1
|
Gallichotte EN, Fitzmeyer EA, Williams L, Spangler MC, Bosco-Lauth AM, Ebel GD. WNV and SLEV coinfection in avian and mosquito hosts: impact on viremia, antibody responses, and vector competence. J Virol 2024; 98:e0104124. [PMID: 39324792 PMCID: PMC11495067 DOI: 10.1128/jvi.01041-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/08/2024] [Indexed: 09/27/2024] Open
Abstract
West Nile virus (WNV) and St. Louis encephalitis virus (SLEV) are closely related flaviviruses that can cause encephalitis in humans and related diseases in animals. In nature, both are transmitted by Culex, with wild birds, including jays, sparrows, and robins, serving as vertebrate hosts. WNV and SLEV circulate in the same environments and have recently caused concurrent disease outbreaks in humans. The extent that coinfection of mosquitoes or birds may alter transmission dynamics, however, is not well characterized. We therefore sought to determine if coinfection alters infection kinetics and virus levels in birds and infection rates in mosquitoes. Accordingly, American robins (Turdus migratorius), two species of mosquitoes, and vertebrate and invertebrate cells were infected with WNV and/or SLEV to assess how simultaneous exposure may alter infection outcomes. There was variable impact of coinfection in vertebrate cells, with some evidence that SLEV can suppress WNV replication. However, robins had comparable viremia and antibody responses regardless of coinfection. Conversely, in Culex cells and mosquitoes, we saw a minimal impact of simultaneous exposure to both viruses on replication, with comparable infection, dissemination, and transmission rates in singly infected and coinfected mosquitoes. Importantly, while WNV and SLEV levels in coinfected mosquito midguts were positively correlated, we saw no correlation between them in salivary glands and saliva. These results reveal that while coinfection can occur in both avian and mosquito hosts, the viruses minimally impact one another. The potential for coinfection to alter virus population structure or the likelihood of rare genotypes emerging remains unknown.IMPORTANCEWest Nile virus (WNV) and St. Louis encephalitis virus (SLEV) are closely related viruses that are transmitted by the same mosquitoes and infect the same birds in nature. Both viruses circulate in the same regions and have caused concurrent outbreaks in humans. It is possible that mosquitoes, birds, and/or humans could be infected with both WNV and SLEV simultaneously, as has been observed with Zika, chikungunya, and dengue viruses. To study the impact of coinfection, we experimentally infected vertebrate and invertebrate cells, American robins, and two Culex species with WNV and/or SLEV. Robins were efficiently coinfected, with no impact of coinfection on virus levels or immune response. Similarly, in mosquitoes, coinfection did not impact infection rates, and mosquitoes could transmit both WNV and SLEV together. These results reveal that WNV and SLEV coinfection in birds and mosquitoes can occur in nature, which may impact public health and human disease risk.
Collapse
Affiliation(s)
- Emily N. Gallichotte
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Emily A. Fitzmeyer
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Landon Williams
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Mark Cole Spangler
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Angela M. Bosco-Lauth
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Gregory D. Ebel
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
2
|
He CQ, Kong C, He M, Chen GX, Liu SM, Ding NZ. Intrasegmental recombination as an evolutionary force of Lassa fever virus. Front Microbiol 2024; 15:1411537. [PMID: 38832113 PMCID: PMC11144899 DOI: 10.3389/fmicb.2024.1411537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
Lassa fever (LF), caused by Lassa virus (LASV), is one of the most dangerous diseases to public health. Homologous recombination (HR) is a basic genetic power driving biological evolution. However, as a negative-stranded RNA virus, it is unknown whether HR occurs between LASVs and its influence on the outbreak of LF. In this study, after analyzing 575 S and 433 L segments of LASV collected in Africa, we found that LASV can achieve HR in both of its segments. Interestingly, although the length of S segment is less than half of the L segment, the proportion of LASVs with S recombinants is significantly higher than that with L recombinants. These results suggest that HR may be a feature of LASV, which can be set by natural selection to produce beneficial or eliminate harmful mutations for the virus, so it plays a role in LASV evolution during the outbreak of LF.
Collapse
Affiliation(s)
- Cheng-Qiang He
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, China
| | | | | | | | | | - Nai-Zheng Ding
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|
3
|
Ren YT, Tian HP, Xu JL, Liu MQ, Cai K, Chen SL, Ni XB, Li YR, Hou W, Chen LJ. Extensive genetic diversity of severe fever with thrombocytopenia syndrome virus circulating in Hubei Province, China, 2018-2022. PLoS Negl Trop Dis 2023; 17:e0011654. [PMID: 37721962 PMCID: PMC10538666 DOI: 10.1371/journal.pntd.0011654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 09/28/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV), an etiological agent causing febrile human disease was identified as an emerging tick-borne bunyavirus. The clinical disease characteristics and case fatality rates of SFTSV may vary across distinct regions and among different variant genotypes. From 2018 to 2022, we surveyed and recruited 202 severe fever with thrombocytopenia syndrome (SFTS) patients in Hubei Province, a high-incidence area of the epidemic, and conducted timely and systematic research on the disease characteristics, SFTSV diversity, and the correlation between virus genome variation and clinical diseases. Our study identified at least 6 genotypes of SFTSV prevalent in Hubei Province based on the analysis of the S, M, and L genome sequences of 88 virus strains. Strikingly, the dominant genotype of SFTSV was found to change during the years, indicating a dynamic shift in viral genetic diversity in the region. Phylogenetic analysis revealed the genetic exchange of Hubei SFTSV strains was relatively frequent, including 3 reassortment strains and 8 recombination strains. Despite the limited sample size, SFTSV C1 genotype may be associated with higher mortality compared to the other four genotypes, and the serum amyloid A (SAA) level, an inflammatory biomarker, was significantly elevated in these patients. Overall, our data summarize the disease characteristics of SFTSV in Hubei Province, highlight the profound changes in viral genetic diversity, and indicate the need for in-depth monitoring and exploration of the relationship between viral mutations and disease severity.
Collapse
Affiliation(s)
- Yu-ting Ren
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, Zhongnan Hospital/School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hong-pan Tian
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, Zhongnan Hospital/School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jia-le Xu
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, Zhongnan Hospital/School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Man-qing Liu
- Division of Virology, Wuhan Center for Disease Control & Prevention, Wuhan, China
| | - Kun Cai
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control & Prevention, Wuhan, China
| | - Shu-liang Chen
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, Zhongnan Hospital/School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xue-bing Ni
- State Key Laboratory of Emerging Infectious Diseases and Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Yi-rong Li
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, Zhongnan Hospital/School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wei Hou
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, Zhongnan Hospital/School of Basic Medical Sciences, Wuhan University, Wuhan, China
- School of Public Health, Wuhan University, Wuhan, China
| | - Liang-jun Chen
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, Zhongnan Hospital/School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Van Schalkwyk A, Coetzee P, Ebersohn K, Von Teichman B, Venter E. Widespread Reassortment Contributes to Antigenic Shift in Bluetongue Viruses from South Africa. Viruses 2023; 15:1611. [PMID: 37515297 PMCID: PMC10383083 DOI: 10.3390/v15071611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Bluetongue (BT), a viral disease of ruminants, is endemic throughout South Africa, where outbreaks of different serotypes occur. The predominant serotypes can differ annually due to herd immunity provided by annual vaccinations using a live attenuated vaccine (LAV). This has led to both wild-type and vaccine strains co-circulating in the field, potentially leading to novel viral strains due to reassortment and recombination. Little is known about the molecular evolution of the virus in the field in South Africa. The purpose of this study was to investigate the genetic diversity of field strains of BTV in South Africa and to provide an initial assessment of the evolutionary processes shaping BTV genetic diversity in the field. Complete genomes of 35 field viruses belonging to 11 serotypes, collected from different regions of the country between 2011 and 2017, were sequenced. The sequences were phylogenetically analysed in relation to all the BTV sequences available from GenBank, including the LAVs and reference strains, resulting in the analyses and reassortment detection of 305 BTVs. Phylogenomic analysis indicated a geographical selection of the genome segments, irrespective of the serotype. Based on the initial assessment of the current genomic clades that circulate in South Africa, the selection for specific clades is prevalent in directing genome segment reassortment, which seems to exclude the vaccine strains and in multiple cases involves Segment-2 resulting in antigenic shift.
