1
|
Nasar S, Iftikhar S, Saleem R, Nadeem MS, Ali M. The N and C-terminal deleted variant of the dengue virus NS1 protein is a potential candidate for dengue vaccine development. Sci Rep 2024; 14:18883. [PMID: 39143088 PMCID: PMC11324946 DOI: 10.1038/s41598-024-65593-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 06/21/2024] [Indexed: 08/16/2024] Open
Abstract
NS1 is an elusive dengue protein, involved in viral replication, assembly, pathogenesis, and immune evasion. Its levels in blood plasm are positively related to disease severity like thrombocytopenia, hemorrhage, and vascular leakage. Despite its pathogenic roles, NS1 is being used in various vaccine formulations due to its sequence conservancy, ability to produce protective antibodies and low risk for inducing antibody-dependent enhancement. In this study, we have used bioinformatics tools and reported literature to develop an NS1 variant (dNS1). Molecular docking studies were performed to evaluate the receptor-binding ability of the NS1 and dNS1 with TLR4. NS1 and dNS1 (153 to 312 amino acid region) genes were cloned, expressed and protein was purified followed by refolding. Docking studies showed the binding of NS1 and dNS1 with the TLR4 receptor which suggests that N and C-terminal sequences of NS1 are not critical for receptor binding. Antibodies against NS1 and dNS1 were raised in rabbits and binding affinity of anti-dNS1 anti-NS1 sera was evaluated against both NS1 and dNS1. Similar results were observed through western blotting which highlight that N and C-terminal deletion of NS1 does not compromise the immunogenic potential of dNS1 hence, supports its use in future vaccine formulations as a substitute for NS1.
Collapse
Affiliation(s)
- Sitara Nasar
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Saima Iftikhar
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan.
| | - Rida Saleem
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | | | - Muhammad Ali
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
2
|
You M, Chen F, Yu C, Chen Y, Wang Y, Liu X, Guo X, Zhou B, Wang X, Zhang B, Fang M, Zhang T, Yue P, Wang Y, Yuan Q, Luo W. A glycoengineered therapeutic anti-HBV antibody that allows increased HBsAg immunoclearance improves HBV suppression in vivo. Front Pharmacol 2023; 14:1213726. [PMID: 38205373 PMCID: PMC10777313 DOI: 10.3389/fphar.2023.1213726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/30/2023] [Indexed: 01/12/2024] Open
Abstract
Introduction: The effective and persistent suppression of hepatitis B surface antigen (HBsAg) in patients with chronic HBV infection (CHB) is considered to be a promising approach to achieve a functional cure of hepatitis B. In our previous study, we found that the antibody E6F6 can clear HBsAg through FcγR-mediated phagocytosis, and its humanized form (huE6F6 antibody) is expected to be a new tool for the treatment of CHB. Previous studies have shown that the glycosylation of Fc segments affects the binding of antibodies to FcγR and thus affects the biological activity of antibodies in vivo. Methods: To further improve the therapeutic potential of huE6F6, in this study, we defucosylated huE6F6 (huE6F6-fuc-), preliminarily explored the developability of this molecule, and studied the therapeutic potential of this molecule and its underlying mechanism in vitro and in vivo models. Results: huE6F6-fuc- has desirable physicochemical properties. Compared with huE6F6-wt, huE6F6-fuc- administration resulted in a stronger viral clearance in vivo. Meanwhile, huE6F6-fuc- keep a similar neutralization activity and binding activity to huE6F6-wt in vitro. Immunological analyses suggested that huE6F6-fuc- exhibited enhanced binding to hCD32b and hCD16b, which mainly contributed to its enhanced therapeutic activity in vivo. Conclusions: In summary, the huE6F6-fuc- molecule that was developed in this study, which has desirable developability, can clear HBsAg more efficiently in vivo, providing a promising treatment for CHB patients. Our study provides new guidance for antibody engineering in other disease fields.
Collapse
Affiliation(s)
- Min You
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Science, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
| | - Fentian Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Science, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
| | - Chao Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Science, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
| | - Yuanzhi Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Science, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
| | - Yue Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Science, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
| | - Xue Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Science, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
| | - Xueran Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Science, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
| | - Bing Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Science, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- The 2nd Affiliated Hospital, South University of Science and Technology, Shenzhen, China
| | - Xin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Science, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- The 2nd Affiliated Hospital, South University of Science and Technology, Shenzhen, China
| | - Boya Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Science, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
| | - Mujin Fang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Science, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang An Biomedicine Laboratory, Xiamen, China
| | - Tianying Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Science, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang An Biomedicine Laboratory, Xiamen, China
| | - Ping Yue
- School of Biology and Engineering (School of Health Medicine Modern Industry), Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Yingbin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Science, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang An Biomedicine Laboratory, Xiamen, China
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Science, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang An Biomedicine Laboratory, Xiamen, China
| | - Wenxin Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Science, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang An Biomedicine Laboratory, Xiamen, China
| |
Collapse
|
3
|
Beicht J, Kubinski M, Zdora I, Puff C, Biermann J, Gerlach T, Baumgärtner W, Sutter G, Osterhaus ADME, Prajeeth CK, Rimmelzwaan GF. Induction of humoral and cell-mediated immunity to the NS1 protein of TBEV with recombinant Influenza virus and MVA affords partial protection against lethal TBEV infection in mice. Front Immunol 2023; 14:1177324. [PMID: 37483628 PMCID: PMC10360051 DOI: 10.3389/fimmu.2023.1177324] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Tick-borne encephalitis virus (TBEV) is one of the most relevant tick-transmitted neurotropic arboviruses in Europe and Asia and the causative agent of tick-borne encephalitis (TBE). Annually more than 10,000 TBE cases are reported despite having vaccines available. In Europe, the vaccines FSME-IMMUN® and Encepur® based on formaldehyde-inactivated whole viruses are licensed. However, demanding vaccination schedules contribute to sub-optimal vaccination uptake and breakthrough infections have been reported repeatedly. Due to its immunogenic properties as well as its role in viral replication and disease pathogenesis, the non-structural protein 1 (NS1) of flaviviruses has become of interest for non-virion based flavivirus vaccine candidates in recent years. Methods Therefore, immunogenicity and protective efficacy of TBEV NS1 expressed by neuraminidase (NA)-deficient Influenza A virus (IAV) or Modified Vaccinia virus Ankara (MVA) vectors were investigated in this study. Results With these recombinant viral vectors TBEV NS1-specific antibody and T cell responses were induced. Upon heterologous prime/boost regimens partial protection against lethal TBEV challenge infection was afforded in mice. Discussion This supports the inclusion of NS1 as a vaccine component in next generation TBEV vaccines.
Collapse
Affiliation(s)
- Jana Beicht
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Mareike Kubinski
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Isabel Zdora
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience, Hannover Graduate School for Neurosciences, Infection Medicine, and Veterinary Sciences (HGNI), Hannover, Germany
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jeannine Biermann
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Thomas Gerlach
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience, Hannover Graduate School for Neurosciences, Infection Medicine, and Veterinary Sciences (HGNI), Hannover, Germany
| | - Gerd Sutter
- Division of Virology, Institute for Infectious Diseases and Zoonoses, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Albert D. M. E. Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Chittappen Kandiyil Prajeeth
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Guus F. Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
4
|
van Bree JW, Visser I, Duyvestyn JM, Aguilar-Bretones M, Marshall EM, van Hemert MJ, Pijlman GP, van Nierop GP, Kikkert M, Rockx BH, Miesen P, Fros JJ. Novel approaches for the rapid development of rationally designed arbovirus vaccines. One Health 2023; 16:100565. [PMID: 37363258 PMCID: PMC10288159 DOI: 10.1016/j.onehlt.2023.100565] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/28/2023] Open
Abstract
Vector-borne diseases, including those transmitted by mosquitoes, account for more than 17% of infectious diseases worldwide. This number is expected to rise with an increased spread of vector mosquitoes and viruses due to climate change and man-made alterations to ecosystems. Among the most common, medically relevant mosquito-borne infections are those caused by arthropod-borne viruses (arboviruses), especially members of the genera Flavivirus and Alphavirus. Arbovirus infections can cause severe disease in humans, livestock and wildlife. Severe consequences from infections include congenital malformations as well as arthritogenic, haemorrhagic or neuroinvasive disease. Inactivated or live-attenuated vaccines (LAVs) are available for a small number of arboviruses; however there are no licensed vaccines for the majority of these infections. Here we discuss recent developments in pan-arbovirus LAV approaches, from site-directed attenuation strategies targeting conserved determinants of virulence to universal strategies that utilize genome-wide re-coding of viral genomes. In addition to these approaches, we discuss novel strategies targeting mosquito saliva proteins that play an important role in virus transmission and pathogenesis in vertebrate hosts. For rapid pre-clinical evaluations of novel arbovirus vaccine candidates, representative in vitro and in vivo experimental systems are required to assess the desired specific immune responses. Here we discuss promising models to study attenuation of neuroinvasion, neurovirulence and virus transmission, as well as antibody induction and potential for cross-reactivity. Investigating broadly applicable vaccination strategies to target the direct interface of the vertebrate host, the mosquito vector and the viral pathogen is a prime example of a One Health strategy to tackle human and animal diseases.
Collapse
Affiliation(s)
- Joyce W.M. van Bree
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Imke Visser
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jo M. Duyvestyn
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Eleanor M. Marshall
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Martijn J. van Hemert
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Marjolein Kikkert
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Barry H.G. Rockx
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500, HB, Nijmegen, the Netherlands
| | - Jelke J. Fros
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
5
|
Gaspar-Castillo C, Rodríguez MH, Ortiz-Navarrete V, Alpuche-Aranda CM, Martinez-Barnetche J. Structural and immunological basis of cross-reactivity between dengue and Zika infections: Implications in serosurveillance in endemic regions. Front Microbiol 2023; 14:1107496. [PMID: 37007463 PMCID: PMC10063793 DOI: 10.3389/fmicb.2023.1107496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/24/2023] [Indexed: 03/19/2023] Open
Abstract
Dengue and Zika are arthropod-borne viral diseases present in more than 100 countries around the world. In the past decade, Zika emerged causing widespread outbreaks in new regions, where dengue has been endemic-epidemic for a long period. The wide and extensive dissemination of the mosquito vectors, Aedes aegypti, and Ae. albopictus, favor the co-existence of both infections in the same regions. Together with an important proportion of asymptomatic infections, similar clinical manifestations, and a short time window for acute infection confirmatory tests, it is difficult to differentially estimate both dengue and Zika incidence and prevalence. DENV and ZIKV flavivirus share high structural similarity, inducing a cross-reactive immune response that leads to false positives in serological tests particularly in secondary infections. This results in overestimation of recent Zika outbreaks seroprevalence in dengue endemic regions. In this review, we address the biological basis underlying DENV and ZIKV structural homology; the structural and cellular basis of immunological cross reactivity; and the resulting difficulties in measuring dengue and Zika seroprevalence. Finally, we offer a perspective about the need for more research to improve serological tests performance.
Collapse
Affiliation(s)
- Carlos Gaspar-Castillo
- Center for Infectious Diseases Research, National Institute of Public Health, Cuernavaca, Mexico
| | - Mario H. Rodríguez
- Center for Infectious Diseases Research, National Institute of Public Health, Cuernavaca, Mexico
| | - Vianney Ortiz-Navarrete
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Celia M. Alpuche-Aranda
- Center for Infectious Diseases Research, National Institute of Public Health, Cuernavaca, Mexico
- Celia M. Alpuche-Aranda,
| | - Jesus Martinez-Barnetche
- Center for Infectious Diseases Research, National Institute of Public Health, Cuernavaca, Mexico
- *Correspondence: Jesus Martinez-Barnetche,
| |
Collapse
|
6
|
Immunogenicity and protective activity of mRNA vaccine candidates against yellow fever virus in animal models. NPJ Vaccines 2023; 8:31. [PMID: 36871059 PMCID: PMC9984760 DOI: 10.1038/s41541-023-00629-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Despite the success of the widely used attenuated yellow fever (YF) vaccine, its global supply remains a substantial barrier to implementing vaccination campaigns in endemic regions and combating emerging epidemics. In A129 mice and rhesus macaques, we evaluated the immunogenicity and protective activity of messenger RNA (mRNA) vaccine candidates encapsulated in lipid nanoparticles, expressing the pre-membrane and envelope proteins or the non-structural protein 1 of YF virus. Vaccine constructs induced humoral and cell-mediated immune responses in mice, resulting in protection against lethal YF virus infection after passive administration of serum or splenocytes from vaccinated mice. Vaccination of macaques induced sustained high humoral and cellular immune responses for at least 5 months after the second dose. Our data demonstrate that these mRNA vaccine candidates can be considered an attractive addition to the licensed YF vaccine supply based on the induction of functional antibodies correlating with protection and T-cell responses; they could alleviate the limited supply of current YF vaccines, mitigating future YF epidemics.
