1
|
Fray EJ, Wu F, Simonetti FR, Zitzmann C, Sambaturu N, Molina-Paris C, Bender AM, Liu PT, Ventura JD, Wiseman RW, O'Connor DH, Geleziunas R, Leitner T, Ribeiro RM, Perelson AS, Barouch DH, Siliciano JD, Siliciano RF. Antiretroviral therapy reveals triphasic decay of intact SIV genomes and persistence of ancestral variants. Cell Host Microbe 2023; 31:356-372.e5. [PMID: 36809762 PMCID: PMC10583177 DOI: 10.1016/j.chom.2023.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/02/2022] [Accepted: 01/24/2023] [Indexed: 02/22/2023]
Abstract
The decay kinetics of HIV-1-infected cells are critical to understand virus persistence. We evaluated the frequency of simian immunodeficiency virus (SIV)-infected cells for 4 years of antiretroviral therapy (ART). The intact proviral DNA assay (IPDA) and an assay for hypermutated proviruses revealed short- and long-term infected cell dynamics in macaques starting ART ∼1 year after infection. Intact SIV genomes in circulating CD4+T cells showed triphasic decay with an initial phase slower than the decay of the plasma virus, a second phase faster than the second phase decay of intact HIV-1, and a stable third phase reached after 1.6-2.9 years. Hypermutated proviruses showed bi- or mono-phasic decay, reflecting different selective pressures. Viruses replicating at ART initiation had mutations conferring antibody escape. With time on ART, viruses with fewer mutations became more prominent, reflecting decay of variants replicating at ART initiation. Collectively, these findings confirm ART efficacy and indicate that cells enter the reservoir throughout untreated infection.
Collapse
Affiliation(s)
- Emily J Fray
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Fengting Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Francesco R Simonetti
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | - Alexandra M Bender
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Po-Ting Liu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - John D Ventura
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Roger W Wiseman
- Wisconsin National Primate Research Center, Madison, WI 53715, USA
| | - David H O'Connor
- Wisconsin National Primate Research Center, Madison, WI 53715, USA
| | | | - Thomas Leitner
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Ruy M Ribeiro
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Baltimore, MD 21205, USA.
| |
Collapse
|
2
|
Curlin JZ, Schmitt K, Remling-Mulder L, Moriarty R, Baczenas JJ, Goff K, O’Connor S, Stenglein M, Marx PA, Akkina R. In vivo infection dynamics and human adaptive changes of SIVsm-derived viral siblings SIVmac239, SIV B670 and SIVhu in humanized mice as a paralog of HIV-2 genesis. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2021; 1:813606. [PMID: 37168442 PMCID: PMC10168645 DOI: 10.3389/fviro.2021.813606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Simian immunodeficiency virus native to sooty mangabeys (SIVsm) is believed to have given rise to HIV-2 through cross-species transmission and evolution in the human. SIVmac239 and SIVB670, pathogenic to macaques, and SIVhu, isolated from an accidental human infection, also have origins in SIVsm. With their common ancestral lineage as that of HIV-2 from the progenitor SIVsm, but with different passage history in different hosts, they provide a unique opportunity to evaluate cross-species transmission to a new host and their adaptation/evolution both in terms of potential genetic and phenotypic changes. Using humanized mice with a transplanted human system, we evaluated in vivo replication kinetics, CD4+ T cell dynamics and genetic adaptive changes during serial passage with a goal to understand their evolution under human selective immune pressure. All the three viruses readily infected hu-mice causing chronic viremia. While SIVmac and SIVB670 caused CD4+ T cell depletion during sequential passaging, SIVhu with a deletion in nef gene was found to be less pathogenic. Deep sequencing of the genomes of these viruses isolated at different times revealed numerous adaptive mutations of significance that increased in frequency during sequential passages. The ability of these viruses to infect and replicate in humanized mice provides a new small animal model to study SIVs in vivo in addition to more expensive macaques. Since SIVmac and related viruses have been indispensable in many areas of HIV pathogenesis, therapeutics and cure research, availability of this small animal hu-mouse model that is susceptible to both SIV and HIV viruses is likely to open novel avenues of investigation for comparative studies using the same host.
Collapse
Affiliation(s)
- James Z. Curlin
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
- Antiviral Discovery, Evaluation and Application Research (ADEAR) Training Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kimberly Schmitt
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Leila Remling-Mulder
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Ryan Moriarty
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - John J. Baczenas
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kelly Goff
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Shelby O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Mark Stenglein
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Preston A. Marx
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
- Tulane National Primate Research Center, Covington, LA, USA
| | - Ramesh Akkina
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
3
|
SIV Evolutionary Dynamics in Cynomolgus Macaques during SIV- Mycobacterium tuberculosis Co-Infection. Viruses 2021; 14:v14010048. [PMID: 35062252 PMCID: PMC8778162 DOI: 10.3390/v14010048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023] Open
Abstract
Co-infection with Mycobacterium tuberculosis (Mtb) and human immunodeficiency virus (HIV) is a worldwide public health concern, leading to worse clinical outcomes caused by both pathogens. We used a non-human primate model of simian immunodeficiency virus (SIV)-Mtb co-infection, in which latent Mtb infection was established prior to SIVmac251 infection. The evolutionary dynamics of SIV env was evaluated from samples in plasma, lymph nodes, and lungs (including granulomas) of SIV-Mtb co-infected and SIV only control animals. While the diversity of the challenge virus was low and overall viral diversity remained relatively low over 6–9 weeks, changes in viral diversity and divergence were observed, including evidence for tissue compartmentalization. Overall, viral diversity was highest in SIV-Mtb animals that did not develop clinical Mtb reactivation compared to animals with Mtb reactivation. Among lung granulomas, viral diversity was positively correlated with the frequency of CD4+ T cells and negatively correlated with the frequency of CD8+ T cells. SIV diversity was highest in the thoracic lymph nodes compared to other sites, suggesting that lymphatic drainage from the lungs in co-infected animals provides an advantageous environment for SIV replication. This is the first assessment of SIV diversity across tissue compartments during SIV-Mtb co-infection after established Mtb latency.
