCs as well as its function remains not known. In this study, we demonstrate that abundant sfRNA was produced in ZIKV-infected hNPCs. RNA pulldown and mass spectrum assays showed ZIKV sfRNA interacted with host proteins RHA and PACT, both of which are RNA-induced silencing complex (RISC) components. Functionally, ZIKV sfRNA can antagonize RNAi by outcompeting small interfering RNAs (siRNAs) in binding to RHA and PACT. Furthermore, the 3' stem loop (3'SL) of sfRNA was responsible for RISC components binding and RNAi inhibition, and 3'SL can enhance the replication of a viral suppressor of RNAi (VSR)-deficient virus in a RHA- and PACT-dependent manner. More importantly, the ability of binding to RISC components is conversed among multiple flaviviral 3'SLs. Together, our results identified flavivirus 3'SL as a potent VSR in RNA format, highlighting the complexity in virus-host interaction during flavivirus infection.IMPORTANCEZika virus (ZIKV) infection mainly targets human neural progenitor cells (hNPCs) and induces cell death and dysregulated cell-cycle progression, leading to microcephaly and other central nervous system abnormalities. RNA interference (RNAi) plays critical roles during ZIKV infections in hNPCs, and ZIKV has evolved to encode specific viral proteins to antagonize RNAi. Herein, we first show that abundant sfRNA was produced in ZIKV-infected hNPCs in a similar pattern to that in other cells. Importantly, ZIKV sfRNA acts as a potent viral suppressor of RNAi (VSR) by competing with siRNAs for binding RISC components, RHA and PACT. The 3'SL of sfRNA is responsible for binding RISC components, which is a conserved feature among mosquito-borne flaviviruses. As most known VSRs are viral proteins, our findings highlight the importance of viral non-coding RNAs during the antagonism of host RNAi-based antiviral innate immunity.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Rui-Ting Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ru-Yi Chen
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Pan-Deng Shi
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zi-Xin Liu
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ya-Nan Lou
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Mei Wu
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Rong-Rong Zhang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wei Tang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiao-Feng Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Kang H, Ga YJ, Kim SH, Cho YH, Kim JW, Kim C, Yeh JY. Small interfering RNA (siRNA)-based therapeutic applications against viruses: principles, potential, and challenges. J Biomed Sci 2023; 30:88. [PMID: 37845731 PMCID: PMC10577957 DOI: 10.1186/s12929-023-00981-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023] Open
Abstract
RNA has emerged as a revolutionary and important tool in the battle against emerging infectious diseases, with roles extending beyond its applications in vaccines, in which it is used in the response to the COVID-19 pandemic. Since their development in the 1990s, RNA interference (RNAi) therapeutics have demonstrated potential in reducing the expression of disease-associated genes. Nucleic acid-based therapeutics, including RNAi therapies, that degrade viral genomes and rapidly adapt to viral mutations, have emerged as alternative treatments. RNAi is a robust technique frequently employed to selectively suppress gene expression in a sequence-specific manner. The swift adaptability of nucleic acid-based therapeutics such as RNAi therapies endows them with a significant advantage over other antiviral medications. For example, small interfering RNAs (siRNAs) are produced on the basis of sequence complementarity to target and degrade viral RNA, a novel approach to combat viral infections. The precision of siRNAs in targeting and degrading viral RNA has led to the development of siRNA-based treatments for diverse diseases. However, despite the promising therapeutic benefits of siRNAs, several problems, including impaired long-term protein expression, siRNA instability, off-target effects, immunological responses, and drug resistance, have been considerable obstacles to the use of siRNA-based antiviral therapies. This review provides an encompassing summary of the siRNA-based therapeutic approaches against viruses while also addressing the obstacles that need to be overcome for their effective application. Furthermore, we present potential solutions to mitigate major challenges.
Collapse
Affiliation(s)
- Hara Kang
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Yun Ji Ga
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Soo Hyun Kim
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Young Hoon Cho
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Jung Won Kim
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
- Convergence Research Center for Insect Vectors, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Chaeyeon Kim
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Jung-Yong Yeh
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea.
- Research Institute for New Drug Development, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea.
- Convergence Research Center for Insect Vectors, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea.
- KU Center for Animal Blood Medical Science, College of Veterinary Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, Seoul, 05029, South Korea.
| |
Collapse
|
3
|
Zhang W, Tanneti NS, Fausto A, Nouel J, Reyes H, Weiss SR, Li Y. The vaccinia virus E3L dsRNA binding protein detects distinct production patterns of exogenous and endogenous dsRNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.557600. [PMID: 37790463 PMCID: PMC10542517 DOI: 10.1101/2023.09.21.557600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Double-stranded RNA (dsRNA) is a pathogen associated molecular pattern recognized by multiple pattern recognition receptors and induces innate immune responses. Viral infections can generate dsRNA during virus replication. Genetic mutations can also lead to endogenous dsRNA accumulation. DsRNA is present in multiple conformations such as the A form (A-dsRNA) or Z form (Z-dsRNA). A-dsRNA has been detected from multiple viruses with positive-stranded RNA genomes (+ssRNA) but rarely from viruses with negative RNA genomes (-RNA); Z-dsRNA can be detected from influenza virus and poxvirus infections. Viruses have evolved mechanisms to antagonize cellular antiviral responses triggered by dsRNAs. For example, the vaccinia-virus E3L protein can bind and sequester dsRNA to evade host immune responses. The E3L protein encodes a Z-DNA and a dsRNA binding domains that bind to Z-form nucleic acids or dsRNA, respectively. Here we developed recombinant E3L proteins to detect dsRNA and Z-dsRNA generated from viral infections or endogenous cellular mutations. We demonstrate that the E3L recombinant protein specifically detects A-dsRNA generated from +ssRNA viruses but not-RNA viruses. We observe that among various virus infections assayed, only the influenza A virus generates Z-RNA that can be detected by anti-Z-NA antibody but not by the E3L recombinant protein containing the Z-DNA domain. The E3L recombinant protein can also detect endogenous dsRNA in PNPT1 or SUV3L1 knockout cells. Together we concluded that A-dsRNA can be produced and detected from viruses with +ssRNA genomes but not-RNA genomes, and Z-dsRNA can be produced and detected from influenza A virus. Importance The detection of dsRNAs, which exist in the A-dsRNA or Z-RNA conformation, is important for the induction of innate immune responses. dsRNA are generated during a virus infection due to virus replication, or can accumulate to genetic mutations. We engineered recombinant vaccinia virus E3L protein that can detect A-dsRNA generated during infection with a positive-sense RNA genome virus but not a negative-sense RNA genome virus. Infection with influenza A virus generates Z-RNA that can be detected with an anti-z-antibody but not the E3L recombinant protein. The E3L recombinant protein also detects endogenous dsRNA in PNPT1 or SUV3L knockout cells. These findings highlight important characteristics of dsRNA structure and detection.
