1
|
Liu D, Jin Z, Wei H, Zhu C, Liu K, You P, Ju J, Xu J, Zhu W, Xu Q. Anti-SFT2D2 autoantibodies alter dendrite spine and cause psychotic behavior in mice. J Psychiatr Res 2024; 171:99-107. [PMID: 38262166 DOI: 10.1016/j.jpsychires.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/06/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND Autoimmunity plays an important role in schizophrenia (SCZ). Autoantibodies against SFT2D2 have been reported in patients with SCZ; however, the specific mechanism remains unclear. This study aimed to describe an autoimmune model, namely, mice immunized against SFT2D2-peptides. METHODS ApoE-/- and WT mice (C57BL/6) were immunized four times (day 0, day 14, day 21, day 35) with SFT2D2 peptide or KLH via subcutaneous injection. Behavioral tests were conducted after the third immunization, and immunochemistry of brain tissue were performed after the sacrifice of the mice. RESULTS Active immunization with KLH-coupled SFT2D2-derived peptides in both WT and ApoE-/- (compromised blood-brain barrier) mice led to high circulating levels of anti-SFT2D2 IgG. While there was no detectable deficit in WT mice, impaired pre-pulse inhibition, motor impairments, and reduced cognition in ApoE-/- mice, without signs of anxiety and depression were observed. In addition, immunohistochemical assays demonstrated that activated microglia and astrocytes were increased but neuronal dendritic spine densities were decreased, accompanied by increased expression of complement molecule C4 across brain regions in ApoE-/- mice. CONCLUSIONS In model mice with compromised blood-brain barrier, endogenous anti-SFT2D2 IgG can activate glial cells and modulate synaptic plasticity, and induce a series of psychosis-like changes. These antibodies may reveal valuable therapeutic targets, which may improve the treatment strategies for a subgroup of SCZ patients.
Collapse
Affiliation(s)
- Duilin Liu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhongman Jin
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Hui Wei
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Caiyun Zhu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Kejiang Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Pengsheng You
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jiahang Ju
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jinming Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Wanwan Zhu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Abstract
Individuals living in endemic hotspots of Lassa fever have recurrent exposure to Lassa virus (LASV) via spillover from the primary host reservoir Mastomys natalensis. Despite M. natalensis being broadly distributed across sub-Saharan Africa, Lassa fever is only found in West Africa. In recent years, new LASV reservoirs have been identified. Erudition of rodent habitats, reproduction and fecundity, movement patterns, and spatial preferences are essential to institute preventative measures against Lassa fever. Evolutionary insights have also added to our knowledge of closely related mammarenavirus distribution amongst rodents throughout the continent.
Collapse
Affiliation(s)
- Allison R Smither
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| | - Antoinette R Bell-Kareem
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
3
|
Abstract
Human enterovirus D68 (EV-D68) is a globally reemerging respiratory pathogen that is associated with the development of acute flaccid myelitis (AFM) in children. Currently, there are no approved vaccines or treatments for EV-D68 infection, and there is a paucity of data related to the virus and host-specific factors that predict disease severity and progression to the neurologic syndrome. EV-D68 infection of various animal models has served as an important platform for characterization and comparison of disease pathogenesis between historic and contemporary isolates. Still, there are significant gaps in our knowledge of EV-D68 pathogenesis that constrain the development and evaluation of targeted vaccines and antiviral therapies. Continued refinement and characterization of animal models that faithfully reproduce key elements of EV-D68 infection and disease is essential for ensuring public health preparedness for future EV-D68 outbreaks.
Collapse
|
4
|
Loftis JM, Taylor J, Hudson R, Firsick EJ. Neuroinvasion and cognitive impairment in comorbid alcohol dependence and chronic viral infection: An initial investigation. J Neuroimmunol 2019; 335:577006. [PMID: 31325774 DOI: 10.1016/j.jneuroim.2019.577006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/03/2019] [Accepted: 07/09/2019] [Indexed: 12/16/2022]
Abstract
Viruses that invade the central nervous system (CNS) can cause neuropsychiatric impairments. Similarly, chronic alcohol exposure can induce inflammatory responses that alter brain function. However, the effects of a chronic viral infection and comorbid alcohol use on neuroinflammation and behavior are not well-defined. We investigated the role of heavy alcohol intake in regulating inflammatory responses and behavioral signs of cognitive impairments in mice infected with lymphocytic choriomeningitis virus (LCMV) clone 13. LCMV-infected mice exposed to alcohol had increased peripheral inflammation and impaired cognitive function (as indicated by performance on the novel object recognition test). Initial findings suggest that brain region-specific dysregulation of microglial response to viral infection may contribute to cognitive impairments in the context of heavy alcohol use.
Collapse
Affiliation(s)
- Jennifer M Loftis
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA; Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA; Methamphetamine Abuse Research Center, Veterans Affairs Portland Health Care System, Oregon Health & Science University, Portland, OR, USA.