Collapse
|
4
|
Martins MA, Tully DC, Pedreño-Lopez N, von Bredow B, Pauthner MG, Shin YC, Yuan M, Lima NS, Bean DJ, Gonzalez-Nieto L, Domingues A, Gutman MJ, Maxwell HS, Magnani DM, Ricciardi MJ, Bailey VK, Altman JD, Burton DR, Ejima K, Allison DB, Evans DT, Rakasz EG, Parks CL, Bonaldo MC, Capuano S, Lifson JD, Desrosiers RC, Allen TM, Watkins DI. Mamu-B*17+ Rhesus Macaques Vaccinated with env, vif, and nef Manifest Early Control of SIVmac239 Replication. J Virol 2018; 92:e00690-18. [PMID: 29875239 PMCID: PMC6069176 DOI: 10.1128/jvi.00690-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/28/2018] [Indexed: 12/22/2022] Open
Abstract
Certain major histocompatibility complex class I (MHC-I) alleles are associated with spontaneous control of viral replication in human immunodeficiency virus (HIV)-infected people and simian immunodeficiency virus (SIV)-infected rhesus macaques (RMs). These cases of "elite" control of HIV/SIV replication are often immune-mediated, thereby providing a framework for studying anti-lentiviral immunity. In this study, we examined how vaccination impacts SIV replication in RMs expressing the MHC-I allele Mamu-B*17 Approximately 21% of Mamu-B*17+ and 50% of Mamu-B*08+ RMs control chronic-phase viremia after SIVmac239 infection. Because CD8+ T cells targeting Mamu-B*08-restricted SIV epitopes have been implicated in virologic suppression in Mamu-B*08+ RMs, we investigated whether this might also be true for Mamu-B*17+ RMs. Two groups of Mamu-B*17+ RMs were vaccinated with genes encoding Mamu-B*17-restricted epitopes in Vif and Nef. These genes were delivered by themselves (group 1) or together with env (group 2). Group 3 included MHC-I-matched RMs and served as the control group. Surprisingly, the group 1 vaccine regimen had little effect on viral replication compared to group 3, suggesting that unlike Mamu-B*08+ RMs, preexisting SIV-specific CD8+ T cells alone do not facilitate long-term virologic suppression in Mamu-B*17+ RMs. Remarkably, however, 5/8 group 2 vaccinees controlled viremia to <15 viral RNA copies/ml soon after infection. No serological neutralizing activity against SIVmac239 was detected in group 2, although vaccine-elicited gp140-binding antibodies correlated inversely with nadir viral loads. Collectively, these data shed new light on the unique mechanism of elite control in Mamu-B*17+ RMs and implicate vaccine-induced, nonneutralizing anti-Env antibodies in the containment of immunodeficiency virus infection.IMPORTANCE A better understanding of the immune correlates of protection against HIV might facilitate the development of a prophylactic vaccine. Therefore, we investigated simian immunodeficiency virus (SIV) infection outcomes in rhesus macaques expressing the major histocompatibility complex class I allele Mamu-B*17 Approximately 21% of Mamu-B*17+ macaques spontaneously controlled chronic phase viremia after SIV infection, an effect that may involve CD8+ T cells targeting Mamu-B*17-restricted SIV epitopes. We vaccinated Mamu-B*17+ macaques with genes encoding immunodominant epitopes in Vif and Nef alone (group 1) or together with env (group 2). Although neither vaccine regimen prevented SIV infection, 5/8 group 2 vaccinees controlled viremia to below detection limits shortly after infection. This outcome, which was not observed in group 1, was associated with vaccine-induced, nonneutralizing Env-binding antibodies. Together, these findings suggest a limited contribution of Vif- and Nef-specific CD8+ T cells for virologic control in Mamu-B*17+ macaques and implicate anti-Env antibodies in containment of SIV infection.
Collapse
Affiliation(s)
| | - Damien C Tully
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Benjamin von Bredow
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Matthias G Pauthner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), The Scripps Research Institute, La Jolla, California, USA
| | - Young C Shin
- Department of Pathology, University of Miami, Miami, Florida, USA
| | - Maoli Yuan
- International AIDS Vaccine Initiative, AIDS Vaccine Design and Development Laboratory, Brooklyn, New York, USA
| | - Noemia S Lima
- Laboratório de Biologia Molecular de Flavivirus, Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil
| | - David J Bean
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Aline Domingues
- Department of Pathology, University of Miami, Miami, Florida, USA
| | - Martin J Gutman
- Department of Pathology, University of Miami, Miami, Florida, USA
| | - Helen S Maxwell
- Department of Pathology, University of Miami, Miami, Florida, USA
| | - Diogo M Magnani
- Department of Pathology, University of Miami, Miami, Florida, USA
| | | | - Varian K Bailey
- Department of Pathology, University of Miami, Miami, Florida, USA
| | - John D Altman
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
| | - Dennis R Burton
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), The Scripps Research Institute, La Jolla, California, USA
| | - Keisuke Ejima
- School of Public Health, Indiana University Bloomington, Bloomington, Indiana, USA
| | - David B Allison
- School of Public Health, Indiana University Bloomington, Bloomington, Indiana, USA
| | - David T Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Eva G Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Christopher L Parks
- International AIDS Vaccine Initiative, AIDS Vaccine Design and Development Laboratory, Brooklyn, New York, USA
| | - Myrna C Bonaldo
- Laboratório de Biologia Molecular de Flavivirus, Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | - Todd M Allen
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - David I Watkins
- Department of Pathology, University of Miami, Miami, Florida, USA
| |
Collapse
|
5
|
High-Resolution Sequencing of Viral Populations during Early Simian Immunodeficiency Virus Infection Reveals Evolutionary Strategies for Rapid Escape from Emerging Env-Specific Antibody Responses. J Virol 2018; 92:JVI.01574-17. [PMID: 29343575 DOI: 10.1128/jvi.01574-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/08/2018] [Indexed: 01/01/2023] Open
Abstract
Primate lentiviruses, including the human and simian immunodeficiency viruses (HIV and SIV), produce infections marked by persistent, ongoing viral replication. This occurs despite the presence of virus-specific adaptive immune responses, including antibodies targeting the viral envelope glycoprotein (Env), and evolution of antibody-escape variants is a well-documented feature of lentiviral infection. Here, we examined the evolutionary dynamics of the SIV env gene during early infection (≤29 weeks postinfection) in a cohort of four SIVmac251-infected rhesus macaques. We tracked env evolution during acute and early infection using frequent sampling and ultradeep sequencing of viral populations, capturing a transmission bottleneck and the subsequent reestablishment of Env diversity. A majority of changes in the gp120 subunit mapped to two short clusters, one in the first variable region (V1) and one in V4, while most changes in the gp41 subunit appeared in the cytoplasmic domain. Variation in V1 was dominated by short duplications and deletions of repetitive sequence, while variation in V4 was marked by short in-frame deletions and closely overlapping substitutions. The most common substitutions in both patches did not alter viral replicative fitness when tested using a highly sensitive, deep-sequencing-based competition assay. Our results, together with the observation that very similar or identical patterns of sequence evolution also occur in different macaque species infected with related but divergent strains of SIV, suggest that resistance to early, strain-specific anti-Env antibodies is the result of temporally and mutationally predictable pathways of escape that occur during the early stages of infection.IMPORTANCE The envelope glycoprotein (Env) of primate lentiviruses mediates entry by binding to host cell receptors followed by fusion of the viral membrane with the cell membrane. The exposure of Env complexes on the surface of the virion results in targeting by antibodies, leading to selection for virus escape mutations. We used the SIV/rhesus macaque model to track in vivo evolution of variation in Env during acute/early infection in animals with and without antibody responses to Env, uncovering remarkable variation in animals with antibody responses within weeks of infection. Using a deep-sequencing-based fitness assay, we found substitutions associated with antibody escape had little to no effect on inherent replicative capacity. The ability to readily propagate advantageous changes that incur little to no replicative fitness costs may be a mechanism to maintain continuous replication under constant immune selection, allowing the virus to persist for months to years in the infected host.