Collapse
|
4
|
The NS4A Protein of Classical Swine Fever Virus Suppresses RNA Silencing in Mammalian Cells. J Virol 2022; 96:e0187421. [PMID: 35867575 PMCID: PMC9364796 DOI: 10.1128/jvi.01874-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
RNA interference (RNAi) is a significant posttranscriptional gene silencing mechanism and can function as an antiviral immunity in eukaryotes. However, numerous viruses can evade this antiviral RNAi by encoding viral suppressors of RNA silencing (VSRs). Classical swine fever virus (CSFV), belonging to the genus Pestivirus, is the cause of classical swine fever (CSF), which has an enormous impact on animal health and the pig industry. Notably, little is known about how Pestivirus blocks RNAi in their host. In this paper, we uncovered that CSFV NS4A protein can antagonize RNAi efficiently in mammalian cells by binding to double-stranded RNA and small interfering RNA. In addition, the VSR activity of CSFV NS4A was conserved among Pestivirus. Furthermore, the replication of VSR-deficient CSFV was attenuated but could be restored by the deficiency of RNAi in mammalian cells. In conclusion, our studies uncovered that CSFV NS4A is a novel VSR that suppresses RNAi in mammalian cells and shed new light on knowledge about CSFV and other Pestivirus. IMPORTANCE It is well known that RNAi is an important posttranscriptional gene silencing mechanism that is also involved in the antiviral response in mammalian cells. While numerous viruses have evolved to block this antiviral immunity by encoding VSRs. Our data demonstrated that the NS4A protein of CSFV exhibited a potent VSR activity through binding to dsRNA and siRNA in the context of CSFV infection in mammalian cells, which are a conservative feature among Pestivirus. In addition, the replication of VSR-deficient CSFV was attenuated but could be restored by the deficiency of RNAi, providing a theoretical basis for the development of other important attenuated Pestivirus vaccines.
Collapse
|
5
|
Abstract
As an overarching immune mechanism, RNA interference (RNAi) displays pathogen specificity and memory via different pathways. The small interfering RNA (siRNA) pathway is the primary antiviral defense mechanism against RNA viruses of insects and plays a lesser role in defense against DNA viruses. Reflecting the pivotal role of the siRNA pathway in virus selection, different virus families have independently evolved unique strategies to counter this host response, including protein-mediated, decoy RNA-based, and microRNA-based strategies. In this review, we outline the interplay between insect viruses and the different pathways of the RNAi antiviral response; describe practical application of these interactions for improved expression systems and for pest and disease management; and highlight research avenues for advancement of the field.
Collapse
Affiliation(s)
- Bryony C Bonning
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida 32611, USA;
| | - Maria-Carla Saleh
- Viruses and RNA Interference Unit, Institut Pasteur, CNRS UMR 3569, 75724 Paris CEDEX 15, France;
| |
Collapse
|
6
|
Mu J, Zhang H, Li T, Shu T, Qiu Y, Zhou X. The 3A protein of coxsackievirus B3 acts as a viral suppressor of RNA interference. J Gen Virol 2020; 101:1069-1078. [PMID: 32667281 DOI: 10.1099/jgv.0.001434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
RNA interference (RNAi) is a potent antiviral defence mechanism in eukaryotes, and numerous viruses have been found to encode viral suppressors of RNAi (VSRs). Coxsackievirus B3 (CVB3) belongs to the genus Enterovirus in the family Picornaviridae, and has been reported to be a major causative pathogen for viral myocarditis. Despite the importance of CVB3, it is unclear whether CVB3 can also encode proteins that suppress RNAi. Here, we showed that the CVB3 nonstructural protein 3A suppressed RNAi triggered by either small hairpin RNAs (shRNAs) or small interfering RNAs (siRNAs) in mammalian cells. We further uncovered that CVB3 3A interacted directly with double-stranded RNAs (dsRNAs) and siRNAs in vitro. Through mutational analysis, we found that the VSR activity of CVB3 3A was significantly reduced by mutations of D24A/L25A/L26A, Y37A/C38A and R60A in conserved residues. In addition, the 3A protein encoded by coxsackievirus B5 (CVB5), another member of Enterovirus, also showed VSR activity. Taken together, our findings showed that CVB3 3A has in vitro VSR activity, thereby providing insights into the pathogenesis of CVB3 and other enteroviruses.
Collapse
Affiliation(s)
- Jingfang Mu
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, CAS, Wuhan, Hubei, PR China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan, Hubei 430071, PR China
| | - Haobo Zhang
- The University of Chinese Academy of Sciences, Beijing 100049, PR China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan, Hubei 430071, PR China
| | - Tao Li
- The University of Chinese Academy of Sciences, Beijing 100049, PR China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan, Hubei 430071, PR China
| | - Ting Shu
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, Hubei, PR China
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, CAS, Wuhan, Hubei, PR China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan, Hubei 430071, PR China
| | - Yang Qiu
- The University of Chinese Academy of Sciences, Beijing 100049, PR China
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, CAS, Wuhan, Hubei, PR China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan, Hubei 430071, PR China
| | - Xi Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan, Hubei 430071, PR China
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, Hubei, PR China
- The University of Chinese Academy of Sciences, Beijing 100049, PR China
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, CAS, Wuhan, Hubei, PR China
| |
Collapse
|
7
|
The Capsid Protein of Semliki Forest Virus Antagonizes RNA Interference in Mammalian Cells. J Virol 2020; 94:JVI.01233-19. [PMID: 31694940 DOI: 10.1128/jvi.01233-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/01/2019] [Indexed: 12/27/2022] Open
Abstract
RNA interference (RNAi) is a conserved antiviral immune defense in eukaryotes, and numerous viruses have been found to encode viral suppressors of RNAi (VSRs) to counteract antiviral RNAi. Alphaviruses are a large group of positive-stranded RNA viruses that maintain their transmission and life cycles in both mosquitoes and mammals. However, there is little knowledge about how alphaviruses antagonize RNAi in both host organisms. In this study, we identified that Semliki Forest virus (SFV) capsid protein can efficiently suppress RNAi in both insect and mammalian cells by sequestrating double-stranded RNA and small interfering RNA. More importantly, when the VSR activity of SFV capsid was inactivated by reverse genetics, the resulting VSR-deficient SFV mutant showed severe replication defects in mammalian cells, which could be rescued by blocking the RNAi pathway. Besides, capsid protein of Sindbis virus also inhibited RNAi in cells. Together, our findings show that SFV uses capsid protein as VSR to antagonize RNAi in infected mammalian cells, and this mechanism is probably used by other alphaviruses, which shed new light on the knowledge of SFV and alphavirus.IMPORTANCE Alphaviruses are a genus of positive-stranded RNA viruses and include numerous important human pathogens, such as Chikungunya virus, Ross River virus, Western equine encephalitis virus, etc., which create the emerging and reemerging public health threat worldwide. RNA interference (RNAi) is one of the most important antiviral mechanisms in plants and insects. Accumulating evidence has provided strong support for the existence of antiviral RNAi in mammals. In response to antiviral RNAi, viruses have evolved to encode viral suppressors of RNAi (VSRs) to antagonize the RNAi pathway. It is unclear whether alphaviruses encode VSRs that can suppress antiviral RNAi during their infection in mammals. In this study, we first uncovered that capsid protein encoded by Semliki Forest virus (SFV), a prototypic alphavirus, had a potent VSR activity that can antagonize antiviral RNAi in the context of SFV infection in mammalian cells, and this mechanism is probably used by other alphaviruses.
Collapse
|
8
|
Shu T, Gan T, Bai P, Wang X, Qian Q, Zhou H, Cheng Q, Qiu Y, Yin L, Zhong J, Zhou X. Ebola virus VP35 has novel NTPase and helicase-like activities. Nucleic Acids Res 2019; 47:5837-5851. [PMID: 31066445 PMCID: PMC6582406 DOI: 10.1093/nar/gkz340] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/21/2019] [Accepted: 04/25/2019] [Indexed: 12/13/2022] Open
Abstract
Ebola virus (EBOV) is a non-segmented, negative-sense RNA virus (NNSV) in the family Filoviridae, and is recognized as one of the most lethal pathogens in the planet. For RNA viruses, cellular or virus-encoded RNA helicases play pivotal roles in viral life cycles by remodelling viral RNA structures and/or unwinding viral dsRNA produced during replication. However, no helicase or helicase-like activity has ever been found to associate with any NNSV-encoded proteins, and it is unknown whether the replication of NNSVs requires the participation of any viral or cellular helicase. Here, we show that despite of containing no conserved NTPase/helicase motifs, EBOV VP35 possesses the NTPase and helicase-like activities that can hydrolyse all types of NTPs and unwind RNA helices in an NTP-dependent manner, respectively. Moreover, guanidine hydrochloride, an FDA-approved compound and inhibitor of certain viral helicases, inhibited the NTPase and helicase-like activities of VP35 as well as the replication/transcription of an EBOV minigenome replicon in cells, highlighting the importance of VP35 helicase-like activity during EBOV life cycle. Together, our findings provide the first demonstration of the NTPase/helicase-like activity encoded by EBOV, and would foster our understanding of EBOV and NNSVs.