| | - Jonathan Taylor
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA; Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Rebekah Hudson
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA; Department of Public Health and Preventive Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Evan J Firsick
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA
| |
Collapse
|
5
|
Mariën J, Sluydts V, Borremans B, Gryseels S, Vanden Broecke B, Sabuni CA, Katakweba AAS, Mulungu LS, Günther S, de Bellocq JG, Massawe AW, Leirs H. Arenavirus infection correlates with lower survival of its natural rodent host in a long-term capture-mark-recapture study. Parasit Vectors 2018; 11:90. [PMID: 29422075 PMCID: PMC5806307 DOI: 10.1186/s13071-018-2674-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/24/2018] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Parasite evolution is hypothesized to select for levels of parasite virulence that maximise transmission success. When host population densities fluctuate, low levels of virulence with limited impact on the host are expected, as this should increase the likelihood of surviving periods of low host density. We examined the effects of Morogoro arenavirus on the survival and recapture probability of multimammate mice (Mastomys natalensis) using a seven-year capture-mark-recapture time series. Mastomys natalensis is the natural host of Morogoro virus and is known for its strong seasonal density fluctuations. RESULTS Antibody presence was negatively correlated with survival probability (effect size: 5-8% per month depending on season) but positively with recapture probability (effect size: 8%). CONCLUSIONS The small negative correlation between host survival probability and antibody presence suggests that either the virus has a negative effect on host condition, or that hosts with lower survival probability are more likely to obtain Morogoro virus infection, for example due to particular behavioural or immunological traits. The latter hypothesis is supported by the positive correlation between antibody status and recapture probability which suggests that risky behaviour might increase the probability of becoming infected.
Collapse
Affiliation(s)
- Joachim Mariën
- Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
| | - Vincent Sluydts
- Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
| | - Benny Borremans
- Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
- Interuniversity Institute for Biostatistics and statistical Bioinformatics (I-BIOSTAT), Hasselt University, Hasselt, Belgium
| | - Sophie Gryseels
- Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, USA
| | | | | | | | - Loth S. Mulungu
- Pest Management Center, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Stephan Günther
- Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Joëlle Goüy de Bellocq
- Institute of Vertebrate Biology, Research Facility Studenec, The Czech Academy of Sciences, Brno, Czech Republic
| | - Apia W. Massawe
- Pest Management Center, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Herwig Leirs
- Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
6
|
Alcohol intake alters immune responses and promotes CNS viral persistence in mice. Behav Brain Res 2016; 312:1-8. [PMID: 27269869 DOI: 10.1016/j.bbr.2016.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/01/2016] [Accepted: 06/03/2016] [Indexed: 12/24/2022]
Abstract
Chronic hepatitis C virus (HCV) infection leads to progressive liver disease and is associated with a variety of extrahepatic effects, including central nervous system (CNS) damage and neuropsychiatric impairments. Alcohol abuse can exacerbate these adverse effects on brain and behavior, but the molecular mechanisms are not well understood. This study investigated the role of alcohol in regulating viral persistence and CNS immunopathology in mice infected with lymphocytic choriomeningitis virus (LCMV), a model for HCV infections in humans. Female and male BALB/c mice (n=94) were exposed to alcohol (ethanol; EtOH) and water (or water only) using a two-bottle choice paradigm, followed one week later by infection with either LCMV clone 13 (causes chronic infection similar to chronic HCV), LCMV Armstrong (causes acute infection), or vehicle. Mice were monitored for 60days post-infection and continued to receive 24-h access to EtOH and water. Animals infected with LCMV clone 13 drank more EtOH, as compared to those with an acute or no viral infection. Six weeks after infection with LCMV clone 13, mice with EtOH exposure evidenced higher serum viral titers, as compared to mice without EtOH exposure. EtOH intake was also associated with reductions in virus-specific CD8(+) T cell frequencies (particularly CD11a(hi) subsets) and evidence of persistent CNS viremia in chronically infected mice. These findings support the hypothesis that EtOH use and chronic viral infection can result in combined toxic effects accelerating CNS damage and neuropsychiatric dysfunction and suggest that examining the role of EtOH in regulating viral persistence and CNS immunopathology in mice infected with LCMV can lead to a more comprehensive understanding of comorbid alcohol use disorder and chronic viral infection.
Collapse
|
7
|
Herz J, Johnson KR, McGavern DB. Therapeutic antiviral T cells noncytopathically clear persistently infected microglia after conversion into antigen-presenting cells. ACTA ACUST UNITED AC 2015; 212:1153-69. [PMID: 26122661 PMCID: PMC4516789 DOI: 10.1084/jem.20142047] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 06/04/2015] [Indexed: 01/12/2023]
Abstract
Clearance of neurotropic infections is challenging because the CNS is relatively intolerant of immunopathological reactions. Herz et al. use a model of persistent viral infection in mice to demonstrate therapeutic antiviral T cells can purge the CNS infection without causing tissue damage resulting from limited recruitment of inflammatory innate immune cells and conversion of microglia into APCs. Several viruses can infect the mammalian nervous system and induce neurological dysfunction. Adoptive immunotherapy is an approach that involves administration of antiviral T cells and has shown promise in clinical studies for the treatment of peripheral virus infections in humans such as cytomegalovirus (CMV), Epstein-Barr virus (EBV), and adenovirus, among others. In contrast, clearance of neurotropic infections is particularly challenging because the central nervous system (CNS) is relatively intolerant of immunopathological reactions. Therefore, it is essential to develop and mechanistically understand therapies that noncytopathically eradicate pathogens from the CNS. Here, we used mice persistently infected from birth with lymphocytic choriomeningitis virus (LCMV) to demonstrate that therapeutic antiviral T cells can completely purge the persistently infected brain without causing blood–brain barrier breakdown or tissue damage. Mechanistically, this is accomplished through a tailored release of chemoattractants that recruit antiviral T cells, but few pathogenic innate immune cells such as neutrophils and inflammatory monocytes. Upon arrival, T cells enlisted the support of nearly all brain-resident myeloid cells (microglia) by inducing proliferation and converting them into CD11c+ antigen-presenting cells (APCs). Two-photon imaging experiments revealed that antiviral CD8+ and CD4+ T cells interacted directly with CD11c+ microglia and induced STAT1 signaling but did not initiate programmed cell death. We propose that noncytopathic CNS viral clearance can be achieved by therapeutic antiviral T cells reliant on restricted chemoattractant production and interactions with apoptosis-resistant microglia.