Collapse
|
7
|
Waickman AT, Lu JQ, Fang H, Waldran MJ, Gebo C, Currier JR, Ware L, Van Wesenbeeck L, Verpoorten N, Lenz O, Tambuyzer L, Herrera-Taracena G, Van Loock M, Endy TP, Thomas SJ. Evolution of inflammation and immunity in a dengue virus 1 human infection model. Sci Transl Med 2022; 14:eabo5019. [DOI: 10.1126/scitranslmed.abo5019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dengue virus (DENV) infections are major causes of morbidity and mortality throughout the tropics and subtropics. More than 400 million infections are estimated to occur every year, resulting in nearly 100 million symptomatic infections and more than 20,000 deaths. Early immune response kinetics to infection remain unclear, in large part due to the variable incubation period exhibited by the DENVs after introduction into a susceptible host. To fill this knowledge gap, we performed a comprehensive virologic and immunologic analysis of individuals experimentally infected with the underattenuated DENV-1 strain 45AZ5. This analysis captured both the kinetics and composition of the innate, humoral, and cellular immune responses elicited by experimental DENV-1 infection, as well as virologic and clinical features. We observed a robust DENV-specific immunoglobulin A (IgA) antibody response that manifested between the appearance of DENV-specific IgM and IgG in all challenged individuals, as well as the presence of a non-neutralizing/NS1-specific antibody response that was delayed relative to the appearance of DENV virion–specific humoral immunity. RNA sequencing analysis revealed discrete and temporally restricted gene modules that correlated with acute viremia and the induction of adaptive immunity. Our analysis provides a detailed description, in time and space, of the evolving matrix of DENV-elicited human inflammation and immunity and reveals several previously unappreciated immunological aspects of primary DENV-1 infection that can inform countermeasure development and evaluation.
Collapse
Affiliation(s)
- Adam T. Waickman
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
- Institute for Global Health and Translational Sciences, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Joseph Q. Lu
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
- Institute for Global Health and Translational Sciences, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - HengSheng Fang
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Mitchell J. Waldran
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Chad Gebo
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Jeffrey R. Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Lisa Ware
- Institute for Global Health and Translational Sciences, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | | | | | | - Timothy P. Endy
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Stephen J. Thomas
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
- Institute for Global Health and Translational Sciences, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
8
|
Kumar S, Verma A, Yadav P, Dubey SK, Azhar EI, Maitra SS, Dwivedi VD. Molecular pathogenesis of Japanese encephalitis and possible therapeutic strategies. Arch Virol 2022; 167:1739-1762. [PMID: 35654913 PMCID: PMC9162114 DOI: 10.1007/s00705-022-05481-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/10/2022] [Indexed: 12/26/2022]
Abstract
Japanese encephalitis virus (JEV), a single-stranded, enveloped RNA virus, is a health concern across Asian countries, associated with severe neurological disorders, especially in children. Primarily, pigs, bats, and birds are the natural hosts for JEV, but humans are infected incidentally. JEV requires a few host proteins for its entry and replication inside the mammalian host cell. The endoplasmic reticulum (ER) plays a significant role in JEV genome replication and assembly. During this process, the ER undergoes stress due to its remodelling and accumulation of viral particles and unfolded proteins, leading to an unfolded protein response (UPR). Here, we review the overall strategy used by JEV to infect the host cell and various cytopathic effects caused by JEV infection. We also highlight the role of JEV structural proteins (SPs) and non-structural proteins (NSPs) at various stages of the JEV life cycle that are involved in up- and downregulation of different host proteins and are potentially relevant for developing efficient therapeutic drugs.
Collapse
Affiliation(s)
- Sanjay Kumar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| | - Akanksha Verma
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Pardeep Yadav
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh 201310 India
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| | | | - Esam Ibraheem Azhar
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - S. S. Maitra
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Vivek Dhar Dwivedi
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| |
Collapse
|
9
|
Kraivong R, Traewachiwiphak S, Nilchan N, Tangthawornchaikul N, Pornmun N, Poraha R, Sriruksa K, Limpitikul W, Avirutnan P, Malasit P, Puttikhunt C. Cross-reactive antibodies targeting surface-exposed non-structural protein 1 (NS1) of dengue virus-infected cells recognize epitopes on the spaghetti loop of the β-ladder domain. PLoS One 2022; 17:e0266136. [PMID: 35617160 PMCID: PMC9135231 DOI: 10.1371/journal.pone.0266136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022] Open
Abstract
Non-structural protein 1 (NS1) is a glycoprotein component of dengue virus (DENV) that is essential for viral replication, infection and immune evasion. Immunization with NS1 has been shown to elicit antibody-mediated immune responses which protect mice against DENV infections. Here, we obtained peripheral blood mononuclear cells from human subjects with secondary dengue infections, which were used to construct a dengue immune phage library displaying single-chain variable fragments. Phage selective for DENV NS1 were obtained by biopanning. Twenty-one monoclonal antibodies (mAbs) against DENV NS1 were generated from the selected phage and characterized in detail. We found most anti-NS1 mAbs used IGHV1 heavy chain antibody genes. The mAbs were classified into strongly and weakly-reactive groups based on their binding to NS1 expressed in dengue virus 2 (DENV2)-infected cells. Antibody binding experiments with recombinant NS1 proteins revealed that the mAbs recognize conformational epitopes on the β-ladder domain (amino acid residues 178–273) of DENV NS1. Epitope mapping studies on alanine-substituted NS1 proteins identified distinct but overlapping epitopes. Protruding amino acids distributed around the spaghetti loop are required for the binding of the strongly-reactive mAbs, whereas the recognition residues of the weakly-reactive mAbs are likely to be located in inaccessible sites facing toward the cell membrane. This information could guide the design of an NS1 epitope-based vaccine that targets cross-reactive conserved epitopes on cell surface-associated DENV NS1.
Collapse
Affiliation(s)
- Romchat Kraivong
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, Siriraj Hospital, Bangkok, Thailand
- Faculty of Medicine Siriraj Hospital, Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Mahidol University, Bangkok, Thailand
| | - Somchoke Traewachiwiphak
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Napon Nilchan
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, Siriraj Hospital, Bangkok, Thailand
- Faculty of Medicine Siriraj Hospital, Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Mahidol University, Bangkok, Thailand
| | - Nattaya Tangthawornchaikul
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, Siriraj Hospital, Bangkok, Thailand
| | - Nuntaya Pornmun
- Faculty of Medicine Siriraj Hospital, Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Mahidol University, Bangkok, Thailand
- Faculty of Medicine Siriraj Hospital, Division of Dengue Hemorrhagic Fever Research, Mahidol University, Bangkok, Thailand
| | - Ranyikar Poraha
- Faculty of Medicine Siriraj Hospital, Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Mahidol University, Bangkok, Thailand
- Faculty of Medicine Siriraj Hospital, Division of Dengue Hemorrhagic Fever Research, Mahidol University, Bangkok, Thailand
| | - Kanokwan Sriruksa
- Pediatric Department, Khon Kaen Hospital, Ministry of Public Health, Khon Kaen, Thailand
| | - Wannee Limpitikul
- Pediatric Department, Songkhla Hospital, Ministry of Public Health, Songkhla, Thailand
| | - Panisadee Avirutnan
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, Siriraj Hospital, Bangkok, Thailand
- Faculty of Medicine Siriraj Hospital, Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Mahidol University, Bangkok, Thailand
- Faculty of Medicine Siriraj Hospital, Division of Dengue Hemorrhagic Fever Research, Mahidol University, Bangkok, Thailand
| | - Prida Malasit
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, Siriraj Hospital, Bangkok, Thailand
- Faculty of Medicine Siriraj Hospital, Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Mahidol University, Bangkok, Thailand
- Faculty of Medicine Siriraj Hospital, Division of Dengue Hemorrhagic Fever Research, Mahidol University, Bangkok, Thailand
| | - Chunya Puttikhunt
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, Siriraj Hospital, Bangkok, Thailand
- Faculty of Medicine Siriraj Hospital, Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
10
|
Wessel AW, Doyle MP, Engdahl TB, Rodriguez J, Crowe JE, Diamond MS. Human Monoclonal Antibodies against NS1 Protein Protect against Lethal West Nile Virus Infection. mBio 2021; 12:e0244021. [PMID: 34634945 PMCID: PMC8510529 DOI: 10.1128/mbio.02440-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 08/31/2021] [Indexed: 11/20/2022] Open
Abstract
Envelope protein-targeted vaccines for flaviviruses are limited by concerns of antibody-dependent enhancement (ADE) of infections. Nonstructural protein 1 (NS1) provides an alternative vaccine target that avoids this risk since this protein is absent from the virion. Beyond its intracellular role in virus replication, extracellular forms of NS1 function in immune modulation and are recognized by host-derived antibodies. The rational design of NS1-based vaccines requires an extensive understanding of the antigenic sites on NS1, especially those targeted by protective antibodies. Here, we isolated human monoclonal antibodies (MAbs) from individuals previously naturally infected with WNV, mapped their epitopes using structure-guided mutagenesis, and evaluated their efficacy in vivo against lethal WNV challenge. The most protective epitopes clustered at three antigenic sites that are exposed on cell surface forms of NS1: (i) the wing flexible loop, (ii) the outer, electrostatic surface of the wing, and (iii) the spaghetti loop face of the β-ladder. One additional MAb mapped to the distal tip of the β-ladder and conferred a lower level of protection against WNV despite not binding to NS1 on the surface of infected cells. Our study defines the epitopes and modes of binding of protective anti-NS1 MAb antibodies following WNV infection, which may inform the development of NS1-based countermeasures against flaviviruses. IMPORTANCE Therapeutic antibodies against flaviviruses often promote neutralization by targeting the envelope protein of the virion. However, this approach is hindered by a possible concern for antibody-dependent enhancement of infection and paradoxical worsening of disease. As an alternative strategy, antibodies targeting flavivirus nonstructural protein 1 (NS1), which is absent from the virion, can protect against disease and do not cause enhanced infection. Here, we evaluate the structure-function relationships and protective activity of West Nile virus (WNV) NS1-specific monoclonal antibodies (MAbs) isolated from the memory B cells of a naturally infected human donor. We identify several anti-NS1 MAbs that protect mice against lethal WNV challenge and map their epitopes using charge reversal mutagenesis. Antibodies targeting specific regions in the NS1 structure could serve as the basis for countermeasures that control WNV infection in humans.
Collapse
Affiliation(s)
- Alex W. Wessel
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael P. Doyle
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Taylor B. Engdahl
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jessica Rodriguez
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael S. Diamond
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
11
|
Yang L, Liang T, Lv J, Qu S, Meng R, Yang B, Feng C, Li Q, Wang X, Zhang D. A quasispecies in a BHK-21 cell-derived virulent Tembusu virus strain contains three groups of variants with distinct virulence phenotypes. Vet Microbiol 2021; 263:109252. [PMID: 34673357 DOI: 10.1016/j.vetmic.2021.109252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/10/2021] [Indexed: 11/19/2022]
Abstract
Previous studies resulted in the isolation of a low-virulence plaque-purified variant from the third passage (P3) in BHK-21 cells of a Tembusu virus (TMUV) isolate, suggesting the presence of viral quasispecies in the P3 culture. To confirm this notion, the fourth passage virus (P4) was prepared by infecting BHK-21 cells with P3 for isolation of more variants. We isolated 10 plaque-purified viruses. Comparative genome sequence analysis identified six of the 10 viruses as genetically different variants, which harbored a total of eight amino acid differences in the envelope, NS1, NS3, and NS5 proteins. When tested in a 2-day-old Pekin duck model, P4 caused 80 % mortality, belonging to a high-virulence TMUV strain. Out of the six genetically different variants, two presented high-virulence, one exhibited moderate-virulence, and three displayed low-virulence, causing 60 %-70 %, 40 %, and 10 % mortalities, respectively. These results demonstrate that P4 contains at least three groups of variants with distinct virulence phenotypes. Analysis of links between the eight residues and virulence of the six variants identified NS1 protein residue 183 and NS5 protein residues 275 and/or 287 as novel determinants of TMUV virulence. The analysis also provided a new clue for future studies on the molecular basis of TMUV virulence in terms of genetic interaction of different proteins. Overall, our study provides direct evidence to suggest that TMUV exists in in vitro culture of a virulent isolate as a quasispecies, which may enhance our understanding of molecular mechanism of TMUV virulence.
