1
|
Kochneva GV, Kudrov GA, Zainutdinov SS, Shulgina IS, Shipovalov AV, Zaykovskaya AV, Borgoyakova MB, Starostina EV, Bodnev SA, Sivolobova GF, Grazhdantseva AA, Ivkina DI, Zadorozhny AM, Karpenko LI, P’yankov OV. Immunogenicity and Protective Efficacy of a Single Intranasal Dose Vectored Vaccine Based on Sendai Virus (Moscow Strain) against SARS-CoV-2 Variant of Concern. Vaccines (Basel) 2024; 12:783. [PMID: 39066421 PMCID: PMC11281413 DOI: 10.3390/vaccines12070783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The mouse paramyxovirus Sendai, which is capable of limited replication in human bronchial epithelial cells without causing disease, is well suited for the development of vector-based intranasal vaccines against respiratory infections, including SARS-CoV-2. Using the Moscow strain of the Sendai virus, we developed a vaccine construct, Sen-Sdelta(M), which expresses the full-length spike (S) protein of the SARS-CoV-2 delta variant. A single intranasal delivery of Sen-Sdelta(M) to Syrian hamsters and BALB/c mice induced high titers of virus-neutralizing antibodies specific to the SARS-CoV-2 delta variant. A significant T-cell response, as determined by IFN-γ ELISpot and ICS methods, was also demonstrated in the mouse model. Mice and hamsters vaccinated with Sen-Sdelta(M) were well protected against SARS-CoV-2 challenge. The viral load in the lungs and nasal turbinates, measured by RT-qPCR and TCID50 assay, decreased dramatically in vaccinated groups. The most prominent effect was revealed in a highly sensitive hamster model, where no tissue samples contained detectable levels of infectious SARS-CoV-2. These results indicate that Sen-Sdelta(M) is a promising candidate as a single-dose intranasal vaccine against SARS-CoV-2, including variants of concern.
Collapse
Affiliation(s)
- Galina V. Kochneva
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology «Vector», Rospotrebnadzor, 630559 Koltsovo, Russia; (G.A.K.); (S.S.Z.); (I.S.S.); (A.V.S.); (A.V.Z.); (M.B.B.); (E.V.S.); (S.A.B.); (G.F.S.); (A.A.G.); (D.I.I.); (A.M.Z.); (L.I.K.); (O.V.P.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Ghimire S, Xue B, Li K, Gannon RM, Wohlford-Lenane CL, Thurman AL, Gong H, Necker GC, Zheng J, Meyerholz DK, Perlman S, McCray PB, Pezzulo AA. IL-13 decreases susceptibility to airway epithelial SARS-CoV-2 infection but increases disease severity in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601941. [PMID: 39005257 PMCID: PMC11244965 DOI: 10.1101/2024.07.03.601941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Treatments available to prevent progression of virus-induced lung diseases, including coronavirus disease 2019 (COVID-19) are of limited benefit once respiratory failure occurs. The efficacy of approved and emerging cytokine signaling-modulating antibodies is variable and is affected by disease course and patient-specific inflammation patterns. Therefore, understanding the role of inflammation on the viral infectious cycle is critical for effective use of cytokine-modulating agents. We investigated the role of the type 2 cytokine IL-13 on SARS-CoV-2 binding/entry, replication, and host response in primary HAE cells in vitro and in a model of mouse-adapted SARS-CoV-2 infection in vivo. IL-13 protected airway epithelial cells from SARS-CoV-2 infection in vitro by decreasing the abundance of ACE2-expressing ciliated cells rather than by neutralization in the airway surface liquid or by interferon-mediated antiviral effects. In contrast, IL-13 worsened disease severity in mice; the effects were mediated by eicosanoid signaling and were abolished in mice deficient in the phospholipase A2 enzyme PLA2G2D. We conclude that IL-13-induced inflammation differentially affects multiple steps of COVID-19 pathogenesis. IL-13-induced inflammation may be protective against initial SARS-CoV-2 airway epithelial infection; however, it enhances disease progression in vivo. Blockade of IL-13 and/or eicosanoid signaling may be protective against progression to severe respiratory virus-induced lung disease.
Collapse
Affiliation(s)
- Shreya Ghimire
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Biyun Xue
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Kun Li
- Stead Family Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Ryan M. Gannon
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Christine L. Wohlford-Lenane
- Stead Family Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Andrew L. Thurman
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Huiyu Gong
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Grace C. Necker
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Jian Zheng
- Department of Microbiology and Immunology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - David K. Meyerholz
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Stanley Perlman
- Stead Family Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
- Department of Microbiology and Immunology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Paul B. McCray
- Stead Family Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
- Department of Microbiology and Immunology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Alejandro A. Pezzulo
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
3
|
Schaerlaekens S, Jacobs L, Stobbelaar K, Cos P, Delputte P. All Eyes on the Prefusion-Stabilized F Construct, but Are We Missing the Potential of Alternative Targets for Respiratory Syncytial Virus Vaccine Design? Vaccines (Basel) 2024; 12:97. [PMID: 38250910 PMCID: PMC10819635 DOI: 10.3390/vaccines12010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
Respiratory Syncytial Virus (RSV) poses a significant global health concern as a major cause of lower respiratory tract infections (LRTIs). Over the last few years, substantial efforts have been directed towards developing vaccines and therapeutics to combat RSV, leading to a diverse landscape of vaccine candidates. Notably, two vaccines targeting the elderly and the first maternal vaccine have recently been approved. The majority of the vaccines and vaccine candidates rely solely on a prefusion-stabilized conformation known for its highly neutralizing epitopes. Although, so far, this antigen design appears to be successful for the elderly, our current understanding remains incomplete, requiring further improvement and refinement in this field. Pediatric vaccines still have a long journey ahead, and we must ensure that vaccines currently entering the market do not lose efficacy due to the emergence of mutations in RSV's circulating strains. This review will provide an overview of the current status of vaccine designs and what to focus on in the future. Further research into antigen design is essential, including the exploration of the potential of alternative RSV proteins to address these challenges and pave the way for the development of novel and effective vaccines, especially in the pediatric population.
Collapse
Affiliation(s)
- Sofie Schaerlaekens
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium; (S.S.); (L.J.); (K.S.); (P.C.)
| | - Lotte Jacobs
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium; (S.S.); (L.J.); (K.S.); (P.C.)
| | - Kim Stobbelaar
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium; (S.S.); (L.J.); (K.S.); (P.C.)
- Pediatrics Department, Antwerp University Hospital (UZA), Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium; (S.S.); (L.J.); (K.S.); (P.C.)
- Infla-Med Centre of Excellence, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium
| | - Peter Delputte
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium; (S.S.); (L.J.); (K.S.); (P.C.)
- Infla-Med Centre of Excellence, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium
| |
Collapse
|
4
|
Qi P, Lv J, Yan X, Bai L, Zhang L. Microfluidics: Insights into Intestinal Microorganisms. Microorganisms 2023; 11:1134. [PMID: 37317109 DOI: 10.3390/microorganisms11051134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 06/16/2023] Open
Abstract
Microfluidics is a system involving the treatment or manipulation of microscale (10-9 to 10-18 L) fluids using microchannels (10 to 100 μm) contained on a microfluidic chip. Among the different methodologies used to study intestinal microorganisms, new methods based on microfluidic technology have been receiving increasing attention in recent years. The intestinal tracts of animals are populated by a vast array of microorganisms that have been established to play diverse functional roles beneficial to host physiology. This review is the first comprehensive coverage of the application of microfluidics technology in intestinal microbial research. In this review, we present a brief history of microfluidics technology and describe its applications in gut microbiome research, with a specific emphasis on the microfluidic technology-based intestine-on-a-chip, and also discuss the advantages and application prospects of microfluidic drug delivery systems in intestinal microbial research.