Collapse
Affiliation(s)
- Antoinette Van Schalkwyk
- Agricultural Research Council-Onderstepoort Veterinary Institute, Onderstepoort 0110, South Africa
| | - Peter Coetzee
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| | - Karen Ebersohn
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| | | | - Estelle Venter
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
- School of Public Health, Medical and Veterinary Sciences, Discipline Veterinary Science, James Cook University, Townsville 4811, Australia
| |
Collapse
|
5
|
Shen LL, Waheed A, Wang YP, Nkurikiyimfura O, Wang ZH, Yang LN, Zhan J. Multiple Mechanisms Drive the Evolutionary Adaptation of Phytophthora infestans Effector Avr1 to Host Resistance. J Fungi (Basel) 2021; 7:jof7100789. [PMID: 34682211 PMCID: PMC8538934 DOI: 10.3390/jof7100789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
Effectors, a group of small proteins secreted by pathogens, play a central role in antagonistic interactions between plant hosts and pathogens. The evolution of effector genes threatens plant disease management and sustainable food production, but population genetic analyses to understand evolutionary mechanisms of effector genes are limited compared to molecular and functional studies. Here we investigated the evolution of the Avr1 effector gene from 111 Phytophthora infestans isolates collected from six areas covering three potato cropping regions in China using a population genetic approach. High genetic variation of the effector gene resulted from diverse mechanisms including base substitution, pre-termination, intragenic recombination and diversifying selection. Nearly 80% of the 111 sequences had a point mutation in the 512th nucleotide (T512G), which generated a pre-termination stop codon truncating 38 amino acids in the C-terminal, suggesting that the C-terminal may not be essential to ecological and biological functions of P. infestans. A significant correlation between the frequency of Avr1 sequences with the pre-termination and annual mean temperature in the collection sites suggests that thermal heterogeneity might be one of contributors to the diversifying selection, although biological and biochemical mechanisms of the likely thermal adaptation are not known currently. Our results highlight the risk of rapid adaptation of P. infestans and possibly other pathogens as well to host resistance, and the application of eco-evolutionary principles is necessary for sustainable disease management in agricultural ecosystems.
Collapse
Affiliation(s)
- Lin-Lin Shen
- Key Lab for Biopesticide and Chemical Biology, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China; (L.-L.S.); (A.W.); (O.N.)
| | - Abdul Waheed
- Key Lab for Biopesticide and Chemical Biology, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China; (L.-L.S.); (A.W.); (O.N.)
| | - Yan-Ping Wang
- College of Chemistry and Life Sciences, Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu 611130, China;
| | - Oswald Nkurikiyimfura
- Key Lab for Biopesticide and Chemical Biology, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China; (L.-L.S.); (A.W.); (O.N.)
| | - Zong-Hua Wang
- Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Li-Na Yang
- Key Lab for Biopesticide and Chemical Biology, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China; (L.-L.S.); (A.W.); (O.N.)
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China
- Correspondence: (L.-N.Y.); (J.Z.); Tel.: +86-177-2080-5328 (L.-N.Y.); +46-18-673-639 (J.Z.)
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
- Correspondence: (L.-N.Y.); (J.Z.); Tel.: +86-177-2080-5328 (L.-N.Y.); +46-18-673-639 (J.Z.)
| |
Collapse
|
6
|
Prajapati L, Khandelwal R, Yogalakshmi KN, Munshi A, Nayarisseri A. Computer-Aided Structure Prediction of Bluetongue Virus Coat Protein VP2 Assisted by Optimized Potential for Liquid Simulations (OPLS). Curr Top Med Chem 2020; 20:1720-1732. [DOI: 10.2174/1568026620666200516153753] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022]
Abstract
Background:
The capsid coated protein of Bluetongue virus (BTV) VP2 is responsible for
BTV transmission by the Culicoides vector to vertebrate hosts. Besides, VP2 is responsible for BTV
entry into permissive cells and hence plays a major role in disease progression. However, its mechanism
of action is still unknown.
Objective:
The present investigation aimed to predict the 3D structure of Viral Protein 2 of the bluetongue
virus assisted by Optimized Potential for Liquid Simulations (OPLS), structure validation, and an
active site prediction.
Methods:
The 3D structure of the VP2 protein was built using a Python-based Computational algorithm.
The templates were identified using Smith waterman’s Local alignment. The VP2 protein structure validated
using PROCHECK. Molecular Dynamics Simulation (MDS) studies were performed using an
academic software Desmond, Schrodinger dynamics, for determining the stability of a model protein.
The Ligand-Binding site was predicted by structure comparison using homology search and proteinprotein
network analysis to reveal their stability and inhibition mechanism, followed by the active site
identification.
Results:
The secondary structure of the VP2 reveals that the protein contains 220 alpha helix atoms,
40 310 helix, 151 beta sheets, 134 coils and 424 turns, whereas the 3D structure of Viral Protein 2 of
BTV has been found to have 15774 total atoms in the structure. However, 961 amino acids were found
in the final model. The dynamical cross-correlation matrix (DCCM) analysis tool identifies putative protein
domains and also confirms the stability of the predicted model and their dynamical behavior difference
with the correlative fluctuations in motion.
Conclusion:
The biological interpretation of the Viral Protein 2 was carried out. DCCM maps were calculated,
using a different coordinate reference frame, through which, protein domain boundaries and
protein domain residue constituents were identified. The obtained model shows good reliability. Moreover,
we anticipated that this research should play a promising role in the identification of novel candidates
with the target protein to inhibit their functional significance.
Collapse
Affiliation(s)
- Leena Prajapati
- Department of Environmental Science and Technology, Central University of Punjab, Bathinda-151001, Punjab, India
| | - Ravina Khandelwal
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | | | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda - 151001 Punjab, India
| | - Anuraj Nayarisseri
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| |
Collapse
|
7
|
Complete Genome Sequences of Virus Strains Isolated from Bottle A of the South African Live Attenuated Bluetongue Virus Vaccine. Microbiol Resour Announc 2020; 9:9/22/e00310-20. [PMID: 32467268 PMCID: PMC7256255 DOI: 10.1128/mra.00310-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
This is a report of the complete genome sequences of plaque-selected isolates of five virus strains included in bottle A of the South African Onderstepoort Biological Products commercial live attenuated bluetongue virus vaccine. This is a report of the complete genome sequences of plaque-selected isolates of five virus strains included in bottle A of the South African Onderstepoort Biological Products commercial live attenuated bluetongue virus vaccine.