Collapse
Affiliation(s)
- Jasmin Herz
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Kory R Johnson
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Dorian B McGavern
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
8
|
Maung R, Hoefer MM, Sanchez AB, Sejbuk NE, Medders KE, Desai MK, Catalan IC, Dowling CC, de Rozieres CM, Garden GA, Russo R, Roberts AJ, Williams R, Kaul M. CCR5 knockout prevents neuronal injury and behavioral impairment induced in a transgenic mouse model by a CXCR4-using HIV-1 glycoprotein 120. THE JOURNAL OF IMMUNOLOGY 2014; 193:1895-910. [PMID: 25031461 DOI: 10.4049/jimmunol.1302915] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The innate immune system has been implicated in several neurodegenerative diseases, including HIV-1-associated dementia. In this study, we show that genetic ablation of CCR5 prevents microglial activation and neuronal damage in a transgenic model of HIV-associated brain injury induced by a CXCR4-using viral envelope gp120. The CCR5 knockout (KO) also rescues spatial learning and memory in gp120-transgenic mice. However, the CCR5KO does not abrogate astrocytosis, indicating it can occur independently from neuronal injury and behavioral impairment. To characterize further the neuroprotective effect of CCR5 deficiency we performed a genome-wide gene expression analysis of brains from HIVgp120tg mice expressing or lacking CCR5 and nontransgenic controls. A comparison with a human brain microarray study reveals that brains of HIVgp120tg mice and HIV patients with neurocognitive impairment share numerous differentially regulated genes. Furthermore, brains of CCR5 wild-type and CCR5KO gp120tg mice express markers of an innate immune response. One of the most significantly upregulated factors is the acute phase protein lipocalin-2 (LCN2). Using cerebrocortical cell cultures, we find that LCN2 is neurotoxic in a CCR5-dependent fashion, whereas inhibition of CCR5 alone is not sufficient to abrogate neurotoxicity of a CXCR4-using gp120. However, the combination of pharmacologic CCR5 blockade and LCN2 protects neurons from toxicity of a CXCR4-using gp120, thus recapitulating the finding in CCR5-deficient gp120tg mouse brain. Our study provides evidence for an indirect pathologic role of CCR5 and a novel protective effect of LCN2 in combination with inhibition of CCR5 in HIV-associated brain injury.
Collapse
Affiliation(s)
- Ricky Maung
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Melanie M Hoefer
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Ana B Sanchez
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Natalia E Sejbuk
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Kathryn E Medders
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037; Neuroscience, Aging and Stem Cell Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Maya K Desai
- Neuroscience, Aging and Stem Cell Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Irene C Catalan
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Cari C Dowling
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Cyrus M de Rozieres
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Gwenn A Garden
- Department of Neurology, University of Washington, Seattle, WA 98195
| | - Rossella Russo
- Neuroscience, Aging and Stem Cell Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037; Department of Pharmacobiology, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Amanda J Roberts
- Molecular and Cellular Neurosciences Department, The Scripps Research Institute, La Jolla, CA 92037
| | - Roy Williams
- Bioinformatics Shared Resource, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037; and
| | - Marcus Kaul
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037; Neuroscience, Aging and Stem Cell Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037; Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
9
|
Congenitally acquired persistent lymphocytic choriomeningitis viral infection reduces neuronal progenitor pools in the adult hippocampus and subventricular zone. PLoS One 2014; 9:e96442. [PMID: 24802239 PMCID: PMC4011784 DOI: 10.1371/journal.pone.0096442] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 04/08/2014] [Indexed: 02/06/2023] Open
Abstract
Lymphocytic choriomeningitis virus (LCMV) can be transmitted through congenital infection, leading to persistent infection of numerous organ systems including the central nervous system (CNS). Adult mice persistently infected with LCMV (LCMV-cgPi mice) exhibit learning deficits, such as poor performance in spatial discrimination tests. Given that deficits in spatial learning have been linked to defects in adult neurogenesis, we investigated the impact of congenital LCMV infection on generation of neuroblasts from neural progenitor cells within neurogenic zones of adult mice. In LCMV-cgPi mice, QPCR and immunohistochemistry detected presence of LCMV glycoprotein-coding RNA and nucleoprotein in the hippocampal dentate gyrus and subventricular zone (SVZ), sites of neurogenesis that harbor populations of neuroblasts. Numbers of neuroblasts were reduced in LCMV-cgPi mice, as determined by IHC quantification, and analysis of BrdU incorporation by flow cytometry revealed lower numbers of BrdU-labeled neuroblasts. Additionally, TUNEL assays performed in situ showed increased numbers of apoptotic cells in the two neurogenic regions. Next, neurosphere cultures were infected in vitro with LCMV and differentiated to create a population of cells that consisted of both transit amplifying cells and neuroblasts. Immunocytochemical and TUNEL assays revealed increased numbers of TUNEL-positive cells that express nestin, suggesting that the drop in numbers of neuroblasts was due to a combination of impaired proliferation and apoptosis of progenitor cells. LCMV-cgPi mice exhibited transcriptional up-regulation several cytokines and chemokines, including gamma-interferon inducible chemokines CXCL9 and CXCL10. Chronic up-regulation of these chemokines can facilitate a pro-inflammatory niche that may contribute to defects in neurogenesis.