Collapse
Affiliation(s)
- Ting Shu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Tianyu Gan
- Unit of Viral Hepatitis, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, CAS, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Bai
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Xiaotong Wang
- University of Chinese Academy of Sciences, Beijing 100049, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences (CAS), Wuhan, Hubei 430071, China.,Wuhan National Biosafety Laboratory, Mega-Science Center for Bio-Safety Research, CAS, Wuhan, Hubei 430071, China
| | - Qi Qian
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences (CAS), Wuhan, Hubei 430071, China.,Wuhan National Biosafety Laboratory, Mega-Science Center for Bio-Safety Research, CAS, Wuhan, Hubei 430071, China
| | - Hui Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences (CAS), Wuhan, Hubei 430071, China.,Wuhan National Biosafety Laboratory, Mega-Science Center for Bio-Safety Research, CAS, Wuhan, Hubei 430071, China
| | - Qi Cheng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Yang Qiu
- University of Chinese Academy of Sciences, Beijing 100049, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences (CAS), Wuhan, Hubei 430071, China.,Wuhan National Biosafety Laboratory, Mega-Science Center for Bio-Safety Research, CAS, Wuhan, Hubei 430071, China
| | - Lei Yin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Jin Zhong
- Unit of Viral Hepatitis, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, CAS, Shanghai 200031, China.,Wuhan National Biosafety Laboratory, Mega-Science Center for Bio-Safety Research, CAS, Wuhan, Hubei 430071, China
| | - Xi Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences (CAS), Wuhan, Hubei 430071, China.,Wuhan National Biosafety Laboratory, Mega-Science Center for Bio-Safety Research, CAS, Wuhan, Hubei 430071, China
| |
Collapse
|
9
|
Hepatitis C Virus NS2 Protein Suppresses RNA Interference in Cells. Virol Sin 2019; 35:436-444. [PMID: 31777009 PMCID: PMC7091176 DOI: 10.1007/s12250-019-00182-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 11/01/2019] [Indexed: 01/13/2023] Open
Abstract
RNAi interference (RNAi) is an evolutionarily conserved post-transcriptional gene silencing mechanism and has been well recognized as an important antiviral immunity in eukaryotes. Numerous viruses have been shown to encode viral suppressors of RNAi (VSRs) to antagonize antiviral RNAi. Hepatitis C virus (HCV) is a medically important human pathogen that causes acute and chronic hepatitis. In this study, we screened all the nonstructural proteins of HCV and found that HCV NS2 could suppress RNAi induced either by small hairpin RNAs (shRNAs) or small interfering RNAs (siRNAs) in mammalian cells. Moreover, we demonstrated that NS2 could suppress RNAi via its direct interaction with double-stranded RNAs (dsRNAs) and siRNAs, and further identified that the cysteine 184 of NS2 is required for the RNAi suppression activity through a serial of point mutation analyses. Together, our findings uncovered that HCV NS2 can act as a VSR in vitro, thereby providing novel insights into the life cycle and virus-host interactions of HCV.
Collapse
|
10
|
Agboli E, Leggewie M, Altinli M, Schnettler E. Mosquito-Specific Viruses-Transmission and Interaction. Viruses 2019; 11:v11090873. [PMID: 31533367 PMCID: PMC6784079 DOI: 10.3390/v11090873] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
Mosquito-specific viruses (MSVs) are a subset of insect-specific viruses that are found to infect mosquitoes or mosquito derived cells. There has been an increase in discoveries of novel MSVs in recent years. This has expanded our understanding of viral diversity and evolution but has also sparked questions concerning the transmission of these viruses and interactions with their hosts and its microbiome. In fact, there is already evidence that MSVs interact with the immune system of their host. This is especially interesting, since mosquitoes can be infected with both MSVs and arthropod-borne (arbo) viruses of public health concern. In this review, we give an update on the different MSVs discovered so far and describe current data on their transmission and interaction with the mosquito immune system as well as the effect MSVs could have on an arboviruses-co-infection. Lastly, we discuss potential uses of these viruses, including vector and transmission control.
Collapse
Affiliation(s)
- Eric Agboli
- Molecular Entomology, Molecular Biology and Immunology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.
- Department of Epidemiology and Biostatistics, School of Public Health, University of Health and Allied Sciences, Ho PMB 31, Ghana.
| | - Mayke Leggewie
- Molecular Entomology, Molecular Biology and Immunology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.
- German Centre for Infection research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany.
| | - Mine Altinli
- Molecular Entomology, Molecular Biology and Immunology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.
- German Centre for Infection research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany.
| | - Esther Schnettler
- Molecular Entomology, Molecular Biology and Immunology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.
- German Centre for Infection research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany.
| |
Collapse
|
11
|
Liu Y, Fang Y, Liu Y, Wang Z, Lyu B, Hu Y, Zhou X. Opposite effects of Drosophila C3PO on gene silencing mediated by esi-2.1 and miRNA-bantam. Acta Biochim Biophys Sin (Shanghai) 2019; 51:131-138. [PMID: 30576408 DOI: 10.1093/abbs/gmy154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 11/14/2022] Open
Abstract
Translin/TRAX complex, also named as C3PO, is evolutionarily conserved and participates in diverse cellular processes in different organisms from yeast to human. C3PO plays a critical role in the activation of RNA-induced silencing complexes by promoting the unwinding and degradation of passenger strand of exogenous siRNAs (exo-siRNAs) in Drosophila and human. Moreover, human C3PO (hC3PO) has been found to broadly repress miRNAs by degrading miRNA precursors. However, the effect of Drosophila melanogaster C3PO (dmC3PO) on endogenous siRNA (endo-siRNA) and miRNA pathways remains unknown. Here, we found that the loss of dmC3PO promoted the accumulation of the passenger strand of esi-2.1 (hp-CG4068B), and resulted in the de-repression of the DNA-damage-response gene mutagensensitive 308 (mus308), which is an endogenous slicer target of esi-2.1 in Drosophila. Moreover, we also found that depletion of dmC3PO increased the accumulation of miR-bantam. Taken together, our findings indicated that dmC3PO not only involves in siRNA pathway triggered by dsRNA, but also regulates the abundance of certain endogenous small RNAs in Drosophila.
Collapse
Affiliation(s)
- Yujie Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuan Fang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yongxiang Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhaowei Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Bao Lyu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuanyang Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xi Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
12
|
Wang Z, Xia X, Yang X, Zhang X, Liu Y, Wu D, Fang Y, Liu Y, Xu J, Qiu Y, Zhou X. A picorna-like virus suppresses the N-end rule pathway to inhibit apoptosis. eLife 2017; 6:30590. [PMID: 29231806 PMCID: PMC5739542 DOI: 10.7554/elife.30590] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/11/2017] [Indexed: 12/21/2022] Open
Abstract
The N-end rule pathway is an evolutionarily conserved proteolytic system that degrades proteins containing N-terminal degradation signals called N-degrons, and has emerged as a key regulator of various processes. Viruses manipulate diverse host pathways to facilitate viral replication and evade antiviral defenses. However, it remains unclear if viral infection has any impact on the N-end rule pathway. Here, using a picorna-like virus as a model, we found that viral infection promoted the accumulation of caspase-cleaved Drosophila inhibitor of apoptosis 1 (DIAP1) by inducing the degradation of N-terminal amidohydrolase 1 (NTAN1), a key N-end rule component that identifies N-degron to initiate the process. The virus-induced NTAN1 degradation is independent of polyubiquitylation but dependent on proteasome. Furthermore, the virus-induced N-end rule pathway suppression inhibits apoptosis and benefits viral replication. Thus, our findings demonstrate that a virus can suppress the N-end rule pathway, and uncover a new mechanism for virus to evade apoptosis.