Collapse
|
8
|
Mayo C, McDermott E, Kopanke J, Stenglein M, Lee J, Mathiason C, Carpenter M, Reed K, Perkins TA. Ecological Dynamics Impacting Bluetongue Virus Transmission in North America. Front Vet Sci 2020; 7:186. [PMID: 32426376 PMCID: PMC7212442 DOI: 10.3389/fvets.2020.00186] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Bluetongue virus (BTV) is an arbovirus transmitted to domestic and wild ruminants by certain species of Culicoides midges. The disease resulting from infection with BTV is economically important and can influence international trade and movement of livestock, the economics of livestock production, and animal welfare. Recent changes in the epidemiology of Culicoides-transmitted viruses, notably the emergence of exotic BTV genotypes in Europe, have demonstrated the devastating economic consequences of BTV epizootics and the complex nature of transmission across host-vector landscapes. Incursions of novel BTV serotypes into historically enzootic countries or regions, including the southeastern United States (US), Israel, Australia, and South America, have also occurred, suggesting diverse pathways for the transmission of these viruses. The abundance of BTV strains and multiple reassortant viruses circulating in Europe and the US in recent years demonstrates considerable genetic diversity of BTV strains and implies a history of reassortment events within the respective regions. While a great deal of emphasis is rightly placed on understanding the epidemiology and emergence of BTV beyond its natural ecosystem, the ecological contexts in which BTV maintains an enzootic cycle may also be of great significance. This review focuses on describing our current knowledge of ecological factors driving BTV transmission in North America. Information presented in this review can help inform future studies that may elucidate factors that are relevant to longstanding and emerging challenges associated with prevention of this disease.
Collapse
Affiliation(s)
- Christie Mayo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Emily McDermott
- Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Jennifer Kopanke
- Office of the Campus Veterinarian, Washington State University, Spokane, WA, United States
| | - Mark Stenglein
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Justin Lee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Candace Mathiason
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Molly Carpenter
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Kirsten Reed
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - T. Alex Perkins
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
9
|
Zhang Z, Li N, Hou C, Gao K, Tang X, Guo X. Analysis of reassortant and intragenic recombination in Cypovirus. Virol J 2020; 17:48. [PMID: 32248835 PMCID: PMC7132967 DOI: 10.1186/s12985-020-01321-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/23/2020] [Indexed: 11/10/2022] Open
Abstract
Cypoviruses (CPVs) are RNA viruses with segmented double-stranded genome and major pathogens of various insects, including economic insects like silkworms and pest insects for agricultural crops and forests. Genome reassortment and recombination are common phenomenon for viruses as a mechanism to expand host range and increase virulence. In the present study, we analyzed the reassortant and recombination events for CPVs. The results showed that two genome segments (S1 and S4) of BmCPV1-YN shared higher nucleotide identity with the corresponding segment of BmCPV1-I while others were all more closely to BmCPV1-SZ, suggesting BmCPV1-YN was originated from reassortant events between BmCPV1-I and BmCPV1-SZ. Recombination analyses revealed that S6 of BmCPV1-YN was a recombinant segment derived from BmCPV1-I and BmCPV1-SZ, and S10 of DpCPV1 was a recombinant segment emerged from BmCPV1-I and LdCPV1. Our findings provide the evidence for the fact that CPVs could undergo reassortant and recombinant events and enrich the knowledge about etiology and molecular epidemiology of CPVs.
Collapse
Affiliation(s)
- Zhendong Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China.,Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu, China
| | - Ning Li
- College of Animal Science and Veterinary Medicine, Shan Dong Agricultural University, Taian, China
| | - Chengxiang Hou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China.,Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu, China
| | - Kun Gao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China.,Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu, China
| | - Xudong Tang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China.,Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu, China
| | - Xijie Guo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China. .,Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu, China.
| |
Collapse
|
10
|
Tomazatos A, Marschang RE, Maranda I, Baum H, Bialonski A, Spînu M, Lühken R, Schmidt-Chanasit J, Cadar D. Letea Virus: Comparative Genomics and Phylogenetic Analysis of a Novel Reassortant Orbivirus Discovered in Grass Snakes ( Natrix natrix). Viruses 2020; 12:v12020243. [PMID: 32098186 PMCID: PMC7077223 DOI: 10.3390/v12020243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 01/22/2023] Open
Abstract
The discovery and characterization of novel arthropod-borne viruses provide valuable information on their genetic diversity, ecology, evolution and potential to threaten animal or public health. Arbovirus surveillance is not conducted regularly in Romania, being particularly very scarce in the remote and diverse areas like the Danube Delta. Here we describe the detection and genetic characterization of a novel orbivirus (Reoviridae: Orbivirus) designated as Letea virus, which was found in grass snakes (Natrix natrix) during a metagenomic and metatranscriptomic survey conducted between 2014 and 2017. This virus is the first orbivirus discovered in reptiles. Phylogenetic analyses placed Letea virus as a highly divergent species in the Culicoides-/sand fly-borne orbivirus clade. Gene reassortment and intragenic recombination were detected in the majority of the nine Letea virus strains obtained, implying that these mechanisms play important roles in the evolution and diversification of the virus. However, the screening of arthropods, including Culicoides biting midges collected within the same surveillance program, tested negative for Letea virus infection and could not confirm the arthropod vector of the virus. The study provided complete genome sequences for nine Letea virus strains and new information about orbivirus diversity, host range, ecology and evolution. The phylogenetic associations warrant further screening of arthropods, as well as sustained surveillance efforts for elucidation of Letea virus natural cycle and possible implications for animal and human health.
Collapse
Affiliation(s)
- Alexandru Tomazatos
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany; (A.T.); (I.M.); (H.B.); (A.B.); (R.L.); (J.S.-C.)
| | - Rachel E. Marschang
- Cell Culture Lab, Microbiology Department, Laboklin GmbH & Co. KG, 97688 Bad Kissingen, Germany;
| | - Iulia Maranda
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany; (A.T.); (I.M.); (H.B.); (A.B.); (R.L.); (J.S.-C.)
| | - Heike Baum
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany; (A.T.); (I.M.); (H.B.); (A.B.); (R.L.); (J.S.-C.)
| | - Alexandra Bialonski
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany; (A.T.); (I.M.); (H.B.); (A.B.); (R.L.); (J.S.-C.)
| | - Marina Spînu
- Department of Clinical Sciences-Infectious Diseases, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
| | - Renke Lühken
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany; (A.T.); (I.M.); (H.B.); (A.B.); (R.L.); (J.S.-C.)
- Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, 20148 Hamburg, Germany
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany; (A.T.); (I.M.); (H.B.); (A.B.); (R.L.); (J.S.-C.)
- Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, 20148 Hamburg, Germany
| | - Daniel Cadar
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany; (A.T.); (I.M.); (H.B.); (A.B.); (R.L.); (J.S.-C.)
- Correspondence:
| |
Collapse
|
11
|
Abstract
Because of their replication mode and segmented dsRNA genome, homologous recombination is assumed to be rare in the rotaviruses. We analyzed 23,627 complete rotavirus genome sequences available in the NCBI Virus Variation database, and found 109 instances of homologous recombination, at least eleven of which prevailed across multiple sequenced isolates. In one case, recombination may have generated a novel rotavirus VP1 lineage. We also found strong evidence for intergenotypic recombination in which more than one sequence strongly supported the same event, particularly between different genotypes of segment 9, which encodes the glycoprotein, VP7. The recombined regions of many putative recombinants showed amino acid substitutions differentiating them from their major and minor parents. This finding suggests that these recombination events were not overly deleterious, since presumably these recombinants proliferated long enough to acquire adaptive mutations in their recombined regions. Protein structural predictions indicated that, despite the sometimes substantial amino acid replacements resulting from recombination, the overall protein structures remained relatively unaffected. Notably, recombination junctions appear to occur nonrandomly with hot spots corresponding to secondary RNA structures, a pattern seen consistently across segments. In total, we found strong evidence for recombination in nine of eleven rotavirus A segments. Only segments 7 (NSP3) and 11 (NSP5) did not show strong evidence of recombination. Collectively, the results of our computational analyses suggest that, contrary to the prevailing sentiment, recombination may be a significant driver of rotavirus evolution and may influence circulating strain diversity.