Collapse
|
10
|
Iwasaki M, Urata S, Cho Y, Ngo N, de la Torre JC. Cell entry of lymphocytic choriomeningitis virus is restricted in myotubes. Virology 2014; 458-459:22-32. [PMID: 24928036 DOI: 10.1016/j.virol.2014.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 02/25/2014] [Accepted: 04/08/2014] [Indexed: 11/27/2022]
Abstract
In mice persistently infected since birth with the prototypic arenavirus lymphocytic choriomeningitis viurs, viral antigen and RNA are readily detected in most organs and cell types but remarkably absent in skeletal muscle. Here we report that mouse C2C12 myoblasts that are readily infected by LCMV, become highly refractory to LCMV infection upon their differentiation into myotubes. Myotube's resistance to LCMV was not due to an intracellular restriction of virus replication but rather an impaired cell entry mediated by the LCMV surface glycoprotein. Our findings provide an explanation for the observation that in LCMV carrier mice myotubes, which are constantly exposed to blood-containing virus, remain free of viral antigen and RNA despite myotubes express high levels of the LCMV receptor alpha dystroglycan and do not pose an intracellular blockade to LCMV multiplication.
Collapse
Affiliation(s)
- Masaharu Iwasaki
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Shuzo Urata
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Yoshitake Cho
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Nhi Ngo
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Juan C de la Torre
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
11
|
Puccini JM, Ruller CM, Robinson SM, Knopp KA, Buchmeier MJ, Doran KS, Feuer R. Distinct neural stem cell tropism, early immune activation, and choroid plexus pathology following coxsackievirus infection in the neonatal central nervous system. J Transl Med 2014; 94:161-81. [PMID: 24378643 DOI: 10.1038/labinvest.2013.138] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 09/25/2013] [Accepted: 10/18/2013] [Indexed: 12/21/2022] Open
Abstract
Coxsackievirus B3 (CVB3) and lymphocytic choriomeningitis virus (LCMV) are both neurotropic RNA viruses, which can establish a persistent infection and cause meningitis and encephalitis in the neonatal host. Utilizing our neonatal mouse model of infection, we evaluated the consequences of early viral infection upon the host central nervous system (CNS) by comparing CVB3 and LCMV infection. Both viruses expressed high levels of viral protein in the choroid plexus and subventricular zone (SVZ), a region of neurogenesis. LCMV infected a greater number of cells in the SVZ and targeted both nestin(+) (neural progenitor cell marker) and olig2(+) (glial progenitor marker) cells at a relatively equal proportion. In contrast, CVB3 preferentially infected nestin(+) cells within the SVZ. Microarray analysis revealed differential kinetics and unique host gene expression changes for each infection. MHC class I gene expression, several developmental-related Hox genes, and transthyretin (TTR), a protein secreted in the cerebrospinal fluid by the choroid plexus, were specifically downregulated following CVB3 infection. Also, we identified severe pathology in the choroid plexus of CVB3-infected animals at 48 h post infection accompanied by a decrease in the level of TTR and carbonic anhydrase II. These results demonstrate broader neural progenitor and stem cell (NPSC) tropism for LCMV in the neonatal CNS, whereas CVB3 targeted a more specific subset of NPSCs, stimulated a distinct early immune response, and induced significant acute damage in the choroid plexus.
Collapse
Affiliation(s)
- Jenna M Puccini
- The Integrated Regenerative Research Institute (IRRI) at San Diego State University, Cell & Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, CA, USA
| | - Chelsea M Ruller
- The Integrated Regenerative Research Institute (IRRI) at San Diego State University, Cell & Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, CA, USA
| | - Scott M Robinson
- The Integrated Regenerative Research Institute (IRRI) at San Diego State University, Cell & Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, CA, USA
| | - Kristeene A Knopp
- Department of Molecular Biology and Biochemistry, UC Irvine, Irvine, CA, USA
| | - Michael J Buchmeier
- Department of Molecular Biology and Biochemistry, UC Irvine, Irvine, CA, USA
| | - Kelly S Doran
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, CA, USA
| | - Ralph Feuer
- The Integrated Regenerative Research Institute (IRRI) at San Diego State University, Cell & Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, CA, USA
| |
Collapse
|
12
|
Wilson MR, Peters CJ. Diseases of the central nervous system caused by lymphocytic choriomeningitis virus and other arenaviruses. HANDBOOK OF CLINICAL NEUROLOGY 2014; 123:671-81. [PMID: 25015511 DOI: 10.1016/b978-0-444-53488-0.00033-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Michael R Wilson
- Multiple Sclerosis Center, Department of Neurology, School of Medicine, University of California San Francisco, San Francisco, CA, USA.
