1
|
Battini L, Thannickal SA, Cibello MT, Bollini M, Stapleford KA, Álvarez DE. Evolution of antiviral resistance captures a transient interdomain functional interaction between chikungunya virus envelope glycoproteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.623010. [PMID: 39605706 PMCID: PMC11601244 DOI: 10.1101/2024.11.11.623010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Envelope proteins drive virus and host-cell membrane fusion to achieve virus entry. Fusogenic proteins are classified into structural classes that function with remarkable mechanistic similarities. Fusion proceeds through coordinated movements of protein domains in a sequence of orchestrated steps. Structures for the initial and final conformations are available for several fusogens, but folding intermediates have largely remained unresolved and interdependency between regions that drive conformational rearrangements is not well understood. Chikungunya virus (CHIKV) particles display heterodimers of envelope proteins E1 and E2 associated as trimeric spikes that respond to acidic pH to trigger fusion. We have followed experimental evolution of CHIKV under the selective pressure of a novel small-molecule entry inhibitor. Mutations arising from selection mapped to two residues located in distal domains of E2 and E1 heterodimer and spikes. Here, we pinpointed the antiviral mode of action to inhibition of fusion. Phenotypic characterization of recombinant viruses indicated that the selected mutations confer a fitness advantage under antiviral pressure, and that the double-mutant virus overcame antiviral inhibition of fusion while single-mutants were sensitive. Further supporting a functional connection between residues, the double-mutant virus displayed a higher pH-threshold for fusion than single-mutant viruses. Finally, mutations implied distinct outcomes of replication and spreading in mice, and infection rates in mosquitoes underscoring the fine-tuning of envelope protein function as a determinant for establishment of infection. Together with molecular dynamics simulations that indicate a link between these two residues in the modulation of the heterodimer conformational rearrangement, our approach captured an otherwise unresolved interaction.
Collapse
Affiliation(s)
- Leandro Battini
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín B1650, Argentina
- Laboratorio de Química Medicinal, Centro de Investigaciones en Bionanociencias (CIBON), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1425FQD, Argentina
| | - Sara A Thannickal
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| | - Malena Tejerina Cibello
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín B1650, Argentina
| | - Mariela Bollini
- Laboratorio de Química Medicinal, Centro de Investigaciones en Bionanociencias (CIBON), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1425FQD, Argentina
| | - Kenneth A Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| | - Diego E Álvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín B1650, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín
| |
Collapse
|
2
|
Kim K, Moon SY, Kim S, Ouh IO, Lee Y, Lim H. Immunogenicity Analysis of Chikungunya Virus DNA Vaccine Based on Mutated Putative N-Linked Glycosylation Sites of the Envelope Protein. Vaccines (Basel) 2024; 12:1097. [PMID: 39460264 PMCID: PMC11511311 DOI: 10.3390/vaccines12101097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Chikungunya fever is a mosquito-borne infectious disease caused by the chikungunya virus (CHIKV). Recently, CHIKV has spread rapidly worldwide, raising global concerns. However, there is only one approved vaccine is available to prevent CHIKV infection; therefore, different platform vaccines development is a public health priority. The CHIKV genome encodes four non-structural polyproteins (nsP1-4) and one structural polyprotein (capsid, envelope 3, envelope 2, 6 K, and envelope 1). Previous studies have shown that N-linked glycans in viral proteins play important roles in regulating immune responses. Accordingly, in this study, we designed four CHIKV DNA vaccine candidates with mutated N-glycosylation sites in the full-length E and E I/II proteins. Our results indicated that immunization of mice with the vaccine elevated the cytokines levels, including IFN-γ, associated with T cell immune response. Furthermore, the truncated E protein with a deleted E III domain (E I/II) exhibited better immunogenicity than the full-length E protein, and N-linked glycosylation of E I/II protein induced a higher cell-mediated immune response. Overall, our study demonstrates that N-linked glycosylation of the E I/II proteins of CHIKV significantly enhances cell-mediated immune responses, laying the foundation for the development of potential vaccination strategies against CHIKV.