Collapse
Affiliation(s)
- Ping Qi
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Jin Lv
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xiangdong Yan
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Liuhui Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Lei Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
5
|
Hippee CE, Singh BK, Thurman AL, Cooney AL, Pezzulo AA, Cattaneo R, Sinn PL. Measles virus exits human airway epithelia within dislodged metabolically active infectious centers. PLoS Pathog 2021; 17:e1009458. [PMID: 34383863 PMCID: PMC8384213 DOI: 10.1371/journal.ppat.1009458] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/24/2021] [Accepted: 07/27/2021] [Indexed: 11/24/2022] Open
Abstract
Measles virus (MeV) is the most contagious human virus. Unlike most respiratory viruses, MeV does not directly infect epithelial cells upon entry in a new host. MeV traverses the epithelium within immune cells that carry it to lymphatic organs where amplification occurs. Infected immune cells then synchronously deliver large amounts of virus to the airways. However, our understanding of MeV replication in airway epithelia is limited. To model it, we use well-differentiated primary cultures of human airway epithelial cells (HAE) from lung donors. In HAE, MeV spreads directly cell-to-cell forming infectious centers that grow for ~3–5 days, are stable for a few days, and then disappear. Transepithelial electrical resistance remains intact during the entire course of HAE infection, thus we hypothesized that MeV infectious centers may dislodge while epithelial function is preserved. After documenting by confocal microscopy that infectious centers progressively detach from HAE, we recovered apical washes and separated cell-associated from cell-free virus by centrifugation. Virus titers were about 10 times higher in the cell-associated fraction than in the supernatant. In dislodged infectious centers, ciliary beating persisted, and apoptotic markers were not readily detected, suggesting that they retain functional metabolism. Cell-associated MeV infected primary human monocyte-derived macrophages, which models the first stage of infection in a new host. Single-cell RNA sequencing identified wound healing, cell growth, and cell differentiation as biological processes relevant for infectious center dislodging. 5-ethynyl-2’-deoxyuridine (EdU) staining located proliferating cells underneath infectious centers. Thus, cells located below infectious centers divide and differentiate to repair the dislodged infected epithelial patch. As an extension of these studies, we postulate that expulsion of infectious centers through coughing and sneezing could contribute to MeV’s strikingly high reproductive number by allowing the virus to survive longer in the environment and by delivering a high infectious dose to the next host. Measles virus (MeV) is a respiratory pathogen that infects millions worldwide each year. Although sometimes mischaracterized as an innocuous childhood disease, measles remains a leading cause of death for children under five. MeV is the most contagious human virus and requires vaccination rates above 90% to maintain herd immunity. Global decreases in vaccination rates over the past ten years contributed to recent, widespread MeV outbreaks. We uncover here a novel mechanism by which MeV exits the human airways that may explain why it is much more contagious than other viruses. We document that infected cells containing cell-associated virus detach en masse from the airway epithelial sheet. These dislodged infectious centers are metabolically active and can transmit infection to primary human monocyte-derived macrophages via cell-cell contact as efficiently as cell-free virus particles. Thus, cell-associated MeV could spread host-to-host and is a potentially vital strategy for efficient respiratory virus transmission.
Collapse
Affiliation(s)
- Camilla E. Hippee
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Brajesh K. Singh
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Andrew L. Thurman
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Ashley L. Cooney
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Alejandro A. Pezzulo
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Patrick L. Sinn
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
6
|
Zaichuk TA, Nechipurenko YD, Adzhubey AA, Onikienko SB, Chereshnev VA, Zainutdinov SS, Kochneva GV, Netesov SV, Matveeva OV. The Challenges of Vaccine Development against Betacoronaviruses: Antibody Dependent Enhancement and Sendai Virus as a Possible Vaccine Vector. Mol Biol 2020; 54:812-826. [PMID: 32921819 PMCID: PMC7473411 DOI: 10.1134/s0026893320060151] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/21/2022]
Abstract
To design an effective and safe vaccine against betacoronaviruses, it is necessary to use their evolutionarily conservative antigenic determinants that will elicit the combination of strong humoral and cell-mediated immune responses. Targeting such determinants minimizes the risk of antibody-dependent enhancement of viral infection. This phenomenon was observed in animal trials of experimental vaccines against SARS-CoV-1 and MERS-CoV that were developed based on inactivated coronavirus or vector constructs expressing the spike protein (S) of the virion. The substitution and glycosylation of certain amino acids in the antigenic determinants of the S-protein, as well as its conformational changes, can lead to the same effect in a new experimental vaccine against SARS-CoV-2. Using more conservative structural and accessory viral proteins for the vaccine antigenic determinants will help to avoid this problem. This review outlines approaches for developing vaccines against the new SARS-CoV-2 coronavirus that are based on non-pathogenic viral vectors. For efficient prevention of infections caused by respiratory pathogens the ability of the vaccine to stimulate mucosal immunity in the respiratory tract is important. Such a vaccine can be developed using non-pathogenic Sendai virus vector, since it can be administered intranasally and induce a mucosal immune response that strengthens the antiviral barrier in the respiratory tract and provides reliable protection against infection.
Collapse
Affiliation(s)
| | - Y D Nechipurenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - A A Adzhubey
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.,George Washington University, 20052 Washington, DC USA
| | - S B Onikienko
- Department of Military Field Therapy, Kirov Military Medical Academy, 194044 St. Petersburg, Russia
| | - V A Chereshnev
- Institute of Immunology and Physiology, 620049 Yekaterinburg, Russia
| | - S S Zainutdinov
- State Research Center of Virology and Biotechnology "Vector,", 630559 Koltsovo, Russia
| | - G V Kochneva
- State Research Center of Virology and Biotechnology "Vector,", 630559 Koltsovo, Russia
| | - S V Netesov
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - O V Matveeva
- Sendai Viralytics, 117261 Acton, MA USA.,Biopolymer Design, 117281 Acton, MA USA
| |
Collapse
|
7
|
Comparative Therapeutic Potential of ALX-0171 and Palivizumab against Respiratory Syncytial Virus Clinical Isolate Infection of Well-Differentiated Primary Pediatric Bronchial Epithelial Cell Cultures. Antimicrob Agents Chemother 2020; 64:AAC.02034-19. [PMID: 31767728 DOI: 10.1128/aac.02034-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/20/2019] [Indexed: 01/09/2023] Open
Abstract
Respiratory syncytial virus (RSV) causes severe lower respiratory tract infections in young infants. There are no RSV-specific treatments available. Ablynx has been developing an anti-RSV F-specific nanobody, ALX-0171. To characterize the therapeutic potential of ALX-0171, we exploited our well-differentiated primary pediatric bronchial epithelial cell (WD-PBEC)/RSV infection model, which replicates several hallmarks of RSV disease in vivo Using 2 clinical isolates (BT2a and Memphis 37), we compared the therapeutic potential of ALX-0171 with that of palivizumab, which is currently prescribed for RSV prophylaxis in high-risk infants. ALX-0171 treatment (900 nM) at 24 h postinfection reduced apically released RSV titers to near or below the limit of detection within 24 h for both strains. Progressively lower doses resulted in concomitantly diminished RSV neutralization. ALX-0171 was approximately 3-fold more potent in this therapeutic RSV/WD-PBEC model than palivizumab (mean 50% inhibitory concentration [IC50] = 346.9 to 363.6 nM and 1,048 to 1,090 nM for ALX-0171 and palivizumab, respectively), irrespective of the clinical isolate. The number of viral genomic copies (GC) was determined by quantitative reverse transcription-PCR (RT-qPCR), and the therapeutic effect of ALX-0171 treatment at 300 and 900 nM was found to be considerably lower and the number of GCs reduced only moderately (0.62 to 1.28 log10 copies/ml). Similar findings were evident for palivizumab. Therefore, ALX-0171 was very potent at neutralizing RSV released from apical surfaces but had only a limited impact on virus replication. The data indicate a clear disparity between viable virus neutralization and GC viral load, the latter of which does not discriminate between viable and neutralized RSV. This report validates the RSV/WD-PBEC model for the preclinical evaluation of RSV antivirals.