Collapse
Affiliation(s)
- Lixin Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Te Liang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Junfeng Lv
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Shenghua Qu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Runze Meng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Baolin Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Chonglun Feng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Qiong Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Xiaoyan Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China.
| | - Dabing Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China.
| |
Collapse
|
12
|
Klaitong P, Smith DR. Roles of Non-Structural Protein 4A in Flavivirus Infection. Viruses 2021; 13:v13102077. [PMID: 34696510 PMCID: PMC8538649 DOI: 10.3390/v13102077] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
Infections with viruses in the genus Flavivirus are a worldwide public health problem. These enveloped, positive sense single stranded RNA viruses use a small complement of only 10 encoded proteins and the RNA genome itself to remodel host cells to achieve conditions favoring viral replication. A consequence of the limited viral armamentarium is that each protein exerts multiple cellular effects, in addition to any direct role in viral replication. The viruses encode four non-structural (NS) small transmembrane proteins (NS2A, NS2B, NS4A and NS4B) which collectively remain rather poorly characterized. NS4A is a 16kDa membrane associated protein and recent studies have shown that this protein plays multiple roles, including in membrane remodeling, antagonism of the host cell interferon response, and in the induction of autophagy, in addition to playing a role in viral replication. Perhaps most importantly, NS4A has been implicated as playing a critical role in fetal developmental defects seen as a consequence of Zika virus infection during pregnancy. This review provides a comprehensive overview of the multiple roles of this small but pivotal protein in mediating the pathobiology of flaviviral infections.
Collapse
|
13
|
Carpio KL, Barrett ADT. Flavivirus NS1 and Its Potential in Vaccine Development. Vaccines (Basel) 2021; 9:622. [PMID: 34207516 PMCID: PMC8229460 DOI: 10.3390/vaccines9060622] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/19/2022] Open
Abstract
The Flavivirus genus contains many important human pathogens, including dengue, Japanese encephalitis (JE), tick-borne encephalitis (TBE), West Nile (WN), yellow fever (YF) and Zika (ZIK) viruses. While there are effective vaccines for a few flavivirus diseases (JE, TBE and YF), the majority do not have vaccines, including WN and ZIK. The flavivirus nonstructural 1 (NS1) protein has an unusual structure-function because it is glycosylated and forms different structures to facilitate different roles intracellularly and extracellularly, including roles in the replication complex, assisting in virus assembly, and complement antagonism. It also plays a role in protective immunity through antibody-mediated cellular cytotoxicity, and anti-NS1 antibodies elicit passive protection in animal models against a virus challenge. Historically, NS1 has been used as a diagnostic marker for the flavivirus infection due to its complement fixing properties and specificity. Its role in disease pathogenesis, and the strong humoral immune response resulting from infection, makes NS1 an excellent target for inclusion in candidate flavivirus vaccines.
Collapse
Affiliation(s)
- Kassandra L. Carpio
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Alan D. T. Barrett
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
14
|
Sanchez Vargas LA, Adam A, Masterson M, Smith M, Lyski ZL, Dowd KA, Pierson TC, Messer WB, Currier JR, Mathew A. Non-structural protein 1-specific antibodies directed against Zika virus in humans mediate antibody-dependent cellular cytotoxicity. Immunology 2021; 164:386-397. [PMID: 34056709 PMCID: PMC8442231 DOI: 10.1111/imm.13380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/18/2021] [Accepted: 05/23/2021] [Indexed: 12/14/2022] Open
Abstract
There is growing interest in understanding antibody (Ab) function beyond neutralization. The non-structural protein 1 (NS1) of Zika virus (ZIKV) is an attractive candidate for an effective vaccine as Abs against NS1, unlike the envelope or premembrane, do not carry the risk of mediating antibody-dependent enhancement. Our aim was to evaluate whether ZIKV NS1 Abs elicited following natural infection in humans can mediate antibody-dependent cellular cytotoxicity (ADCC). We evaluated the isotype specificity of ZIKV-specific Abs in immune sera and supernatants from stimulated immune PBMC and found that Abs against ZIKV NS1 and virus-like particles were predominantly of the IgG1 isotype. Using a recently developed FluoroSpot assay, we found robust frequencies of NS1-specific Ab-secreting cells in PBMC of individuals who were naturally infected with ZIKV. We developed assays to measure both natural killer cell activation by flow cytometry and target cell lysis of ZIKV NS1-expressing cells using an image cytometry assay in the presence of ZIKV NS1 Abs. Our data indicate efficient opsonization of ZIKV NS1-expressing CEM-NKR cell lines using ZIKV-immune but not ZIKV-naïve sera, a prerequisite of ADCC. Furthermore, sera from immune donors were able to induce both NK cell degranulation and lysis of ZIKV NS1 CEM-NKR cells in vitro. Our data suggest that ADCC is a possible mechanism for ZIKV NS1 Abs to eliminate virally infected target cells.
Collapse
Affiliation(s)
- Luis A Sanchez Vargas
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, USA
| | - Awadalkareem Adam
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, USA
| | - Mary Masterson
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Madison Smith
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, USA
| | - Zoe L Lyski
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | | | | | - William B Messer
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA.,Division of Infectious Diseases, Department of Medicine, Oregon Health & Science University, Portland, OR, USA.,OHSU-PSU School of Public Health, Program in Epidemiology, Oregon Health & Science University, Portland, OR, USA
| | - Jeffrey R Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Anuja Mathew
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, USA
| |
Collapse
|
15
|
Keeler SP, Fox JM. Requirement of Fc-Fc Gamma Receptor Interaction for Antibody-Based Protection against Emerging Virus Infections. Viruses 2021; 13:v13061037. [PMID: 34072720 PMCID: PMC8226613 DOI: 10.3390/v13061037] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Identification of therapeutics against emerging and re-emerging viruses remains a continued priority that is only reinforced by the recent SARS-CoV-2 pandemic. Advances in monoclonal antibody (mAb) isolation, characterization, and production make it a viable option for rapid treatment development. While mAbs are traditionally screened and selected based on potency of neutralization in vitro, it is clear that additional factors contribute to the in vivo efficacy of a mAb beyond viral neutralization. These factors include interactions with Fc receptors (FcRs) and complement that can enhance neutralization, clearance of infected cells, opsonization of virions, and modulation of the innate and adaptive immune response. In this review, we discuss recent studies, primarily using mouse models, that identified a role for Fc-FcγR interactions for optimal antibody-based protection against emerging and re-emerging virus infections.
Collapse
Affiliation(s)
- Shamus P. Keeler
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Julie M. Fox
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Correspondence:
| |
Collapse
|
16
|
I'm Infected, Eat Me! Innate Immunity Mediated by Live, Infected Cells Signaling To Be Phagocytosed. Infect Immun 2021; 89:IAI.00476-20. [PMID: 33558325 DOI: 10.1128/iai.00476-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Innate immunity against pathogens is known to be mediated by barriers to pathogen invasion, activation of complement, recruitment of immune cells, immune cell phagocytosis of pathogens, death of infected cells, and activation of the adaptive immunity via antigen presentation. Here, we propose and review evidence for a novel mode of innate immunity whereby live, infected host cells induce phagocytes to phagocytose the infected cell, thereby potentially reducing infection. We discuss evidence that host cells, infected by virus, bacteria, or other intracellular pathogens (i) release nucleotides and chemokines as find-me signals, (ii) expose on their surface phosphatidylserine and calreticulin as eat-me signals, (iii) release and bind opsonins to induce phagocytosis, and (iv) downregulate don't-eat-me signals CD47, major histocompatibility complex class I (MHC1), and sialic acid. As long as the pathogens of the host cell are destroyed within the phagocyte, then infection can be curtailed; if antigens from the pathogens are cross-presented by the phagocyte, then an adaptive response would also be induced. Phagocytosis of live infected cells may thereby mediate innate immunity.
Collapse
|
17
|
Monoclonal Antibodies against Zika Virus NS1 Protein Confer Protection via Fc γ Receptor-Dependent and -Independent Pathways. mBio 2021; 12:mBio.03179-20. [PMID: 33563822 PMCID: PMC7885117 DOI: 10.1128/mbio.03179-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that has been linked to congenital microcephaly during recent epidemics. No licensed antiviral drug or vaccine is available. Zika virus (ZIKV) infection during pregnancy causes congenital defects such as fetal microcephaly. Monoclonal antibodies (MAbs) against the nonstructural protein 1 (NS1) have the potential to suppress ZIKV pathogenicity without enhancement of disease, but the pathways through which they confer protection remain obscure. Here, we report two types of NS1-targeted human MAbs that inhibit ZIKV infection through distinct mechanisms. MAbs 3G2 and 4B8 show a better efficacy than MAb 4F10 in suppressing ZIKV infection in C57BL/6 neonatal mice. Unlike MAb 4F10 that mainly triggers antibody-dependent cell-mediated cytotoxicity (ADCC), MAbs 3G2 and 4B8 not only trigger ADCC but inhibit ZIKV infection without Fcγ receptor-bearing effector cells, possibly at postentry stages. Destroying the Fc-mediated effector function of MAbs 3G2 and 4B8 reduces but does not abolish their protective effects, whereas destroying the effector function of MAb 4F10 eliminates the protective effects, suggesting that MAbs 3G2 and 4B8 engage both Fcγ receptor-dependent and -independent pathways. Further analysis reveals that MAbs 3G2 and 4B8 target the N-terminal region of NS1 protein, whereas MAb 4F10 targets the C-terminal region, implying that the protective efficacy of an NS1-targeted MAb may be associated with its epitope recognition. Our results illustrate that NS1-targeted MAbs have multifaceted protective effects and provide insights for the development of NS1-based vaccines and therapeutics.
Collapse
|
18
|
Zhan Y, Pang Z, Du Y, Wang W, Yang Y, Wang W, Gao GF, Huang B, Deng Y, Tan W. NS1-based DNA vaccination confers mouse protective immunity against ZIKV challenge. INFECTION GENETICS AND EVOLUTION 2020; 85:104521. [DOI: 10.1016/j.meegid.2020.104521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
|
19
|
Lv J, Liu X, Cui S, Yang L, Qu S, Meng R, Yang B, Feng C, Wang X, Zhang D. The Neutralizing Antibody Response Elicited by Tembusu Virus Is Affected Dramatically by a Single Mutation in the Stem Region of the Envelope Protein. Front Microbiol 2020; 11:585194. [PMID: 33193231 PMCID: PMC7642334 DOI: 10.3389/fmicb.2020.585194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/02/2020] [Indexed: 12/30/2022] Open
Abstract
Tembusu virus (TMUV) is a mosquito-borne flavivirus that most commonly affects adult breeder and layer ducks. However, a TMUV-caused neurological disease has also been found in ducklings below 7 weeks of age, highlighting the need to develop a safe vaccine for young ducklings. In this study, a plaque-purified PS TMUV strain was attenuated by serial passage in BHK-21 cells. Using 1-day-old Pekin ducklings as a model, the virus was confirmed to be attenuated sufficiently after 180 passages, whereas the neutralizing antibody response elicited by the 180th passage virus (PS180) was substantially impaired compared with PS. The findings suggest that sufficient attenuation results in loss of immunogenicity in the development of the live-attenuated TMUV vaccine. Comparative sequence analysis revealed that PS180 acquired one mutation (V41M) in prM and four mutations (T70A, Y176H, K313R, and F408L) in the envelope (E) protein. To identify the amino acid substitution(s) associated with loss of immunogenicity of PS180, we rescued parental viruses, rPS and rPS180, and produced mutant viruses, rPS180-M41V, rPS180-A70T, rPS180-H176Y, rPS180-R313K, rPS180-L408F, and rPS180-M5, which contained residue 41V in prM, residues 70T, 176Y, 313K, and 408F in E, and combination of the five residues, respectively, of PS in the backbone of the rPS180 genome. The neutralizing antibody response elicited by rPS180-L408F and rPS180-M5 was significantly higher than those by other mutant viruses and comparable to that by rPS. Furthermore, we produced mutant virus rPS-F408L, which contained residue 408L of PS180 in the backbone of the rPS genome. The F408L mutation conferred significantly decreased neutralizing antibody response to rPS-F408L, which was comparable to that elicited by rPS180. Based on homologous modeling, residue 408 was predicted to be located within the first helical domain of the stem region of the E protein (EH1). Together, these data demonstrate that a single mutation within the EH1 domain exerts a dramatical impact on the TMUV neutralizing antibody response. The present work may enhance our understanding of molecular basis of the TMUV neutralizing antibody response, and provides an important step for the development of a safe and efficient live-attenuated TMUV vaccine.