Collapse
Affiliation(s)
- Zhaowei Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaoling Xia
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xueli Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xueyi Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yongxiang Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Di Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yuan Fang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yujie Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jiuyue Xu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yang Qiu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xi Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
13
|
Iki T, Tschopp MA, Voinnet O. Biochemical and genetic functional dissection of the P38 viral suppressor of RNA silencing. RNA (NEW YORK, N.Y.) 2017; 23:639-654. [PMID: 28148824 PMCID: PMC5393175 DOI: 10.1261/rna.060434.116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/25/2017] [Indexed: 05/08/2023]
Abstract
Phytoviruses encode viral suppressors of RNA silencing (VSRs) to counteract the plant antiviral silencing response, which relies on virus-derived small interfering (si)RNAs processed by Dicer RNaseIII enzymes and subsequently loaded into ARGONAUTE (AGO) effector proteins. Here, a tobacco cell-free system was engineered to recapitulate the key steps of antiviral RNA silencing and, in particular, the most upstream double-stranded (ds)RNA processing reaction, not kinetically investigated thus far in the context of plant VSR studies. Comparative biochemical analyses of distinct VSRs in the reconstituted assay showed that in all cases tested, VSR interactions with siRNA duplexes inhibited the loading, but not the activity, of antiviral AGO1 and AGO2. Turnip crinkle virus P38 displayed the additional and unique property to bind both synthetic and RNA-dependent-RNA-polymerase-generated long dsRNAs, and inhibited the processing into siRNAs. Single amino acid substitutions in P38 could dissociate dsRNA-processing from AGO-loading inhibition in vitro and in vivo, illustrating dual-inhibitory strategies discriminatively deployed within a single viral protein, which, we further show, are bona fide suppressor functions that evolved independently of the conserved coat protein function of P38.
Collapse
Affiliation(s)
- Taichiro Iki
- Department of Biology, Swiss Federal Institute of Technology (ETH), 8092 Zürich, Switzerland
| | - Marie-Aude Tschopp
- Department of Biology, Swiss Federal Institute of Technology (ETH), 8092 Zürich, Switzerland
| | - Olivier Voinnet
- Department of Biology, Swiss Federal Institute of Technology (ETH), 8092 Zürich, Switzerland
| |
Collapse
|
14
|
Somrit M, Watthammawut A, Chotwiwatthanakun C, Ounjai P, Suntimanawong W, Weerachatyanukul W. C-terminal domain on the outer surface of the Macrobrachium rosenbergii nodavirus capsid is required for Sf9 cell binding and internalization. Virus Res 2017; 227:41-48. [DOI: 10.1016/j.virusres.2016.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/26/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022]
|
15
|
Mathur K, Anand A, Dubey SK, Sanan-Mishra N, Bhatnagar RK, Sunil S. Analysis of chikungunya virus proteins reveals that non-structural proteins nsP2 and nsP3 exhibit RNA interference (RNAi) suppressor activity. Sci Rep 2016; 6:38065. [PMID: 27901124 PMCID: PMC5128919 DOI: 10.1038/srep38065] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 09/21/2016] [Indexed: 12/16/2022] Open
Abstract
RNAi pathway is an antiviral defence mechanism employed by insects that result in degradation of viral RNA thereby curbing infection. Several viruses including flaviviruses encode viral suppressors of RNAi (VSRs) to counteract the antiviral RNAi pathway. Till date, no VSR has been reported in alphaviruses. The present study was undertaken to evaluate chikungunya virus (CHIKV) proteins for RNAi suppressor activity. We systematically analyzed all nine CHIKV proteins for RNAi suppressor activity using Sf21 RNAi sensor cell line based assay. Two non-structural proteins, namely, nsP2 and nsP3 were found to exhibit RNAi suppressor activity. We further validated the findings in natural hosts, namely in Aedes and in mammalian cell lines and further through EMSA and Agrobacterium infiltration in GFP silenced transgenic tobacco plants. Domains responsible for maximum RNAi suppressor activity were also identified within these proteins. RNA binding motifs in these domains were identified and their participation in RNAi suppression evaluated using site directed mutagenesis. Sequence alignment of these motifs across all species of known alphaviruses revealed conservation of these motifs emphasizing on a similar role of action in other species of alphaviruses as well. Further validation of RNAi suppressor activity of these proteins awaits establishment of specific virus infection models.
Collapse
Affiliation(s)
- Kalika Mathur
- Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Abhishek Anand
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sunil Kumar Dubey
- Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Neeti Sanan-Mishra
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Raj K Bhatnagar
- Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sujatha Sunil
- Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
16
|
Landeo-Ríos Y, Navas-Castillo J, Moriones E, Cañizares MC. The p22 RNA silencing suppressor of the crinivirus Tomato chlorosis virus preferentially binds long dsRNAs preventing them from cleavage. Virology 2016; 488:129-36. [PMID: 26629953 PMCID: PMC7111720 DOI: 10.1016/j.virol.2015.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 09/19/2015] [Accepted: 11/10/2015] [Indexed: 12/04/2022]
Abstract
Viruses encode silencing suppressor proteins to counteract RNA silencing. Because dsRNA plays a key role in silencing, a general silencing suppressor strategy is dsRNA binding. The p22 suppressor of the plant virus Tomato chlorosis virus (ToCV; genus Crinivirus, family Closteroviridae) has been described as having one of the longest lasting local suppressor activities. However, the mechanism of action of p22 has not been characterized. Here, we show that ToCV p22 binds long dsRNAs in vitro, thus interfering with their processing into small RNAs (sRNAs) by an RNase III-type Dicer homolog enzyme. Additionally, we have studied whether a putative zinc finger motif found in p22 has a role in dsRNA binding and suppressor function. The efficient ability of p22 to suppress RNA silencing, triggered by hairpin transcripts transiently expressed in planta, supports the relationship between its ability to bind dsRNA in vitro and its ability to inhibit RNA silencing in vivo.
Collapse
Affiliation(s)
- Yazmín Landeo-Ríos
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"- Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental "La Mayora", 29750 Algarrobo-Costa, Málaga, Spain
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"- Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental "La Mayora", 29750 Algarrobo-Costa, Málaga, Spain
| | - Enrique Moriones
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"- Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental "La Mayora", 29750 Algarrobo-Costa, Málaga, Spain
| | - M Carmen Cañizares
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"- Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental "La Mayora", 29750 Algarrobo-Costa, Málaga, Spain.