Collapse
|
6
|
Han SY, Antoine A, Howard D, Chang B, Chang WS, Slein M, Deikus G, Kossida S, Duroux P, Lefranc MP, Sebra RP, Smith ML, Fofana IBF. Coupling of Single Molecule, Long Read Sequencing with IMGT/HighV-QUEST Analysis Expedites Identification of SIV gp140-Specific Antibodies from scFv Phage Display Libraries. Front Immunol 2018; 9:329. [PMID: 29545792 PMCID: PMC5837965 DOI: 10.3389/fimmu.2018.00329] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/06/2018] [Indexed: 12/20/2022] Open
Abstract
The simian immunodeficiency virus (SIV)/macaque model of human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome pathogenesis is critical for furthering our understanding of the role of antibody responses in the prevention of HIV infection, and will only increase in importance as macaque immunoglobulin (IG) gene databases are expanded. We have previously reported the construction of a phage display library from a SIV-infected rhesus macaque (Macaca mulatta) using oligonucleotide primers based on human IG gene sequences. Our previous screening relied on Sanger sequencing, which was inefficient and generated only a few dozen sequences. Here, we re-analyzed this library using single molecule, real-time (SMRT) sequencing on the Pacific Biosciences (PacBio) platform to generate thousands of highly accurate circular consensus sequencing (CCS) reads corresponding to full length single chain fragment variable. CCS data were then analyzed through the international ImMunoGeneTics information system® (IMGT®)/HighV-QUEST (www.imgt.org) to identify variable genes and perform statistical analyses. Overall the library was very diverse, with 2,569 different IMGT clonotypes called for the 5,238 IGHV sequences assigned to an IMGT clonotype. Within the library, SIV-specific antibodies represented a relatively limited number of clones, with only 135 different IMGT clonotypes called from 4,594 IGHV-assigned sequences. Our data did confirm that the IGHV4 and IGHV3 gene usage was the most abundant within the rhesus antibodies screened, and that these genes were even more enriched among SIV gp140-specific antibodies. Although a broad range of VH CDR3 amino acid (AA) lengths was observed in the unpanned library, the vast majority of SIV gp140-specific antibodies demonstrated a more uniform VH CDR3 length (20 AA). This uniformity was far less apparent when VH CDR3 were classified according to their clonotype (range: 9–25 AA), which we believe is more relevant for specific antibody identification. Only 174 IGKV and 588 IGLV clonotypes were identified within the VL sequences associated with SIV gp140-specific VH. Together, these data strongly suggest that the combination of SMRT sequencing with the IMGT/HighV-QUEST querying tool will facilitate and expedite our understanding of polyclonal antibody responses during SIV infection and may serve to rapidly expand the known scope of macaque V genes utilized during these responses.
Collapse
Affiliation(s)
- Seung Yub Han
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Alesia Antoine
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Icahn Institute of Genomics and Multiscale Biology, New York, NY, United States
| | - David Howard
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Bryant Chang
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Woo Sung Chang
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Matthew Slein
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Gintaras Deikus
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Icahn Institute of Genomics and Multiscale Biology, New York, NY, United States
| | - Sofia Kossida
- The international ImMunoGeneTics information system® (IMGT®), Laboratoire d'ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), UMR CNRS, Montpellier University, Montpellier, France
| | - Patrice Duroux
- The international ImMunoGeneTics information system® (IMGT®), Laboratoire d'ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), UMR CNRS, Montpellier University, Montpellier, France
| | - Marie-Paule Lefranc
- The international ImMunoGeneTics information system® (IMGT®), Laboratoire d'ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), UMR CNRS, Montpellier University, Montpellier, France
| | - Robert P Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Icahn Institute of Genomics and Multiscale Biology, New York, NY, United States
| | - Melissa L Smith
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Icahn Institute of Genomics and Multiscale Biology, New York, NY, United States
| | | |
Collapse
|
7
|
Ita S, Agostinho MR, Sullivan K, Yub Han S, Akleh R, Johnson WE, Fofana IBF. Analysis of SIVmac Envelope-Specific Antibodies Selected Through Phage Display. AIDS Res Hum Retroviruses 2017; 33:869-879. [PMID: 28075174 DOI: 10.1089/aid.2016.0247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have constructed a single chain fragment variable (scFv) phage display library from a simian immunodeficiency virus (SIV)-infected rhesus macaque that developed unusually high-titer neutralizing antibody responses against tier-3, neutralization-resistant SIVmac239. The library was screened using trimeric (gp140) and monomeric (gp120) forms of the SIVmac239 envelope (Env) glycoprotein. We also cloned variable-heavy and variable-light (VH-VL) antibody fragments from seven previously described rhesus macaque B-cell lines (BLCLs) that produce SIV gp120-specific monoclonal antibodies (mAbs). Thirty-two gp140-specific mAbs were selected along with 20 gp120-specific ones. gp120-specific mAbs were only from the VH4 family, while gp41-specific mAbs were primarily from VH1, followed by VH4 and VH3. Rhesus macaque BLCL-derived mAbs belonged primarily to the VH4 family of antibodies followed by VH3 and a smaller number of VH1s. A preferential VH combination with Vλ light chain was observed with phage display-selected SIV Env-specific mAbs (gp120 and gp140), but not with BLCL-derived antibodies or the unpanned library. None of the tested antibodies had detectable neutralizing activity against tier-3 SIVmac239. The majority of gp120-specifc mAbs potently neutralized tier-1 SIVmac316 with 50% inhibitory concentration (IC50) values below 1 μg/ml. For gp140-specific antibodies, which were all specific for the gp41-subunit, 2 out of 11 tested neutralized SIVmac316 (IC50 of 7 and 5 μg/ml, respectively). These data suggest an order of preferential VH segment usage for SIV-specific antibodies in rhesus macaques. These antibodies will be useful in assessing the contribution of non-neutralizing antibodies to inhibition of SIV infection in vitro and in vivo.