| | - Clarence J Peters
- Departments of Microbiology, Immunology and Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
13
|
Nayak D, Johnson KR, Heydari S, Roth TL, Zinselmeyer BH, McGavern DB. Type I interferon programs innate myeloid dynamics and gene expression in the virally infected nervous system. PLoS Pathog 2013; 9:e1003395. [PMID: 23737750 PMCID: PMC3667771 DOI: 10.1371/journal.ppat.1003395] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 04/17/2013] [Indexed: 11/18/2022] Open
Abstract
Viral infections of central nervous system (CNS) often trigger inflammatory responses that give rise to a wide range of pathological outcomes. The CNS is equipped with an elaborate network of innate immune sentinels (e.g. microglia, macrophages, dendritic cells) that routinely serve as first responders to these infections. The mechanisms that underlie the dynamic programming of these cells following CNS viral infection remain undefined. To gain insights into this programming, we utilized a combination of genomic and two-photon imaging approaches to study a pure innate immune response to a noncytopathic virus (lymphocytic choriomeningitis virus) as it established persistence in the brain. This enabled us to evaluate how global gene expression patterns were translated into myeloid cell dynamics following infection. Two-photon imaging studies revealed that innate myeloid cells mounted a vigorous early response to viral infection characterized by enhanced vascular patrolling and a complete morphological transformation. Interestingly, innate immune activity subsided over time and returned to a quasi-normal state as the virus established widespread persistence in the brain. At the genomic level, early myeloid cell dynamics were associated with massive changes in CNS gene expression, most of which declined over time and were linked to type I interferon signaling (IFN-I). Surprisingly, in the absence of IFN-I signaling, almost no differential gene expression was observed in the nervous system despite increased viral loads. In addition, two-photon imaging studies revealed that IFN-I receptor deficient myeloid cells were unresponsive to viral infection and remained in a naïve state. These data demonstrate that IFN-I engages non-redundant programming responsible for nearly all innate immune activity in the brain following a noncytopathic viral infection. This Achilles' heel could explain why so many neurotropic viruses have acquired strategies to suppress IFN-I. The central nervous system is equipped with innate immune cells that serve as first responders to sterile injuries and infections. The mechanisms that program the movement and morphological transformations of these cells following infection remain undefined. Here, we utilized a combination of genomic and in vivo imaging approaches to define pathways that program the motion of innate immune cells responding to a noncytopathic virus as it established persistence in the brain. In vivo imaging studies performed in the living brain revealed that innate myeloid cells mounted a vigorous early response that returned to a “naïve” state during persistence. This was associated at the genomic level with robust changes in gene expression that were mostly quenched over time. Analysis of the gene expression pattern revealed a prominent type I interferon (IFN-I) signature only at the early stage of infection. Surprisingly, in the absence of type I interferon (IFN-I) signaling, almost no genes were differentially expressed in the virally infected nervous system and all innate myeloid cells were unresponsive. These data indicate IFN-I programs all innate myeloid activity in the nervous system following a noncytopathic viral infection. This non-redundant anti-viral program represents an Achilles' heel that can be exploited by neurotropic viruses.
Collapse
Affiliation(s)
- Debasis Nayak
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
14
|
Bielefeldt-Ohmann H, Smirnova NP, Tolnay AE, Webb BT, Antoniazzi AQ, van Campen H, Hansen TR. Neuro-invasion by a 'Trojan Horse' strategy and vasculopathy during intrauterine flavivirus infection. Int J Exp Pathol 2012; 93:24-33. [PMID: 22264283 DOI: 10.1111/j.1365-2613.2011.00795.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The central nervous system (CNS) is a major target of several important human and animal viral pathogens causing congenital infections. However, despite the importance of neuropathological outcomes, for humans in particular, the pathogenesis, including mode of neuro-invasion, remains unresolved for most congenital virus infections. Using a natural model of congenital infection with an RNA virus, bovine viral diarrhoea virus in pregnant cattle, we sought to delineate the timing and mode of virus neuro-invasion of and spread within the brain of foetuses following experimental respiratory tract infection of the dams at day 75 of pregnancy, a time of maximal risk of tissue pathology without foetal death. Virus antigen was first detected in the foetal brains 14 days postinfection of dams and was initially restricted to amoeboid microglial cells in the periventricular germinal layer. The appearance of these cells was preceded by or concurrent with vasculopathy in the same region. While the affected microvessels were negative for virus antigen, they expressed high levels of the type I interferon-stimulated protein ISG15 and eventually disappeared in parallel with the appearance of microcavitary lesions. Subsequently, the virus spread to neurons and other glial cells. Our findings suggest that the virus enters the CNS via infected microglial precursors, the amoeboid microglial cells, in a 'Trojan horse' mode of invasion and that the microcavitary lesions are associated with loss of periventricular microvasculature, perhaps as a consequence of high, unrestricted induction of interferon-regulated proteins.
Collapse
|
15
|
Borrow P, Martínez-Sobrido L, de la Torre JC. Inhibition of the type I interferon antiviral response during arenavirus infection. Viruses 2010; 2:2443-80. [PMID: 21994626 PMCID: PMC3185579 DOI: 10.3390/v2112443] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 10/22/2010] [Accepted: 10/22/2010] [Indexed: 12/20/2022] Open
Abstract
Arenaviruses merit interest both as tractable experimental model systems to study acute and persistent viral infections, and as clinically-important human pathogens. Several arenaviruses cause hemorrhagic fever (HF) disease in humans. In addition, evidence indicates that the globally-distributed prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) is a human pathogen of clinical significance in congenital infections, and also poses a great danger to immunosuppressed individuals. Arenavirus persistence and pathogenesis are facilitated by their ability to overcome the host innate immune response. Mammalian hosts have developed both membrane toll-like receptors (TLR) and cytoplasmic pattern recognition receptors (PRRs) that recognize specific pathogen-associated molecular patterns (PAMPs), resulting in activation of the transcription factors IRF3 or IRF7, or both, which together with NF-κB and ATF-2/c-JUN induce production of type I interferon (IFN-I). IFN-I plays a key role in host anti-microbial defense by mediating direct antiviral effects via up-regulation of IFN-I stimulated genes (ISGs), activating dendritic cells (DCs) and natural killer (NK) cells, and promoting the induction of adaptive responses. Accordingly, viruses have developed a plethora of strategies to disrupt the IFN-I mediated antiviral defenses of the host, and the viral gene products responsible for these disruptions are often major virulence determinants. IRF3- and IRF7-dependent induction of host innate immune responses is frequently targeted by viruses. Thus, the arenavirus nucleoprotein (NP) was shown to inhibit the IFN-I response by interfering with the activation of IRF3. This NP anti-IFN activity, together with alterations in the number and function of DCs observed in mice chronically infected with LCMV, likely play an important role in LCMV persistence in its murine host. In this review we will discuss current knowledge about the cellular and molecular mechanisms by which arenaviruses can subvert the host innate immune response and their implications for understanding HF arenaviral disease as well as arenavirus persistence in their natural hosts.