Collapse
Affiliation(s)
| | | | | | | | | | - Heeji Lim
- Division of Vaccine Development Coordination, Center for Vaccine Research National Institute of Infectious Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si 28159, Chungcheongbuk-do, Republic of Korea; (K.K.); (S.Y.M.); (S.K.); (I.-O.O.); (Y.L.)
| |
Collapse
|
3
|
Mangala Prasad V, Blijleven JS, Smit JM, Lee KK. Visualization of conformational changes and membrane remodeling leading to genome delivery by viral class-II fusion machinery. Nat Commun 2022; 13:4772. [PMID: 35970990 PMCID: PMC9378758 DOI: 10.1038/s41467-022-32431-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/31/2022] [Indexed: 11/09/2022] Open
Abstract
Chikungunya virus (CHIKV) is a human pathogen that delivers its genome to the host cell cytoplasm through endocytic low pH-activated membrane fusion mediated by class-II fusion proteins. Though structures of prefusion, icosahedral CHIKV are available, structural characterization of virion interaction with membranes has been limited. Here, we have used cryo-electron tomography to visualize CHIKV's complete membrane fusion pathway, identifying key intermediary glycoprotein conformations coupled to membrane remodeling events. Using sub-tomogram averaging, we elucidate features of the low pH-exposed virion, nucleocapsid and full-length E1-glycoprotein's post-fusion structure. Contrary to class-I fusion systems, CHIKV achieves membrane apposition by protrusion of extended E1-glycoprotein homotrimers into the target membrane. The fusion process also features a large hemifusion diaphragm that transitions to a wide pore for intact nucleocapsid delivery. Our analyses provide comprehensive ultrastructural insights into the class-II virus fusion system function and direct mechanistic characterization of the fundamental process of protein-mediated membrane fusion.
Collapse
Affiliation(s)
- Vidya Mangala Prasad
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA.,Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Jelle S Blijleven
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Jolanda M Smit
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA. .,Biological Physics, Structure and Design Graduate Program, University of Washington, Seattle, WA, USA. .,Department of Microbiology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Cao L, Wang W, Sun W, Zhang J, Han J, Xie C, Ha Z, Xie Y, Zhang H, Jin N, Lu H. Construction and Evaluation of Recombinant Adenovirus Candidate Vaccines for Chikungunya Virus. Viruses 2022; 14:v14081779. [PMID: 36016401 PMCID: PMC9414632 DOI: 10.3390/v14081779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne virus. The emergence of CHIKV infection has raised global concern, and there is a growing need to develop safe and effective vaccines. Here, adenovirus 5 was used as the vaccine vector to construct recombinant adenoviruses expressing CHIKV E2, E1, and E2-6K-E1, respectively. And then the immunogenicity and protective efficiency against CHIKV were evaluated in BALB/c mice. Compared to the ad-wt control group, all three vaccines elicited significant humoral and cellar immune responses. The levels of neutralizing antibodies in the rAd-CHIKV-E2-6K-E1 and rAd-CHIKV-E2 groups both reached 1:256, which were 3.2 times higher than those in the rAd-CHIKV-E1 group. Furthermore, the levels of lymphocyte proliferation in rAd-CHIKV-E2-6K-E1 group were the highest. Besides, the concentrations of IFN-γ and IL-4 in mice immunized with rAd-CHIKV-E2-6K-E1 were 1.37 and 1.20 times higher than those in ad-wt immunized mice, respectively. After the challenge, mice in the rAd-CHIKV-E2-6K-E1 and rAd-CHIKV-E2 groups lost 2% of their body weight compared with 5% in the ad-wt control group. And low viral loads were detected in the heart, kidney, and blood of mice immunized with rAd-CHIKV-E2-6K-E1 and rAd-CHIKV-E2 at 3–5 dpc, which decreased by 0.4–0.7 orders of magnitude compared with the ad-wt control. Overall, these data suggest that the recombinant adenovirus is a potential candidate vaccine against CHIKV.