Collapse
Affiliation(s)
- Junfeng Lv
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaoxiao Liu
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shulin Cui
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lixin Yang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shenghua Qu
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Runze Meng
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Baolin Yang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chonglun Feng
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaoyan Wang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dabing Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Wessel AW, Kose N, Bombardi RG, Roy V, Chantima W, Mongkolsapaya J, Edeling MA, Nelson CA, Bosch I, Alter G, Screaton GR, Fremont DH, Crowe JE, Diamond MS. Antibodies targeting epitopes on the cell-surface form of NS1 protect against Zika virus infection during pregnancy. Nat Commun 2020; 11:5278. [PMID: 33077712 PMCID: PMC7572419 DOI: 10.1038/s41467-020-19096-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
There are no licensed therapeutics or vaccines available against Zika virus (ZIKV) to counteract its potential for congenital disease. Antibody-based countermeasures targeting the ZIKV envelope protein have been hampered by concerns for cross-reactive responses that induce antibody-dependent enhancement (ADE) of heterologous flavivirus infection. Nonstructural protein 1 (NS1) is a membrane-associated and secreted glycoprotein that functions in flavivirus replication and immune evasion but is absent from the virion. Although some studies suggest that antibodies against ZIKV NS1 are protective, their activity during congenital infection is unknown. Here we develop mouse and human anti-NS1 monoclonal antibodies that protect against ZIKV in both non-pregnant and pregnant mice. Avidity of antibody binding to cell-surface NS1 along with Fc effector functions engagement correlate with protection in vivo. Protective mAbs map to exposed epitopes in the wing domain and loop face of the β-platform. Anti-NS1 antibodies provide an alternative strategy for protection against congenital ZIKV infection without causing ADE.
Collapse
Affiliation(s)
- Alex W Wessel
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Nurgun Kose
- Departments of Pediatrics, Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Robin G Bombardi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Vicky Roy
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA, 02139, USA
| | - Warangkana Chantima
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Juthathip Mongkolsapaya
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Dengue Hemorrhagic Fever Unit, Faculty of Medicine, Office for Research and Development, Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Melissa A Edeling
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Christopher A Nelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Irene Bosch
- E25Bio, Inc., The Engine of MIT, Cambridge, MA, 02139, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA, 02139, USA
| | - Gavin R Screaton
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - David H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - James E Crowe
- Departments of Pediatrics, Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Michael S Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
21
|
Zhou D, Pei C, Liu Z, Yang K, Li Q, Chen H, Cao S, Song Y. Identification of a protective epitope in Japanese encephalitis virus NS1 protein. Antiviral Res 2020; 182:104930. [PMID: 32898585 DOI: 10.1016/j.antiviral.2020.104930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 08/23/2020] [Accepted: 09/02/2020] [Indexed: 12/16/2022]
Abstract
Japanese encephalitis virus (JEV) is one of the most important culex transmitted-flaviviruses, which can cause encephalitis in humans. Although non-structural protein 1 (NS1) of JEV does not stimulate neutralizing antibodies, this protein can provide high immunoprotection in vivo. The protective epitopes and the protective mechanism of NS1 still remain unclear. In this study, we generated five different monoclonal antibodies (mAbs) targeting the NS1 protein of JEV. In vitro experiments revealed that none of these five antibodies neutralized the JEV infection. In mouse protection studies, one of these mAbs, designated 2B8, provided a therapeutic effect against JEV lethal challenge (70% survival rate). Using peptide mapping analysis, we found that mAb 2B8 reacted with the epitope 225PETHTLWGD233 in the NS1 protein, in which any mutations among amino acid residues T228, H229, L231 or W232 could cause binding failure of 2B8 to the NS1 protein. Furthermore, mice immunized with KLH-polypeptide (225PETHTLWGD233) showed reduced mortality following JEV challenge. Collectively, we found a new protective epitope in the JEV NS1 protein. These results may facilitate the development of therapeutic agent and subunit-based vaccines based on the NS1 protein.
Collapse
Affiliation(s)
- Dengyuan Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chao Pei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhaoxia Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kelu Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiuyan Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunfeng Song
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
22
|
Jearanaiwitayakul T, Sunintaboon P, Chawengkittikul R, Limthongkul J, Midoeng P, Warit S, Ubol S. Nanodelivery system enhances the immunogenicity of dengue-2 nonstructural protein 1, DENV-2 NS1. Vaccine 2020; 38:6814-6825. [PMID: 32829977 DOI: 10.1016/j.vaccine.2020.08.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/19/2020] [Accepted: 08/09/2020] [Indexed: 12/11/2022]
Abstract
Nonstructural protein 1 (NS1) of dengue virus (DENV) is currently recognized as a dengue vaccine candidate. Unfortunately, most of non-replicating immunogens typically stimulate unsatisfactory immune responses, thus, the additional adjuvant is required. In this study, C-terminal truncated DENV-2 NS1 loaded in N,N,N, trimethyl chitosan nanoparticles (NS11-279TMC NPs) was prepared through the ionic gelation method. The immunogenicity of NS11-279TMC NPs was investigated using human ex vivo as well as the murine model. Through a human ex vivo model, it was demonstrated in this study that not only can TMC particles effectively deliver NS11-279 protein into monocyte-derived dendritic cells (MoDCs), but also potently stimulate those cells, resulting in increased expression of maturation marker (CD83), costimulating molecules (CD80, CD86 and HLA-DR) and markedly secreted various types of innate immune cytokines/chemokines. Moreover, mice administered with NS11-279TMC NPs strongly elicited both antibody and T cell responses, produced higher levels of IgG, IgG1, IgG2a and potently activated CD8+ T cells, as compared to mice administered with soluble NS11-279. Importantly, we further demonstrated that anti-NS11-279 antibody induced by this platform of NS11-279 effectively eliminated DENV-2 infected cells through antibody dependent complement-mediated cytotoxicity. Significantly, anti-DENV2 NS11-279 antibody exerted cross-antiviral activity against DENV-1 and -4 but not against DENV-3 infected cells. These findings demonstrate that TMC exerts a desirable adjuvant for enhancing delivery and antigenicity of NS1 based dengue vaccine.
Collapse
Affiliation(s)
| | - Panya Sunintaboon
- Department of Chemistry, Faculty of Science, Mahidol University, Salaya, Nakornpatom 73170, Thailand.
| | | | - Jitra Limthongkul
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Panuwat Midoeng
- Division of Pathology, Army Institute of Pathology, Phramongkutklao Hospital, Bangkok, Thailand.
| | - Saradee Warit
- Tuberculosis Research Laboratory, Medical Molecular Biology Research Unit, BIOTEC, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand..
| | - Sukathida Ubol
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
23
|
Zhang M, Sun J, Li M, Jin X. Modified mRNA-LNP Vaccines Confer Protection against Experimental DENV-2 Infection in Mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:702-712. [PMID: 32913878 PMCID: PMC7452130 DOI: 10.1016/j.omtm.2020.07.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
Dengue virus (DENV) infection is a major global public health concern, and there is no effective vaccine for it. In this study, we describe the design and characterization of three nucleotide-modified mRNA vaccines (prME-mRNA, E80-mRNA, and NS1-mRNA) for DENV-2. Our results showed that vaccination with E80-mRNA alone or a combination of E80-mRNA and NS1-mRNA can induce high levels of neutralizing antibodies and antigen-specific T cell responses; furthermore, these vaccines confer complete protection against DENV-2 challenge in immunocompetent mice. These data provide foundations for further development of a tetravalent DENV vaccine based on nucleotide-modified mRNA.
Collapse
Affiliation(s)
- Mengling Zhang
- Viral Disease and Vaccine Translational Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jin Sun
- Viral Disease and Vaccine Translational Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Min Li
- Viral Disease and Vaccine Translational Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xia Jin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Wilken L, Rimmelzwaan GF. Adaptive Immunity to Dengue Virus: Slippery Slope or Solid Ground for Rational Vaccine Design? Pathogens 2020; 9:pathogens9060470. [PMID: 32549226 PMCID: PMC7350362 DOI: 10.3390/pathogens9060470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
The four serotypes of dengue virus are the most widespread causes of arboviral disease, currently placing half of the human population at risk of infection. Pre-existing immunity to one dengue virus serotype can predispose to severe disease following secondary infection with a different serotype. The phenomenon of immune enhancement has complicated vaccine development and likely explains the poor long-term safety profile of a recently licenced dengue vaccine. Therefore, alternative vaccine strategies should be considered. This review summarises studies dissecting the adaptive immune responses to dengue virus infection and (experimental) vaccination. In particular, we discuss the roles of (i) neutralising antibodies, (ii) antibodies to non-structural protein 1, and (iii) T cells in protection and pathogenesis. We also address how these findings could translate into next-generation vaccine approaches that mitigate the risk of enhanced dengue disease. Finally, we argue that the development of a safe and efficacious dengue vaccine is an attainable goal.
Collapse
|
25
|
Pattnaik A, Sahoo BR, Pattnaik AK. Current Status of Zika Virus Vaccines: Successes and Challenges. Vaccines (Basel) 2020; 8:vaccines8020266. [PMID: 32486368 PMCID: PMC7349928 DOI: 10.3390/vaccines8020266] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 01/07/2023] Open
Abstract
The recently emerged Zika virus (ZIKV) spread to the Americas, causing a spectrum of congenital diseases including microcephaly in newborn and Guillain-Barré syndrome (GBS) in adults. The unprecedented nature of the epidemic and serious diseases associated with the viral infections prompted the global research community to understand the immunopathogenic mechanisms of the virus and rapidly develop safe and efficacious vaccines. This has led to a number of ZIKV vaccine candidates that have shown significant promise in human clinical trials. These candidates include nucleic acid vaccines, inactivated vaccines, viral-vectored vaccines, and attenuated vaccines. Additionally, a number of vaccine candidates have been shown to protect animals in preclinical studies. However, as the epidemic has waned in the last three years, further development of the most promising vaccine candidates faces challenges in clinical efficacy trials, which is needed before a vaccine is brought to licensure. It is important that a coalition of government funding agencies and private sector companies is established to move forward with a safe and effective vaccine ready for deployment when the next ZIKV epidemic occurs.
Collapse
Affiliation(s)
- Aryamav Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (A.P.); (B.R.S.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Bikash R. Sahoo
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (A.P.); (B.R.S.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Asit K. Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (A.P.); (B.R.S.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Correspondence: ; Tel.: +1-402-472-1067
| |
Collapse
|
26
|
Lee CYP, Carissimo G, Chen Z, Lum FM, Abu Bakar F, Rajarethinam R, Teo TH, Torres-Ruesta A, Renia L, Ng LF. Type I interferon shapes the quantity and quality of the anti-Zika virus antibody response. Clin Transl Immunology 2020; 9:e1126. [PMID: 32346479 PMCID: PMC7184064 DOI: 10.1002/cti2.1126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 12/16/2022] Open
Abstract
Objectives Zika virus (ZIKV) is a mosquito-borne flavivirus that re-emerged in 2015. The association between ZIKV and neurological complications initiated the development of relevant animal models to understand the mechanisms underlying ZIKV-induced pathologies. Transient inhibition of the type I interferon (IFN) pathway through the use of an IFNAR1-blocking antibody, MAR1-5A3, could efficiently permit active virus replication in immunocompetent animals. Type I IFN signalling is involved in the regulation of humoral responses, and thus, it is crucial to investigate the potential effects of type I IFN blockade towards B-cell responses. Methods In this study, comparative analysis was conducted using serum samples collected from ZIKV-infected wild-type (WT) animals either administered with or without MAR1-5A3. Results Serological assays revealed a more robust ZIKV-specific IgG response and subtype switching upon inhibition of type I IFN due to the abundance of antigen availability. This observation was corroborated by an increase in germinal centres, plasma cells and germinal centre B cells. Interestingly, although both groups of animals recognised different B-cell linear epitopes in the E and NS1 regions, there was no difference in neutralising capacity. Further characterisation of these epitopes in the E protein revealed a detrimental role of antibodies that were generated in the absence of type I IFN. Conclusion This study highlights the role of type I IFN in shaping the anti-ZIKV antibody response to generate beneficial antibodies and will help guide development of better vaccine candidates triggering efficient neutralising antibodies and avoiding detrimental ones.