Collapse
|
8
|
Berkebile AR, Bartlett JA, Abou Alaiwa M, Varga SM, Power UF, McCray PB. Airway Surface Liquid Has Innate Antiviral Activity That Is Reduced in Cystic Fibrosis. Am J Respir Cell Mol Biol 2020; 62:104-111. [PMID: 31242392 PMCID: PMC6938132 DOI: 10.1165/rcmb.2018-0304oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 06/26/2019] [Indexed: 12/30/2022] Open
Abstract
Although chronic bacterial infections and inflammation are associated with progressive lung disease in patients with cystic fibrosis (CF), much less is known regarding the contributions of respiratory viral infections to this process. Clinical studies suggest that antiviral host defenses may be compromised in individuals with CF, and CF airway epithelia exhibit impaired antiviral responses in vitro. Here, we used the CF pig model to test the hypothesis that the antiviral activity of respiratory secretions is reduced in CF. We developed an in vitro assay to measure the innate antiviral activity present in airway surface liquid (ASL) from CF and non-CF pigs. We found that tracheal and nasal ASL from newborn non-CF pigs exhibited dose-dependent inhibitory activity against several enveloped and encapsidated viruses, including Sendai virus, respiratory syncytial virus, influenza A, and adenovirus. Importantly, we found that the anti-Sendai virus activity of nasal ASL from newborn CF pigs was significantly diminished relative to non-CF littermate controls. This diminution of extracellular antiviral defenses appears to be driven, at least in part, by the differences in pH between CF and non-CF ASL. These data highlight the novel antiviral properties of native airway secretions and suggest the possibility that defects in extracellular antiviral defenses contribute to CF pathogenesis.
Collapse
Affiliation(s)
| | | | | | - Steven M. Varga
- Department of Microbiology and Immunology
- Department of Pathology, Pappajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Ultan F. Power
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Paul B. McCray
- Department of Microbiology and Immunology
- Department of Pediatrics
| |
Collapse
|
9
|
Yumine N, Matsumoto Y, Ohta K, Fukasawa M, Nishio M. Claudin-1 inhibits human parainfluenza virus type 2 dissemination. Virology 2019; 531:93-99. [PMID: 30856486 DOI: 10.1016/j.virol.2019.01.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/04/2019] [Accepted: 01/22/2019] [Indexed: 12/22/2022]
Abstract
Tight junctions enable epithelial cells to form physical barriers that act as an innate immune defense against respiratory infection. However, the involvement of tight junction molecules in paramyxovirus infections, which include various respiratory pathogens, has not been examined in detail. Human parainfluenza virus type 2 (hPIV2) infects airway epithelial cells and causes respiratory illness. In the present study, we found that hPIV2 infection of cultured cells induces expression of claudin-1 (CLDN1), an essential component of tight junctions. This induction seemed to be intrinsically restricted by V, an accessory protein that modulates various host responses, to enable efficient virus propagation. By generating CLDN1 over-expressing and knockout cell lines, we showed that CLDN1 is involved in the restriction of hPIV2 spread via cell-to-cell contact. Taken together, we identified CLDN1 an inhibitory factor for hPIV2 dissemination, and that its V protein acts to counter this.
Collapse
Affiliation(s)
- Natsuko Yumine
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yusuke Matsumoto
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Keisuke Ohta
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Masayoshi Fukasawa
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Machiko Nishio
- Department of Microbiology, School of Medicine, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
10
|
A novel in vitro model of primary human pediatric lung epithelial cells. Pediatr Res 2019; 87:511-517. [PMID: 30776794 PMCID: PMC6698433 DOI: 10.1038/s41390-019-0340-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 01/07/2019] [Accepted: 02/04/2019] [Indexed: 12/05/2022]
Abstract
BACKGROUND Current in vitro human lung epithelial cell models derived from adult tissues may not accurately represent all attributes that define homeostatic and disease mechanisms relevant to the pediatric lung. METHODS We report methods for growing and differentiating primary Pediatric Human Lung Epithelial (PHLE) cells from organ donor infant lung tissues. We use immunohistochemistry, flow cytometry, quantitative RT-PCR, and single cell RNA sequencing (scRNAseq) analysis to characterize the cellular and transcriptional heterogeneity of PHLE cells. RESULTS PHLE cells can be expanded in culture up to passage 6, with a doubling time of ~4 days, and retain attributes of highly enriched epithelial cells. PHLE cells can form resistant monolayers, and undergo differentiation when placed at air-liquid interface. When grown at Air-Liquid Interface (ALI), PHLE cells expressed markers of airway epithelial cell lineages. scRNAseq suggests the cultures contained 4 main sub-phenotypes defined by expression of FOXJ1, KRT5, MUC5B, and SFTPB. These cells are available to the research community through the Developing Lung Molecular Atlas Program Human Tissue Core. CONCLUSION Our data demonstrate that PHLE cells provide a novel in vitro human cell model that represents the pediatric airway epithelium, which can be used to study perinatal developmental and pediatric disease mechanisms.
Collapse
|
11
|
Wolf S, Perez GF, Mukharesh L, Isaza N, Preciado D, Freishtat RJ, Pillai D, Rose MC, Nino G. Conditional reprogramming of pediatric airway epithelial cells: A new human model to investigate early-life respiratory disorders. Pediatr Allergy Immunol 2017; 28:810-817. [PMID: 28981980 PMCID: PMC5868353 DOI: 10.1111/pai.12810] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/30/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND Airway epithelial cells (AEC) are quite difficult to access in newborns and infants. It is critically important to develop robust life-extended models to conduct translational studies in this age group. We propose the use of a recently described cell culture technology (conditionally reprogrammed cells-CRC) to generate continuous primary cell cultures from nasal and bronchial AEC of young children. METHODS We collected nasal and/or bronchial AEC from a total of 23 subjects of different ages including newborns/infants/toddlers (0-2 years; N = 9), school-age children (4-11 years; N = 6), and a group of adolescent/adult donors (N = 8). For CRC generation, we used conditioned medium from mitotically inactivated 3T3 fibroblasts and Rho-associated kinase (ROCK) inhibitor (Y-27632). Antiviral immune responses were studied using 25 key antiviral genes and protein production of type III epithelial interferon (IFN λ1) after double-stranded (ds) RNA exposure. RESULTS CRC derived from primary AEC of neonates/infants and young children exhibited: (i) augmented proliferative capacity and life extension, (ii) preserved airway epithelial phenotype after multiple passages, (iii) robust immune responses characterized by the expression of innate antiviral genes and parallel nasal/bronchial production of IFN λ1 after exposure to dsRNA, and (iv) induction of airway epithelial inflammatory and remodeling responses to dsRNA (eg, CXCL8 and MMP9). CONCLUSION Conditional reprogramming of AEC from young children is a feasible and powerful translational approach to investigate early-life airway epithelial immune responses in humans.