Collapse
Affiliation(s)
- Liang Cao
- College of Laboratory, Jilin Medical University, Jilin 132013, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China
| | - Wei Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China
- College of Animal Science and Technology, Guangxi University, Nanning 530000, China
| | - Wenchao Sun
- Institute of Virology, Wenzhou University, Wenzhou 305006, China
| | - Jinyong Zhang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China
| | - Jicheng Han
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China
| | - Changzhan Xie
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China
| | - Zhuo Ha
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China
| | - Yubiao Xie
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China
| | - He Zhang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China
- Correspondence: (H.Z.); (N.J.); (H.L.)
| | - Ningyi Jin
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China
- Institute of Virology, Wenzhou University, Wenzhou 305006, China
- Correspondence: (H.Z.); (N.J.); (H.L.)
| | - Huijun Lu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China
- Institute of Virology, Wenzhou University, Wenzhou 305006, China
- Correspondence: (H.Z.); (N.J.); (H.L.)
| |
Collapse
|
5
|
Emerging chikungunya virus variants at the E1-E1 inter-glycoprotein spike interface impact virus attachment and Inflammation. J Virol 2021; 96:e0158621. [PMID: 34935436 DOI: 10.1128/jvi.01586-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chikungunya virus (CHIKV) is a re-emerging arthropod-borne alphavirus and a serious threat to human health. Therefore, efforts toward elucidating how this virus causes disease and the molecular mechanisms underlying steps of the viral replication cycle are crucial. Using an in vivo transmission system that allows intra-host evolution, we identified an emerging CHIKV variant carrying a mutation in the E1 glycoprotein (V156A) in the serum of mice and saliva of mosquitoes. E1 V156A has since emerged in humans during an outbreak in Brazil, co-occurring with a second mutation, E1 K211T, suggesting an important role for these residues in CHIKV biology. Given the emergence of these variants, we hypothesized that they function to promote CHIKV infectivity and subsequent disease. Here, we show that E1 V156A and E1 K211T modulate virus attachment and fusion and impact binding to heparin, a homolog of heparan sulfate, a key entry factor on host cells. These variants also exhibit differential neutralization by anti-glycoprotein monoclonal antibodies, suggesting structural impacts on the particle that may be responsible for altered interactions at the host membrane. Finally, E1 V156A and E1 K211T exhibit increased titers in an adult arthritic mouse model and induce increased foot-swelling at the site of injection. Taken together, this work has revealed new roles for E1 where discrete regions of the glycoprotein are able to modulate cell attachment and swelling within the host. IMPORTANCE Alphaviruses represent a growing threat to human health worldwide. The re-emerging alphavirus chikungunya virus (CHIKV) has rapidly spread to new geographic regions in the last several decades, causing overwhelming outbreaks of disease, yet there are no approved vaccines or therapeutics. The CHIKV glycoproteins are key determinants of CHIKV adaptation and virulence. In this study, we identify and characterize the emerging E1 glycoprotein variants, V156A and K211T, that have since emerged in nature. We demonstrate that E1 V156A and K211T function in virus attachment to cells, a role that until now has been only attributed to specific residues of the CHIKV E2 glycoprotein. We also demonstrate E1 V156A and K211T to increase foot-swelling of the ipsilateral foot in mice infected with these variants. Observing that these variants and other pathogenic variants occur at the E1-E1 inter-spike interface, we highlight this structurally important region as critical for multiple steps during CHIKV infection. Together, these studies further defines the function of E1 in CHIKV infection and can inform the development of therapeutic or preventative strategies.
Collapse
|
6
|
Constant LEC, Rajsfus BF, Carneiro PH, Sisnande T, Mohana-Borges R, Allonso D. Overview on Chikungunya Virus Infection: From Epidemiology to State-of-the-Art Experimental Models. Front Microbiol 2021; 12:744164. [PMID: 34675908 PMCID: PMC8524093 DOI: 10.3389/fmicb.2021.744164] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/07/2021] [Indexed: 12/27/2022] Open
Abstract
Chikungunya virus (CHIKV) is currently one of the most relevant arboviruses to public health. It is a member of the Togaviridae family and alphavirus genus and causes an arthritogenic disease known as chikungunya fever (CHIKF). It is characterized by a multifaceted disease, which is distinguished from other arbovirus infections by the intense and debilitating arthralgia that can last for months or years in some individuals. Despite the great social and economic burden caused by CHIKV infection, there is no vaccine or specific antiviral drugs currently available. Recent outbreaks have shown a change in the severity profile of the disease in which atypical and severe manifestation lead to hundreds of deaths, reinforcing the necessity to understand the replication and pathogenesis processes. CHIKF is a complex disease resultant from the infection of a plethora of cell types. Although there are several in vivo models for studying CHIKV infection, none of them reproduces integrally the disease signature observed in humans, which is a challenge for vaccine and drug development. Therefore, understanding the potentials and limitations of the state-of-the-art experimental models is imperative to advance in the field. In this context, the present review outlines the present knowledge on CHIKV epidemiology, replication, pathogenesis, and immunity and also brings a critical perspective on the current in vitro and in vivo state-of-the-art experimental models of CHIKF.