Collapse
Affiliation(s)
- Sergio Ita
- Biology Department, Boston College, Chestnut Hill, Massachusetts
- Virology Program, Harvard Medical School, Boston, Massachusetts
| | - Mayara R. Agostinho
- Biology Department, Boston College, Chestnut Hill, Massachusetts
- Brazil Scientific Mobility Program, College of Nursing, University of New Mexico, Albuquerque, New Mexico
| | | | - Seung Yub Han
- Biology Department, Boston College, Chestnut Hill, Massachusetts
| | - Rana Akleh
- Biology Department, Boston College, Chestnut Hill, Massachusetts
| | | | | |
Collapse
|
8
|
Guo K, Halemano K, Schmitt K, Katuwal M, Wang Y, Harper MS, Heilman KJ, Kuwata T, Stephens EB, Santiago ML. Immunoglobulin VH gene diversity and somatic hypermutation during SIV infection of rhesus macaques. Immunogenetics 2015; 67:355-70. [PMID: 25994147 DOI: 10.1007/s00251-015-0844-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/30/2015] [Indexed: 01/12/2023]
Abstract
B cell functional defects are associated with delayed neutralizing antibody development in pathogenic lentivirus infections. However, the timeframe for alterations in the antibody repertoire and somatic hypermutation (SHM) remains unclear. Here, we utilized the SIV/rhesus macaque (RM) model to investigate the dynamics of immunoglobulin V(H) gene diversity and SHM following infection. Three RMs were infected with SIVmac239, and V(H)1, V(H)3, and V(H)4 genes were amplified from peripheral blood at 0, 2, 6, 24, and 36 weeks postinfection for next-generation sequencing. Analysis of over 3.8 million sequences against currently available RM germline V(H) genes revealed a highly biased V(H) gene repertoire in outbred RMs. SIV infection did not significantly perturb the predominant IgG1 response, but overall immunoglobulin SHM declined during the course of SIV infection. Moreover, SHM at the AID deamination hotspot, WRC, rapidly decreased and was suppressed throughout SIV infection. In contrast, a transient increase in mutations at the APOBEC3G deamination hotspot, CCC, coincided with a spike in APOBEC3G expression during acute SIV infection. The results outline a timetable for altered V(H) gene repertoire and IgG SHM in the SIV/RM model and suggest a burst of APOBEC3G-mediated antibody SHM during acute SIV infection.
Collapse
Affiliation(s)
- Kejun Guo
- Departments of Medicine, Immunology and Microbiology, University of Colorado Denver, Aurora, CO, 80045, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Uchtenhagen H, Schiffner T, Bowles E, Heyndrickx L, LaBranche C, Applequist SE, Jansson M, De Silva T, Back JW, Achour A, Scarlatti G, Fomsgaard A, Montefiori D, Stewart-Jones G, Spetz AL. Boosting of HIV-1 neutralizing antibody responses by a distally related retroviral envelope protein. THE JOURNAL OF IMMUNOLOGY 2014; 192:5802-12. [PMID: 24829409 DOI: 10.4049/jimmunol.1301898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Our knowledge of the binding sites for neutralizing Abs (NAb) that recognize a broad range of HIV-1 strains (bNAb) has substantially increased in recent years. However, gaps remain in our understanding of how to focus B cell responses to vulnerable conserved sites within the HIV-1 envelope glycoprotein (Env). In this article, we report an immunization strategy composed of a trivalent HIV-1 (clade B envs) DNA prime, followed by a SIVmac239 gp140 Env protein boost that aimed to focus the immune response to structurally conserved parts of the HIV-1 and simian immunodeficiency virus (SIV) Envs. Heterologous NAb titers, primarily to tier 1 HIV-1 isolates, elicited during the trivalent HIV-1 env prime, were significantly increased by the SIVmac239 gp140 protein boost in rabbits. Epitope mapping of Ab-binding reactivity revealed preferential recognition of the C1, C2, V2, V3, and V5 regions. These results provide a proof of concept that a distally related retroviral SIV Env protein boost can increase pre-existing NAb responses against HIV-1.
Collapse
Affiliation(s)
- Hannes Uchtenhagen
- Science for Life Laboratory, Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, S-14186 Stockholm, Sweden
| | - Torben Schiffner
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Emma Bowles
- Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Leo Heyndrickx
- Virology Unit, Biomedical Department, Institute of Tropical Medicine, 2000 Antwerpen, Belgium
| | - Celia LaBranche
- Department of Surgery, Duke University Medical Center, Durham, NC 27710
| | - Steven E Applequist
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, S-14186 Stockholm, Sweden
| | - Marianne Jansson
- Department of Laboratory Medicine, Lund University, S-22362 Lund, Sweden
| | - Thushan De Silva
- Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, United Kingdom
| | | | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, S-14186 Stockholm, Sweden
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, Division of Immunology, Transplant and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Anders Fomsgaard
- Department of Virology, Statens Serum Institut, DK-2300 Copenhagen, Denmark; and Institute of Clinical Research, University of Southern Denmark, DK-5000 Odense, Denmark
| | - David Montefiori
- Department of Surgery, Duke University Medical Center, Durham, NC 27710
| | - Guillaume Stewart-Jones
- Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Anna-Lena Spetz
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, S-14186 Stockholm, Sweden;
| |
Collapse
|
10
|
Abstract
Recent studies have shown that natural infection by HIV-2 leads to the elicitation of high titers of broadly neutralizing antibodies (NAbs) against primary HIV-2 strains (T. I. de Silva, et al., J. Virol. 86:930-946, 2012; R. Kong, et al., J. Virol. 86:947-960, 2012; G. Ozkaya Sahin, et al., J. Virol. 86:961-971, 2012). Here, we describe the envelope (Env) binding and neutralization properties of 15 anti-HIV-2 human monoclonal antibodies (MAbs), 14 of which were newly generated from 9 chronically infected subjects. All 15 MAbs bound specifically to HIV-2 gp120 monomers and neutralized heterologous primary virus strains HIV-2(7312A) and HIV-2(ST). Ten of 15 MAbs neutralized a third heterologous primary virus strain, HIV-2(UC1). The median 50% inhibitory concentrations (IC(50)s) for these MAbs were surprisingly low, ranging from 0.007 to 0.028 μg/ml. Competitive Env binding studies revealed three MAb competition groups: CG-I, CG-II, and CG-III. Using peptide scanning, site-directed mutagenesis, chimeric Env constructions, and single-cycle virus neutralization assays, we mapped the epitope of CG-I antibodies to a linear region in variable loop 3 (V3), the epitope of CG-II antibodies to a conformational region centered on the carboxy terminus of V4, and the epitope(s) of CG-III antibodies to conformational regions associated with CD4- and coreceptor-binding sites. HIV-2 Env is thus highly immunogenic in vivo and elicits antibodies having diverse epitope specificities, high potency, and wide breadth. In contrast to the HIV-1 Env trimer, which is generally well shielded from antibody binding and neutralization, HIV-2 is surprisingly vulnerable to broadly reactive NAbs. The availability of 15 human MAbs targeting diverse HIV-2 Env epitopes can facilitate comparative studies of HIV/SIV Env structure, function, antigenicity, and immunogenicity.