Collapse
Affiliation(s)
- S Wolf
- Center for Genetic Research Medicine, Children's National Medical Center, Washington, DC, USA.,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Division of Pulmonary and Sleep Medicine, Children's National Medical Center, Washington, DC, USA
| | - G F Perez
- Center for Genetic Research Medicine, Children's National Medical Center, Washington, DC, USA.,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Division of Pulmonary and Sleep Medicine, Children's National Medical Center, Washington, DC, USA
| | - L Mukharesh
- Center for Genetic Research Medicine, Children's National Medical Center, Washington, DC, USA.,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Division of Pulmonary and Sleep Medicine, Children's National Medical Center, Washington, DC, USA
| | - N Isaza
- Center for Genetic Research Medicine, Children's National Medical Center, Washington, DC, USA.,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Division of Neonatology, Children's National Medical Center, Washington, DC, USA
| | - D Preciado
- Center for Genetic Research Medicine, Children's National Medical Center, Washington, DC, USA.,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Division of Pediatric Otorhinolaryngology, Children's National Medical Center, Washington, DC, USA
| | - R J Freishtat
- Center for Genetic Research Medicine, Children's National Medical Center, Washington, DC, USA.,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Division of Emergency Medicine, Children's National Medical Center, Washington, DC, USA
| | - D Pillai
- Center for Genetic Research Medicine, Children's National Medical Center, Washington, DC, USA.,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Division of Pulmonary and Sleep Medicine, Children's National Medical Center, Washington, DC, USA
| | - M C Rose
- Center for Genetic Research Medicine, Children's National Medical Center, Washington, DC, USA.,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Division of Pulmonary and Sleep Medicine, Children's National Medical Center, Washington, DC, USA
| | - G Nino
- Center for Genetic Research Medicine, Children's National Medical Center, Washington, DC, USA.,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Division of Pulmonary and Sleep Medicine, Children's National Medical Center, Washington, DC, USA
| |
Collapse
|
12
|
Mahony R, Broadbent L, Maier-Moore JS, Power UF, Jefferies CA. The RNA binding protein La/SS-B promotes RIG-I-mediated type I and type III IFN responses following Sendai viral infection. Sci Rep 2017; 7:14537. [PMID: 29109527 PMCID: PMC5673980 DOI: 10.1038/s41598-017-15197-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/23/2017] [Indexed: 12/28/2022] Open
Abstract
La/SS-B (or La) is a 48 kDa RNA-binding protein and an autoantigen in autoimmune disorders such as systemic lupus erythematosus (SLE) and Sjögren's syndrome (SS). La involvement in regulating the type I interferon (IFN) response is controversial - acting through both positive and negative regulatory mechanisms; inhibiting the IFN response and enhancing viral growth, or directly inhibiting viral replication. We therefore sought to clarify how La regulates IFN production in response to viral infection. ShRNA knockdown of La in HEK 293 T cells increased Sendai virus infection efficiency, decreased IFN-β, IFN-λ1, and interferon-stimulated chemokine gene expression. In addition, knockdown attenuated CCL-5 and IFN-λ1 secretion. Thus, La has a positive role in enhancing type I and type III IFN production. Mechanistically, we show that La directly binds RIG-I and have mapped this interaction to the CARD domains of RIG-I and the N terminal domain of La. In addition, we showed that this interaction is induced following RIG-I activation and that overexpression of La enhances RIG-I-ligand binding. Together, our results demonstrate a novel role for La in mediating RIG-I-driven responses downstream of viral RNA detection, ultimately leading to enhanced type I and III IFN production and positive regulation of the anti-viral response.
Collapse
Affiliation(s)
- Rebecca Mahony
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Lindsay Broadbent
- Centre for Experimental Medicine, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland
| | - Jacen S Maier-Moore
- The University of Texas at El Paso College of Health Sciences, Clinical Laboratory Sciences Program, 500 W. University Avenue, El Paso, Texas, 79968, USA
| | - Ultan F Power
- Centre for Experimental Medicine, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland
| | - Caroline A Jefferies
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
- Division of Rheumatology, Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Centre, 8700 Beverly Blvd, Los Angeles, California, 90048, USA.
| |
Collapse
|
13
|
Wiegand MA, Gori-Savellini G, Gandolfo C, Papa G, Kaufmann C, Felder E, Ginori A, Disanto MG, Spina D, Cusi MG. A Respiratory Syncytial Virus Vaccine Vectored by a Stable Chimeric and Replication-Deficient Sendai Virus Protects Mice without Inducing Enhanced Disease. J Virol 2017; 91:e02298-16. [PMID: 28250126 PMCID: PMC5411584 DOI: 10.1128/jvi.02298-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/21/2017] [Indexed: 11/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of severe respiratory infections in children and elderly people, and no marketed vaccine exists. In this study, we generated and analyzed a subunit vaccine against RSV based on a novel genome replication-deficient Sendai virus (SeV) vector. We inserted the RSV F protein, known to be a genetically stable antigen, into our vector in a specific way to optimize the vaccine features. By exchanging the ectodomain of the SeV F protein for its counterpart from RSV, we created a chimeric vectored vaccine that contains the RSV F protein as an essential structural component. In this way, the antigen is actively expressed on the surfaces of vaccine particles in its prefusion conformation, and as recently reported for other vectored vaccines, the occurrence of silencing mutations of the transgene in the vaccine genome can be prevented. In addition, its active gene expression contributes to further stimulation of the immune response. In order to understand the best route of immunization, we compared vaccine efficacies after intranasal (i.n.) or intramuscular (i.m.) immunization of BALB/c mice. Via both routes, substantial RSV-specific immune responses were induced, consisting of serum IgG and neutralizing antibodies, as well as cytotoxic T cells. Moreover, i.n. immunization was also able to stimulate specific mucosal IgA in the upper and lower respiratory tract. In virus challenge experiments, animals were protected against RSV infection after both i.n. and i.m. immunization without inducing vaccine-enhanced disease. Above all, the replication-deficient SeV appeared to be safe and well tolerated.IMPORTANCE Respiratory syncytial virus (RSV) is a major cause of respiratory diseases in young children and elderly people worldwide. There is a great demand for a licensed vaccine. Promising existing vaccine approaches based on live-attenuated vaccines or viral vectors have suffered from unforeseen drawbacks related to immunogenicity and attenuation. We provide a novel RSV vaccine concept based on a genome replication-deficient Sendai vector that has many favorable vaccine characteristics. The specific vaccine design guarantees genetic stability of the transgene; furthermore, it supports a favorable presentation of the antigen, activating the adaptive response, features that other vectored vaccine approaches have often had difficulties with. Wide immunological and pathological analyses in mice confirmed the validity and efficacy of this approach after both parenteral and mucosal administration. Above all, this concept is suitable for initiating clinical studies, and it could also be applied to other infectious diseases.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Female