Collapse
Affiliation(s)
- Irene Hoxie
- Biology Department, Queens College of The City University of New York, 65-30 Kissena Blvd, Queens, NY 11367, USA.,The Graduate Center of The City University of New York, Biology Program, 365 5th Ave, New York, NY 10016, USA
| | - John J Dennehy
- Biology Department, Queens College of The City University of New York, 65-30 Kissena Blvd, Queens, NY 11367, USA.,The Graduate Center of The City University of New York, Biology Program, 365 5th Ave, New York, NY 10016, USA
| |
Collapse
|
12
|
Evidence of Intragenic Recombination in African Horse Sickness Virus. Viruses 2019; 11:v11070654. [PMID: 31323749 PMCID: PMC6669442 DOI: 10.3390/v11070654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/24/2022] Open
Abstract
Intragenic recombination has been described in various RNA viruses as a mechanism to increase genetic diversity, resulting in increased virulence, expanded host range, or adaptability to a changing environment. Orbiviruses are no exception to this, with intragenic recombination previously detected in the type species, bluetongue virus (BTV). African horse sickness virus (AHSV) is a double-stranded RNA virus belonging to the Oribivirus genus in the family Reoviridae. Genetic recombination through reassortment has been described in AHSV, but not through homologous intragenic recombination. The influence of the latter on the evolution of AHSV was investigated by analyzing the complete genomes of more than 100 viruses to identify evidence of recombination. Segment-1, segment-6, segment-7, and segment-10 showed evidence of intragenic recombination, yet only one (Segment-10) of these events was manifested in subsequent lineages. The other three hybrid segments were as a result of recombination between field isolates and the vaccine derived live attenuated viruses (ALVs).
Collapse
|
13
|
Cholleti H, Berg M, Hayer J, Blomström AL. Vector-borne viruses and their detection by viral metagenomics. Infect Ecol Epidemiol 2018. [DOI: 10.1080/20008686.2018.1553465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Harindranath Cholleti
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mikael Berg
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Juliette Hayer
- SLU Global Bioinformatics Centre, Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anne-Lie Blomström
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
14
|
GENETIC RELATEDNESS OF EPIZOOTIC HEMORRHAGIC DISEASE VIRUS SEROTYPE 2 FROM 2012 OUTBREAK IN THE USA. J Wildl Dis 2018; 55:363-374. [PMID: 30284951 DOI: 10.7589/2017-05-125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During summer and early fall of 2012, the US experienced the largest outbreak of hemorrhagic disease (HD) on record; deer (both Odocoileus virginianus and Odocoileus hemionus) in 35 states were affected, including many northern states where HD typically does not occur. Epizootic hemorrhagic disease virus (EHDV) was the predominant virus isolated, with serotype 2 (EHDV-2) representing 66% (135/205) of all isolated viruses. Viruses within the EHDV serogroup are genetically similar, but we hypothesized that subtle genetic distinctions between viruses would exist across the geographic range of the outbreak if multiple EHDV-2 strains were responsible. We examined viral relatedness and molecular epidemiology of the outbreak by sequencing the mammalian binding protein (VP2) gene and the insect vector binding protein (VP7) gene of 34 EHDV-2 isolates from 2012 across 21 states. Nucleotide sequences of VP2 had 99.0% pairwise identity; VP7 nucleotide sequences had 99.1% pairwise identity. Very few changes were observed in either protein at the amino acid level. Despite the high genetic similarity between isolates, subtle nucleotide differences existed. Both VP2 and VP7 gene sequences separated into two distinct clades based on patterns of single-nucleotide polymorphisms after phylogenetic analysis. The clades were divided geographically into eastern and western clades, although those divisions were not identical between VP2 and VP7. There was also an association between percent sequence identity and geographic distance between isolates. We concluded that multiple EHDV-2 strains contributed to this outbreak.
Collapse
|
15
|
Yang L, Ouyang H, Fang Z, Zhu W, Wu E, Luo G, Shang L, Zhan J. Evidence for intragenic recombination and selective sweep in an effector gene of Phytophthora infestans. Evol Appl 2018; 11:1342-1353. [PMID: 30151044 PMCID: PMC6099815 DOI: 10.1111/eva.12629] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 03/06/2018] [Indexed: 01/07/2023] Open
Abstract
Effectors, a group of small proteins secreted by pathogens, play a critical role in the antagonistic interaction between plant hosts and pathogens through their dual functions in regulating host immune systems and pathogen infection capability. In this study, evolution in effector genes was investigated through population genetic analysis of Avr3a sequences generated from 96 Phytophthora infestans isolates collected from six locations representing a range of thermal variation and cropping systems in China. We found high genetic variation in the Avr3a gene resulting from diverse mechanisms extending beyond point mutations, frameshift, and defeated start and stop codons to intragenic recombination. A total of 51 nucleotide haplotypes encoding 38 amino acid isoforms were detected in the 96 full sequences with nucleotide diversity in the pathogen populations ranging from 0.007 to 0.023 (mean = 0.017). Although haplotype and nucleotide diversity were high, the effector gene was dominated by only three haplotypes. Evidence for a selective sweep was provided by (i) the population genetic differentiation (GST) of haplotypes being lower than the population differentiation (FST) of SSR marker loci; and (ii) negative values of Tajima's D and Fu's FS. Annual mean temperature in the collection sites was negatively correlated with the frequency of the virulent form (Avr3aEM), indicating Avr3a may be regulated by temperature. These results suggest that elevated air temperature due to global warming may hamper the development of pathogenicity traits in P. infestans and further study under confined thermal regimes may be required to confirm the hypothesis.
Collapse
Affiliation(s)
- Lina Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Lab of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Hai‐Bing Ouyang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Lab of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zhi‐Guo Fang
- Fujian Key Lab of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
- Xiangyang Academy of Agricultural SciencesXiangyangChina
| | - Wen Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Lab of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - E‐Jiao Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Lab of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Gui‐Huo Luo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Lab of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Li‐Ping Shang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jiasui Zhan
- Key Lab for Biopesticide and Chemical BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
16
|
Saxena A, Biswas SK, Chand K, Naskar J, Chauhan A, Mohd G, Tewari N, Kurat-ul-Ain, Ramakrishnan MA, Pandey AB. Genetic and phylogenetic analysis of the outer capsid protein genes of Indian isolates of bluetongue virus serotype-16. Vet World 2018; 11:1025-1029. [PMID: 30250358 PMCID: PMC6141295 DOI: 10.14202/vetworld.2018.1025-1029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 06/13/2018] [Indexed: 11/24/2022] Open
Abstract
AIM The aim of the study was to characterize bluetongue virus serotype 16 (BTV-16), recently isolated from different states of India. The evolutionary relationship of newly isolated BTV-16 and previously reported Indian and global BTV-16 isolates were compared using molecular analysis. MATERIALS AND METHODS In the present study, five (n=5) BTV-16 isolates were used to amplify gene segment-2 and segment-6 encoding the outer capsid proteins VP2 and VP5, respectively. The amplified products were purified and sequenced by the Sanger sequencing method. The phylogenetic relationship and nucleotide identity of all five BTV-16 isolates were compared with previously reported Indian and global BTV-16 isolates. Nucleotide sequence data were aligned using the CLUSTAL W algorithm implemented in the MegAlign of DNASTAR program package (MegAlign 5.00, DNASTAR Inc., Madison, USA). Phylogenetic analyses were carried out using MEGA version 6.0 software with the best nucleotide substitution model. RESULTS Phylogenetic analysis based on the VP2 and VP5 encoding genes, segregates Indian BTV-16 isolates in a distinct cluster with proximity to the Eastern topotype. Indian isolates make a monophyletic cluster with Eastern topotypes with Western topotype BTV-16 (BTV-16/NIG/AJ586694) occupying a separate cluster. Indian isolates were found to share 91.5%-97.5% and 96.5%-98.9% identity at the nucleotide and deduced amino acid (aa) level, respectively, to the global BTV-16 isolates. There is a high degree of variation with the Nigerian isolate with 27.0-27.7% and 26.0-26.9% at the nucleotide and aa sequence level, respectively. These data suggest that Indian BTV-16 isolates might have evolved separately within the Eastern BTV topotype. CONCLUSION Phylogenetic analyses and nucleotide identity of BTV-16 isolates at the VP2 and VP5 gene encoded level indicate that isolates used in the present study might have evolved from a common Eastern topotype ancestor. The data presented in this study will be helpful for future selection of reference strains in a serological and molecular epidemiology study.