| |
Collapse
|
17
|
Wang Z, Wu D, Liu Y, Xia X, Gong W, Qiu Y, Yang J, Zheng Y, Li J, Wang YF, Xiang Y, Hu Y, Zhou X. Drosophila Dicer-2 has an RNA interference-independent function that modulates Toll immune signaling. SCIENCE ADVANCES 2015; 1:e1500228. [PMID: 26601278 PMCID: PMC4646792 DOI: 10.1126/sciadv.1500228] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 09/13/2015] [Indexed: 06/05/2023]
Abstract
Dicer-2 is the central player for small interfering RNA biogenesis in the Drosophila RNA interference (RNAi) pathway. Intriguingly, we found that Dicer-2 has an unconventional RNAi-independent function that positively modulates Toll immune signaling, which defends against Gram-positive bacteria, fungi, and some viruses, in both cells and adult flies. The loss of Dicer-2 expression makes fruit flies more susceptible to fungal infection. We further revealed that Dicer-2 posttranscriptionally modulates Toll signaling because Dicer-2 is required for the proper expression of Toll protein but not for Toll protein stability or Toll mRNA transcription. Moreover, Dicer-2 directly binds to the 3' untranslated region (3'UTR) of Toll mRNA via its PAZ (Piwi/Argonaute/Zwille) domain and is required for protein translation mediated by Toll 3'UTR. The loss of Toll 3'UTR binding activity makes Dicer-2 incapable of promoting Toll signaling. These data indicate that the interaction between Dicer-2 and Toll mRNA plays a pivotal role in Toll immune signaling. In addition, we found that Dicer-2 is also required for the Toll signaling induced by two different RNA viruses in Drosophila cells. Consequently, our findings uncover a novel RNAi-independent function of Dicer-2 in the posttranscriptional regulation of Toll protein expression and signaling, indicate an unexpected intersection of the RNAi pathway and the Toll pathway, and provide new insights into Toll immune signaling, Drosophila Dicer-2, and probably Dicer and Dicer-related proteins in other organisms.
Collapse
Affiliation(s)
- Zhaowei Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Di Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Yongxiang Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Xiaoling Xia
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Wanyun Gong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Yang Qiu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Jie Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Ya Zheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan, Hubei 430079, China
| | - Jingjing Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan, Hubei 430079, China
| | - Yu-Feng Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan, Hubei 430079, China
| | - Ye Xiang
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yuanyang Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Xi Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
18
|
The Nucleocapsid Protein of Coronaviruses Acts as a Viral Suppressor of RNA Silencing in Mammalian Cells. J Virol 2015; 89:9029-43. [PMID: 26085159 DOI: 10.1128/jvi.01331-15] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
RNA interference (RNAi) is a process of eukaryotic posttranscriptional gene silencing that functions in antiviral immunity in plants, nematodes, and insects. However, recent studies provided strong supports that RNAi also plays a role in antiviral mechanism in mammalian cells. To combat RNAi-mediated antiviral responses, many viruses encode viral suppressors of RNA silencing (VSR) to facilitate their replication. VSRs have been widely studied for plant and insect viruses, but only a few have been defined for mammalian viruses currently. We identified a novel VSR from coronaviruses, a group of medically important mammalian viruses including Severe acute respiratory syndrome coronavirus (SARS-CoV), and showed that the nucleocapsid protein (N protein) of coronaviruses suppresses RNAi triggered by either short hairpin RNAs or small interfering RNAs in mammalian cells. Mouse hepatitis virus (MHV) is closely related to SARS-CoV in the family Coronaviridae and was used as a coronavirus replication model. The replication of MHV increased when the N proteins were expressed in trans, while knockdown of Dicer1 or Ago2 transcripts facilitated the MHV replication in mammalian cells. These results support the hypothesis that RNAi is a part of the antiviral immunity responses in mammalian cells. IMPORTANCE RNAi has been well known to play important antiviral roles from plants to invertebrates. However, recent studies provided strong supports that RNAi is also involved in antiviral response in mammalian cells. An important indication for RNAi-mediated antiviral activity in mammals is the fact that a number of mammalian viruses encode potent suppressors of RNA silencing. Our results demonstrate that coronavirus N protein could function as a VSR through its double-stranded RNA binding activity. Mutational analysis of N protein allowed us to find out the critical residues for the VSR activity. Using the MHV-A59 as the coronavirus replication model, we showed that ectopic expression of SARS-CoV N protein could promote MHV replication in RNAi-active cells but not in RNAi-depleted cells. These results indicate that coronaviruses encode a VSR that functions in the replication cycle and provide further evidence to support that RNAi-mediated antiviral response exists in mammalian cells.
Collapse
|
19
|
Gammon DB, Mello CC. RNA interference-mediated antiviral defense in insects. CURRENT OPINION IN INSECT SCIENCE 2015; 8:111-120. [PMID: 26034705 PMCID: PMC4448697 DOI: 10.1016/j.cois.2015.01.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Small interfering RNA (siRNA)-mediated RNA interference (RNAi) pathways are critical for the detection and inhibition of RNA virus replication in insects. Recent work has also implicated RNAi pathways in the establishment of persistent virus infections and in the control of DNA virus replication. Accumulating evidence suggests that diverse double-stranded RNAs produced by RNA and DNA viruses can trigger RNAi responses yet many viruses have evolved mechanisms to inhibit RNAi defenses. Therefore, an evolutionary arms race exists between host RNAi pathways and invading viral pathogens. Here we review recent advances in our knowledge of how insect RNAi pathways are elicited upon infection, the strategies used by viruses to counter these defenses, and discuss recent evidence implicating Piwi-interacting RNAs in antiviral defense.
Collapse
Affiliation(s)
- Don B Gammon
- RNA Therapeutics Institute, University of Massachusetts Medical School, USA
| | - Craig C Mello
- RNA Therapeutics Institute, University of Massachusetts Medical School, USA ; Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
20
|
A unique nodavirus with novel features: mosinovirus expresses two subgenomic RNAs, a capsid gene of unknown origin, and a suppressor of the antiviral RNA interference pathway. J Virol 2014; 88:13447-59. [PMID: 25210176 DOI: 10.1128/jvi.02144-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Insects are a reservoir for many known and novel viruses. We discovered an unknown virus, tentatively named mosinovirus (MoNV), in mosquitoes from a tropical rainforest region in Côte d'Ivoire. The MoNV genome consists of two segments of positive-sense RNA of 2,972 nucleotides (nt) (RNA 1) and 1,801 nt (RNA 2). Its putative RNA-dependent RNA polymerase shares 43% amino acid identity with its closest relative, that of the Pariacoto virus (family Nodaviridae). Unexpectedly, for the putative capsid protein, maximal pairwise identity of 16% to Lake Sinai virus 2, an unclassified virus with a nonsegmented RNA genome, was found. Moreover, MoNV virions are nonenveloped and about 50 nm in diameter, larger than any of the known nodaviruses. Mature MoNV virions contain capsid proteins of ∼ 56 kDa, which do not seem to be cleaved from a longer precursor. Northern blot analyses revealed that MoNV expresses two subgenomic RNAs of 580 nt (RNA 3) and 292 nt (RNA 4). RNA 4 encodes a viral suppressor of RNA interference (RNAi) that shares its mechanism with the B2 RNAi suppressor protein of other nodaviruses despite lacking recognizable similarity to these proteins. MoNV B2 binds long double-stranded RNA (dsRNA) and, accordingly, inhibits Dicer-2-mediated processing of dsRNA into small interfering RNAs (siRNAs). Phylogenetic analyses indicate that MoNV is a novel member of the family Nodaviridae that acquired its capsid gene via reassortment from an unknown, distantly related virus beyond the family level. IMPORTANCE The identification of novel viruses provides important information about virus evolution and diversity. Here, we describe an unknown unique nodavirus in mosquitoes, named mosinovirus (MoNV). MoNV was classified as a nodavirus based on its genome organization and on phylogenetic analyses of the RNA-dependent RNA polymerase. Notably, its capsid gene was acquired from an unknown virus with a distant relationship to nodaviruses. Another remarkable feature of MoNV is that, unlike other nodaviruses, it expresses two subgenomic RNAs (sgRNAs). One of the sgRNAs expresses a protein that counteracts antiviral defense of its mosquito host, whereas the function of the other sgRNA remains unknown. Our results show that complete genome segments can be exchanged beyond the species level and suggest that insects harbor a large repertoire of exceptional viruses.