- Genetic Vectors
- Immunization
- Immunoglobulin A/immunology
- Immunoglobulin G/blood
- Mice
- Mice, Inbred BALB C
- Respiratory Syncytial Virus Infections/prevention & control
- Respiratory Syncytial Virus Infections/virology
- Respiratory Syncytial Virus Vaccines/administration & dosage
- Respiratory Syncytial Virus Vaccines/chemistry
- Respiratory Syncytial Virus Vaccines/genetics
- Respiratory Syncytial Virus Vaccines/immunology
- Respiratory Syncytial Virus, Human/genetics
- Respiratory Syncytial Virus, Human/immunology
- Respiratory Syncytial Virus, Human/physiology
- Sendai virus/genetics
- Sendai virus/immunology
- Vaccines, Attenuated
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/chemistry
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Viral Fusion Proteins/genetics
- Viral Fusion Proteins/immunology
- Virus Replication
Collapse
Affiliation(s)
| | - Gianni Gori-Savellini
- Department of Medical Biotechnologies, Microbiology Section, University of Siena, Siena, Italy
| | - Claudia Gandolfo
- Department of Medical Biotechnologies, Microbiology Section, University of Siena, Siena, Italy
| | - Guido Papa
- Department of Medical Biotechnologies, Microbiology Section, University of Siena, Siena, Italy
| | | | - Eva Felder
- AmVac Research GmbH, Martinsried, Germany
| | - Alessandro Ginori
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Maria Giulia Disanto
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Donatella Spina
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Maria Grazia Cusi
- Department of Medical Biotechnologies, Microbiology Section, University of Siena, Siena, Italy
| |
Collapse
|
14
|
Villenave R, Wales SQ, Hamkins-Indik T, Papafragkou E, Weaver JC, Ferrante TC, Bahinski A, Elkins CA, Kulka M, Ingber DE. Human Gut-On-A-Chip Supports Polarized Infection of Coxsackie B1 Virus In Vitro. PLoS One 2017; 12:e0169412. [PMID: 28146569 PMCID: PMC5287454 DOI: 10.1371/journal.pone.0169412] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/17/2016] [Indexed: 12/29/2022] Open
Abstract
Analysis of enterovirus infection is difficult in animals because they express different virus receptors than humans, and static cell culture systems do not reproduce the physical complexity of the human intestinal epithelium. Here, using coxsackievirus B1 (CVB1) as a prototype enterovirus strain, we demonstrate that human enterovirus infection, replication and infectious virus production can be analyzed in vitro in a human Gut-on-a-Chip microfluidic device that supports culture of highly differentiated human villus intestinal epithelium under conditions of fluid flow and peristalsis-like motions. When CVB1 was introduced into the epithelium-lined intestinal lumen of the device, virions entered the epithelium, replicated inside the cells producing detectable cytopathic effects (CPEs), and both infectious virions and inflammatory cytokines were released in a polarized manner from the cell apex, as they could be detected in the effluent from the epithelial microchannel. When the virus was introduced via a basal route of infection (by inoculating virus into fluid flowing through a parallel lower 'vascular' channel separated from the epithelial channel by a porous membrane), significantly lower viral titers, decreased CPEs, and delayed caspase-3 activation were observed; however, cytokines continued to be secreted apically. The presence of continuous fluid flow through the epithelial lumen also resulted in production of a gradient of CPEs consistent with the flow direction. Thus, the human Gut-on-a-Chip may provide a suitable in vitro model for enteric virus infection and for investigating mechanisms of enterovirus pathogenesis.
Collapse
Affiliation(s)
- Remi Villenave
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, United States of America
| | - Samantha Q. Wales
- Molecular Virology Team, Division of Molecular Biology, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, United States of America
| | - Tiama Hamkins-Indik
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, United States of America
| | - Efstathia Papafragkou
- Molecular Virology Team, Division of Molecular Biology, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, United States of America
| | - James C. Weaver
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, United States of America
| | - Thomas C. Ferrante
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, United States of America
| | - Anthony Bahinski
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, United States of America
| | - Christopher A. Elkins
- Molecular Virology Team, Division of Molecular Biology, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, United States of America
| | - Michael Kulka
- Molecular Virology Team, Division of Molecular Biology, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, United States of America
| | - Donald E. Ingber
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, United States of America
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts, United States of America
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
15
|
Cottrill EE, Chen B, Adappa ND, Palmer JN, Kennedy DW, Lee RJ, Cohen NA. Expression of dermcidin in human sinonasal secretions. Int Forum Allergy Rhinol 2016; 7:154-159. [PMID: 27650261 DOI: 10.1002/alr.21851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/01/2016] [Accepted: 08/09/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Antimicrobial peptides (AMPs) produced by the epithelium are important for innate immune defense. In 2001, a novel AMP dermcidin (DCD) was described with no homology to other AMPs and an expression pattern restricted to eccrine sweat glands. In contrast to other AMPs, DCD expression has not been shown to be induced under inflammatory conditions in the skin. After identifying DCD by mass spectrometry in a protein sample isolated from human nasal secretions, we sought to determine the role of DCD in innate defense of the sinonasal airway. METHODS After institutional review board approval, sinonasal mucosal tissue specimens were acquired from residual clinical material obtained during sinonasal surgery and used to grow cultures in an air-liquid interface environment. After stimulation of the cultures with various bitter compounds and phosphate-buffered saline, airway surface liquid was collected, and a DCD-specific enzyme-linked immunoassay was used to quantify DCD in each sample. To localize DCD expression, ALI cultures were fixed and immunofluorescence performed against DCD, β-tubulin IV, and Muc-5A. RESULTS Enzyme-linked immunoassay showed DCD in air-surface liquid and in clinical nasal secretion samples at concentrations comparable to eccrine sweat. There was no evidence of inducible expression with any of the tested stimulants. Confocal microscopy revealed DCD expression in sinonasal mucosal goblet cells. CONCLUSION This is the first report of the presence of DCD in nasal mucosa and demonstration of DCD in clinical samples of human nasal secretions at clinically relevant concentrations, which may represent a novel arm of sinonasal airway innate defense.