Collapse
Affiliation(s)
- Persephone Borrow
- Nuffield Department of Clinical Medicine, The Jenner Institute, University of Oxford, Compton, Newbury, Berkshire RG20 7NN, UK; E-Mail:
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Juan Carlos de la Torre
- Department of Immunology and Microbial Science, IMM-6, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
16
|
Rise ML, Hall JR, Rise M, Hori TS, Browne MJ, Gamperl AK, Hubert S, Kimball J, Bowman S, Johnson SC. Impact of asymptomatic nodavirus carrier state and intraperitoneal viral mimic injection on brain transcript expression in Atlantic cod (Gadus morhua). Physiol Genomics 2010; 42:266-80. [PMID: 20442246 DOI: 10.1152/physiolgenomics.00168.2009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nodaviruses and other RNA viruses have a profoundly negative impact on the global aquaculture industry. Nodaviruses target nervous tissue causing viral nervous necrosis, a disease characterized by neurological damage, swimming abnormalities, and morbidity. This study used functional genomic techniques to study the Atlantic cod (Gadus morhua) brain transcript expression responses to asymptomatic high nodavirus carrier state and intraperitoneal injection of polyriboinosinic polyribocytidylic acid (pIC). Reciprocal suppression subtractive hybridization (SSH) cDNA libraries enriched for virus-responsive brain transcripts were constructed and characterized. We generated 1,938 expressed sequence tags (ESTs) from a forward brain SSH library (enriched for transcripts upregulated by nodavirus and/or pIC) and 1,980 ESTs from a reverse brain SSH library (enriched for transcripts downregulated by nodavirus and/or pIC). To examine the effect of nodavirus carrier state on individual brain gene expression in asymptomatic cod, 27 transcripts of interest were selected for quantitative reverse transcription-polymerase chain reaction (QPCR) studies. Transcripts found to be >10-fold upregulated in individuals with a high nodavirus carrier state relative to those in a no/low nodavirus carrier state were identified as ISG15, IL8, DHX58 (alias LGP2), ZNFX1, RSAD2 (alias viperin), and SACS (sacsin, alias spastic ataxia of Charlevoix-Saguenay). These and other SSH-identified transcripts were also found by QPCR to be significantly (P < 0.05) upregulated by pIC compared with saline-injected controls within 72 h of injection. Several transcripts identified in the reverse SSH library, including two putative ubiquitination pathway members (HERC4 and SUMO2), were found to be significantly (P < 0.05) downregulated in individuals with a high nodavirus carrier state. Our data shows that Atlantic cod brains have a strong interferon pathway response to asymptomatic high nodavirus carrier state and that many interferon pathway and other immune relevant transcripts are significantly induced in brain by both nodavirus and pIC.
Collapse
Affiliation(s)
- Matthew L Rise
- Ocean Sciences Centre, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, Newfoundland, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Targeting the proteolytic processing of the viral glycoprotein precursor is a promising novel antiviral strategy against arenaviruses. J Virol 2010; 84:573-84. [PMID: 19846507 DOI: 10.1128/jvi.01697-09] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A crucial step in the arenavirus life cycle is the biosynthesis of the viral envelope glycoprotein (GP) responsible for virus attachment and entry. Processing of the GP precursor (GPC) by the cellular proprotein convertase site 1 protease (S1P), also known as subtilisin-kexin-isozyme 1 (SKI-1), is crucial for cell-to-cell propagation of infection and production of infectious virus. Here, we sought to evaluate arenavirus GPC processing by S1P as a target for antiviral therapy using a recently developed peptide-based S1P inhibitor, decanoyl (dec)-RRLL-chloromethylketone (CMK), and the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV). To control for off-target effects of dec-RRLL-CMK, we employed arenavirus reverse genetics to introduce a furin recognition site into the GPC of LCMV. The rescued mutant virus grew to normal titers, and the processing of its GPC critically depended on cellular furin, but not S1P. Treatment with the S1P inhibitor dec-RRLL-CMK resulted in specific blocking of viral spread and virus production of LCMV. Combination of the protease inhibitor with ribavirin, currently used clinically for treatment of human arenavirus infections, resulted in additive drug effects. In cells deficient in S1P, the furin-dependent LCMV variant established persistent infection, whereas wild-type LCMV underwent extinction without the emergence of S1P-independent escape variants. Together, the potent antiviral activity of an inhibitor of S1P-dependent GPC cleavage, the additive antiviral effect with ribavirin, and the low probability of emergence of S1P-independent viral escape variants make S1P-mediated GPC processing by peptide-derived inhibitors a promising strategy for the development of novel antiarenaviral drugs.
Collapse
|
18
|
Wikoff WR, Kalisak E, Trauger S, Manchester M, Siuzdak G. Response and recovery in the plasma metabolome tracks the acute LCMV-induced immune response. J Proteome Res 2009; 8:3578-87. [PMID: 19496611 DOI: 10.1021/pr900275p] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Lymphocytic choriomeningitis virus (LCMV) infection of mice is noncytopathic, producing well-characterized changes reflecting the host immune response. Untargeted metabolomics using mass spectrometry identified endogenous small molecule changes in blood from mice inoculated with LCMV, sampled at days 1, 3, 7, and 14 post infection. These time points correspond to well characterized events during acute LCMV infection and the immune response. Diverse pathways were altered, including TCA cycle intermediates, gamma-glutamyl dipeptides, lysophosphatidyl cholines, and fatty acids. The kynurenine pathway was activated, surprising because it is stimulated by IFN-gamma, which LCMV suppresses, thus, suggesting alternative activators. In contrast, biopterin/neopterin, another IFN-gamma stimulated pathway, was not activated. Many metabolites followed "response and recovery" kinetics, decreasing after infection to a minimum at days 3-7, and returning to normal by day 14. The TCA pathway followed this pattern, including citrate, cis-aconitate and alpha-ketoglutarate, intriguing because succinate has been shown to mediate cellular immunity. This response and recovery dynamic tracks the immune response, including the rise and fall of natural killer cell populations, serum TNF receptor concentration, and viral clearance. Metabolomics can provide target pathways for molecular diagnostics or therapeutics of viral infection and immunity.