Collapse
Affiliation(s)
- Arpit Saxena
- Division of Virology, Indian Veterinary Research Institute (IVRI) Mukteswar, Nainital - 263 138, Uttarakhand, India
- Department of Molecular and Cellular Engineering, Sam Higginbottom University of Agriculture Technology and Sciences (SHUATS), Allahabad - 211 007, Uttar Pradesh, India
| | - Sanchay K. Biswas
- Division of Virology, Indian Veterinary Research Institute (IVRI) Mukteswar, Nainital - 263 138, Uttarakhand, India
| | - Karam Chand
- Division of Virology, Indian Veterinary Research Institute (IVRI) Mukteswar, Nainital - 263 138, Uttarakhand, India
| | - Jishnu Naskar
- Department of Molecular and Cellular Engineering, Sam Higginbottom University of Agriculture Technology and Sciences (SHUATS), Allahabad - 211 007, Uttar Pradesh, India
| | - Ankita Chauhan
- Division of Virology, Indian Veterinary Research Institute (IVRI) Mukteswar, Nainital - 263 138, Uttarakhand, India
| | - Gulam Mohd
- Division of Biological Standardization, Indian Veterinary Research Institute (IVRI) Izatnagar, Bareilly - 243 122, Uttar Pradesh, India
| | - Neha Tewari
- Division of Virology, Indian Veterinary Research Institute (IVRI) Mukteswar, Nainital - 263 138, Uttarakhand, India
| | - Kurat-ul-Ain
- Division of Virology, Indian Veterinary Research Institute (IVRI) Mukteswar, Nainital - 263 138, Uttarakhand, India
| | - Muthannan A. Ramakrishnan
- Division of Virology, Indian Veterinary Research Institute (IVRI) Mukteswar, Nainital - 263 138, Uttarakhand, India
| | - Awadh Bihari Pandey
- Division of Biological Standardization, Indian Veterinary Research Institute (IVRI) Izatnagar, Bareilly - 243 122, Uttar Pradesh, India
| |
Collapse
|
17
|
Abstract
Reproduction of RNA viruses is typically error-prone due to the infidelity of their replicative machinery and the usual lack of proofreading mechanisms. The error rates may be close to those that kill the virus. Consequently, populations of RNA viruses are represented by heterogeneous sets of genomes with various levels of fitness. This is especially consequential when viruses encounter various bottlenecks and new infections are initiated by a single or few deviating genomes. Nevertheless, RNA viruses are able to maintain their identity by conservation of major functional elements. This conservatism stems from genetic robustness or mutational tolerance, which is largely due to the functional degeneracy of many protein and RNA elements as well as to negative selection. Another relevant mechanism is the capacity to restore fitness after genetic damages, also based on replicative infidelity. Conversely, error-prone replication is a major tool that ensures viral evolvability. The potential for changes in debilitated genomes is much higher in small populations, because in the absence of stronger competitors low-fit genomes have a choice of various trajectories to wander along fitness landscapes. Thus, low-fit populations are inherently unstable, and it may be said that to run ahead it is useful to stumble. In this report, focusing on picornaviruses and also considering data from other RNA viruses, we review the biological relevance and mechanisms of various alterations of viral RNA genomes as well as pathways and mechanisms of rehabilitation after loss of fitness. The relationships among mutational robustness, resilience, and evolvability of viral RNA genomes are discussed.
Collapse
|
18
|
Gaudreault NN, Mayo CE, Jasperson DC, Crossley BM, Breitmeyer RE, Johnson DJ, Ostlund EN, MacLachlan NJ, Wilson WC. Whole genome sequencing and phylogenetic analysis of Bluetongue virus serotype 2 strains isolated in the Americas including a novel strain from the western United States. J Vet Diagn Invest 2018; 26:553-557. [PMID: 24916442 DOI: 10.1177/1040638714536902] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Bluetongue is a potentially fatal arboviral disease of domestic and wild ruminants that is characterized by widespread edema and tissue necrosis. Bluetongue virus (BTV) serotypes 10, 11, 13, and 17 occur throughout much of the United States, whereas serotype 2 (BTV-2) was previously only detected in the southeastern United States. Since 1998, 10 other BTV serotypes have also been isolated from ruminants in the southeastern United States. In 2010, BTV-2 was identified in California for the first time, and preliminary sequence analysis indicated that the virus isolate was closely related to BTV strains circulating in the southeastern United States. In the current study, the whole genome sequence of the California strain of BTV-2 was compared with those of other BTV-2 strains in the Americas. The results of the analysis suggest co-circulation of genetically distinct viruses in the southeastern United States, and further suggest that the 2010 western isolate is closely related to southeastern strains of BTV. Although it remains uncertain as to how this novel virus was translocated to California, the findings of the current study underscore the need for ongoing surveillance of this economically important livestock disease.