Collapse
Affiliation(s)
- Cheryl Yi-Pin Lee
- Singapore Immunology Network Agency for Science, Technology and Research (ASTAR) Singapore.,NUS Graduate School for Integrative Sciences and Engineering National University of Singapore Singapore
| | - Guillaume Carissimo
- Singapore Immunology Network Agency for Science, Technology and Research (ASTAR) Singapore
| | - Zheyuan Chen
- Singapore Immunology Network Agency for Science, Technology and Research (ASTAR) Singapore.,School of Medicine Dentistry & Biomedical Sciences Queen's University Belfast Belfast UK
| | - Fok-Moon Lum
- Singapore Immunology Network Agency for Science, Technology and Research (ASTAR) Singapore
| | - Farhana Abu Bakar
- Singapore Immunology Network Agency for Science, Technology and Research (ASTAR) Singapore.,School of Biological Sciences Nanyang Technological University Singapore Singapore
| | - Ravisankar Rajarethinam
- Institute of Molecular and Cell Biology Agency of Science, Technology and Research (ASTAR) Singapore
| | - Teck-Hui Teo
- Singapore Immunology Network Agency for Science, Technology and Research (ASTAR) Singapore.,Present address: Institut Pasteur Unite de Pathogenie Microbienne Moleculaire Paris France
| | - Anthony Torres-Ruesta
- Singapore Immunology Network Agency for Science, Technology and Research (ASTAR) Singapore.,Department of Biochemistry Yong Loo Lin School of Medicine National University of Singapore Singapore
| | - Laurent Renia
- Singapore Immunology Network Agency for Science, Technology and Research (ASTAR) Singapore
| | - Lisa Fp Ng
- Singapore Immunology Network Agency for Science, Technology and Research (ASTAR) Singapore.,Department of Biochemistry Yong Loo Lin School of Medicine National University of Singapore Singapore.,Institute of Infection and Global Health University of Liverpool Liverpool UK
| |
Collapse
|
27
|
A Chimeric Japanese Encephalitis Vaccine Protects against Lethal Yellow Fever Virus Infection without Inducing Neutralizing Antibodies. mBio 2020; 11:mBio.02494-19. [PMID: 32265332 PMCID: PMC7157777 DOI: 10.1128/mbio.02494-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Efficient and safe vaccines against yellow fever (e.g., YFV-17D) that provide long-lasting protection by rapidly inducing neutralizing antibody responses exist. However, the vaccine supply cannot cope with an increasing demand posed by urban outbreaks in recent years. Here we report that JE-CVax/Imojev, a YFV-17D-based chimeric Japanese encephalitis vaccine, also efficiently protects against YFV infection in mice. In case of shortage of the YFV vaccine during yellow fever outbreaks, (off-label) use of JE-CVax/Imojev may be considered. Moreover, wider use of JE-CVax/Imojev in Asia may lower the risk of the much-feared YFV spillover to the continent. More generally, chimeric vaccines that combine surface antigens and replication machineries of two distinct flaviviruses may be considered dual vaccines for the latter pathogen without induction of surface-specific antibodies. Following this rationale, novel flavivirus vaccines that do not hold a risk for antibody-dependent enhancement (ADE) of infection (inherent to current dengue vaccines and dengue vaccine candidates) could be designed. Recent outbreaks of yellow fever virus (YFV) in West Africa and Brazil resulted in rapid depletion of global vaccine emergency stockpiles and raised concerns about being unprepared against future YFV epidemics. Here we report that a live attenuated virus similar to the Japanese encephalitis virus (JEV) vaccine JE-CVax/Imojev that consists of YFV-17D vaccine from which the structural (prM/E) genes have been replaced with those of the JEV SA14-14-2 vaccine strain confers full protection in mice against lethal YFV challenge. In contrast to the YFV-17D-mediated protection against YFV, this protection is not mediated by neutralizing antibodies but correlates with YFV-specific nonneutralizing antibodies and T cell responses against cell-associated YFV NS1 and other YFV nonstructural (NS) proteins. Our findings reveal the potential of YFV NS proteins to mediate protection and demonstrate that chimeric flavivirus vaccines, such as Imojev, could confer protection against two flaviviruses. This dual protection may have implications for the possible off-label use of JE-CVax in case of emergency and vaccine shortage during YFV outbreaks. In addition, populations in Asia that have been vaccinated with Imojev may already be protected against YFV should outbreaks ever occur on that continent, as several countries/regions in the Asia-Pacific are vulnerable to international spread of the YFV.
Collapse
|
28
|
Salat J, Mikulasek K, Larralde O, Pokorna Formanova P, Chrdle A, Haviernik J, Elsterova J, Teislerova D, Palus M, Eyer L, Zdrahal Z, Petrik J, Ruzek D. Tick-Borne Encephalitis Virus Vaccines Contain Non-Structural Protein 1 Antigen and may Elicit NS1-Specific Antibody Responses in Vaccinated Individuals. Vaccines (Basel) 2020; 8:vaccines8010081. [PMID: 32059489 PMCID: PMC7157539 DOI: 10.3390/vaccines8010081] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 01/09/2023] Open
Abstract
Vaccination against tick-borne encephalitis (TBE) is based on the use of formalin-inactivated, culture-derived whole-virus vaccines. Immune response following vaccination is primarily directed to the viral envelope (E) protein, the major viral surface antigen. In Europe, two TBE vaccines are available in adult and pediatric formulations, namely FSME-IMMUN® (Pfizer) and Encepur® (GlaxoSmithKline). Herein, we analyzed the content of these vaccines using mass spectrometry (MS). The MS analysis revealed that the Encepur vaccine contains not only proteins of the whole virus particle, but also viral non-structural protein 1 (NS1). MS analysis of the FSME-IMMUN vaccine failed due to the high content of human serum albumin used as a stabilizer in the vaccine. However, the presence of NS1 in FSME-IMMUN was confirmed by immunization of mice with six doses of this vaccine, which led to a robust anti-NS1 antibody response. NS1-specific Western blot analysis also detected anti-NS1 antibodies in sera of humans who received multiple doses of either of these two vaccines; however, most vaccinees who received ≤3 doses were negative for NS1-specific antibodies. The contribution of NS1-specific antibodies to protection against TBE was demonstrated by immunization of mice with purified NS1 antigen, which led to a significant (p < 0.01) prolongation of the mean survival time after lethal virus challenge. This indicates that stimulation of anti-NS1 immunity by the TBE vaccines may increase their protective effect.
Collapse
Affiliation(s)
- Jiri Salat
- Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic; (J.S.); (P.P.F.); (J.H.); (J.E.); (M.P.); (L.E.)
| | - Kamil Mikulasek
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic; (K.M.); (Z.Z.)
| | - Osmany Larralde
- The Jack Copland Centre, Scottish National Blood Transfusion Service, 52 Research Avenue North, Edinburgh EH14 4BE, UK; (O.L.); (J.P.)
| | - Petra Pokorna Formanova
- Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic; (J.S.); (P.P.F.); (J.H.); (J.E.); (M.P.); (L.E.)
| | - Ales Chrdle
- Hospital Ceske Budejovice, B. Nemcove 585/54, 370 01 Ceske Budejovice, Czech Republic; (A.C.); (D.T.)
- Royal Liverpool University Hospital, Prescot St, Liverpool L7 8XP, UK
| | - Jan Haviernik
- Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic; (J.S.); (P.P.F.); (J.H.); (J.E.); (M.P.); (L.E.)
- Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Jana Elsterova
- Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic; (J.S.); (P.P.F.); (J.H.); (J.E.); (M.P.); (L.E.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37006 Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branisovska 31, CZ-37006 Ceske Budejovice, Czech Republic
| | - Dana Teislerova
- Hospital Ceske Budejovice, B. Nemcove 585/54, 370 01 Ceske Budejovice, Czech Republic; (A.C.); (D.T.)
| | - Martin Palus
- Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic; (J.S.); (P.P.F.); (J.H.); (J.E.); (M.P.); (L.E.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37006 Ceske Budejovice, Czech Republic
| | - Ludek Eyer
- Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic; (J.S.); (P.P.F.); (J.H.); (J.E.); (M.P.); (L.E.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37006 Ceske Budejovice, Czech Republic
| | - Zbynek Zdrahal
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic; (K.M.); (Z.Z.)
| | - Juraj Petrik
- The Jack Copland Centre, Scottish National Blood Transfusion Service, 52 Research Avenue North, Edinburgh EH14 4BE, UK; (O.L.); (J.P.)
| | - Daniel Ruzek
- Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic; (J.S.); (P.P.F.); (J.H.); (J.E.); (M.P.); (L.E.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37006 Ceske Budejovice, Czech Republic
- Correspondence: ; Tel.: +420-777-786-218
| |
Collapse
|
29
|
Chen L, Yu B, Hua J, Ni Z, Ye W, Yun T, Zhang C. Optimized Expression of Duck Tembusu Virus E Gene Delivered by a Vectored Duck Enteritis Virus In Vitro. Mol Biotechnol 2020; 61:783-790. [PMID: 31482466 DOI: 10.1007/s12033-019-00206-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In our previous study, a recombinant duck enteritis virus (DEV) delivering codon-optimized E gene (named as E-ch) of duck Tembusu virus (DTMUV) optimized referring to chicken's codon bias has been obtained based on the infectious bacterial artificial chromosome (BAC) clone of duck enteritis virus vaccine strain pDEV-EF1, but the expression level of E-ch in recombinant virus rDEV-E-ch-infected cells was very low. To optimize DTMUV E gene expression delivered by the vectored DEV, different forms of E gene (collectively called EG) including origin E gene (E-ori), truncated E451-ori gene, codon-optimized E-dk gene optimized referring to duck's codon bias, as well as the truncated E451-ch and E451-dk, Etpa-ori and Etpa-451-ori, which contain prefixing chick TPA signal peptide genes, were cloned into transfer vector pEP-BGH-end, and several recombinant plasmids pEP-BGH-EG were constructed. Then the expression cassettes pCMV-EG-polyABGH amplified from pEP-BGH-EG by PCR were inserted into US7/US8 gene intergenic region of pDEV-EF1 by two-step Red/ET recombination, 7 strain recombinant mutated BAC clones pDEV-EG carrying different E genes were constructed. Next, the recombinant viruses rDEV-EG were reconstituted from chicken embryo fibroblasts (CEFs) by calcium phosphate precipitation. Western blot analysis showed that E or E451 protein is expressed in rDEV-E-ori, rDEV-E-ch, rDEV-Etpa-ori, rDEV-E451-ori, rDEV-E451-dk, and rDEV-E451-ch-infected CEFs, and protein expression level in rDEV-E451-dk-infected CEFs is the highest. These studies have laid a foundation for developing bivalent vaccine controlling DEV and DTMUV infection.
Collapse
Affiliation(s)
- Liu Chen
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agriculture Sciences, Hangzhou, 310021, China
| | - Bin Yu
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agriculture Sciences, Hangzhou, 310021, China
| | - Jonggang Hua
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agriculture Sciences, Hangzhou, 310021, China
| | - Zheng Ni
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agriculture Sciences, Hangzhou, 310021, China
| | - Weicheng Ye
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agriculture Sciences, Hangzhou, 310021, China
| | - Tao Yun
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agriculture Sciences, Hangzhou, 310021, China
| | - Cun Zhang
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agriculture Sciences, Hangzhou, 310021, China.
| |
Collapse
|
30
|
Arias-Arias JL, MacPherson DJ, Hill ME, Hardy JA, Mora-Rodríguez R. A fluorescence-activatable reporter of flavivirus NS2B-NS3 protease activity enables live imaging of infection in single cells and viral plaques. J Biol Chem 2020; 295:2212-2226. [PMID: 31919100 DOI: 10.1074/jbc.ra119.011319] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/02/2020] [Indexed: 12/23/2022] Open
Abstract
The genus Flavivirus in the family Flaviviridae comprises many medically important viruses, such as dengue virus (DENV), Zika virus (ZIKV), and yellow fever virus. The quest for therapeutic targets to combat flavivirus infections requires a better understanding of the kinetics of virus-host interactions during infections with native viral strains. However, this is precluded by limitations of current cell-based systems for monitoring flavivirus infection in living cells. In the present study, we report the construction of fluorescence-activatable sensors to detect the activities of flavivirus NS2B-NS3 serine proteases in living cells. The system consists of GFP-based reporters that become fluorescent upon cleavage by recombinant DENV-2/ZIKV proteases in vitro A version of this sensor containing the flavivirus internal NS3 cleavage site linker reported the highest fluorescence activation in stably transduced mammalian cells upon DENV-2/ZIKV infection. Moreover, the onset of fluorescence correlated with viral protease activity. A far-red version of this flavivirus sensor had the best signal-to-noise ratio in a fluorescent Dulbecco's plaque assay, leading to the construction of a multireporter platform combining the flavivirus sensor with reporter dyes for detection of chromatin condensation and cell death, enabling studies of viral plaque formation with single-cell resolution. Finally, the application of this platform enabled the study of cell-population kinetics of infection and cell death by DENV-2, ZIKV, and yellow fever virus. We anticipate that future studies of viral infection kinetics with this reporter system will enable basic investigations of virus-host interactions and facilitate future applications in antiviral drug research to manage flavivirus infections.