Collapse
Affiliation(s)
- William R Wikoff
- Department of Molecular Biology and The Center for Mass Spectrometry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | | | | | | | |
Collapse
|
19
|
Truong P, Heydari S, Garidou L, McGavern DB. Persistent viral infection elevates central nervous system MHC class I through chronic production of interferons. THE JOURNAL OF IMMUNOLOGY 2009; 183:3895-905. [PMID: 19717517 DOI: 10.4049/jimmunol.0803085] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Persistence of even the stealthiest viruses can perturb immune function either to the benefit or detriment of the host. Lymphocytic choriomeningitis virus (LCMV) establishes lifelong, systemic persistence when introduced in utero or at birth. Despite a highly evolved host-pathogen relationship, LCMV cannot escape detection by the innate immune system, which results in chronic stimulation of the type 1 IFN pathway in adult carrier mice. In this study we demonstrate that IFN-beta is chronically up-regulated in peripheral lymphoid and nonlymphoid tissues (but not the CNS) of mice persistently infected from birth with LCMV and that dendritic cells (DCs) represent at least one source of IFN-beta. Interestingly, chronic stimulation of this innate pathway significantly elevated MHC class I expression in the CNS as well as the periphery. Elevated MHC I expression was dependent on IFN-alphabeta receptor but not MyD88-dependent signaling, as only genetic deletion of the former reduced MHC I to normal levels. An increase in circulating virus was also observed in the IFN-alphabeta receptor deficient carrier mice, signifying that type I IFN continually exerts anti-viral pressure during a LCMV carrier state. Finally, to determine whether heightened CNS MHC I could be therapeutically corrected, we purged LCMV carrier mice of their persistent infection using adoptive immunotherapy. This treatment significantly reduced CNS MHC I expression. Collectively, these data demonstrate that even a well adapted pathogen can chronically stimulate the innate immune system and consequently alter the expression of Ag presenting machinery in an immunologically specialized compartment like the CNS.
Collapse
Affiliation(s)
- Phi Truong
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
20
|
Identification of amino acid residues critical for the anti-interferon activity of the nucleoprotein of the prototypic arenavirus lymphocytic choriomeningitis virus. J Virol 2009; 83:11330-40. [PMID: 19710144 DOI: 10.1128/jvi.00763-09] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lymphocytic choriomeningitis virus (LCVM) nucleoprotein (NP) counteracts the host type I interferon (IFN) response by inhibiting activation of the IFN regulatory factor 3 (IRF3). In this study, we have mapped the regions and specific amino acid residues within NP involved in its anti-IFN activity. We identified a region spanning residues 382 to 386 as playing a critical role in the IFN-counteracting activity of NP. Alanine substitutions at several positions within this region resulted in NP mutants that lacked the IFN-counteracting activity but retained their functions in virus RNA synthesis and assembly of infectious particles. We used reverse genetics to rescue a recombinant LCMV strain carrying mutation D382A in its NP [rLCMV/NP*(D382A)]. Compared to wild-type (WT) LCMV, rLCMV/NP*(D382A) exhibited a higher level of attenuation in IFN-competent than IFN-deficient cells. In addition, A549 cells infected with rLCMV/NP*(D382A), but not with WT LCMV, produced IFN and failed to rescue replication of the IFN-sensitive Newcastle disease virus.
Collapse
|
21
|
Kang SS, McGavern DB. Lymphocytic choriomeningitis infection of the central nervous system. FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2008; 13:4529-43. [PMID: 18508527 PMCID: PMC5279998 DOI: 10.2741/3021] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Viral infection of the central nervous system (CNS) can result in a multitude of responses including pathology, persistence or immune clearance. Lymphocytic choriomeningitis virus (LCMV) is a powerful model system to explore these potential outcomes of CNS infection due to the diversity of responses that can be achieved after viral inoculation. Several factors including tropism, timing, dose and variant of LCMV in combination with the development or suppression of the corresponding immune response dictates whether lethal meningitis, chronic infection or clearance of LCMV in the CNS will occur. Importantly, the functionality and positioning of the LCMV-specific CD8+ T cell response are critical in directing the subsequent outcome of CNS LCMV infection. Although a basic understanding of LCMV and immune interactions in the brain exists, the molecular machinery that shapes the balance between pathogenesis and clearance in the LCMV-infected CNS remains to be elucidated. This review covers the various outcomes of LCMV infection in the CNS and what is currently known about the impact of the virus itself versus the immune response in the development of disease or clearance.