Collapse
|
11
|
Sequential evolution and escape from neutralization of simian immunodeficiency virus SIVsmE660 clones in rhesus macaques. J Virol 2012; 86:8835-47. [PMID: 22696650 DOI: 10.1128/jvi.00923-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Simian immunodeficiency virus (SIV) infection of rhesus macaques has become an important surrogate model for evaluating HIV vaccine strategies. The extreme resistance to neutralizing antibody (NAb) of many commonly used strains, such as SIVmac251/239 and SIVsmE543-3, limits their potential relevance for evaluating the role of NAb in vaccine protection. In contrast, SIVsmE660 is an uncloned virus that appears to be more sensitive to neutralizing antibody. To evaluate the role of NAb in this model, we generated full-length neutralization-sensitive molecular clones of SIVsmE660 and evaluated two of these by intravenous inoculation of rhesus macaques. All animals became infected and maintained persistent viremia that was accompanied by a decline in memory CD4(+) T cells in blood and bronchoalveolar lavage fluid. High titers of autologous NAb developed by 4 weeks postinoculation but were not associated with control of viremia, and neutralization escape variants were detected concurrently with the generation of NAb. Neutralization escape was associated with substitutions and insertion/deletion polymorphisms in the V1 and V4 domains of envelope. Analysis of representative variants revealed that escape variants also induced NAbs within a few weeks of their appearance in plasma, in a pattern that is reminiscent of the escape of human immunodeficiency virus type 1 (HIV-1) isolates in humans. Although early variants maintained a neutralization-sensitive phenotype, viruses obtained later in infection were significantly less sensitive to neutralization than the parental viruses. These results indicate that NAbs exert selective pressure that drives the evolution of the SIV envelope and that this model will be useful for evaluating the role of NAb in vaccine-mediated protection.
Collapse
|
12
|
Envelope variable region 4 is the first target of neutralizing antibodies in early simian immunodeficiency virus mac251 infection of rhesus monkeys. J Virol 2012; 86:7052-9. [PMID: 22532675 DOI: 10.1128/jvi.00107-12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A major goal of AIDS vaccine development is to design vaccination strategies that can elicit broad and potent protective antibodies. The initial viral targets of neutralizing antibodies (NAbs) early after human or simian immunodeficiency virus (HIV/SIV) infection are not known. The identification of early NAb epitopes that induce protective immunity or retard the progression of disease is important for AIDS vaccine development. The aim of this study was to determine the Env residues targeted by early SIV NAbs and to assess the influence of prior vaccination on neutralizing antibody kinetics and specificity during early infection. We previously described stereotypic env sequence variations in SIVmac251-infected rhesus monkeys that resulted in viral escape from NAbs. Here, we defined the early viral targets of neutralization and determined whether the ability of serum antibody from infected monkeys to neutralize SIV was altered in the setting of prior vaccination. To localize the viral determinants recognized by early NAbs, a panel of mutant pseudoviruses was assessed in a TZM-bl reporter gene neutralization assay to define the precise changes that eliminate recognition by SIV Env-specific NAbs in 16 rhesus monkeys. Changing R420 to G or R424 to Q in V4 of Env resulted in the loss of recognition by NAbs in vaccinated monkeys. In contrast, mutations in the V1 region of Env did not alter the NAb profile. These findings indicate that early NAbs are directed toward SIVmac251 Env V4 but not the V1 region, and that this env vaccination regimen did not alter the kinetics or the breadth of NAbs during early infection.
Collapse
|
13
|
Evidence against extracellular exposure of a highly immunogenic region in the C-terminal domain of the simian immunodeficiency virus gp41 transmembrane protein. J Virol 2011; 86:1145-57. [PMID: 22072749 DOI: 10.1128/jvi.06463-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The generally accepted model for human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein topology includes a single membrane-spanning domain. An alternate model has been proposed which features multiple membrane-spanning domains. Consistent with the alternate model, a high percentage of HIV-1-infected individuals produce unusually robust antibody responses to a region of envelope, the so-called "Kennedy epitope," that in the conventional model should be in the cytoplasm. Here we show analogous, robust antibody responses in simian immunodeficiency virus SIVmac239-infected rhesus macaques to a region of SIVmac239 envelope located in the C-terminal domain, which in the conventional model should be inside the cell. Sera from SIV-infected rhesus macaques consistently reacted with overlapping oligopeptides corresponding to a region located within the cytoplasmic domain of gp41 by the generally accepted model, at intensities comparable to those observed for immunodominant areas of the surface component gp120. Rabbit serum raised against this highly immunogenic region (HIR) reacted with SIV envelope in cell surface-staining experiments, as did monoclonal anti-HIR antibodies isolated from an SIVmac239-infected rhesus macaque. However, control experiments demonstrated that this surface staining could be explained in whole or in part by the release of envelope protein from expressing cells into the supernatant and the subsequent attachment to the surfaces of cells in the culture. Serum and monoclonal antibodies directed against the HIR failed to neutralize even the highly neutralization-sensitive strain SIVmac316. Furthermore, a potential N-linked glycosylation site located close to the HIR and postulated to be outside the cell in the alternate model was not glycosylated. An artificially introduced glycosylation site within the HIR was also not utilized for glycosylation. Together, these data support the conventional model of SIV envelope as a type Ia transmembrane protein with a single membrane-spanning domain and without any extracellular loops.