Collapse
Affiliation(s)
- Larissa E. C. Constant
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bia F. Rajsfus
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro H. Carneiro
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tháyna Sisnande
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ronaldo Mohana-Borges
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diego Allonso
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Near-germline human monoclonal antibodies neutralize and protect against multiple arthritogenic alphaviruses. Proc Natl Acad Sci U S A 2021; 118:2100104118. [PMID: 34507983 DOI: 10.1073/pnas.2100104118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2021] [Indexed: 12/11/2022] Open
Abstract
Arthritogenic alphaviruses are globally distributed, mosquito-transmitted viruses that cause rheumatological disease in humans and include Chikungunya virus (CHIKV), Mayaro virus (MAYV), and others. Although serological evidence suggests that some antibody-mediated heterologous immunity may be afforded by alphavirus infection, the extent to which broadly neutralizing antibodies that protect against multiple arthritogenic alphaviruses are elicited during natural infection remains unknown. Here, we describe the isolation and characterization of MAYV-reactive alphavirus monoclonal antibodies (mAbs) from a CHIKV-convalescent donor. We characterized 33 human mAbs that cross-reacted with CHIKV and MAYV and engaged multiple epitopes on the E1 and E2 glycoproteins. We identified five mAbs that target distinct regions of the B domain of E2 and potently neutralize multiple alphaviruses with differential breadth of inhibition. These broadly neutralizing mAbs (bNAbs) contain few somatic mutations and inferred germline-revertants retained neutralizing capacity. Two bNAbs, DC2.M16 and DC2.M357, protected against both CHIKV- and MAYV-induced musculoskeletal disease in mice. These findings enhance our understanding of the cross-reactive and cross-protective antibody response to human alphavirus infections.
Collapse
|
8
|
Zhao Z, Deng Y, Niu P, Song J, Wang W, Du Y, Huang B, Wang W, Zhang L, Zhao P, Tan W. Co-Immunization With CHIKV VLP and DNA Vaccines Induces a Promising Humoral Response in Mice. Front Immunol 2021; 12:655743. [PMID: 33868299 PMCID: PMC8044884 DOI: 10.3389/fimmu.2021.655743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/09/2021] [Indexed: 11/25/2022] Open
Abstract
Chikungunya fever is an acute infectious disease that is mediated by the mosquito-transmitted chikungunya virus (CHIKV), for which no licensed vaccines are currently available. Here, we explored several immunization protocols and investigated their immunity and protective effects in mice, with DNA- and virus-like particle (VLP)- vaccines, both alone and in combination. Both DNA and VLP vaccine candidates were developed and characterized, which express CHIKV structural genes (C-E3-E2-6K-E1). Mice were immunized twice, with different protocols, followed by immunological detection and CHIKV Ross challenge. The highest antigen-specific IgG and neutralizing activity were induced by DNA and VLP co-immunization, while the highest cellular immunity was induced by DNA vaccination alone. Although all vaccine groups could protect mice from lethal CHIKV challenge, demonstrated as reduced viral load in various tissues, without weight loss, mice co-immunized with DNA and VLP exhibited the mildest histopathological changes and lowest International Harmonization of Nomenclature and Diagnostic Criteria (INHAND) scores, in comparison to mice with either DNA or VLP vaccination alone. We concluded that co-immunization with DNA and VLP is a promising strategy to inducing better protective immunity against CHIKV infection.