Collapse
Affiliation(s)
- Silvia S. Kang
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, CA 92037
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037
| | - Dorian B. McGavern
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, CA 92037
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037
- Harold L. Dorris Neurological Research Institute, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
22
|
Bonthius DJ, Perlman S. Congenital viral infections of the brain: lessons learned from lymphocytic choriomeningitis virus in the neonatal rat. PLoS Pathog 2008; 3:e149. [PMID: 18052527 PMCID: PMC2092377 DOI: 10.1371/journal.ppat.0030149] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The fetal brain is highly vulnerable to teratogens, including many infectious agents. As a consequence of prenatal infection, many children suffer severe and permanent brain injury and dysfunction. Because most animal models of congenital brain infection do not strongly mirror human disease, the models are highly limited in their abilities to shed light on the pathogenesis of these diseases. The animal model for congenital lymphocytic choriomeningitis virus (LCMV) infection, however, does not suffer from this limitation. LCMV is a well-known human pathogen. When the infection occurs during pregnancy, the virus can infect the fetus, and the developing brain is particularly vulnerable. Children with congenital LCMV infection often have substantial neurological deficits. The neonatal rat inoculated with LCMV is a superb model system of human congenital LCMV infection. Virtually all of the neuropathologic changes observed in humans congenitally infected with LCMV, including microencephaly, encephalomalacia, chorioretinitis, porencephalic cysts, neuronal migration disturbances, periventricular infection, and cerebellar hypoplasia, are reproduced in the rat model. Within the developing rat brain, LCMV selectively targets mitotically active neuronal precursors. Thus, the targets of infection and sites of pathology depend on host age at the time of infection. The rat model has further shown that the pathogenic changes induced by LCMV infection are both virus-mediated and immune-mediated. Furthermore, different brain regions simultaneously infected with LCMV can undergo widely different pathologic changes, reflecting different brain region-virus-immune system interactions. Because the neonatal rat inoculated with LCMV so faithfully reproduces the diverse neuropathology observed in the human counterpart, the rat model system is a highly valuable tool for the study of congenital LCMV infection and of all prenatal brain infections In addition, because LCMV induces delayed-onset neuronal loss after the virus has been cleared, the neonatal rat infected with LCMV may be an excellent model system to study neurodegenerative or psychiatric diseases whose etiologies are hypothesized to be virus-induced, such as autism, schizophrenia, and temporal lobe epilepsy.
Collapse
Affiliation(s)
- Daniel J Bonthius
- Department of Pediatrics, Neurology, and Anatomy at the Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America.
| | | |
Collapse
|
23
|
Rojek JM, Campbell KP, Oldstone MB, Kunz S. Old World arenavirus infection interferes with the expression of functional alpha-dystroglycan in the host cell. Mol Biol Cell 2007; 18:4493-507. [PMID: 17761532 PMCID: PMC2043543 DOI: 10.1091/mbc.e07-04-0374] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
alpha-Dystroglycan (alpha-DG) is an important cellular receptor for extracellular matrix (ECM) proteins as well as the Old World arenaviruses lymphocytic choriomeningitis virus (LCMV) and the human pathogenic Lassa fever virus (LFV). Specific O-glycosylation of alpha-DG is critical for its function as receptor for ECM proteins and arenaviruses. Here, we investigated the impact of arenavirus infection on alpha-DG expression. Infection with an immunosuppressive LCMV isolate caused a marked reduction in expression of functional alpha-DG without affecting biosynthesis of DG core protein or global cell surface glycoprotein expression. The effect was caused by the viral glycoprotein (GP), and it critically depended on alpha-DG binding affinity and GP maturation. An equivalent effect was observed with LFVGP. Viral GP was found to associate with a complex between DG and the glycosyltransferase LARGE in the Golgi. Overexpression of LARGE restored functional alpha-DG expression in infected cells. We provide evidence that virus-induced down-modulation of functional alpha-DG perturbs DG-mediated assembly of laminin at the cell surface, affecting normal cell-matrix interactions.
Collapse
Affiliation(s)
- Jillian M. Rojek
- *Viral Immunobiology Laboratory, Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, CA 92037; and
| | - Kevin P. Campbell
- Departments of Molecular Physiology and Biophysics, Neurology, and Internal Medicine, Howard Hughes Medical Institute, University of Iowa College of Medicine, Iowa City, IA 52242
| | - Michael B.A. Oldstone
- *Viral Immunobiology Laboratory, Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, CA 92037; and
| | - Stefan Kunz
- *Viral Immunobiology Laboratory, Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, CA 92037; and
| |
Collapse
|
24
|
Djavani MM, Crasta OR, Zapata JC, Fei Z, Folkerts O, Sobral B, Swindells M, Bryant J, Davis H, Pauza CD, Lukashevich IS, Hammamieh R, Jett M, Salvato MS. Early blood profiles of virus infection in a monkey model for Lassa fever. J Virol 2007; 81:7960-73. [PMID: 17522210 PMCID: PMC1951294 DOI: 10.1128/jvi.00536-07] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Acute arenavirus disease in primates, like Lassa hemorrhagic fever in humans, begins with flu-like symptoms and leads to death approximately 2 weeks after infection. Our goal was to identify molecular changes in blood that are related to disease progression. Rhesus macaques (Macaca mulatta) infected intravenously with a lethal dose of lymphocytic choriomeningitis virus (LCMV) provide a model for Lassa virus infection of humans. Blood samples taken before and during the course of infection were used to monitor gene expression changes that paralleled disease onset. Changes in blood showed major disruptions in eicosanoid, immune response, and hormone response pathways. Approximately 12% of host genes alter their expression after LCMV infection, and a subset of these genes can discriminate between virulent and non-virulent LCMV infection. Major transcription changes have been given preliminary confirmation by quantitative PCR and protein studies and will be valuable candidates for future validation as biomarkers for arenavirus disease.
Collapse
Affiliation(s)
- Mahmoud M Djavani
- Institute of Human Virology, University of Maryland Biotechnology Institute, 725 West Lombard St., Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|