Collapse
Affiliation(s)
- Elizabeth E Cottrill
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Bei Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Nithin D Adappa
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - James N Palmer
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David W Kennedy
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Robert J Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Noam A Cohen
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Philadelphia Veterans Administration Medical Center Surgical Services, Philadelphia, PA.,Monell Chemical Senses Center, Philadelphia, PA
| |
Collapse
|
16
|
Villenave R, Broadbent L, Douglas I, Lyons JD, Coyle PV, Teng MN, Tripp RA, Heaney LG, Shields MD, Power UF. Induction and Antagonism of Antiviral Responses in Respiratory Syncytial Virus-Infected Pediatric Airway Epithelium. J Virol 2015; 89:12309-18. [PMID: 26423940 PMCID: PMC4665230 DOI: 10.1128/jvi.02119-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 09/21/2015] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Airway epithelium is the primary target of many respiratory viruses. However, virus induction and antagonism of host responses by human airway epithelium remains poorly understood. To address this, we developed a model of respiratory syncytial virus (RSV) infection based on well-differentiated pediatric primary bronchial epithelial cell cultures (WD-PBECs) that mimics hallmarks of RSV disease in infants. RSV is the most important respiratory viral pathogen in young infants worldwide. We found that RSV induces a potent antiviral state in WD-PBECs that was mediated in part by secreted factors, including interferon lambda 1 (IFN-λ1)/interleukin-29 (IL-29). In contrast, type I IFNs were not detected following RSV infection of WD-PBECs. IFN responses in RSV-infected WD-PBECs reflected those in lower airway samples from RSV-hospitalized infants. In view of the prominence of IL-29, we determined whether recombinant IL-29 treatment of WD-PBECs before or after infection abrogated RSV replication. Interestingly, IL-29 demonstrated prophylactic, but not therapeutic, potential against RSV. The absence of therapeutic potential reflected effective RSV antagonism of IFN-mediated antiviral responses in infected cells. Our data are consistent with RSV nonstructural proteins 1 and/or 2 perturbing the Jak-STAT signaling pathway, with concomitant reduced expression of antiviral effector molecules, such as MxA/B. Antagonism of Jak-STAT signaling was restricted to RSV-infected cells in WD-PBEC cultures. Importantly, our study provides the rationale to further explore IL-29 as a novel RSV prophylactic. IMPORTANCE Most respiratory viruses target airway epithelium for infection and replication, which is central to causing disease. However, for most human viruses we have a poor understanding of their interactions with human airway epithelium. Respiratory syncytial virus (RSV) is the most important viral pathogen of young infants. To help understand RSV interactions with pediatric airway epithelium, we previously developed three-dimensional primary cell cultures from infant bronchial epithelium that reproduce several hallmarks of RSV infection in infants, indicating that they represent authentic surrogates of RSV infection in infants. We found that RSV induced a potent antiviral state in these cultures and that a type III interferon, interleukin IL-29 (IL-29), was involved. Indeed, our data suggest that IL-29 has potential to prevent RSV disease. However, we also demonstrated that RSV efficiently circumvents this antiviral immune response and identified mechanisms by which this may occur. Our study provides new insights into RSV interaction with pediatric airway epithelium.
Collapse
Affiliation(s)
- Rémi Villenave
- Centre for Infection and Immunity, School of Medicine, Dentistry, and Biomedical Sciences, Queens University Belfast, Belfast, Northern Ireland
| | - Lindsay Broadbent
- Centre for Infection and Immunity, School of Medicine, Dentistry, and Biomedical Sciences, Queens University Belfast, Belfast, Northern Ireland
| | - Isobel Douglas
- The Royal Belfast Hospital for Sick Children, Belfast, Northern Ireland
| | - Jeremy D Lyons
- The Royal Belfast Hospital for Sick Children, Belfast, Northern Ireland
| | - Peter V Coyle
- The Regional Virus Laboratory, Belfast Trust, Belfast, Northern Ireland
| | - Michael N Teng
- Joy McCann Culverhouse Airway Disease Research Center, Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Ralph A Tripp
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Liam G Heaney
- Centre for Infection and Immunity, School of Medicine, Dentistry, and Biomedical Sciences, Queens University Belfast, Belfast, Northern Ireland
| | - Michael D Shields
- Centre for Infection and Immunity, School of Medicine, Dentistry, and Biomedical Sciences, Queens University Belfast, Belfast, Northern Ireland The Royal Belfast Hospital for Sick Children, Belfast, Northern Ireland
| | - Ultan F Power
- Centre for Infection and Immunity, School of Medicine, Dentistry, and Biomedical Sciences, Queens University Belfast, Belfast, Northern Ireland
| |
Collapse
|
17
|
Singh BK, Hornick AL, Krishnamurthy S, Locke AC, Mendoza CA, Mateo M, Miller-Hunt CL, Cattaneo R, Sinn PL. The Nectin-4/Afadin Protein Complex and Intercellular Membrane Pores Contribute to Rapid Spread of Measles Virus in Primary Human Airway Epithelia. J Virol 2015; 89:7089-96. [PMID: 25926640 PMCID: PMC4473566 DOI: 10.1128/jvi.00821-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/21/2015] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED The discovery that measles virus (MV) uses the adherens junction protein nectin-4 as its epithelial receptor provides a new vantage point from which to characterize its rapid spread in the airway epithelium. We show here that in well-differentiated primary cultures of airway epithelial cells from human donors (HAE), MV infectious centers form rapidly and become larger than those of other respiratory pathogens: human respiratory syncytial virus, parainfluenza virus 5, and Sendai virus. While visible syncytia do not form after MV infection of HAE, the cytoplasm of an infected cell suddenly flows into an adjacent cell, as visualized through wild-type MV-expressed cytoplasmic green fluorescent protein (GFP). High-resolution video microscopy documents that GFP flows through openings that form on the lateral surfaces between columnar epithelial cells. To assess the relevance of the protein afadin, which connects nectin-4 to the actin cytoskeleton, we knocked down its mRNA. This resulted in more-limited infectious-center formation. We also generated a nectin-4 mutant without the afadin-binding site in its cytoplasmic tail. This mutant was less effective than wild-type human nectin-4 at promoting MV infection in primary cultures of porcine airway epithelia. Thus, in airway epithelial cells, MV spread requires the nectin-4/afadin complex and is based on cytoplasm transfer between columnar cells. Since the viral membrane fusion apparatus may open the passages that allow cytoplasm transfer, we refer to them as intercellular membrane pores. Virus-induced intercellular pores may contribute to extremely efficient measles contagion by promoting the rapid spread of the virus through the upper respiratory epithelium. IMPORTANCE Measles virus (MV), while targeted for eradication, still causes about 120,000 deaths per year worldwide. The recent reemergence of measles in insufficiently vaccinated populations in Europe and North America reminds us that measles is extremely contagious, but the processes favoring its spread in the respiratory epithelium remain poorly defined. Here we characterize wild-type MV spread in well-differentiated primary cultures of human airway epithelial cells. We observed that viral infection promotes the flow of cytoplasmic contents from infected to proximal uninfected columnar epithelial cells. Cytoplasm flows through openings that form on the lateral surfaces. Infectious-center growth is facilitated by afadin, a protein connecting the adherens junction and the actin cytoskeleton. The viral fusion apparatus may open intercellular pores, and the cytoskeleton may stabilize them. Rapid homogenization of cytoplasmic contents in epithelial infectious centers may favor rapid spread and contribute to the extremely contagious nature of measles.