Collapse
|
14
|
Gnanakaran S, Bhattacharya T, Daniels M, Keele BF, Hraber PT, Lapedes AS, Shen T, Gaschen B, Krishnamoorthy M, Li H, Decker JM, Salazar-Gonzalez JF, Wang S, Jiang C, Gao F, Swanstrom R, Anderson JA, Ping LH, Cohen MS, Markowitz M, Goepfert PA, Saag MS, Eron JJ, Hicks CB, Blattner WA, Tomaras GD, Asmal M, Letvin NL, Gilbert PB, DeCamp AC, Magaret CA, Schief WR, Ban YEA, Zhang M, Soderberg KA, Sodroski JG, Haynes BF, Shaw GM, Hahn BH, Korber B. Recurrent signature patterns in HIV-1 B clade envelope glycoproteins associated with either early or chronic infections. PLoS Pathog 2011; 7:e1002209. [PMID: 21980282 PMCID: PMC3182927 DOI: 10.1371/journal.ppat.1002209] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 06/26/2011] [Indexed: 12/15/2022] Open
Abstract
Here we have identified HIV-1 B clade Envelope (Env) amino acid signatures from early in infection that may be favored at transmission, as well as patterns of recurrent mutation in chronic infection that may reflect common pathways of immune evasion. To accomplish this, we compared thousands of sequences derived by single genome amplification from several hundred individuals that were sampled either early in infection or were chronically infected. Samples were divided at the outset into hypothesis-forming and validation sets, and we used phylogenetically corrected statistical strategies to identify signatures, systematically scanning all of Env. Signatures included single amino acids, glycosylation motifs, and multi-site patterns based on functional or structural groupings of amino acids. We identified signatures near the CCR5 co-receptor-binding region, near the CD4 binding site, and in the signal peptide and cytoplasmic domain, which may influence Env expression and processing. Two signatures patterns associated with transmission were particularly interesting. The first was the most statistically robust signature, located in position 12 in the signal peptide. The second was the loss of an N-linked glycosylation site at positions 413-415; the presence of this site has been recently found to be associated with escape from potent and broad neutralizing antibodies, consistent with enabling a common pathway for immune escape during chronic infection. Its recurrent loss in early infection suggests it may impact fitness at the time of transmission or during early viral expansion. The signature patterns we identified implicate Env expression levels in selection at viral transmission or in early expansion, and suggest that immune evasion patterns that recur in many individuals during chronic infection when antibodies are present can be selected against when the infection is being established prior to the adaptive immune response.
Collapse
Affiliation(s)
- S. Gnanakaran
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Tanmoy Bhattacharya
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Marcus Daniels
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Brandon F. Keele
- SAIC-Frederick, National Cancer Institute, Frederick, Maryland, United States of America
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Peter T. Hraber
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Alan S. Lapedes
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Tongye Shen
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Center for Molecular Biophysics and Department of Biochemistry, Cellular & Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Brian Gaschen
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Mohan Krishnamoorthy
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Hui Li
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Julie M. Decker
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jesus F. Salazar-Gonzalez
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Shuyi Wang
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Chunlai Jiang
- National Engineering Laboratory of AIDS Vaccine School of Life Science, Jilin University, Changchun, China
- Duke University Medical Center, the Departments of Medicine and Surgery, and the Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Feng Gao
- Duke University Medical Center, the Departments of Medicine and Surgery, and the Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Ronald Swanstrom
- Department of Biochemistry and Biophysics and the Division of Infectious Diseases Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jeffrey A. Anderson
- Department of Biochemistry and Biophysics and the Division of Infectious Diseases Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Li-Hua Ping
- Department of Biochemistry and Biophysics and the Division of Infectious Diseases Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Myron S. Cohen
- Department of Biochemistry and Biophysics and the Division of Infectious Diseases Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Martin Markowitz
- Aaron Diamond AIDS Research Center, an affiliate of the Rockefeller University, New York, New York, United States of America
| | - Paul A. Goepfert
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Michael S. Saag
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Joseph J. Eron
- Department of Biochemistry and Biophysics and the Division of Infectious Diseases Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Charles B. Hicks
- Duke University Medical Center, the Departments of Medicine and Surgery, and the Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - William A. Blattner
- Institute of Human Virology, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
| | - Georgia D. Tomaras
- Duke University Medical Center, the Departments of Medicine and Surgery, and the Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Mohammed Asmal
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Norman L. Letvin
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Division of Viral Pathogenesis, Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Peter B. Gilbert
- Vaccine Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United State of America
| | - Allan C. DeCamp
- Vaccine Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United State of America
| | - Craig A. Magaret
- Vaccine Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United State of America
| | - William R. Schief
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Yih-En Andrew Ban
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Arzeda Corporation, Seattle, Washington, United States of America
| | - Ming Zhang
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, Georgia, United States of America
| | - Kelly A. Soderberg
- Duke University Medical Center, the Departments of Medicine and Surgery, and the Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Joseph G. Sodroski
- Dana-Farber Cancer Institute, Department of Cancer Immunology and AIDS, Boston, Massachusetts, United States of America
| | - Barton F. Haynes
- Duke University Medical Center, the Departments of Medicine and Surgery, and the Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - George M. Shaw
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Beatrice H. Hahn
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Bette Korber
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
15
|
Abd-Alla AMM, Parker AG, Vreysen MJB, Bergoin M. Tsetse salivary gland hypertrophy virus: hope or hindrance for tsetse control? PLoS Negl Trop Dis 2011; 5:e1220. [PMID: 21912708 PMCID: PMC3166039 DOI: 10.1371/journal.pntd.0001220] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Many species of tsetse flies (Diptera: Glossinidae) are infected with a virus that causes salivary gland hypertrophy (SGH), and flies with SGH symptoms have a reduced fecundity and fertility. The prevalence of SGH in wild tsetse populations is usually very low (0.2%–5%), but higher prevalence rates (15.2%) have been observed occasionally. The successful eradication of a Glossina austeni population from Unguja Island (Zanzibar) using an area-wide integrated pest management approach with a sterile insect technique (SIT) component (1994–1997) encouraged several African countries, including Ethiopia, to incorporate the SIT in their national tsetse control programs. A large facility to produce tsetse flies for SIT application in Ethiopia was inaugurated in 2007. To support this project, a Glossina pallidipes colony originating from Ethiopia was successfully established in 1996, but later up to 85% of adult flies displayed symptoms of SGH. As a result, the colony declined and became extinct by 2002. The difficulties experienced with the rearing of G. pallidipes, epitomized by the collapse of the G. pallidipes colony originating from Ethiopia, prompted the urgent need to develop management strategies for the salivary gland hypertrophy virus (SGHV) for this species. As a first step to identify suitable management strategies, the virus isolated from G. pallidipes (GpSGHV) was recently sequenced and research was initiated on virus transmission and pathology. Different approaches to prevent virus replication and its horizontal transmission during blood feeding have been proposed. These include the use of antiviral drugs such as acyclovir and valacyclovir added to the blood for feeding or the use of antibodies against SGHV virion proteins. In addition, preliminary attempts to silence the expression of an essential viral protein using RNA interference will be discussed.