Collapse
|
21
|
Qiu Y, Miao M, Wang Z, Liu Y, Yang J, Xia H, Li XF, Qin CF, Hu Y, Zhou X. The RNA binding of protein A from Wuhan nodavirus is mediated by mitochondrial membrane lipids. Virology 2014; 462-463:1-13. [PMID: 25092456 PMCID: PMC7112130 DOI: 10.1016/j.virol.2014.05.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/06/2014] [Accepted: 05/21/2014] [Indexed: 01/19/2023]
Abstract
RNA replication of positive-strand (+)RNA viruses requires the lipids present in intracellular membranes, the sites of which viral replicases associate with. However, the direct effects of membrane lipids on viral replicases are still poorly understood. Wuhan nodavirus (WhNV) protein A, which associates with mitochondrial membranes, is the sole replicase required for RNA replication. Here, we report that WhNV protein A binds to RNA1 in a cooperative manner. Moreover, mitochondrial membrane lipids (MMLs) stimulated the RNA binding activity and cooperativity of protein A, and such stimulations exhibited strong selectivity for distinct phospholipids. Interestingly, MMLs stimulated the RNA-binding cooperativity only at higher protein A concentrations. Further investigation showed that MMLs stimulate the RNA binding of protein A by promoting its self-interaction. Finally, manipulating MML metabolism affected the protein A-induced RNA1 recruitment in cells. Together, our findings reveal the direct effects of membrane lipids on the RNA binding activity of a nodaviral replicase. WhNV protein A directly binds to RNA1 in a cooperative manner. Mitochondrial membrane lipids (MMLs) stimulate the binding activity of protein A. The RNA binding of protein A is selectively stimulated by specific phospholipids. MMLs enhance the RNA binding of protein A by stimulating its self-interaction. Manipulating phospholipid metabolism regulates protein A-induced RNA1 recruitment.
Collapse
Affiliation(s)
- Yang Qiu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Meng Miao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Zhaowei Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Yongxiang Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Jie Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Hongjie Xia
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Xiao-Feng Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yuanyang Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Xi Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China.
| |
Collapse
|
22
|
Bronkhorst AW, van Rij RP. The long and short of antiviral defense: small RNA-based immunity in insects. Curr Opin Virol 2014; 7:19-28. [PMID: 24732439 DOI: 10.1016/j.coviro.2014.03.010] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 03/18/2014] [Accepted: 03/19/2014] [Indexed: 02/03/2023]
Abstract
The host RNA interference (RNAi) pathway of insects senses virus infection and induces an antiviral response to restrict virus replication. Dicer-2 detects viral double-stranded RNA, produced by RNA and DNA viruses, and generates viral small interfering RNAs (vsiRNAs). Recent small RNA profiling studies provided new insights into the viral RNA substrates that trigger vsiRNA biogenesis. The importance of the antiviral RNAi pathway is underscored by the observation that viruses have evolved sophisticated mechanisms to counteract this small RNA-based immune response. More recently, it was proposed that another small RNA silencing mechanism, the piRNA pathway, also processes viral RNAs in Drosophila and mosquitoes. Here, we review recent insights into the mechanism of antiviral RNAi, viral small RNA profiles, and viral counter-defense mechanisms in insects.
Collapse
Affiliation(s)
- Alfred W Bronkhorst
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
23
|
The self-interaction of a nodavirus replicase is enhanced by mitochondrial membrane lipids. PLoS One 2014; 9:e89628. [PMID: 24586921 PMCID: PMC3934934 DOI: 10.1371/journal.pone.0089628] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/22/2014] [Indexed: 12/24/2022] Open
Abstract
RNA replication of positive-strand (+)RNA viruses requires the protein-protein interactions among viral replicases and the association of viral replicases with intracellular membranes. Protein A from Wuhan nodavirus (WhNV), which closely associate with mitochondrial membranes, is the sole replicase required for viral RNA replication. Here, we studied the direct effects of mitochondrial membrane lipids (MMLs) on WhNV protein A activity in vitro. Our investigations revealed the self-interaction of WhNV protein A is accomplished via two different patterns (i.e., homotypic and heterotypic self-interactions via different interfaces). MMLs stimulated the protein A self-interaction, and this stimulation exhibited selectivity for specific phospholipids. Moreover, we found that specific phospholipids differently favor the two self-interaction patterns. Furthermore, manipulating specific phospholipid metabolism affected protein A self-interaction and the activity of protein A to replicate RNA in cells. Taken together, our findings reveal the direct effects of membrane lipids on a nodaviral RNA replicase.
Collapse
|
24
|
Wu W, Wang Z, Xia H, Liu Y, Qiu Y, Liu Y, Hu Y, Zhou X. Flock house virus RNA polymerase initiates RNA synthesis de novo and possesses a terminal nucleotidyl transferase activity. PLoS One 2014; 9:e86876. [PMID: 24466277 PMCID: PMC3900681 DOI: 10.1371/journal.pone.0086876] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 12/18/2013] [Indexed: 12/26/2022] Open
Abstract
Flock House virus (FHV) is a positive-stranded RNA virus with a bipartite genome of RNAs, RNA1 and RNA2, and belongs to the family Nodaviridae. As the most extensively studied nodavirus, FHV has become a well-recognized model for studying various aspects of RNA virology, particularly viral RNA replication and antiviral innate immunity. FHV RNA1 encodes protein A, which is an RNA-dependent RNA polymerase (RdRP) and functions as the sole viral replicase protein responsible for RNA replication. Although the RNA replication of FHV has been studied in considerable detail, the mechanism employed by FHV protein A to initiate RNA synthesis has not been determined. In this study, we characterized the RdRP activity of FHV protein A in detail and revealed that it can initiate RNA synthesis via a de novo (primer-independent) mechanism. Moreover, we found that FHV protein A also possesses a terminal nucleotidyl transferase (TNTase) activity, which was able to restore the nucleotide loss at the 3'-end initiation site of RNA template to rescue RNA synthesis initiation in vitro, and may function as a rescue and protection mechanism to protect the 3' initiation site, and ensure the efficiency and accuracy of viral RNA synthesis. Altogether, our study establishes the de novo initiation mechanism of RdRP and the terminal rescue mechanism of TNTase for FHV protein A, and represents an important advance toward understanding FHV RNA replication.