Collapse
Affiliation(s)
- Jorge L Arias-Arias
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | - Derek J MacPherson
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003
| | - Maureen E Hill
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003
| | - Jeanne A Hardy
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003
| | - Rodrigo Mora-Rodríguez
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| |
Collapse
|
31
|
Flavivirus infection—A review of immunopathogenesis, immunological response, and immunodiagnosis. Virus Res 2019; 274:197770. [DOI: 10.1016/j.virusres.2019.197770] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022]
|
32
|
Martinez Viedma MDP, Kose N, Parham L, Balmaseda A, Kuan G, Lorenzana I, Harris E, Crowe JE, Pickett BE. Peptide arrays of three collections of human sera from patients infected with mosquito-borne viruses. F1000Res 2019; 8:1875. [PMID: 32201571 PMCID: PMC7065662.2 DOI: 10.12688/f1000research.20981.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2020] [Indexed: 03/29/2024] Open
Abstract
Background: Global outbreaks caused by emerging or re-emerging arthropod-borne viruses (arboviruses) are becoming increasingly more common. These pathogens include the mosquito-borne viruses belonging to the Flavivirus and Alphavirus genera. These viruses often cause non-specific or asymptomatic infection, which can confound viral prevalence studies. In addition, many acute phase diagnostic tests rely on the detection of viral components such as RNA or antigen. Standard serological tests are often not reliable for diagnosis after seroconversion and convalescence due to cross-reactivity among flaviviruses. Methods: In order to contribute to development efforts for mosquito-borne serodiagnostics, we incubated 137 human sera on individual custom peptide arrays that consisted of over 866 unique peptides in quadruplicate. Our bioinformatics workflow to analyze these data incorporated machine learning, statistics, and B-cell epitope prediction. Results: Here we report the results of our peptide array data analysis, which revealed sets of peptides that have diagnostic potential for detecting past exposure to a subset of the tested human pathogens including Zika virus. These peptides were then confirmed using the well-established ELISA method. Conclusions: These array data, and the resulting peptides can be useful in diverse efforts including the development of new pan-flavivirus antibodies, more accurate epitope mapping, and vaccine development against these viral pathogens.
Collapse
Affiliation(s)
| | - Nurgun Kose
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Leda Parham
- Instituto de Investigacion en Microbiologia, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Angel Balmaseda
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Guillermina Kuan
- Centro de Salud Sócrates Flores Vivas, Ministry of Health, Managua, Nicaragua
| | - Ivette Lorenzana
- Instituto de Investigacion en Microbiologia, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720-3370, USA
| | - James E Crowe
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Brett E Pickett
- J. Craig Venter Institute, La Jolla, CA, 92137, USA
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, 84602, USA
| |
Collapse
|
33
|
Martinez Viedma MDP, Kose N, Parham L, Balmaseda A, Kuan G, Lorenzana I, Harris E, Crowe JE, Pickett BE. Peptide arrays of three collections of human sera from patients infected with mosquito-borne viruses. F1000Res 2019; 8:1875. [PMID: 32201571 PMCID: PMC7065662 DOI: 10.12688/f1000research.20981.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2019] [Indexed: 03/29/2024] Open
Abstract
Background: Global outbreaks caused by emerging or re-emerging arthropod-borne viruses (arboviruses) are becoming increasingly more common. These pathogens include the mosquito-borne viruses belonging to the Flavivirus and Alphavirus genera. These viruses often cause non-specific or asymptomatic infection, which can confound viral prevalence studies. In addition, many acute phase diagnostic tests rely on the detection of viral components such as RNA or antigen. Standard serological tests are often not reliable for diagnosis after seroconversion and convalescence due to cross-reactivity among flaviviruses. Methods: In order to contribute to development efforts for mosquito-borne serodiagnostics, we incubated 137 human sera on individual custom peptide arrays that consisted of over 866 unique peptides in quadruplicate. Our bioinformatics workflow to analyze these data incorporated machine learning, statistics, and B-cell epitope prediction. Results: Here we report the results of our peptide array data analysis, which revealed sets of peptides that have diagnostic potential for detecting past exposure to a subset of the tested human pathogens including Zika virus. These peptides were then confirmed using the well-established ELISA method. Conclusions: These array data, and the resulting peptides can be useful in diverse efforts including the development of new pan-flavivirus antibodies, more accurate epitope mapping, and vaccine development against these viral pathogens.
Collapse
Affiliation(s)
| | - Nurgun Kose
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Leda Parham
- Instituto de Investigacion en Microbiologia, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Angel Balmaseda
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Guillermina Kuan
- Centro de Salud Sócrates Flores Vivas, Ministry of Health, Managua, Nicaragua
| | - Ivette Lorenzana
- Instituto de Investigacion en Microbiologia, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720-3370, USA
| | - James E. Crowe
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Brett E. Pickett
- J. Craig Venter Institute, La Jolla, CA, 92137, USA
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, 84602, USA
| |
Collapse
|
34
|
Martinez Viedma MDP, Kose N, Parham L, Balmaseda A, Kuan G, Lorenzana I, Harris E, Crowe JE, Pickett BE. Peptide arrays incubated with three collections of human sera from patients infected with mosquito-borne viruses. F1000Res 2019; 8:1875. [PMID: 32201571 PMCID: PMC7065662 DOI: 10.12688/f1000research.20981.3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/26/2020] [Indexed: 11/24/2022] Open
Abstract
Background: Global outbreaks caused by emerging or re-emerging arthropod-borne viruses (arboviruses) are becoming increasingly more common. These pathogens include the mosquito-borne viruses belonging to the Flavivirus and Alphavirus genera. These viruses often cause non-specific or asymptomatic infection, which can confound viral prevalence studies. In addition, many acute phase diagnostic tests rely on the detection of viral components such as RNA or antigen. Standard serological tests are often not reliable for diagnosis after seroconversion and convalescence due to cross-reactivity among flaviviruses. Methods: In order to contribute to development efforts for mosquito-borne serodiagnostics, we incubated 137 human sera on individual custom peptide arrays that consisted of over 866 unique peptides in quadruplicate. Our bioinformatics workflow to analyze these data incorporated machine learning, statistics, and B-cell epitope prediction. Results: Here we report the results of our peptide array data analysis, which revealed sets of peptides that have diagnostic potential for detecting past exposure to a subset of the tested human pathogens including Zika virus. These peptides were then confirmed using the well-established ELISA method. Conclusions: These array data, and the resulting peptides can be useful in diverse efforts including the development of new pan-flavivirus antibodies, more accurate epitope mapping, and vaccine development against these viral pathogens.
Collapse
Affiliation(s)
| | - Nurgun Kose
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Leda Parham
- Instituto de Investigacion en Microbiologia, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Angel Balmaseda
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Guillermina Kuan
- Centro de Salud Sócrates Flores Vivas, Ministry of Health, Managua, Nicaragua
| | - Ivette Lorenzana
- Instituto de Investigacion en Microbiologia, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720-3370, USA
| | - James E Crowe
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Brett E Pickett
- J. Craig Venter Institute, La Jolla, CA, 92137, USA
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, 84602, USA
| |
Collapse
|
35
|
Qian X, Lai Y, Zhu F. Molecular characterization of carboxypeptidase B-like (CPB) in Scylla paramamosain and its role in white spot syndrome virus and Vibrio alginolyticus infection. FISH & SHELLFISH IMMUNOLOGY 2019; 94:434-446. [PMID: 31536767 DOI: 10.1016/j.fsi.2019.09.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/05/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Carboxypeptidase plays an important physiological role in the tissues and organs of animals. In this study, we cloned an entire 2316 bp carboxypeptidase B-like (CPB) sequence with a 1302 bp open reading frame encoding a 434 amino acid peptide from Scylla paramamosain. The CPB gene was expressed highly in hepatopancreas and decreased in crab hemocytes after challenges with white spot syndrome virus (WSSV) or Vibrio alginolyticus. After CPB gene knockdown using double-stranded RNA (CPB-dsRNA), the expression of JAK, STAT, C-type lectin, crustin antimicrobial peptide, Toll-like receptors, prophenoloxidase, and myosin II essential light chain-like protein were down-regulated in hemocytes at 24 h post dsRNA treatment. CPB knockdown decreases total hemocyte count in crabs indicated that CPB may negatively regulate crab hemocyte proliferation in crabs. CPB showed an inhibitory effect on hemocyte apoptosis in crabs infected with WSSV or V. alginolyticus. The phagocytosis rate of WSSV by hemocytes was increased after CPB-dsRNA treatment. After WSSV challenge, the mortality and WSSV copy number were both decreased but the rate of hemocyte apoptosis was increased in CPB-dsRNA-treated crabs. The results indicate that the antiviral activity of the crabs was enhanced when CPB was knocked down, indicating WSSV may take advantage of CPB to benefit its replication. In contrast, the absence of CPB in crabs increased mortality following the V. alginolyticus challenge. The phagocytosis rate of V. alginolyticus by hemocytes was increased after CPB-dsRNA treatment. It was revealed that CPB may play a positive role in the immune response to V. alginolyticus through increasing the phagocytosis rate of V. alginolyticus. This research further adds to our understanding of the CPB and identifies its potential role in the innate immunity of crabs.
Collapse
Affiliation(s)
- Xiyi Qian
- Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Yongyong Lai
- Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Fei Zhu
- Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China.
| |
Collapse
|
36
|
Annamalai AS, Pattnaik A, Sahoo BR, Guinn ZP, Bullard BL, Weaver EA, Steffen D, Natarajan SK, Petro TM, Pattnaik AK. An Attenuated Zika Virus Encoding Non-Glycosylated Envelope (E) and Non-Structural Protein 1 (NS1) Confers Complete Protection against Lethal Challenge in a Mouse Model. Vaccines (Basel) 2019; 7:vaccines7030112. [PMID: 31547297 PMCID: PMC6789518 DOI: 10.3390/vaccines7030112] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/30/2019] [Accepted: 09/07/2019] [Indexed: 12/15/2022] Open
Abstract
Zika virus (ZIKV), a mosquito-transmitted flavivirus, emerged in the last decade causing serious human diseases, including congenital microcephaly in newborns and Guillain-Barré syndrome in adults. Although many vaccine platforms are at various stages of development, no licensed vaccines are currently available. Previously, we described a mutant MR766 ZIKV (m2MR) bearing an E protein mutation (N154A) that prevented its glycosylation, resulting in attenuation and defective neuroinvasion. To further attenuate m2MR for its potential use as a live viral vaccine, we incorporated additional mutations into m2MR by substituting the asparagine residues in the glycosylation sites (N130 and N207) of NS1 with alanine residues. Examination of pathogenic properties revealed that the virus (m5MR) carrying mutations in E (N154A) and NS1 (N130A and N207A) was fully attenuated with no disease signs in infected mice, inducing high levels of humoral and cell-mediated immune responses, and protecting mice from subsequent lethal virus challenge. Furthermore, passive transfer of sera from m5MR-infected mice into naïve animals resulted in complete protection from lethal challenge. The immune sera from m5MR-infected animals neutralized both African and Asian lineage viruses equally well, suggesting that m5MR virus could be developed as a potentially broad live virus vaccine candidate.