Collapse
Affiliation(s)
- Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria.
| | | | | | | |
Collapse
|
16
|
Functional contributions of carbohydrate on AIDS virus glycoprotein. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2010; 83:201-8. [PMID: 21165339 PMCID: PMC3002149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Envelope glycoprotein spikes on the surface of the human immunodeficiency virus (HIV) are used by the virus to bind to cellular receptors to gain entry into target cells. As such, the envelope spikes are the targets of antibodies that can neutralize viral infectivity. Fifty percent or more of the mass of the viral-encoded surface glycoprotein of HIV, and of its close monkey relative simian immunodeficiency virus (SIV), is actually carbohydrate; it is one of the most heavily glycosylated proteins that can be found in mammals. It has been clearly demonstrated that one of the functions of this carbohydrate is to shield viral epitopes that would otherwise be the direct target of antibodies that could neutralize viral infection. In addition, it is now generally accepted that the carbohydrate on the viral envelope glycoprotein is recognized by multiple cellular lectins of the host lymphoreticular system, and these interactions play a role in the dissemination of virus within the host as well as the release of modulatory cytokines. Our work recently demonstrated fundamental differences in the composition of the carbohydrate on HIV type 1, the cause of the AIDS pandemic, versus the SIV in the sooty mangabey monkey, a natural host that does not develop disease from its infection. We now speculate that this fundamental difference in carbohydrate composition reflects evolutionary pressures on both virus and host. Furthermore, carbohydrate composition on the virus and genetic differences in carbohydrate-sensing proteins of the host could be critically important for the generalized lymphoid activation that characterizes the acquired immunodeficiency syndrome (AIDS).
Collapse
|
17
|
Generation of neutralizing antibodies and divergence of SIVmac239 in cynomolgus macaques following short-term early antiretroviral therapy. PLoS Pathog 2010; 6:e1001084. [PMID: 20824092 PMCID: PMC2932721 DOI: 10.1371/journal.ppat.1001084] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 08/02/2010] [Indexed: 12/27/2022] Open
Abstract
Neutralizing antibodies (NAb) able to react to heterologous viruses are generated during natural HIV-1 infection in some individuals. Further knowledge is required in order to understand the factors contributing to induction of cross-reactive NAb responses. Here a well-established model of experimental pathogenic infection in cynomolgus macaques, which reproduces long-lasting HIV-1 infection, was used to study the NAb response as well as the viral evolution of the highly neutralization-resistant SIVmac239. Twelve animals were infected intravenously with SIVmac239. Antiretroviral therapy (ART) was initiated ten days post-inoculation and administered daily for four months. Viral load, CD4+ T-cell counts, total IgG levels, and breadth as well as strength of NAb in plasma were compared simultaneously over 14 months. In addition, envs from plasma samples were sequenced at three time points in all animals in order to assess viral evolution. We report here that seven of the 12 animals controlled viremia to below 104 copies/ml of plasma after discontinuation of ART and that this control was associated with a low level of evolutionary divergence. Macaques that controlled viral load developed broader NAb responses early on. Furthermore, escape mutations, such as V67M and R751G, were identified in virus sequenced from all animals with uncontrolled viremia. Bayesian estimation of ancestral population genetic diversity (PGD) showed an increase in this value in non-controlling or transient-controlling animals during the first 5.5 months of infection, in contrast to virus-controlling animals. Similarly, non- or transient controllers displayed more positively-selected amino-acid substitutions. An early increase in PGD, resulting in the generation of positively-selected amino-acid substitutions, greater divergence and relative high viral load after ART withdrawal, may have contributed to the generation of potent NAb in several animals after SIVmac239 infection. However, early broad NAb responses correlated with relatively preserved CD4+ T-cell numbers, low viral load and limited viral divergence. In a longitudinal study of clinical and evolutionary responses to transient treatment in 12 experimentally-infected macaques, subjects show clear stratification into two groups based on viral load, immunological response, and evolutionary factors. Subjects that controlled viremia following withdrawal of treatment developed broadly neutralizing antibody responses earlier than subjects with no or transient control of viremia. Moreover, this latter group of macaques with higher viral loads showed greater divergence of SIV sequences, greater numbers of positively-selected amino-acid substitutions and a stronger neutralizing antibody response. The increase in viral genetic diversity started at an early stage of infection. The authors propose that this early phase of evolution is principally responsible for the later failure to control viremia and resulted in the development of potent neutralizing capacity.
Collapse
|
18
|
Autologous neutralizing antibodies to the transmitted/founder viruses emerge late after simian immunodeficiency virus SIVmac251 infection of rhesus monkeys. J Virol 2010; 84:6018-32. [PMID: 20357097 DOI: 10.1128/jvi.02741-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While the simian immunodeficiency virus (SIV)-infected rhesus monkey is an important animal model for human immunodeficiency virus type 1 (HIV-1) infection of humans, much remains to be learned about the evolution of the humoral immune response in this model. In HIV-1 infection, autologous neutralizing antibodies emerge 2 to 3 months after infection. However, the ontogeny of the SIV-specific neutralizing antibody response in mucosally infected animals has not been defined. We characterized the kinetics of the autologous neutralizing antibody response to the transmitted/founder SIVmac251 using a pseudovirion-based TZM-bl cell assay and monitored env sequence evolution using single-genome amplification in four rhesus animals that were infected via intrarectal inoculations. We show that the SIVmac251 founder viruses induced neutralizing antibodies at 5 to 8 months after infection. Despite their slow emergence and low titers, these neutralizing antibodies selected for escape mutants that harbored substitutions and deletions in variable region 1 (V1), V2, and V4 of Env. The neutralizing antibody response was initially focused on V4 at 5 to 8 months after infection and then targeted V1/V2 and V4 by 16 months. These findings reveal a striking delay in the development of neutralizing antibodies in SIVmac-infected animals, thus raising questions concerning the suitability of SIVmac251 as a challenge strain to screen AIDS vaccines that elicit neutralizing antibodies as a means to prevent virus acquisition. They also illustrate the capacity of the SIVmac quasispecies to modify antigenic determinants in response to very modest titers of neutralizing antibodies.