Collapse
Affiliation(s)
- Zhimin Zhao
- National Health Commission (NHC) Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Yao Deng
- National Health Commission (NHC) Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Peihua Niu
- National Health Commission (NHC) Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Jingdong Song
- National Health Commission (NHC) Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Wen Wang
- National Health Commission (NHC) Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Yongping Du
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Zhejiang, China
| | - Baoying Huang
- National Health Commission (NHC) Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Wenling Wang
- National Health Commission (NHC) Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Leiliang Zhang
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Ping Zhao
- Shanghai Key Laboratory of Biomedical Protection, Department of Biomedical Protection, Faculty of Naval Medicine, Navy Medical University, Shanghai, China
| | - Wenjie Tan
- National Health Commission (NHC) Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| |
Collapse
|
9
|
De Caluwé L, Ariën KK, Bartholomeeusen K. Host Factors and Pathways Involved in the Entry of Mosquito-Borne Alphaviruses. Trends Microbiol 2020; 29:634-647. [PMID: 33208275 DOI: 10.1016/j.tim.2020.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 11/17/2022]
Abstract
Chikungunya virus (CHIKV) is an arthropod-borne virus that has re-emerged recently and has spread to previously unaffected regions, resulting in millions of infections worldwide. The genus Alphavirus, in the family Togaviridae, contains several members with a similar potential for epidemic emergence. In order for CHIKV to replicate in targeted cell types it is essential for the virus to enter these cells. In this review, we summarize our current understanding of the versatile and promiscuous steps in CHIKV binding and entry into human and mosquito host cells. We describe the different entry pathways, receptors, and attachment factors so far described for CHIKV and other mosquito-borne alphaviruses and discuss them in the context of tissue tropism and potential therapeutic targeting.
Collapse
Affiliation(s)
- Lien De Caluwé
- Virology Unit, Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Kevin K Ariën
- Virology Unit, Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | - Koen Bartholomeeusen
- Virology Unit, Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium.
| |
Collapse
|
10
|
Abstract
Alphaviruses cause severe human illnesses including persistent arthritis and fatal encephalitis. As alphavirus entry into target cells is the first step in infection, intensive research efforts have focused on elucidating aspects of this pathway, including attachment, internalization, and fusion. Herein, we review recent developments in the molecular understanding of alphavirus entry both in vitro and in vivo and how these advances might enable the design of therapeutics targeting this critical step in the alphavirus life cycle.
Collapse
|
11
|
Noval MG, Rodriguez-Rodriguez BA, Rangel MV, Stapleford KA. Evolution-Driven Attenuation of Alphaviruses Highlights Key Glycoprotein Determinants Regulating Viral Infectivity and Dissemination. Cell Rep 2020; 28:460-471.e5. [PMID: 31291581 DOI: 10.1016/j.celrep.2019.06.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/08/2019] [Accepted: 06/05/2019] [Indexed: 02/08/2023] Open
Abstract
Understanding the fundamental mechanisms of arbovirus transmission and pathogenesis is essential to develop strategies for treatment and prevention. We previously took an in vivo evolution-based approach and identified the chikungunya virus E1 glycoprotein residue 80 to play a critical role in viral transmission and pathogenesis. In this study, we address the genetic conservation and function of position 80 and demonstrate that this residue is a key determinant in alphavirus infectivity and dissemination through modulation of viral fusion and cholesterol dependence. In addition, in studying the evolution of position 80, we identified a network of glycoprotein residues, including epidemic determinants, that regulate virus dissemination and infectivity. These studies underscore the importance of taking evolution-based approaches to not only identify key viral determinants driving arbovirus transmission and pathogenesis but also to uncover fundamental aspects of arbovirus biology.
Collapse
Affiliation(s)
- Maria G Noval
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | | | - Margarita V Rangel
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Kenneth A Stapleford
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
12
|
Quiroz JA, Malonis RJ, Thackray LB, Cohen CA, Pallesen J, Jangra RK, Brown RS, Hofmann D, Holtsberg FW, Shulenin S, Nyakatura EK, Durnell LA, Rayannavar V, Daily JP, Ward AB, Aman MJ, Dye JM, Chandran K, Diamond MS, Kielian M, Lai JR. Human monoclonal antibodies against chikungunya virus target multiple distinct epitopes in the E1 and E2 glycoproteins. PLoS Pathog 2019; 15:e1008061. [PMID: 31697791 PMCID: PMC6837291 DOI: 10.1371/journal.ppat.1008061] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/01/2019] [Indexed: 01/31/2023] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes persistent arthritis in a subset of human patients. We report the isolation and functional characterization of monoclonal antibodies (mAbs) from two patients infected with CHIKV in the Dominican Republic. Single B cell sorting yielded a panel of 46 human mAbs of diverse germline lineages that targeted epitopes within the E1 or E2 glycoproteins. MAbs that recognized either E1 or E2 proteins exhibited neutralizing activity. Viral escape mutations localized the binding epitopes for two E1 mAbs to sites within domain I or the linker between domains I and III; and for two E2 mAbs between the β-connector region and the B-domain. Two of the E2-specific mAbs conferred protection in vivo in a stringent lethal challenge mouse model of CHIKV infection, whereas the E1 mAbs did not. These results provide insight into human antibody response to CHIKV and identify candidate mAbs for therapeutic intervention.