Collapse
Affiliation(s)
- Arun S Annamalai
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - Aryamav Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - Bikash R Sahoo
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - Zack P Guinn
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE 68583, USA.
| | - Brianna L Bullard
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - Eric A Weaver
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - David Steffen
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - Sathish Kumar Natarajan
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - Thomas M Petro
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE 68583, USA.
| | - Asit K Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| |
Collapse
|
37
|
Schmaljohn AL, Orlandi C, Lewis GK. Deciphering Fc-mediated Antiviral Antibody Functions in Animal Models. Front Immunol 2019; 10:1602. [PMID: 31379822 PMCID: PMC6652135 DOI: 10.3389/fimmu.2019.01602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/26/2019] [Indexed: 01/14/2023] Open
Abstract
Longstanding discordances and enigmas persist as to the specificities and other properties of antibodies (Abs) most effective in preventing or limiting many viral infections in mammals; in turn, failure to decipher key complexities has added to headwinds for both Ab-based therapeutic approaches and rational vaccine design. More recently, experimental approaches have emerged-and continue to emerge-for discerning the functional role of Ab structure, especially the Fc portion of antibody, in combating viral infections in vivo. A wide range of in vitro measures of antibody activity, from neutralization to antibody-dependent cell mediated cytotoxicity (ADCC)-each of these terms representing only an operational notion defined by the particulars of a given assay-are poised for assignment of both relevance and reliability in forecasting outcomes of infection. Of the several emergent technical opportunities for clarity, attention here is drawn to three realms: the increasing array of known modifications that can be engineered into Abs to affect their in vivo activities; the improvement of murine models involving knockouts and knock-ins of host genes including Fc receptors; and the development of additional virological design tools to differentiate Abs that act primarily by inhibiting viral entry from antibodies that mainly target viral antigens (Ags) on cell surfaces. To illustrate some of the opportunities with either zoonotic (emerging, spillover) or ancient human-adapted viruses, we draw examples from a wide range of viruses that affect humans.
Collapse
Affiliation(s)
- Alan L. Schmaljohn
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States,Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States,*Correspondence: Alan L. Schmaljohn
| | - Chiara Orlandi
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - George K. Lewis
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
38
|
Hunegnaw R, Mushtaq Z, Enyindah-Asonye G, Hoang T, Robert-Guroff M. Alveolar Macrophage Dysfunction and Increased PD-1 Expression During Chronic SIV Infection of Rhesus Macaques. Front Immunol 2019; 10:1537. [PMID: 31333668 PMCID: PMC6618664 DOI: 10.3389/fimmu.2019.01537] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/19/2019] [Indexed: 01/04/2023] Open
Abstract
HIV infected individuals have been shown to be pre-disposed to pulmonary infections even while receiving anti-retroviral therapy. Alveolar macrophages (AMs) play a critical role in lung innate immunity, but contradictory results have been reported regarding their functionality following HIV infection. Here, using the SIV rhesus macaque model, we document the effect of SIV infection on the phenotypic and functional properties of AMs. Following infection with SIVmac251, AMs in bronchoalveolar lavage (BAL) sampled over 2- to 20-weeks post-infection (wpi) were compared to those in BAL samples from naïve macaques. AM expression of proinflammatory cytokines TNF-α, IL-6, IL-1β, and chemokine RANTES drastically increased 2-wpi compared to AMs of naïve macaques (p < 0.0001 for all), but dropped significantly with progression to chronic infection. Phagocytic activity of AMs 2-and 4-wpi was elevated compared to AMs of naive animals (p = 0.0005, p = 0.0004, respectively) but significantly decreased by 12-wpi (p = 0.0022, p = 0.0019, respectively). By 20-wpi the ability of AMs from chronically infected animals to perform SIV-specific antibody-dependent phagocytosis (ADP) was also diminished (p = 0.028). Acute SIV infection was associated with increased FcγRIII expression which subsequently declined with disease progression. Frequency of FcγRIII+ AMs showed a strong trend toward correlation with SIV-specific ADP, and at 2-wpi FcγRIII expression negatively correlated with viral load (r = -0.6819; p = 0.0013), suggesting a contribution to viremia control. Importantly, PD-1 was found to be expressed on AMs and showed a strong trend toward correlation with plasma viral load (r = 0.8266; p = 0.058), indicating that similar to over-expression on T-cells, PD-1 expression on AMs may also be associated with disease progression. Further, AMs predominantly expressed PD-L2, which remained consistent over the course of infection. PD-1 blockade enhanced SIV-specific ADP by AMs from chronic infection indicating that the PD-1/PD-L2 pathway may modulate functional activity of AMs at that stage. These findings provide new insight into the dynamics of SIV infection leading to AM dysfunction and alteration of pulmonary innate immunity. Our results suggest new pathways to exploit in developing therapies targeting pulmonary disease susceptibility in HIV-infected individuals.
Collapse
Affiliation(s)
- Ruth Hunegnaw
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Zuena Mushtaq
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Gospel Enyindah-Asonye
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Tanya Hoang
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Marjorie Robert-Guroff
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
39
|
Bailey MJ, Broecker F, Duehr J, Arumemi F, Krammer F, Palese P, Tan GS. Antibodies Elicited by an NS1-Based Vaccine Protect Mice against Zika Virus. mBio 2019; 10:e02861-18. [PMID: 30940710 PMCID: PMC6445944 DOI: 10.1128/mbio.02861-18] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/25/2019] [Indexed: 12/31/2022] Open
Abstract
Zika virus is a mosquito-borne flavivirus which can cause severe disease in humans, including microcephaly and other congenital malformations in newborns and Guillain-Barré syndrome in adults. There are currently no approved prophylactics or therapeutics for Zika virus; the development of a safe and effective vaccine is an urgent priority. Preclinical studies suggest that the envelope glycoprotein can elicit potently neutralizing antibodies. However, such antibodies are implicated in the phenomenon of antibody-dependent enhancement of disease. We have previously shown that monoclonal antibodies targeting the Zika virus nonstructural NS1 protein are protective without inducing antibody-dependent enhancement of disease. Here, we investigated whether the NS1 protein itself is a viable vaccine target. Wild-type mice were vaccinated with an NS1-expressing DNA plasmid followed by two adjuvanted protein boosters, which elicited high antibody titers. Passive transfer of the immune sera was able to significantly protect STAT2 knockout mice against lethal challenge by Zika virus. In addition, long-lasting NS1-specific IgG responses were detected in serum samples from patients in either the acute or the convalescent phase of Zika virus infection. These NS1-specific antibodies were able to functionally engage Fcγ receptors. In contrast, envelope-specific antibodies did not activate Fc-mediated effector functions on infected cells. Our data suggest that the Zika virus NS1 protein, which is expressed on infected cells, is critical for Fc-dependent cell-mediated immunity. The present study demonstrates that the Zika virus NS1 protein is highly immunogenic and can elicit protective antibodies, underscoring its potential for an effective Zika virus vaccine.IMPORTANCE Zika virus is a global public health threat that causes microcephaly and congenital malformations in newborns and Guillain-Barré syndrome in adults. Currently, no vaccines or treatments are available. While antibodies targeting the envelope glycoprotein can neutralize virus, they carry the risk of antibody-dependent enhancement of disease (ADE). In contrast, antibodies generated against the NS1 protein can be protective without eliciting ADE. The present study demonstrates the effectiveness of an NS1-based vaccine in eliciting high titers of protective antibodies against Zika virus disease in a mouse model. Sera generated by this vaccine can elicit Fc-mediated effector functions against Zika virus-infected cells. Lastly, we provide human data suggesting that the antibody response against the Zika virus NS1 protein is long-lasting and functionally active. Overall, our work will inform the development of a safe and effective Zika virus vaccine.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Cell Line
- Disease Models, Animal
- Humans
- Immunity, Cellular
- Immunization Schedule
- Immunization, Passive
- Immunoglobulin G/blood
- Mice
- Mice, Knockout
- Receptors, Fc/metabolism
- Survival Analysis
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/immunology
- Viral Nonstructural Proteins/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
- Zika Virus Infection/prevention & control
Collapse
Affiliation(s)
- Mark J Bailey
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Felix Broecker
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - James Duehr
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Fortuna Arumemi
- Infectious Diseases, The J. Craig Venter Institute, La Jolla, California, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gene S Tan
- Infectious Diseases, The J. Craig Venter Institute, La Jolla, California, USA
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
40
|
Powell RLR, Fox A, Liu X, Itri V. Phagocytosis of a Model Human Immunodeficiency Virus Target by Human Breast Milk Leukocytes Is Predominantly Granulocyte-Driven When Elicited by Specific Antibody. Breastfeed Med 2019; 14:185-192. [PMID: 30864817 PMCID: PMC6482907 DOI: 10.1089/bfm.2018.0232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Studies demonstrate a protective effect of antibodies (Abs) in breast milk (BM) against mother-to-child transmission (MTCT) of human immunodeficiency virus (HIV). Contribution of the BM cellular component has been overlooked. The only clinical HIV vaccine trial to demonstrate efficacy, RV144, correlated protection with Abs mediating functions through the constant immunoglobulin region-the crystallizable fragment (Fc). These data support induction of vaccine Abs triggering antiviral activities by leukocytes through Fc receptors (FcRs). OBJECTIVE To measure Ab-dependent cellular phagocytosis (ADCP), an essential Fc-mediated response, by BM phagocytes. MATERIALS AND METHODS Cells were isolated from five human BM samples obtained at 7-183 days postpartum and analyzed for ADCP. Fluorescent beads coated with HIV envelope (Env) epitopes were used as targets. Sixty-seven to 100 mL of milk was utilized. RESULTS Total cell concentrations per milliliter were 16,083-222,857, with 1.6-12.3% being CD45+ leukocytes. ADCP activity was measurable using the HIV-specific Ab 830A. Use of the actin inhibitor cytochalasin D and FcR blocker indicated that ADCP was actin dependent and required FcR engagement. ADCP scores were variable, but largely consistent, across the samples studied, exhibiting <4-fold difference from lowest to highest activity for CD45+ cells. Of the CD45+ ADCP, significantly more activity was granulocyte derived (72-95%), while the remaining activity was monocyte driven. CONCLUSIONS The data indicate that BM phagocytes can manifest antiviral activities in the presence of specific Abs and therefore may contribute to reduction of MTCT of HIV.
Collapse
Affiliation(s)
- Rebecca L R Powell
- Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alisa Fox
- Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Xiaomei Liu
- Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Vincenza Itri
- Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
41
|
Tay MZ, Wiehe K, Pollara J. Antibody-Dependent Cellular Phagocytosis in Antiviral Immune Responses. Front Immunol 2019; 10:332. [PMID: 30873178 PMCID: PMC6404786 DOI: 10.3389/fimmu.2019.00332] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/08/2019] [Indexed: 12/20/2022] Open
Abstract
Antiviral activities of antibodies may either be dependent only on interactions between the antibody and cognate antigen, as in binding and neutralization of an infectious virion, or instead may require interactions between antibody-antigen immune complexes and immunoproteins or Fc receptor expressing immune effector cells. These Fc receptor-dependent antibody functions provide a direct link between the innate and adaptive immune systems by combining the potent antiviral activity of innate effector cells with the diversity and specificity of the adaptive humoral response. The Fc receptor-dependent function of antibody-dependent cellular phagocytosis (ADCP) provides mechanisms for clearance of virus and virus-infected cells, as well as for stimulation of downstream adaptive immune responses by facilitating antigen presentation, or by stimulating the secretion of inflammatory mediators. In this review, we discuss the properties of Fc receptors, antibodies, and effector cells that influence ADCP. We also provide and interpret evidence from studies that support a potential role for ADCP in either inhibiting or enhancing viral infection. Finally, we describe current approaches used to measure antiviral ADCP and discuss considerations for the translation of studies performed in animal models. We propose that additional investigation into the role of ADCP in protective viral responses, the specific virus epitopes targeted by ADCP antibodies, and the types of phagocytes and Fc receptors involved in ADCP at sites of virus infection will provide insight into strategies to successfully leverage this important immune response for improved antiviral immunity through rational vaccine design.
Collapse
Affiliation(s)
- Matthew Zirui Tay
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Kevin Wiehe
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Justin Pollara
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
42
|
Maucourant C, Petitdemange C, Yssel H, Vieillard V. Control of Acute Arboviral Infection by Natural Killer Cells. Viruses 2019; 11:v11020131. [PMID: 30709036 PMCID: PMC6410043 DOI: 10.3390/v11020131] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 12/15/2022] Open
Abstract
The recent explosive pandemic of chikungunya virus (CHIKV) followed by Zika (ZIKV) virus infections occurring throughout many countries represents the most unexpected arrival of arthropod-borne viral diseases in the past 20 years. Transmitted through the bite of Aedes mosquitoes, the clinical picture associated with these acute arbovirus infections, including Dengue (DENV), CHIKV and ZIKV, ranges from classical febrile illness to life-threatening disease. Whereas ZIKV and CHIKV-mediated infections have previously been recognized as relatively benign diseases, in contrast to Dengue fever, recent epidemic events have brought waves of increased morbidity and mortality leading to a serious public health problem. Although the host immune response plays a crucial role in controlling infections, it may also promote viral spread and immunopathology. Here, we review recent developments in our understanding of the immune response, with an emphasis on the early antiviral immune response mediated by natural killer cells and emphasize their Janus-faced effects in the control of arbovirus infection and pathogenesis. Improving our understanding knowledge on of the mechanisms that control viral infection is crucial in the current race against the globalization of arbovirus epidemics.