Collapse
Affiliation(s)
- Wenzhe Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Zhaowei Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Hongjie Xia
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yongxiang Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yang Qiu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yujie Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yuanyang Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xi Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
25
|
Yang J, Cheng Z, Zhang S, Xiong W, Xia H, Qiu Y, Wang Z, Wu F, Qin CF, Yin L, Hu Y, Zhou X. A cypovirus VP5 displays the RNA chaperone-like activity that destabilizes RNA helices and accelerates strand annealing. Nucleic Acids Res 2013; 42:2538-54. [PMID: 24319147 PMCID: PMC3936753 DOI: 10.1093/nar/gkt1256] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
For double-stranded RNA (dsRNA) viruses in the family Reoviridae, their inner capsids function as the machinery for viral RNA (vRNA) replication. Unlike other multishelled reoviruses, cypovirus has a single-layered capsid, thereby representing a simplified model for studying vRNA replication of reoviruses. VP5 is one of the three major cypovirus capsid proteins and functions as a clamp protein to stabilize cypovirus capsid. Here, we expressed VP5 from type 5 Helicoverpa armigera cypovirus (HaCPV-5) in a eukaryotic system and determined that this VP5 possesses RNA chaperone-like activity, which destabilizes RNA helices and accelerates strand annealing independent of ATP. Our further characterization of VP5 revealed that its helix-destabilizing activity is RNA specific, lacks directionality and could be inhibited by divalent ions, such as Mg(2+), Mn(2+), Ca(2+) or Zn(2+), to varying degrees. Furthermore, we found that HaCPV-5 VP5 facilitates the replication initiation of an alternative polymerase (i.e. reverse transcriptase) through a panhandle-structured RNA template, which mimics the 5'-3' cyclization of cypoviral positive-stranded RNA. Given that the replication of negative-stranded vRNA on the positive-stranded vRNA template necessitates the dissociation of the 5'-3' panhandle, the RNA chaperone activity of VP5 may play a direct role in the initiation of reoviral dsRNA synthesis.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China and Department of Biochemistry, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wang Z, Qiu Y, Liu Y, Qi N, Si J, Xia X, Wu D, Hu Y, Zhou X. Characterization of a nodavirus replicase revealed a de novo initiation mechanism of RNA synthesis and terminal nucleotidyltransferase activity. J Biol Chem 2013; 288:30785-801. [PMID: 24019510 DOI: 10.1074/jbc.m113.492728] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Nodaviruses are a family of positive-stranded RNA viruses with a bipartite genome of RNAs. In nodaviruses, genomic RNA1 encodes protein A, which is recognized as an RNA-dependent RNA polymerase (RdRP) and functions as the sole viral replicase protein responsible for its RNA replication. Although nodaviral RNA replication has been studied in considerable detail, and nodaviruses are well recognized models for investigating viral RNA replication, the mechanism(s) governing the initiation of nodaviral RNA synthesis have not been determined. In this study, we characterized the RdRP activity of Wuhan nodavirus (WhNV) protein A in detail and determined that this nodaviral protein A initiates RNA synthesis via a de novo mechanism, and this RNA synthesis initiation could be independent of other viral or cellular factors. Moreover, we uncovered that WhNV protein A contains a terminal nucleotidyltransferase (TNTase) activity, which is the first time such an activity has been identified in nodaviruses. We subsequently found that the TNTase activity could function in vitro to repair the 3' initiation site, which may be digested by cellular exonucleases, to ensure the efficiency and accuracy of viral RNA synthesis initiation. Furthermore, we determined the cis-acting elements for RdRP or TNTase activity at the 3'-end of positive or negative strand RNA1. Taken together, our data establish the de novo synthesis initiation mechanism and the TNTase activity of WhNV protein A, and this work represents an important advance toward understanding the mechanism(s) of nodaviral RNA replication.
Collapse
Affiliation(s)
- Zhaowei Wang
- From the State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Vijayendran D, Airs PM, Dolezal K, Bonning BC. Arthropod viruses and small RNAs. J Invertebr Pathol 2013; 114:186-95. [PMID: 23932976 DOI: 10.1016/j.jip.2013.07.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 07/25/2013] [Accepted: 07/28/2013] [Indexed: 01/09/2023]
Abstract
The recently characterized small RNAs provide a new paradigm for physiological studies. These molecules have been shown to be integral players in processes as diverse as development and innate immunity against bacteria and viruses in eukaryotes. Several of the well-characterized small RNAs including small interfering RNAs, microRNAs and PIWI-interacting RNAs are emerging as important players in mediating arthropod host-virus interactions. Understanding the role of small RNAs in arthropod host-virus molecular interactions will facilitate manipulation of these pathways for both management of arthropod pests of agricultural and medical importance, and for protection of beneficial arthropods such as honey bees and shrimp. This review highlights recent research on the role of small RNAs in arthropod host-virus interactions with reference to other host-pathogen systems.
Collapse
|
28
|
Qiu Y, Wang Z, Liu Y, Qi N, Si J, Xiang X, Xia X, Hu Y, Zhou X. Newly discovered insect RNA viruses in China. SCIENCE CHINA-LIFE SCIENCES 2013; 56:711-4. [PMID: 23917843 DOI: 10.1007/s11427-013-4520-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 06/17/2013] [Indexed: 02/02/2023]
Abstract
Insects are a group of arthropods and the largest group of animals on Earth, with over one million species described to date. Like other life forms, insects suffer from viruses that cause disease and death. Viruses that are pathogenic to beneficial insects cause dramatic economic losses on agriculture. In contrast, viruses that are pathogenic to insect pests can be exploited as attractive biological control agents. All of these factors have led to an explosion in the amount of research into insect viruses in recent years, generating impressive quantities of information on the molecular and cellular biology of these viruses. Due to the wide variety of insect viruses, a better understanding of these viruses will expand our overall knowledge of their virology. Here, we review studies of several newly discovered RNA insect viruses in China.
Collapse
Affiliation(s)
- Yang Qiu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Qiu Y, Wang Z, Liu Y, Qi N, Miao M, Si J, Xiang X, Cai D, Hu Y, Zhou X. Membrane association of Wuhan nodavirus protein A is required for its ability to accumulate genomic RNA1 template. Virology 2013; 439:140-51. [PMID: 23490047 DOI: 10.1016/j.virol.2013.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/16/2013] [Accepted: 02/13/2013] [Indexed: 01/13/2023]
Abstract
One common feature of positive-strand RNA viruses is the association of viral RNA and viral RNA replicase proteins with specific intracellular membranes to form RNA replication complexes. Wuhan nodavirus (WhNV) encodes protein A, which is the sole viral RNA replicase. Here, we showed that WhNV protein A closely associates with mitochondrial outer membranes and colocalizes with viral RNA replication sites. We further identified the transmembrane domains (N-terminal aa 33-64 and aa 212-254) of protein A for membrane association and mitochondrial localization. Moreover, we found that protein A accumulates genomic RNA by stabilizing the RNA. And our further investigation revealed that the ability of WhNV protein A to associate with membranes is closely linked with its ability for membrane recruitment and stabilization of viral genomic RNA templates. This study represents an advance toward understanding the mechanism of the RNA replication of WhNV and probably other nodaviruses.
Collapse
Affiliation(s)
- Yang Qiu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan, Hubei 430072, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Han Y, Wang Q, Qiu Y, Wu W, He H, Zhang J, Hu Y, Zhou X. Periplaneta fuliginosa densovirus nonstructural protein NS1 contains an endonuclease activity that is regulated by its phosphorylation. Virology 2013; 437:1-11. [PMID: 23290078 DOI: 10.1016/j.virol.2012.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 10/26/2012] [Accepted: 12/10/2012] [Indexed: 01/26/2023]
Abstract
Periplaneta fuliginosa densovirus (PfDNV) is a single-stranded DNA virus, belonging to Densovirinae subfamily, Parvoviridae family. Parvovirus nonstructural protein 1 (NS1) contains various activities required for parvoviral DNA replication, like endonuclease, helicase and ATPase, which are regulated by serine/threonine phosphorylation. However, for PfDNV, NS1 endonuclease activity has not been determined. Moreover, for densoviruses, whether NS1 is phosphorylated, and if so, phosphorylation pattern and impact on NS1 activities have not been investigated. Here, we demonstrated that PfDNV NS1 possesses endonuclease activity, covalently attaches to 5'-end of nicking site, and includes an active-site tyrosine (Y178). Moreover, using different phosphatases, we uncovered that both serine/threonine and tyrosine phosphorylations are critical for NS1 endonuclease and helicase activities. Further mass-spec and mutational analyses revealed that Y345 is phosphorylated and functions as a critical regulatory site for NS1 activities. This study should foster our understanding of NS1 activities and regulations in PfDNV and other densoviruses.
Collapse
Affiliation(s)
- Yajuan Han
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Cellular organisms have evolved related pathways for the biogenesis and function of small interfering RNAs (siRNAs), microRNAs and PIWI-interacting RNAs (piRNAs). These distinct classes of small RNAs guide specific gene silencing at both transcriptional and posttranscriptional levels by serving as specificity determinants. Small RNAs of virus and host origins have been found to modulate virus–host interactions by RNA interference (RNAi), leading to antiviral immunity or viral pathogenesis. Deep sequencing-based profiling of virus-derived small RNAs as products of host immune recognition not only allowed us to gain insight into the expansion and functional specialization of host factors involved in the antiviral immunity but also made it possible to identify new viruses in a culture-independent manner. Here we review recent developments on the characterization and function of virus-derived siRNAs and piRNAs in eukaryotic hosts.