Collapse
Affiliation(s)
- Brajesh K Singh
- Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Andrew L Hornick
- Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Sateesh Krishnamurthy
- Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Anna C Locke
- Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Crystal A Mendoza
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Mathieu Mateo
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Catherine L Miller-Hunt
- Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Patrick L Sinn
- Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
18
|
Pickles RJ, DeVincenzo JP. Respiratory syncytial virus (RSV) and its propensity for causing bronchiolitis. J Pathol 2015; 235:266-76. [PMID: 25302625 PMCID: PMC5638117 DOI: 10.1002/path.4462] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 09/24/2014] [Accepted: 10/05/2014] [Indexed: 12/16/2022]
Abstract
Infants and young children with acute onset of wheezing and reduced respiratory airflows are often diagnosed with obstruction and inflammation of the small bronchiolar airways, ie bronchiolitis. The most common aetological agents causing bronchiolitis in young children are the respiratory viruses, and of the commonly encountered respiratory viruses, respiratory syncytial virus (RSV) has a propensity for causing bronchiolitis. Indeed, RSV bronchiolitis remains the major reason why previously healthy infants are admitted to hospital. Why RSV infection is such a predominant cause of bronchiolitis is the subject of this review. By reviewing the available histopathology of RSV bronchiolitis, both in humans and relevant animal models, we identify hallmark features of RSV infection of the distal airways and focus attention on the consequences of columnar cell cytopathology occurring in the bronchioles, which directly impacts the development of bronchiolar obstruction, inflammation and disease. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Raymond J Pickles
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | | |
Collapse
|
19
|
Guo-Parke H, Canning P, Douglas I, Villenave R, Heaney LG, Coyle PV, Lyons JD, Shields MD, Power UF. Relative respiratory syncytial virus cytopathogenesis in upper and lower respiratory tract epithelium. Am J Respir Crit Care Med 2013; 188:842-51. [PMID: 23952745 DOI: 10.1164/rccm.201304-0750oc] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
RATIONALE Respiratory syncytial virus (RSV) is a major pathogen that primarily infects airway epithelium. Most infants suffer mild upper respiratory tract (URT) symptoms, whereas approximately one-third progress to lower respiratory tract (LRT) involvement. Despite the ubiquity of URT infection, little is known about the relative cytopathogenesis of RSV infection in infant URT and LRT. OBJECTIVES This study aimed to compare RSV cytopathogenesis in nasal- and bronchial-derived epithelium from the same individuals using novel models derived from well-differentiated primary pediatric nasal (WD-PNECs) and bronchial epithelial cells (WD-PBECs). METHODS WD-PNECs and WD-PBECs were generated from nasal and bronchial brushes, respectively, and mock-infected or infected with RSV BT2a. RSV tropism, infectivity, cytopathology, growth kinetics, cell sloughing, apoptosis, and cytokine and chemokine responses were determined. MEASUREMENTS AND MAIN RESULTS RSV infection in both cultures was restricted to apical ciliated cells and occasional nonciliated cells but not goblet cells. It did not cause gross cytopathology. Infection resulted in apical release of progeny virus, increased apical cell sloughing, apoptosis, and occasional syncytia. RSV growth kinetics and peak titers were higher in WD-PBECs, coincident with higher ciliated cell contents, cell sloughing, and slightly compromised tight junctions. However, proinflammatory chemokine responses were similar for both cultures. Also, lambda IFNs, especially IL-29, were induced by RSV infection. CONCLUSIONS RSV induced remarkably similar, albeit quantitatively lower, cytopathogenesis and proinflammatory responses in WD-PNECs compared with WD-PBECs that reproduce many hallmarks of RSV pathogenesis in infants. WD-PNECs may provide an authentic surrogate model with which to study RSV cytopathogenesis in infant airway epithelium.
Collapse
Affiliation(s)
- Hong Guo-Parke
- 1 Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast, Northern Ireland, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Byers DE, Alexander-Brett J, Patel AC, Agapov E, Dang-Vu G, Jin X, Wu K, You Y, Alevy Y, Girard JP, Stappenbeck TS, Patterson GA, Pierce RA, Brody SL, Holtzman MJ. Long-term IL-33-producing epithelial progenitor cells in chronic obstructive lung disease. J Clin Invest 2013; 123:3967-82. [PMID: 23945235 DOI: 10.1172/jci65570] [Citation(s) in RCA: 261] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 06/13/2013] [Indexed: 01/03/2023] Open
Abstract
Chronic obstructive lung disease is characterized by persistent abnormalities in epithelial and immune cell function that are driven, at least in part, by infection. Analysis of parainfluenza virus infection in mice revealed an unexpected role for innate immune cells in IL-13-dependent chronic lung disease, but the upstream driver for the immune axis in this model and in humans with similar disease was undefined. We demonstrate here that lung levels of IL-33 are selectively increased in postviral mice with chronic obstructive lung disease and in humans with very severe chronic obstructive pulmonary disease (COPD). In the mouse model, IL-33/IL-33 receptor signaling was required for Il13 and mucin gene expression, and Il33 gene expression was localized to a virus-induced subset of airway serous cells and a constitutive subset of alveolar type 2 cells that are both linked conventionally to progenitor function. In humans with COPD, IL33 gene expression was also associated with IL13 and mucin gene expression, and IL33 induction was traceable to a subset of airway basal cells with increased capacities for pluripotency and ATP-regulated release of IL-33. Together, these findings provide a paradigm for the role of the innate immune system in chronic disease based on the influence of long-term epithelial progenitor cells programmed for excess IL-33 production.
Collapse
Affiliation(s)
- Derek E Byers
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
The respiratory syncytial virus fusion protein and neutrophils mediate the airway mucin response to pathogenic respiratory syncytial virus infection. J Virol 2013; 87:10070-82. [PMID: 23843644 DOI: 10.1128/jvi.01347-13] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of death due to a viral etiology in infants. RSV disease is characterized by epithelial desquamation, neutrophilic bronchiolitis and pneumonia, and obstructive pulmonary mucus. It has been shown that infection of BALB/cJ mice with RSV clinical isolate A2001/2-20 (2-20) results in a higher early viral load, greater airway necrosis, and higher levels of interleukin-13 (IL-13) and airway mucin expression than infection with RSV laboratory strain A2. We hypothesized that the fusion (F) protein of RSV 2-20 is a mucus-inducing viral factor. In vitro, the fusion activity of 2-20 F but not that of A2 F was enhanced by expression of RSV G. We generated a recombinant F-chimeric RSV by replacing the F gene of A2 with the F gene of 2-20, generating A2-2-20F. Similar to the results obtained with the parent 2-20 strain, infection of BALB/cJ mice with A2-2-20F resulted in a higher early viral load and higher levels of subsequent pulmonary mucin expression than infection with the A2 strain. A2-2-20F infection induced greater necrotic airway damage and neutrophil infiltration than A2 infection. We hypothesized that the neutrophil response to A2-2-20F infection is involved in mucin expression. Antibody-mediated depletion of neutrophils in RSV-infected mice resulted in lower tumor necrosis factor alpha levels, fewer IL-13-expressing CD4 T cells, and less airway mucin production in the lung. Our data are consistent with a model in which the F and attachment (G) glycoprotein functional interaction leads to enhanced fusion and F is a key factor in airway epithelium infection, pathogenesis, and subsequent airway mucin expression.
Collapse
|
22
|
In vitro modeling of respiratory syncytial virus infection of pediatric bronchial epithelium, the primary target of infection in vivo. Proc Natl Acad Sci U S A 2012; 109:5040-5. [PMID: 22411804 DOI: 10.1073/pnas.1110203109] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the major viral cause of severe pulmonary disease in young infants worldwide. However, the mechanisms by which RSV causes disease in humans remain poorly understood. To help bridge this gap, we developed an ex vivo/in vitro model of RSV infection based on well-differentiated primary pediatric bronchial epithelial cells (WD-PBECs), the primary targets of RSV infection in vivo. Our RSV/WD-PBEC model demonstrated remarkable similarities to hallmarks of RSV infection in infant lungs. These hallmarks included restriction of infection to noncontiguous or small clumps of apical ciliated and occasional nonciliated epithelial cells, apoptosis and sloughing of apical epithelial cells, occasional syncytium formation, goblet cell hyperplasia/metaplasia, and mucus hypersecretion. RSV was shed exclusively from the apical surface at titers consistent with those in airway aspirates from hospitalized infants. Furthermore, secretion of proinflammatory chemokines such as CXCL10, CCL5, IL-6, and CXCL8 reflected those chemokines present in airway aspirates. Interestingly, a recent RSV clinical isolate induced more cytopathogenesis than the prototypic A2 strain. Our findings indicate that this RSV/WD-PBEC model provides an authentic surrogate for RSV infection of airway epithelium in vivo. As such, this model may provide insights into RSV pathogenesis in humans that ultimately lead to successful RSV vaccines or therapeutics.