Collapse
Affiliation(s)
- Christopher Maucourant
- Sorbonne Université, UPMC Univ Paris 06, Inserm U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013 Paris, France.
| | - Caroline Petitdemange
- Institut Gustave Roussy, CNRS UMR9196, Unité Physiologie et Pathologie Moléculaires des Rétrovirus Endogènes et Infectieux, 94800 Villejuif, France.
| | - Hans Yssel
- Sorbonne Université, UPMC Univ Paris 06, Inserm U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013 Paris, France.
| | - Vincent Vieillard
- Sorbonne Université, UPMC Univ Paris 06, Inserm U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013 Paris, France.
| |
Collapse
|
43
|
Wieland A, Ahmed R. Fc Receptors in Antimicrobial Protection. Curr Top Microbiol Immunol 2019; 423:119-150. [DOI: 10.1007/82_2019_154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
44
|
Powell RLR, Fox A, Itri V, Zolla-Pazner S. Primary Human Neutrophils Exhibit a Unique HIV-Directed Antibody-Dependent Phagocytosis Profile. J Innate Immun 2018; 11:181-190. [PMID: 30557875 DOI: 10.1159/000494371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/29/2018] [Indexed: 12/11/2022] Open
Abstract
The only clinical HIV vaccine trial to demonstrate efficacy, RV144, correlated protection with the antibodies (Abs) mediating function via the "constant" immunoglobulin region, the crystallizable fragment (Fc). These data have supported a focus on the induction of Abs by vaccines that trigger antiviral activities by relevant leukocytes via Fc receptors (FcRs). Neutrophils are phagocytes that comprise > 50% of leukocytes and display unique FcRs. We sought to compare the Ab-dependent cellular phagocytosis (ADCP) activity of human neutrophils to the commonly assayed THP-1 cell line. HIV-specific Abs were employed to elicit ADCP of beads coated with HIV envelope protein. Overall, trends were noted among neutrophil donors and the ADCP profile was different from that of THP-1 cells. mAb ELISA titers correlated with ADCP by THP-1 cells but not neutrophils. Monoclonal (m)Abs were also tested with primary monocytes. Donor-to-donor variation was high, and hindered the analysis of this dataset, but it was, in itself, an important finding. This study illustrates the concept that the assessment of FcR-mediated Ab activity with a frequently used cell line such as THP-1 is not necessarily indicative of relevant Ab functionality in vivo, and this calls for in-depth study of the properties of the HIV antibodies best-suited to eliciting antiviral activities by primary cells.
Collapse
Affiliation(s)
- Rebecca L R Powell
- Department of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA,
| | - Alisa Fox
- Department of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Vincenza Itri
- Department of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Susan Zolla-Pazner
- Department of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
45
|
Human antibodies targeting Zika virus NS1 provide protection against disease in a mouse model. Nat Commun 2018; 9:4560. [PMID: 30385750 PMCID: PMC6212565 DOI: 10.1038/s41467-018-07008-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 10/05/2018] [Indexed: 12/31/2022] Open
Abstract
Zika virus is a mosquito-borne flavivirus closely related to dengue virus that can cause severe disease in humans, including microcephaly in newborns and Guillain-Barré syndrome in adults. Specific treatments and vaccines for Zika virus are not currently available. Here, we isolate and characterize four monoclonal antibodies (mAbs) from an infected patient that target the non-structural protein NS1. We show that while these antibodies are non-neutralizing, NS1-specific mAbs can engage FcγR without inducing antibody dependent enhancement (ADE) of infection in vitro. Moreover, we demonstrate that mAb AA12 has protective efficacy against lethal challenges of African and Asian lineage strains of Zika virus in Stat2–/– mice. Protection is Fc-dependent, as a mutated antibody unable to activate known Fc effector functions or complement is not protective in vivo. This study highlights the importance of the ZIKV NS1 protein as a potential vaccine antigen. Zika virus infection can cause severe disease in humans and there are currently no specific treatments or vaccines. Here, Bailey et al. isolate antibodies recognizing non-structural protein NS1 and show that they protect mice from disease by an Fc-dependent, non-neutralizing mechanism.
Collapse
|
46
|
Incorporation of NS1 and prM/M are important to confer effective protection of adenovirus-vectored Zika virus vaccine carrying E protein. NPJ Vaccines 2018; 3:29. [PMID: 30062066 PMCID: PMC6057874 DOI: 10.1038/s41541-018-0072-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 01/07/2023] Open
Abstract
Current design of Zika virus (ZIKV) vaccine mainly considered envelope (E) as the major target antigen. Non-structural protein NS1 was seldom considered. Herein, we generated three adenovirus-vectored vaccines carrying E (Ad2-E), or premembrane/membrane (prM/M) with E (Ad2-prME), or NS1 in addition to prM/M with E (Ad2-prME-NS1). Ad2-prME induced higher neutralizing antibody response to ZIKV than Ad2-E, suggesting prM/M is important for the folding of immunogenic E. Most intriguingly, Ad2-prME-NS1 elicited the best viral inhibition when the immune sera were added to ZIKV-infected cells. In ZIKV-challenged neonatal mice born to maternally immunized dams, Ad2-prME-NS1 conferred the best protection in preventing weight loss, neurological disorders, and viral replication. Ad2-prME also conferred significant protection but was less effective than Ad2-prME-NS1, whereas Ad2-E only alleviated neurological symptoms but did not inhibit viral replication. Our study suggested that NS1 should be considered in the design of ZIKV vaccine in addition to prM/M and E.
Collapse
|
47
|
Watterson D, Modhiran N, Muller DA, Stacey KJ, Young PR. Plugging the Leak in Dengue Shock. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1062:89-106. [PMID: 29845527 DOI: 10.1007/978-981-10-8727-1_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent structural and functional advances provide fresh insight into the biology of the dengue virus non-structural protein, NS1 and suggest new avenues of research. The work of our lab and others have shown that the secreted, hexameric form of NS1 has a systemic toxic effect, inducing inflammatory cytokines and acting directly on endothelial cells to produce the hallmark of dengue disease, vascular leak. We also demonstrated that NS1 exerts its toxic activity through recognition by the innate immune receptor TLR4, mimicking the bacterial endotoxin LPS. This monograph covers the background underpinning these new findings and discusses new avenues for antiviral and vaccine intervention.
Collapse
Affiliation(s)
- Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.
| | - Naphak Modhiran
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - David A Muller
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Katryn J Stacey
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Paul R Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
48
|
Cedillo-Barrón L, García-Cordero J, Shrivastava G, Carrillo-Halfon S, León-Juárez M, Bustos Arriaga J, León Valenzuela P, Gutiérrez Castañeda B. The Role of Flaviviral Proteins in the Induction of Innate Immunity. Subcell Biochem 2018; 88:407-442. [PMID: 29900506 DOI: 10.1007/978-981-10-8456-0_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Flaviviruses are positive, single-stranded, enveloped cytoplasmic sense RNA viruses that cause a variety of important diseases worldwide. Among them, Zika virus, West Nile virus, Japanese encephalitis virus, and Dengue virus have the potential to cause severe disease. Extensive studies have been performed to elucidate the structure and replication strategies of flaviviruses, and current studies are aiming to unravel the complex molecular interactions between the virus and host during the very early stages of infection. The outcomes of viral infection and rapid establishment of the antiviral state, depends on viral detection by pathogen recognition receptors and rapid initiation of signalling cascades to induce an effective innate immune response. Extracellular and intracellular pathogen recognition receptors play a crucial role in detecting flavivirus infection and inducing a robust antiviral response. One of the main hallmarks of flaviviral nonstructural proteins is their multiple strategies to antagonise the interferon system. In this chapter, we summarize the molecular characteristics of flaviviral proteins and discuss how viral proteins target different components of the interferon signalling pathway by blocking phosphorylation, enhancing degradation, and downregulating the expression of major components of the Janus kinase/signal transducer and activator of transcription pathway. We also discuss how the interactions of viral proteins with host proteins facilitate viral pathogenesis. Due to the lack of antivirals or prophylactic treatments for many flaviviral infections, it is necessary to fully elucidate how these viruses disrupt cellular processes to influence pathogenesis and disease outcomes.
Collapse
Affiliation(s)
- L Cedillo-Barrón
- Departamento de Biomedicina Molecular, CINVESTAV IPN, México, D.F, Mexico.
| | - J García-Cordero
- Departamento de Biomedicina Molecular, CINVESTAV IPN, México, D.F, Mexico
| | - G Shrivastava
- Departamento de Biomedicina Molecular, CINVESTAV IPN, México, D.F, Mexico
| | - S Carrillo-Halfon
- Departamento de Biomedicina Molecular, CINVESTAV IPN, México, D.F, Mexico
| | - M León-Juárez
- Department of Immunobiochemistry, National Institute of Perinatology, México City, Mexico
| | - J Bustos Arriaga
- Unidad de Biomedicina. Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autonoma de México, Edo. de México, Mexico
| | - Pc León Valenzuela
- Departamento de Biomedicina Molecular, CINVESTAV IPN, México, D.F, Mexico
| | - B Gutiérrez Castañeda
- Immunology Department UMF Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autonoma de México, Edo. de México, Mexico
| |
Collapse
|
49
|
Recombinant Zika NS1 Protein Secreted from Vero Cells Is Efficient for Inducing Production of Immune Serum Directed against NS1 Dimer. Int J Mol Sci 2017; 19:ijms19010038. [PMID: 29295477 PMCID: PMC5795988 DOI: 10.3390/ijms19010038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 02/04/2023] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that recently emerged in the South Pacific, Americas, and Caribbean islands, where the larger epidemics were documented. ZIKV infection in humans is responsible for neurological disorders and microcephaly. Flavivirus NS1 is a non-structural glycoprotein that is expressed on the cell surface and secreted as a hexameric lipoprotein particle. Intracellular NS1 exists as a dimer that is required for viral replication, whereas the secreted NS1 hexamer interacts with host factors, leading to pathophysiological conditions. In an effort to dispose of specific anti-ZIKV NS1 immune serum, Vero cells were transduced with a lentiviral vector containing the NS1 gene from an epidemic strain of ZIKV. We showed that stably transduced Vero/ZIKV NS1 cell clone was efficient in the secretion of recombinant NS1 oligomer. Immunization of adult rat with purified extracellular NS1 developed anti-ZIKV antibodies that specifically react with the NS1 dimer produced in human cells infected with African and Asian strains of ZIKV. The rat antibody against ZIKV NS1 dimer is a reliable biological tool that enables the immunological detection of secreted NS1 from host-cells infected with ZIKV.
Collapse
|
50
|
Brault AC, Domi A, McDonald EM, Talmi-Frank D, McCurley N, Basu R, Robinson HL, Hellerstein M, Duggal NK, Bowen RA, Guirakhoo F. A Zika Vaccine Targeting NS1 Protein Protects Immunocompetent Adult Mice in a Lethal Challenge Model. Sci Rep 2017; 7:14769. [PMID: 29116169 PMCID: PMC5677088 DOI: 10.1038/s41598-017-15039-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/19/2017] [Indexed: 11/14/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that has rapidly extended its geographic range around the world. Its association with abnormal fetal brain development, sexual transmission, and lack of a preventive vaccine have constituted a global health concern. Designing a safe and effective vaccine requires significant caution due to overlapping geographical distribution of ZIKV with dengue virus (DENV) and other flaviviruses, possibly resulting in more severe disease manifestations in flavivirus immune vaccinees such as Antibody-Dependent Enhancement (ADE, a phenomenon involved in pathogenesis of DENV, and a risk associated with ZIKV vaccines using the envelope proteins as immunogens). Here, we describe the development of an alternative vaccine strategy encompassing the expression of ZIKV non-structural-1 (NS1) protein from a clinically proven safe, Modified Vaccinia Ankara (MVA) vector, thus averting the potential risk of ADE associated with structural protein-based ZIKV vaccines. A single intramuscular immunization of immunocompetent mice with the MVA-ZIKV-NS1 vaccine candidate provided robust humoral and cellular responses, and afforded 100% protection against a lethal intracerebral dose of ZIKV (strain MR766). This is the first report of (i) a ZIKV vaccine based on the NS1 protein and (ii) single dose protection against ZIKV using an immunocompetent lethal mouse challenge model.
Collapse
Affiliation(s)
- Aaron C Brault
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| | | | - Erin M McDonald
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| | - Dalit Talmi-Frank
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| | | | | | | | | | - Nisha K Duggal
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| | - Richard A Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | | |
Collapse
|