Collapse
Affiliation(s)
- Natasha N Gaudreault
- Arthropod-Borne Animal Diseases Research Unit, U.S. Department of Agriculture (USDA), Agricultural Research Service, Manhattan, KS (Gaudreault, Jasperson, Wilson).,Department of Pathology, Microbiology and Immunology (Mayo, MacLachlan), School of Veterinary Medicine, University of California, Davis, CA.,California Animal Health and Food Safety Laboratory (Crossley, Breitmeyer), School of Veterinary Medicine, University of California, Davis, CA.,Diagnostic Virology Laboratory, National Veterinary Services Laboratories, USDA, Animal and Plant Health Inspection Service, Ames, IA (Johnson, Ostlund)
| | - Christie E Mayo
- Arthropod-Borne Animal Diseases Research Unit, U.S. Department of Agriculture (USDA), Agricultural Research Service, Manhattan, KS (Gaudreault, Jasperson, Wilson).,Department of Pathology, Microbiology and Immunology (Mayo, MacLachlan), School of Veterinary Medicine, University of California, Davis, CA.,California Animal Health and Food Safety Laboratory (Crossley, Breitmeyer), School of Veterinary Medicine, University of California, Davis, CA.,Diagnostic Virology Laboratory, National Veterinary Services Laboratories, USDA, Animal and Plant Health Inspection Service, Ames, IA (Johnson, Ostlund)
| | - Dane C Jasperson
- Arthropod-Borne Animal Diseases Research Unit, U.S. Department of Agriculture (USDA), Agricultural Research Service, Manhattan, KS (Gaudreault, Jasperson, Wilson).,Department of Pathology, Microbiology and Immunology (Mayo, MacLachlan), School of Veterinary Medicine, University of California, Davis, CA.,California Animal Health and Food Safety Laboratory (Crossley, Breitmeyer), School of Veterinary Medicine, University of California, Davis, CA.,Diagnostic Virology Laboratory, National Veterinary Services Laboratories, USDA, Animal and Plant Health Inspection Service, Ames, IA (Johnson, Ostlund)
| | - Beate M Crossley
- Arthropod-Borne Animal Diseases Research Unit, U.S. Department of Agriculture (USDA), Agricultural Research Service, Manhattan, KS (Gaudreault, Jasperson, Wilson).,Department of Pathology, Microbiology and Immunology (Mayo, MacLachlan), School of Veterinary Medicine, University of California, Davis, CA.,California Animal Health and Food Safety Laboratory (Crossley, Breitmeyer), School of Veterinary Medicine, University of California, Davis, CA.,Diagnostic Virology Laboratory, National Veterinary Services Laboratories, USDA, Animal and Plant Health Inspection Service, Ames, IA (Johnson, Ostlund)
| | - Richard E Breitmeyer
- Arthropod-Borne Animal Diseases Research Unit, U.S. Department of Agriculture (USDA), Agricultural Research Service, Manhattan, KS (Gaudreault, Jasperson, Wilson).,Department of Pathology, Microbiology and Immunology (Mayo, MacLachlan), School of Veterinary Medicine, University of California, Davis, CA.,California Animal Health and Food Safety Laboratory (Crossley, Breitmeyer), School of Veterinary Medicine, University of California, Davis, CA.,Diagnostic Virology Laboratory, National Veterinary Services Laboratories, USDA, Animal and Plant Health Inspection Service, Ames, IA (Johnson, Ostlund)
| | - Donna J Johnson
- Arthropod-Borne Animal Diseases Research Unit, U.S. Department of Agriculture (USDA), Agricultural Research Service, Manhattan, KS (Gaudreault, Jasperson, Wilson).,Department of Pathology, Microbiology and Immunology (Mayo, MacLachlan), School of Veterinary Medicine, University of California, Davis, CA.,California Animal Health and Food Safety Laboratory (Crossley, Breitmeyer), School of Veterinary Medicine, University of California, Davis, CA.,Diagnostic Virology Laboratory, National Veterinary Services Laboratories, USDA, Animal and Plant Health Inspection Service, Ames, IA (Johnson, Ostlund)
| | - Eileen N Ostlund
- Arthropod-Borne Animal Diseases Research Unit, U.S. Department of Agriculture (USDA), Agricultural Research Service, Manhattan, KS (Gaudreault, Jasperson, Wilson).,Department of Pathology, Microbiology and Immunology (Mayo, MacLachlan), School of Veterinary Medicine, University of California, Davis, CA.,California Animal Health and Food Safety Laboratory (Crossley, Breitmeyer), School of Veterinary Medicine, University of California, Davis, CA.,Diagnostic Virology Laboratory, National Veterinary Services Laboratories, USDA, Animal and Plant Health Inspection Service, Ames, IA (Johnson, Ostlund)
| | - N James MacLachlan
- Arthropod-Borne Animal Diseases Research Unit, U.S. Department of Agriculture (USDA), Agricultural Research Service, Manhattan, KS (Gaudreault, Jasperson, Wilson).,Department of Pathology, Microbiology and Immunology (Mayo, MacLachlan), School of Veterinary Medicine, University of California, Davis, CA.,California Animal Health and Food Safety Laboratory (Crossley, Breitmeyer), School of Veterinary Medicine, University of California, Davis, CA.,Diagnostic Virology Laboratory, National Veterinary Services Laboratories, USDA, Animal and Plant Health Inspection Service, Ames, IA (Johnson, Ostlund)
| | - William C Wilson
- Arthropod-Borne Animal Diseases Research Unit, U.S. Department of Agriculture (USDA), Agricultural Research Service, Manhattan, KS (Gaudreault, Jasperson, Wilson).,Department of Pathology, Microbiology and Immunology (Mayo, MacLachlan), School of Veterinary Medicine, University of California, Davis, CA.,California Animal Health and Food Safety Laboratory (Crossley, Breitmeyer), School of Veterinary Medicine, University of California, Davis, CA.,Diagnostic Virology Laboratory, National Veterinary Services Laboratories, USDA, Animal and Plant Health Inspection Service, Ames, IA (Johnson, Ostlund)
| |
Collapse
|
19
|
Marín-López A, Barriales D, Moreno S, Ortego J, Calvo-Pinilla E. Defeating Bluetongue virus: new approaches in the development of multiserotype vaccines. Future Virol 2016. [DOI: 10.2217/fvl-2016-0061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Bluetongue virus (BTV) is a global threat to domestic and wild ruminants, causing massive economic losses throughout the world. New serotypes of the virus are rapidly emerging in different continents, unfortunately there is little cross-protection between BTV serotypes. The eradication of the virus from a region is particularly complicated in areas where multiple serotypes circulate for a long time. The present review summarizes the actual concerns about the spread of the virus and relevant approaches to develop efficient vaccines against BTV, in particular those focused on a multiserotype design.
Collapse
Affiliation(s)
| | - Diego Barriales
- Centro de Investigación en Sanidad Animal, INIA-CISA, Valdeolmos-Madrid, Spain
| | - Sandra Moreno
- Centro de Investigación en Sanidad Animal, INIA-CISA, Valdeolmos-Madrid, Spain
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal, INIA-CISA, Valdeolmos-Madrid, Spain
| | - Eva Calvo-Pinilla
- Centro de Investigación en Sanidad Animal, INIA-CISA, Valdeolmos-Madrid, Spain
| |
Collapse
|
20
|
Maan S, Maan NS, Belaganahalli MN, Rao PP, Singh KP, Hemadri D, Putty K, Kumar A, Batra K, Krishnajyothi Y, Chandel BS, Reddy GH, Nomikou K, Reddy YN, Attoui H, Hegde NR, Mertens PPC. Full-Genome Sequencing as a Basis for Molecular Epidemiology Studies of Bluetongue Virus in India. PLoS One 2015; 10:e0131257. [PMID: 26121128 PMCID: PMC4488075 DOI: 10.1371/journal.pone.0131257] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/29/2015] [Indexed: 01/04/2023] Open
Abstract
Since 1998 there have been significant changes in the global distribution of bluetongue virus (BTV). Ten previously exotic BTV serotypes have been detected in Europe, causing severe disease outbreaks in naïve ruminant populations. Previously exotic BTV serotypes were also identified in the USA, Israel, Australia and India. BTV is transmitted by biting midges (Culicoides spp.) and changes in the distribution of vector species, climate change, increased international travel and trade are thought to have contributed to these events. Thirteen BTV serotypes have been isolated in India since first reports of the disease in the country during 1964. Efficient methods for preparation of viral dsRNA and cDNA synthesis, have facilitated full-genome sequencing of BTV strains from the region. These studies introduce a new approach for BTV characterization, based on full-genome sequencing and phylogenetic analyses, facilitating the identification of BTV serotype, topotype and reassortant strains. Phylogenetic analyses show that most of the equivalent genome-segments of Indian BTV strains are closely related, clustering within a major eastern BTV 'topotype'. However, genome-segment 5 (Seg-5) encoding NS1, from multiple post 1982 Indian isolates, originated from a western BTV topotype. All ten genome-segments of BTV-2 isolates (IND2003/01, IND2003/02 and IND2003/03) are closely related (>99% identity) to a South African BTV-2 vaccine-strain (western topotype). Similarly BTV-10 isolates (IND2003/06; IND2005/04) show >99% identity in all genome segments, to the prototype BTV-10 (CA-8) strain from the USA. These data suggest repeated introductions of western BTV field and/or vaccine-strains into India, potentially linked to animal or vector-insect movements, or unauthorised use of 'live' South African or American BTV-vaccines in the country. The data presented will help improve nucleic acid based diagnostics for Indian serotypes/topotypes, as part of control strategies.