Collapse
Affiliation(s)
- Jose A. Quiroz
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Ryan J. Malonis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Larissa B. Thackray
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, United States of America
| | - Courtney A. Cohen
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Jesper Pallesen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Rohit K. Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Rebecca S. Brown
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Daniel Hofmann
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | | | - Sergey Shulenin
- Integrated Biotherapeutics Inc., Rockville, Maryland, United States of America
| | - Elisabeth K. Nyakatura
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Lorellin A. Durnell
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, United States of America
| | - Vinayak Rayannavar
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Johanna P. Daily
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - M. Javad Aman
- Integrated Biotherapeutics Inc., Rockville, Maryland, United States of America
| | - John M. Dye
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Michael S. Diamond
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, United States of America
- Department of Pathology & Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, United States of America
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jonathan R. Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
13
|
Simo FBN, Bigna JJ, Well EA, Kenmoe S, Sado FBY, Weaver SC, Moundipa PF, Demanou M. Chikungunya virus infection prevalence in Africa: a contemporaneous systematic review and meta-analysis. Public Health 2019; 166:79-88. [PMID: 30468973 DOI: 10.1016/j.puhe.2018.09.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/20/2018] [Accepted: 09/27/2018] [Indexed: 02/05/2023]
Abstract
OBJECTIVES The (re)emergence of chikungunya virus (CHIKV) in Africa requires better knowledge on the epidemiology of CHIKV infection in the continent for efficient public health strategies. We aimed to describe the epidemiology of CHIKV infection in Africa, a neglected tropical disease (NTD). STUDY DESIGN This was a systematic review with meta-analysis of studies reporting CHIKV infection prevalence. We searched Embase, PubMed, Africa Journal Online and Global Index Medicus to identify observational studies published from January 2000 to September 2017. METHODS We used a random-effect model to pool the prevalence of CHIKV infections reported with their 95% confidence interval (CI). Heterogeneity was assessed via the Chi-squared test on Cochran's Q statistic. Review registration is in PROSPERO CRD42017080395. RESULTS A total of 39 studies (37,881 participants; 18 countries) were included. No study was reported from Southern Africa. Thirty-two (82.0%), seven (18.0%) and no studies had low, moderate and high risk of bias, respectively. Outside outbreak periods, the pooled immunoglobulin M (IgM) and immunoglobulin G (IgG) seroprevalence was 9.7% (95% CI 3.0-19.6; 16 studies) and 16.4% (95% CI 9.1-25.2; 23 studies), respectively. The IgM seroprevalence was lower in Northern Africa, and there was no difference for IgG prevalence across regions in Africa. The IgM and IgG seroprevalences were not different between acute and non-acute febrile participants. The seroprevalence was not associated with GPS coordinates (latitude, longitude and altitude). CONCLUSIONS Although considered a NTD, we find high prevalence of CHIKV infection in Africa. As such, chikungunya fever should deserve more attention from healthcare providers, researchers, policymakers and stakeholders from many sectors.
Collapse
Affiliation(s)
- F B N Simo
- Department of Virology, Reference Laboratory for Chikungunya and Dengue Viruses, Centre Pasteur of Cameroon, Member of the International Network of Pasteur Institutes, 451 Rue 2005, P.O. Box 1274, Yaoundé, Cameroon; Department of Biochemistry, Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon.
| | - J J Bigna
- Department of Epidemiology and Public Health, Centre Pasteur of Cameroon, Member of the International Network of Pasteur Institutes, 451 Street 2005, P.O. Box 1274, Yaoundé, Cameroon; School of Public Health, Faculty of Medicine, University of Paris Sud, 63 Rue Gabriel Péri, 94270, Le Kremlin-Bicêtre, France.
| | - E A Well
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, P.O. Box 1364, Yaoundé, Cameroon.