Collapse
|
19
|
Envelope vaccination shapes viral envelope evolution following simian immunodeficiency virus infection in rhesus monkeys. J Virol 2009; 84:953-63. [PMID: 19906933 DOI: 10.1128/jvi.01679-09] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The evolution of envelope mutations by replicating primate immunodeficiency viruses allows these viruses to escape from the immune pressure mediated by neutralizing antibodies. Vaccine-induced anti-envelope antibody responses may accelerate and/or alter the specificity of the antibodies, thus shaping the evolution of envelope mutations in the replicating virus. To explore this possibility, we studied the neutralizing antibody response and the envelope sequences in rhesus monkeys vaccinated with either gag-pol-nef immunogens or gag-pol-nef immunogens in combination with env and then infected with simian immunodeficiency virus (SIV). Using a pseudovirion neutralization assay, we demonstrate that envelope vaccination primed for an accelerated neutralizing antibody response following virus challenge. To monitor viral envelope evolution in these two cohorts of monkeys, full-length envelopes from plasma virus isolated at weeks 37 and 62 postchallenge were sequenced by single genome amplification to identify sites of envelope mutations. We show that env vaccination was associated with a change in the pattern of envelope mutations. Prevalent mutations in sequences from gag-pol-nef vaccinees included deletions in both variable regions 1 and 4 (V1 and V4), whereas deletions in the env vaccinees occurred only in V1. These data show that env vaccination altered the focus of the antibody-mediated selection pressure on the evolution of envelope following SIV challenge.
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW It has long been known that autologous neutralizing antibodies (AnAbs) exert pressure on the envelope of HIV, resulting in neutralization escape. However, recently, progress has been made in uncovering the precise targets of these potent early antibodies. RECENT FINDINGS AnAbs primarily target variable regions of the HIV-1 envelope, explaining the strain-specificity of these antibodies. Despite high neutralizing potential and cross-reactivity, anti-V3 antibodies do not contribute to autologous neutralization. The V1V2 is commonly immunogenic in early HIV-1 and simian human immunodeficiency virus infections, though the nature of these epitopes remains to be determined. In subtype C viruses, the C3 region is a neutralization target, possibly as a result of its more exposed and amphipathic structure. Autologous neutralization appears to be mediated by very few AnAb specificities that develop sequentially suggesting the possibility of immunological hierarchies for both binding and neutralizing antibodies. The role of AnAbs in preventing superinfection and in restricting virus replication is reexamined in the context of recent data. SUMMARY New studies have greatly contributed toward our understanding of the specificities mediating autologous neutralization and highlighted potential vulnerabilities on transmitted viruses. However, the contribution of AnAbs to the development of neutralization breadth remains to be characterized.
Collapse
Affiliation(s)
- Penny L Moore
- AIDS Virus Research Unit, National Institute for Communicable Diseases, Johannesburg, South Africa.
| | | | | |
Collapse
|
21
|
Balancing reversion of cytotoxic T-lymphocyte and neutralizing antibody escape mutations within human immunodeficiency virus type 1 Env upon transmission. J Virol 2009; 83:8986-92. [PMID: 19515763 DOI: 10.1128/jvi.00599-09] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) envelope protein (Env) is subject to both neutralizing antibody (NAb) and CD8 T-cell (cytotoxic T-lymphocyte [CTL]) immune pressure. We studied the reversion of the Env CTL escape mutant virus to the wild type and the relationship between the reversion of CTL mutations with N-linked glycosylation site (NLGS)-driven NAb escape in pigtailed macaques. Env CTL mutations either did not revert to the wild type or only transiently reverted 5 to 7 weeks after infection. The CTL escape mutant reversion was coincident, for the same viral clones, with the loss of NLGS mutations. At one site studied, both CTL and NLGS mutations were needed to confer NAb escape. We conclude that CTL and NAb escape within Env can be tightly linked, suggesting opportunities to induce effective multicomponent anti-Env immunity.
Collapse
|
22
|
Glycosylation of gp41 of simian immunodeficiency virus shields epitopes that can be targets for neutralizing antibodies. J Virol 2008; 82:12472-86. [PMID: 18829751 DOI: 10.1128/jvi.01382-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 and simian immunodeficiency virus possess three closely spaced, highly conserved sites for N-linked carbohydrate attachment in the extracellular domain of the transmembrane protein gp41. We infected rhesus monkeys with a variant of cloned SIVmac239 lacking the second and third sites or with a variant strain lacking all three of SIVmac239's glycosylation sites in gp41. For each mutation, asparagine (N) in the canonical N-X-S/T recognition sequence for carbohydrate attachment was changed to the structurally similar glutamine such that two nucleotide changes would be required for a reversion of the mutated codon. By 16 weeks, experimentally infected monkeys made antibodies that neutralized the mutant viruses to high titers. Such antibodies were not observed in monkeys infected with the parental virus. Thus, new specificities were revealed as a result of the carbohydrate attachment mutations, and antibodies of these specificities had neutralizing activity. Unlike monkeys infected with the parental virus, monkeys infected with the mutant viruses made antibodies that reacted with peptides corresponding to the sequences in this region. Furthermore, there was strong selective pressure for the emergence of variant sequences in this region during the course of infection. By analyzing the neutralization profiles of sequence variants, we were able to define three mutations (Q625R, K631N, and Q634H) in the region of the glycosylation site mutations that conferred resistance to neutralization by plasma from the monkeys infected with mutant virus. Based on the reactivity of antibodies to peptides in this region and the colocalization of neutralization escape mutations, we conclude that N-linked carbohydrates in the ectodomain of the transmembrane protein shield underlying epitopes that would otherwise be the direct targets of neutralizing antibodies.
Collapse
|