Collapse
Affiliation(s)
- Sushila Maan
- Vector-borne Viral Diseases Programme, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
- College of Veterinary Sciences, LLR University of Veterinary and Animal Sciences, Hisar, 125 004, Haryana, India
- * E-mail: (SM); (PPCM)
| | - Narender S. Maan
- Vector-borne Viral Diseases Programme, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
- College of Veterinary Sciences, LLR University of Veterinary and Animal Sciences, Hisar, 125 004, Haryana, India
| | - Manjunatha N. Belaganahalli
- Vector-borne Viral Diseases Programme, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
| | | | - Karam Pal Singh
- Pathology Laboratory, Centre for Animal Disease Research and Diagnosis, Indian Veterinary Research Institute, Izatnagar, 243122, U.P, India
| | - Divakar Hemadri
- National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Hebbal, Bengaluru, 560024, K.A, India
| | - Kalyani Putty
- College of Veterinary Science, Acharya N.G. Ranga Agricultural University, Rajendra Nagar, Hyderabad, 500 030, T.S, India
| | - Aman Kumar
- College of Veterinary Sciences, LLR University of Veterinary and Animal Sciences, Hisar, 125 004, Haryana, India
| | - Kanisht Batra
- College of Veterinary Sciences, LLR University of Veterinary and Animal Sciences, Hisar, 125 004, Haryana, India
| | - Yadlapati Krishnajyothi
- Veterinary Biological & Research Institute, Govt. of Andhra Pradesh, Hyderabad, 500028, T.S, India
| | - Bharat S. Chandel
- College of Veterinary Science and AH, S.D. Agricultural University, Sardarkrushinagar-385 506, B.K., Gujarat, India
| | - G. Hanmanth Reddy
- Veterinary Biological & Research Institute, Govt. of Andhra Pradesh, Hyderabad, 500028, T.S, India
| | - Kyriaki Nomikou
- Vector-borne Viral Diseases Programme, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
| | - Yella Narasimha Reddy
- College of Veterinary Science, Acharya N.G. Ranga Agricultural University, Rajendra Nagar, Hyderabad, 500 030, T.S, India
| | - Houssam Attoui
- Vector-borne Viral Diseases Programme, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
| | | | - Peter P. C. Mertens
- Vector-borne Viral Diseases Programme, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
- * E-mail: (SM); (PPCM)
| |
Collapse
|
21
|
Zhan J, Thrall PH, Papaïx J, Xie L, Burdon JJ. Playing on a pathogen's weakness: using evolution to guide sustainable plant disease control strategies. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:19-43. [PMID: 25938275 DOI: 10.1146/annurev-phyto-080614-120040] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Wild plants and their associated pathogens are involved in ongoing interactions over millennia that have been modified by coevolutionary processes to limit the spatial extent and temporal duration of disease epidemics. These interactions are disrupted by modern agricultural practices and social activities, such as intensified monoculture using superior varieties and international trading of agricultural commodities. These activities, when supplemented with high resource inputs and the broad application of agrochemicals, create conditions uniquely conducive to widespread plant disease epidemics and rapid pathogen evolution. To be effective and durable, sustainable disease management requires a significant shift in emphasis to overtly include ecoevolutionary principles in the design of adaptive management programs aimed at minimizing the evolutionary potential of plant pathogens by reducing their genetic variation, stabilizing their evolutionary dynamics, and preventing dissemination of pathogen variants carrying new infectivity or resistance to agrochemicals.
Collapse
Affiliation(s)
- Jiasui Zhan
- Key Laboratory for Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China;
| | | | | | | | | |
Collapse
|
22
|
Hornyák Á, Malik P, Marton S, Dóró R, Cadar D, Bányai K. Emergence of multireassortant bluetongue virus serotype 4 in Hungary. INFECTION GENETICS AND EVOLUTION 2015; 33:6-10. [PMID: 25847695 DOI: 10.1016/j.meegid.2015.03.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/26/2015] [Accepted: 03/28/2015] [Indexed: 10/23/2022]
Abstract
The genome sequence and the phylogenetic relationships of a serotype 4 bluetongue virus (BTV-4) emerged during 2014 in Hungary are described in this study. Genome segment 2 encoding the major neutralization antigen, VP2, shared moderate sequence similarity (nt, ⩽ 94.3%) with the corresponding gene of contemporary and historic homotypic bluetongue viruses, whereas genome segments S1, S4, S5, S7-S10 were typically more closely related to the cognate genes of heterotypic isolates. Importantly, in many gene phylogenies the Hungarian BTV-4 strain showed genetic relationship to BTV strains identified in outbreaks in the western Mediterranean basin. Our results indicate the identified Hungarian bluetongue virus strain evolved through reassortment involving multiple genome segments from various heterotypic bluetongue viruses.
Collapse
Affiliation(s)
- Ákos Hornyák
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Budapest, Hungary
| | - Péter Malik
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Budapest, Hungary
| | - Szilvia Marton
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Renáta Dóró
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Daniel Cadar
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Hamburg, Germany
| | - Krisztián Bányai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
23
|
Pérez-Losada M, Arenas M, Galán JC, Palero F, González-Candelas F. Recombination in viruses: mechanisms, methods of study, and evolutionary consequences. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2015; 30:296-307. [PMID: 25541518 PMCID: PMC7106159 DOI: 10.1016/j.meegid.2014.12.022] [Citation(s) in RCA: 230] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 12/15/2014] [Accepted: 12/17/2014] [Indexed: 02/08/2023]
Abstract
Recombination is a pervasive process generating diversity in most viruses. It joins variants that arise independently within the same molecule, creating new opportunities for viruses to overcome selective pressures and to adapt to new environments and hosts. Consequently, the analysis of viral recombination attracts the interest of clinicians, epidemiologists, molecular biologists and evolutionary biologists. In this review we present an overview of three major areas related to viral recombination: (i) the molecular mechanisms that underlie recombination in model viruses, including DNA-viruses (Herpesvirus) and RNA-viruses (Human Influenza Virus and Human Immunodeficiency Virus), (ii) the analytical procedures to detect recombination in viral sequences and to determine the recombination breakpoints, along with the conceptual and methodological tools currently used and a brief overview of the impact of new sequencing technologies on the detection of recombination, and (iii) the major areas in the evolutionary analysis of viral populations on which recombination has an impact. These include the evaluation of selective pressures acting on viral populations, the application of evolutionary reconstructions in the characterization of centralized genes for vaccine design, and the evaluation of linkage disequilibrium and population structure.