| | - S Kenmoe
- Department of Virology, Reference Laboratory for Chikungunya and Dengue Viruses, Centre Pasteur of Cameroon, Member of the International Network of Pasteur Institutes, 451 Rue 2005, P.O. Box 1274, Yaoundé, Cameroon.
| | - F B Y Sado
- Department of Virology, Reference Laboratory for Chikungunya and Dengue Viruses, Centre Pasteur of Cameroon, Member of the International Network of Pasteur Institutes, 451 Rue 2005, P.O. Box 1274, Yaoundé, Cameroon.
| | - S C Weaver
- Institute for Human Infections and Immunity and Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - P F Moundipa
- Department of Biochemistry, Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon.
| | - M Demanou
- Department of Virology, Reference Laboratory for Chikungunya and Dengue Viruses, Centre Pasteur of Cameroon, Member of the International Network of Pasteur Institutes, 451 Rue 2005, P.O. Box 1274, Yaoundé, Cameroon.
| |
Collapse
|
14
|
Barriga GP, Villalón-Letelier F, Márquez CL, Bignon EA, Acuña R, Ross BH, Monasterio O, Mardones GA, Vidal SE, Tischler ND. Inhibition of the Hantavirus Fusion Process by Predicted Domain III and Stem Peptides from Glycoprotein Gc. PLoS Negl Trop Dis 2016; 10:e0004799. [PMID: 27414047 PMCID: PMC4945073 DOI: 10.1371/journal.pntd.0004799] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/02/2016] [Indexed: 12/17/2022] Open
Abstract
Hantaviruses can cause hantavirus pulmonary syndrome or hemorrhagic fever with renal syndrome in humans. To enter cells, hantaviruses fuse their envelope membrane with host cell membranes. Previously, we have shown that the Gc envelope glycoprotein is the viral fusion protein sharing characteristics with class II fusion proteins. The ectodomain of class II fusion proteins is composed of three domains connected by a stem region to a transmembrane anchor in the viral envelope. These fusion proteins can be inhibited through exogenous fusion protein fragments spanning domain III (DIII) and the stem region. Such fragments are thought to interact with the core of the fusion protein trimer during the transition from its pre-fusion to its post-fusion conformation. Based on our previous homology model structure for Gc from Andes hantavirus (ANDV), here we predicted and generated recombinant DIII and stem peptides to test whether these fragments inhibit hantavirus membrane fusion and cell entry. Recombinant ANDV DIII was soluble, presented disulfide bridges and beta-sheet secondary structure, supporting the in silico model. Using DIII and the C-terminal part of the stem region, the infection of cells by ANDV was blocked up to 60% when fusion of ANDV occurred within the endosomal route, and up to 95% when fusion occurred with the plasma membrane. Furthermore, the fragments impaired ANDV glycoprotein-mediated cell-cell fusion, and cross-inhibited the fusion mediated by the glycoproteins from Puumala virus (PUUV). The Gc fragments interfered in ANDV cell entry by preventing membrane hemifusion and pore formation, retaining Gc in a non-resistant homotrimer stage, as described for DIII and stem peptide inhibitors of class II fusion proteins. Collectively, our results demonstrate that hantavirus Gc shares not only structural, but also mechanistic similarity with class II viral fusion proteins, and will hopefully help in developing novel therapeutic strategies against hantaviruses. The infection of cells by enveloped viruses involves the fusion of membranes between viruses and cells. This process is mediated by viral fusion proteins that have been grouped into at least three structural classes. Membrane-enveloped hantaviruses are worldwide spread pathogens that can cause human disease with mortality rates reaching up to 50%, however, neither a therapeutic drug nor preventive measures are currently available. Here we show that the entrance of Andes hantavirus into target cells can be blocked by fragments derived from the Gc fusion protein that are analogous to inhibitory fragments of class II fusion proteins. The Gc fragments acted directly over the viral fusion process, preventing its late stages. Together, our data demonstrate that the hantavirus Gc protein shares not only structural, but also mechanistic similarity with class II fusion proteins, suggesting its evolution from a common or related ancestral fusion protein. Furthermore, the results outline novel approaches for therapeutic intervention.