Collapse
|
23
|
Imamura T, Oshitani H. Mucosal immunity against influenza induced by attenuated recombinant Sendai virus. Expert Rev Vaccines 2012; 10:1393-5. [PMID: 21988304 DOI: 10.1586/erv.11.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Live-attenuated influenza vaccines (LAIVs) have been shown to be more immunogenic and capable of inducing a broader immune response than inactivated vaccine. However, use of LAIVs is still limited owing to the safety concerns. Le et al. generated an attenuated recombinant Sendai virus - GP42-H1 expressing the hemagglutinin (HA) gene of influenza A virus. The HA protein was expressed on the cell surface of CV-1 cells infected with GP42-H1. Intranasal immunization of mice with GP42-H1 induced HA-specific IgG and IgA antibodies in sera and mucosal sites without causing any disease symptoms. Immunized mice were also protected from lethal dose challenge of influenza A virus.
Collapse
Affiliation(s)
- Tadatsugu Imamura
- Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | | |
Collapse
|
24
|
van Bleek GM, Osterhaus ADME, de Swart RL. RSV 2010: Recent advances in research on respiratory syncytial virus and other pneumoviruses. Vaccine 2011; 29:7285-91. [PMID: 21827813 DOI: 10.1016/j.vaccine.2011.07.114] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 05/23/2011] [Accepted: 07/25/2011] [Indexed: 01/11/2023]
Abstract
Respiratory syncytial virus (RSV) and human metapneumovirus (HMPV) are important causes of acute respiratory tract disease in infants, immunocompromised patients and the elderly. The Seventh International RSV symposium was held in Rotterdam, the Netherlands, from December 2-5, 2010. This symposium is the flagship event for leading investigators engaged in RSV and HMPV research around the world. The objective of the symposium was to provide a forum to review recent advances in research on RSV, HMPV and other pneumoviruses. More than 200 young and established investigators attended the meeting. Over a hundred papers were presented in 55 oral presentations and six poster sessions, providing all participants the opportunity to share and to discuss their work. The Chanock lecture, instituted in 2003 to acknowledge important contributors to RSV research, was presented by Peter Collins. As a preface to his lecture, he presented an in memoriam of the late Dr. Robert M. Chanock, who played a key role in the characterization of RSV as a human pathogen. The current report presents highlights of the meeting, covering topics from basic virology, pathogenesis and immunology to clinical studies, therapeutics and vaccine development.
Collapse
Affiliation(s)
- Grada M van Bleek
- Department of Pediatrics, Wilhelmina Children's Hospital, University Medical Center, Utrecht, The Netherlands
| | | | | |
Collapse
|
25
|
Characterization of the interaction between human respiratory syncytial virus and the cell cycle in continuous cell culture and primary human airway epithelial cells. J Virol 2011; 85:10300-9. [PMID: 21795354 DOI: 10.1128/jvi.05164-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Viruses can modify conditions inside cells to make them more favorable for replication and progeny virus production. One way of doing this is through manipulation of the cell cycle, a process that describes the ordered growth and division of cells. Analysis of model cell lines, such as A549 cells and primary airway epithelial cells, infected with human respiratory syncytial virus (HRSV) has shown alteration of the cell cycle during infection, although the signaling events were not clearly understood. In this study, targeted transcriptomic analysis of HRSV-infected primary airway epithelial cells revealed alterations in the abundances of many mRNAs encoding cell cycle-regulatory molecules, including decreases in the D-type cyclins and corresponding cyclin-dependent kinases (CDK4 and CDK6 [CDK4/6]). These alterations were reflected in changes in protein abundance and/or relocalization in HRSV-infected cells; taken together, they were predicted to result in G(0)/G(1) phase arrest. In contrast, there was no change in the abundances of D-type cyclins in A549 cells infected with HRSV. However, the abundance of the G(1)/S phase progression inhibitor p21(WAF1/CIP1) was increased over that in mock-treated cells, and this, again, was predicted to result in G(0)/G(1) phase arrest. The G(0)/G(1) phase arrest in both HRSV-infected primary cells and A549 cells was confirmed using dual-label flow cytometry that accurately measured the different stages of the cell cycle. Comparison of progeny virus production in primary and A549 cells enriched in G(0)/G(1) using a specific CDK4/6 kinase inhibitor with asynchronously replicating cells indicated that this phase of the cell cycle was more efficient for virus production.
Collapse
|
26
|
Illumination of parainfluenza virus infection and transmission in living animals reveals a tissue-specific dichotomy. PLoS Pathog 2011; 7:e1002134. [PMID: 21750677 PMCID: PMC3131265 DOI: 10.1371/journal.ppat.1002134] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 05/07/2011] [Indexed: 11/19/2022] Open
Abstract
The parainfluenza viruses (PIVs) are highly contagious respiratory paramyxoviruses and a leading cause of lower respiratory tract (LRT) disease. Since no vaccines or antivirals exist, non-pharmaceutical interventions are the only means of control for these pathogens. Here we used bioluminescence imaging to visualize the spatial and temporal progression of murine PIV1 (Sendai virus) infection in living mice after intranasal inoculation or exposure by contact. A non-attenuated luciferase reporter virus (rSeV-luc(M-F*)) that expressed high levels of luciferase yet was phenotypically similar to wild-type Sendai virus in vitro and in vivo was generated to allow visualization. After direct intranasal inoculation, we unexpectedly observed that the upper respiratory tract (URT) and trachea supported robust infection under conditions that result in little infection or pathology in the lungs including a low inoculum of virus, an attenuated virus, and strains of mice genetically resistant to lung infection. The high permissivity of the URT and trachea to infection resulted in 100% transmission to naïve contact recipients, even after low-dose (70 PFU) inoculation of genetically resistant BALB/c donor mice. The timing of transmission was consistent with the timing of high viral titers in the URT and trachea of donor animals but was independent of the levels of infection in the lungs of donors. The data therefore reveals a disconnect between transmissibility, which is associated with infection in the URT, and pathogenesis, which arises from infection in the lungs and the immune response. Natural infection after transmission was universally robust in the URT and trachea yet limited in the lungs, inducing protective immunity without weight loss even in genetically susceptible 129/SvJ mice. Overall, these results reveal a dichotomy between PIV infection in the URT and trachea versus the lungs and define a new model for studies of pathogenesis, development of live virus vaccines, and testing of antiviral therapies. Human parainfluenza viruses (HPIVs) are a leading cause of pediatric hospitalization for lower respiratory tract infection, yet it is unknown why primary infection typically induces immunity without causing severe pathology. To study the determinants of PIV spread within the respiratory tracts of living animals, we developed a model for non-invasive imaging of living mice infected with Sendai virus, the murine counterpart of HPIV1. This system allowed us to measure the temporal and spatial dynamics of paramyxovirus infection throughout the respiratory tracts of living animals after direct inoculation or transmission. We found that the upper respiratory tract and trachea were highly permissive to infection, even under conditions that limit lower respiratory infection and pathogenesis. The timing of transmission coincided with high virus growth in the upper respiratory tracts and trachea of donor mice independent of the extent of infection in the lungs. After transmission, infection spread preferentially in the upper respiratory tract and trachea, inducing protective immunity without weight loss. Our work reveals a disconnect between Sendai virus transmissibility and pathogenicity, and the experimental model developed here will be instrumental in studying PIV pathogenesis.
Collapse
|