Collapse
Affiliation(s)
- Shou-Wei Ding
- Department of Plant Pathology & Microbiology, and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, United States.
| | | |
Collapse
|
32
|
Wang Q, Han Y, Qiu Y, Zhang S, Tang F, Wang Y, Zhang J, Hu Y, Zhou X. Identification and characterization of RNA duplex unwinding and ATPase activities of an alphatetravirus superfamily 1 helicase. Virology 2012; 433:440-8. [PMID: 22995190 PMCID: PMC7111927 DOI: 10.1016/j.virol.2012.08.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 08/24/2012] [Accepted: 08/28/2012] [Indexed: 12/20/2022]
Abstract
Dendrolimus punctatus tetravirus (DpTV) belongs to the genus omegatetravirus of the Alphatetraviridae family. Sequence analysis predicts that DpTV replicase contains a putative helicase domain (Hel). However, the helicase activity in alphatetraviruses has never been formally determined. In this study, we determined that DpTV Hel is a functional RNA helicase belonging to superfamily-1 helicase with 5′–3′ dsRNA unwinding directionality. Further characterization determined the length requirement of the 5′ single-stranded tail on the RNA template and the optimal reaction conditions for the unwinding activity of DpTV Hel. Moreover, DpTV Hel also contains NTPase activity. The ATPase activity of DpTV Hel could be significantly stimulated by dsRNA, and dsRNA could partially rescue the ATPase activity abolishment caused by mutations. Our study is the first to identify an alphatetravirus RNA helicase and further characterize its dsRNA unwinding and NTPase activities in detail and should foster our understanding of DpTV and other alphatetraviruses.
Collapse
Affiliation(s)
- Qinrong Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Marklewitz M, Gloza-Rausch F, Kurth A, Kümmerer BM, Drosten C, Junglen S. First isolation of an Entomobirnavirus from free-living insects. J Gen Virol 2012; 93:2431-2435. [PMID: 22875257 DOI: 10.1099/vir.0.045435-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Drosophila X virus (DXV), the prototype Entomobirnavirus, is a well-studied RNA virus model. Its origin is unknown, and so is that of the only other entomobirnavirus, Espirito Santo virus (ESV). We isolated an entomobirnavirus tentatively named Culex Y virus (CYV) from hibernating Culex pipiens complex mosquitoes in Germany. CYV was detected in three pools consisting of 11 mosquitoes each. Full-genome sequencing and phylogenetic analyses suggested that CYV and ESV define one sister species to DXV within the genus Entomobirnavirus. In contrast to the laboratory-derived ESV, the ORF5 initiation codon AUG was mutated to (1927)GUG in all three wild-type CYV isolates. Also in contrast to ESV, replication of CYV was not dependent on other viruses in insect cell culture. CYV could provide a wild-type counterpart in research fields relying on DXV and other cell culture-adapted strains.
Collapse
Affiliation(s)
- Marco Marklewitz
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | | | - Andreas Kurth
- Center for Biological Safety-1, Robert Koch-Institute, Berlin, Germany
| | | | - Christian Drosten
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - Sandra Junglen
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| |
Collapse
|
34
|
Ye S, Xia H, Dong C, Cheng Z, Xia X, Zhang J, Zhou X, Hu Y. Identification and characterization of Iflavirus 3C-like protease processing activities. Virology 2012; 428:136-45. [PMID: 22534091 PMCID: PMC7111971 DOI: 10.1016/j.virol.2012.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 04/03/2012] [Accepted: 04/05/2012] [Indexed: 12/13/2022]
Abstract
Viral replication and capsid assembly in the viruses in the order Picornavirales requires polyprotein proteolytic processing by 3C or 3C-like (3CL) proteases. We identified and characterized the 3CL protease of Ectropis obliqua virus (EoV) of the newly established family Iflaviridae (order Picornavirales). The bacterially expressed EoV 3CL protease domain autocatalytically released itself from larger precursors by proteolytic cleavage, and cleavage sites were determined via N-terminal sequencing of the cleavage products. This protease also mediated trans-proteolytic activity and cleaved the polyprotein at the same specific positions. Moreover, we determined the critical catalytic residues (H2261, D2299, C2383) for the protease activity, and characterized the biochemical properties of EoV 3CL and its responses to various protease inhibitors. Our work is the first study to identify an iflaviral 3CL protease and further characterize it in detail and should foster our understanding of EoV and other iflaviruses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xi Zhou
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Yuanyang Hu
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
35
|
Seo JK, Kwon SJ, Rao ALN. Molecular dissection of Flock house virus protein B2 reveals that electrostatic interactions between N-terminal domains of B2 monomers are critical for dimerization. Virology 2012; 432:296-305. [PMID: 22721960 DOI: 10.1016/j.virol.2012.05.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 05/16/2012] [Accepted: 05/28/2012] [Indexed: 11/18/2022]
Abstract
Flock house virus (FHV) encodes a suppressor protein B2 to overcome antiviral RNA silencing during infection. Biochemical analyses have shown that a homodimer of B2 binds to double-stranded RNA to inhibit dicer-mediated cleavage of dsRNA and incorporation of small interfering RNAs into the RNA-induced silencing complex. In this study, using FHV-Nicotiana benthamiana system, we identified that the charged amino acids at the N-terminus of B2 are critical for dimerization. Interestingly, B2 mutants defective in dimerization exhibited enhanced silencing suppressor activity, Furthermore, we found that the C-terminal charged amino acids are dispensable for B2 dimerization and viral RNA silencing suppression but are critical for transgene silencing suppression. Additional yeast two hybrid assays revealed that dimerization of B2 is not essential for interacting with the RNA silencing machinery. Taken together, our data provide evidence that both monomeric and dimeric B2 proteins function in different modes to suppress RNA silencing.
Collapse
Affiliation(s)
- Jang-Kyun Seo
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521-0122, USA
| | | | | |
Collapse
|
36
|
Targeting of dicer-2 and RNA by a viral RNA silencing suppressor in Drosophila cells. J Virol 2012; 86:5763-73. [PMID: 22438534 DOI: 10.1128/jvi.07229-11] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA interference (RNAi) is a eukaryotic gene-silencing mechanism that functions in antiviral immunity in diverse organisms. To combat RNAi-mediated immunity, viruses encode viral suppressors of RNA silencing (VSRs) that target RNA and protein components in the RNAi machinery. Although the endonuclease Dicer plays key roles in RNAi immunity, little is known about how VSRs target Dicer. Here, we show that the B2 protein from Wuhan nodavirus (WhNV), the counterpart of Flock House virus (FHV), suppresses Drosophila melanogaster RNAi by directly interacting with Dicer-2 (Dcr-2) and sequestering double-stranded RNA (dsRNA) and small interfering RNA (siRNA). Further investigations reveal that WhNV B2 binds to the RNase III and Piwi-Argonaut-Zwille (PAZ) domains of Dcr-2 via its C-terminal region, thereby blocking the activities of Dcr-2 in processing dsRNA and incorporating siRNA into the RNA-induced silencing complex (RISC). Moreover, we uncover an interrelationship among diverse activities of WhNV B2, showing that RNA binding enhances the B2-Dcr-2 interaction by promoting B2 homodimerization. Taken together, our findings establish a model of suppression of Drosophila RNAi by WhNV B2 targeting both Dcr-2 and RNA and provide evidence that an interrelationship exists among diverse activities of VSRs to antagonize RNAi.
Collapse
|