Collapse
Affiliation(s)
- Gonzalo P. Barriga
- Molecular Virology Laboratory, Fundación Ciencia & Vida, Santiago, Chile
| | | | - Chantal L. Márquez
- Molecular Virology Laboratory, Fundación Ciencia & Vida, Santiago, Chile
| | - Eduardo A. Bignon
- Molecular Virology Laboratory, Fundación Ciencia & Vida, Santiago, Chile
| | - Rodrigo Acuña
- Molecular Virology Laboratory, Fundación Ciencia & Vida, Santiago, Chile
| | - Breyan H. Ross
- Laboratory of Structural Cell Biology, Department of Physiology, and Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Octavio Monasterio
- Laboratorio de Biología Estructural y Molecular, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Gonzalo A. Mardones
- Laboratory of Structural Cell Biology, Department of Physiology, and Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Simon E. Vidal
- Molecular Virology Laboratory, Fundación Ciencia & Vida, Santiago, Chile
| | - Nicole D. Tischler
- Molecular Virology Laboratory, Fundación Ciencia & Vida, Santiago, Chile
- * E-mail:
| |
Collapse
|
15
|
van Duijl-Richter MKS, Blijleven JS, van Oijen AM, Smit JM. Chikungunya virus fusion properties elucidated by single-particle and bulk approaches. J Gen Virol 2015; 96:2122-2132. [DOI: 10.1099/vir.0.000144] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Mareike K. S. van Duijl-Richter
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Jelle S. Blijleven
- Centre for Synthetic Biology, Zernike Institute of Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Antoine M. van Oijen
- Centre for Synthetic Biology, Zernike Institute of Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
- School of Chemistry, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Jolanda M. Smit
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| |
Collapse
|
16
|
Abstract
Chikungunya virus (CHIKV) is a rapidly emerging mosquito-borne alphavirus causing millions of infections in the tropical and subtropical regions of the world. CHIKV infection often leads to an acute self-limited febrile illness with debilitating myalgia and arthralgia. A potential long-term complication of CHIKV infection is severe joint pain, which can last for months to years. There are no vaccines or specific therapeutics available to prevent or treat infection. This review describes the critical steps in CHIKV cell entry. We summarize the latest studies on the virus-cell tropism, virus-receptor binding, internalization, membrane fusion and review the molecules and compounds that have been described to interfere with virus cell entry. The aim of the review is to give the reader a state-of-the-art overview on CHIKV cell entry and to provide an outlook on potential new avenues in CHIKV research.
Collapse
|
17
|
Residue-level resolution of alphavirus envelope protein interactions in pH-dependent fusion. Proc Natl Acad Sci U S A 2015; 112:2034-9. [PMID: 25646410 DOI: 10.1073/pnas.1414190112] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Alphavirus envelope proteins, organized as trimers of E2-E1 heterodimers on the surface of the pathogenic alphavirus, mediate the low pH-triggered fusion of viral and endosomal membranes in human cells. The lack of specific treatment for alphaviral infections motivates our exploration of potential antiviral approaches by inhibiting one or more fusion steps in the common endocytic viral entry pathway. In this work, we performed constant pH molecular dynamics based on an atomic model of the alphavirus envelope with icosahedral symmetry. We have identified pH-sensitive residues that cause the largest shifts in thermodynamic driving forces under neutral and acidic pH conditions for various fusion steps. A series of conserved interdomain His residues is identified to be responsible for the pH-dependent conformational changes in the fusion process, and ligand binding sites in their vicinity are anticipated to be potential drug targets aimed at inhibiting viral infections.
Collapse
|
18
|
Abstract
Enveloped viruses infect host cells by a membrane fusion reaction that takes place at the cell surface or in intracellular compartments following virus uptake. Fusion is mediated by the membrane interactions and conformational changes of specialized virus envelope proteins termed membrane fusion proteins. This article discusses the structures and refolding reactions of specific fusion proteins and the methods for their study and highlights outstanding questions in the field.
Collapse
Affiliation(s)
- Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461;
| |
Collapse
|
19
|
Pérez-Vargas J, Krey T, Valansi C, Avinoam O, Haouz A, Jamin M, Raveh-Barak H, Podbilewicz B, Rey F. Structural Basis of Eukaryotic Cell-Cell Fusion. Cell 2014; 157:407-419. [DOI: 10.1016/j.cell.2014.02.020] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 01/01/2014] [Accepted: 02/06/2014] [Indexed: 10/25/2022]
|