Collapse
Affiliation(s)
- Marcos Pérez-Losada
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Portugal; Computational Biology Institute, George Washington University, Ashburn, VA 20147, USA
| | - Miguel Arenas
- Centre for Molecular Biology "Severo Ochoa", Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Juan Carlos Galán
- Servicio de Microbiología, Hospital Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; CIBER en Epidemiología y Salud Pública, Spain
| | - Ferran Palero
- CIBER en Epidemiología y Salud Pública, Spain; Unidad Mixta Infección y Salud Pública, FISABIO-Universitat de València, Valencia, Spain
| | - Fernando González-Candelas
- CIBER en Epidemiología y Salud Pública, Spain; Unidad Mixta Infección y Salud Pública, FISABIO-Universitat de València, Valencia, Spain.
| |
Collapse
|
24
|
Abstract
UNLABELLED Bluetongue virus serotype 1 (BTV 1) was first isolated in Australia from cattle blood collected in 1979 at Beatrice Hill Farm (BHF), Northern Territory (NT). From long-term surveillance programs (1977 to 2011), 2,487 isolations of 10 BTV serotypes were made. The most frequently isolated serotype was BTV 1 (41%, 1,019) followed by BTV 16 (17.5%, 436) and BTV 20 (14%, 348). In 3 years, no BTVs were isolated, and in 12 years, no BTV 1 was isolated. Seventeen BTV 1 isolates were sequenced and analyzed in comparison with 10 Australian prototype serotypes. BTV 1 showed an episodic pattern of evolutionary change characterized by four distinct periods. Each period consisted primarily of slow genetic drift which was punctuated from time to time by genetic shifts generated by segment reassortment and the introduction of new genome segments. Evidence was found for coevolution of BTV genome segments. Evolutionary dynamics and selection pressure estimates showed strong temporal and clock-like molecular evolutionary dynamics of six Australian BTV genome segments. Bayesian coalescent estimates of mean substitution rates clustered in the range of 3.5 × 10(-4) to 5.3 × 10(-4) substitutions per site per year. All BTV genome segments evolved under strong purifying (negative) selection, with only three sites identified as under pervasive diversifying (positive) selection. The obligate replication in alternate hosts (insect vector and vertebrate hosts) imposed strong evolutionary constraints. The dominant mechanism generating genetic diversity of BTV 1 at BHF was through the introduction of new viruses and reassortment of genome segments with existing viruses. IMPORTANCE Bluetongue virus (BTV) is the causative agent of bluetongue disease in ruminants. It is a disease of concern globally and is transmitted by biting midges (Culicoides species). Analysis of the evolutionary and selection pressures on BTV 1 at a single surveillance site in northern Australia showed strong temporal and clock-like dynamics. Obligate replication in alternate hosts of insect and vertebrate imposed strong evolutionary constraints, with all BTV genome segments evolving under strong purifying (negative) selection. Generation of genetic diversity of BTV 1 in northern Australia is through genome segment reassortment and the introduction of new serotypes.
Collapse
|
25
|
Jupille H, Vega-Rua A, Rougeon F, Failloux AB. Arboviruses: variations on an ancient theme. Future Virol 2014. [DOI: 10.2217/fvl.14.62] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
ABSTRACT Arboviruses utilize different strategies to complete their transmission cycle between vertebrate and invertebrate hosts. Most possess an RNA genome coupled with an RNA polymerase lacking proofreading activity and generate large populations of genetically distinct variants, permitting rapid adaptation to environmental changes. With mutation rates of between 10- 6 and 10-4 substitutions per nucleotide, arboviral genomes rapidly acquire mutations that can lead to viral emergence. Arboviruses can be described in seven families, four of which have medical importance: Togaviridae, Flaviviridae, Bunyaviridae and Reoviridae. The Togaviridae and Flaviviridae both have ssRNA genomes, while the Bunyaviridae and Reoviridae possess segmented RNA genomes. Recent epidemics caused by these arboviruses have been associated with specific mutations leading to enhanced host ranges, vector shifts and virulence.
Collapse
Affiliation(s)
- Henri Jupille
- Department of Virology, Arboviruses & Insect Vectors, 25 Rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Anubis Vega-Rua
- Department of Virology, Arboviruses & Insect Vectors, 25 Rue du Dr Roux, 75724 Paris Cedex 15, France
- Cellule Pasteur UPMC, Université Pierre et Marie Curie, Paris, France
| | | | - Anna-Bella Failloux
- Department of Virology, Arboviruses & Insect Vectors, 25 Rue du Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
26
|
Feenstra F, van Gennip RGP, van de Water SGP, van Rijn PA. RNA elements in open reading frames of the bluetongue virus genome are essential for virus replication. PLoS One 2014; 9:e92377. [PMID: 24658296 PMCID: PMC3962428 DOI: 10.1371/journal.pone.0092377] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 02/21/2014] [Indexed: 12/28/2022] Open
Abstract
Members of the Reoviridae family are non-enveloped multi-layered viruses with a double stranded RNA genome consisting of 9 to 12 genome segments. Bluetongue virus is the prototype orbivirus (family Reoviridae, genus Orbivirus), causing disease in ruminants, and is spread by Culicoides biting midges. Obviously, several steps in the Reoviridae family replication cycle require virus specific as well as segment specific recognition by viral proteins, but detailed processes in these interactions are still barely understood. Recently, we have shown that expression of NS3 and NS3a proteins encoded by genome segment 10 of bluetongue virus is not essential for virus replication. This gave us the unique opportunity to investigate the role of RNA sequences in the segment 10 open reading frame in virus replication, independent of its protein products. Reverse genetics was used to generate virus mutants with deletions in the open reading frame of segment 10. Although virus with a deletion between both start codons was not viable, deletions throughout the rest of the open reading frame led to the rescue of replicating virus. However, all bluetongue virus deletion mutants without functional protein expression of segment 10 contained inserts of RNA sequences originating from several viral genome segments. Subsequent studies showed that these RNA inserts act as RNA elements, needed for rescue and replication of virus. Functionality of the inserts is orientation-dependent but is independent from the position in segment 10. This study clearly shows that RNA in the open reading frame of Reoviridae members does not only encode proteins, but is also essential for virus replication.
Collapse
Affiliation(s)
- Femke Feenstra
- Department of Virology, Central Veterinary Institute of Wageningen UR (CVI), Lelystad, The Netherlands
- Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| | - René G. P. van Gennip
- Department of Virology, Central Veterinary Institute of Wageningen UR (CVI), Lelystad, The Netherlands
| | - Sandra G. P. van de Water
- Department of Virology, Central Veterinary Institute of Wageningen UR (CVI), Lelystad, The Netherlands
| | - Piet A. van Rijn
- Department of Virology, Central Veterinary Institute of Wageningen UR (CVI), Lelystad, The Netherlands
- Department of Biochemistry, Centre for Human Metabonomics, North-West University, Potchefstroom, South Africa
| |
Collapse
|
27
|
Coetzee P, van Vuuren M, Venter EH, Stokstad M. A review of experimental infections with bluetongue virus in the mammalian host. Virus Res 2014; 182:21-34. [PMID: 24462840 PMCID: PMC7132480 DOI: 10.1016/j.virusres.2013.12.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 12/27/2013] [Accepted: 12/31/2013] [Indexed: 11/23/2022]
Abstract
Experimental infection studies with bluetongue virus (BTV) in the mammalian host have a history that stretches back to the late 18th century. Studies in a wide range of ruminant and camelid species as well as mice have been instrumental in understanding BTV transmission, bluetongue (BT) pathogenicity/pathogenesis, viral virulence, the induced immune response, as well as reproductive failures associated with BTV infection. These studies have in many cases been complemented by in vitro studies with BTV in different cell types in tissue culture. Together these studies have formed the basis for the understanding of BTV-host interaction and have contributed to the design of successful control strategies, including the development of effective vaccines. This review describes some of the fundamental and contemporary infection studies that have been conducted with BTV in the mammalian host and provides an overview of the principal animal welfare issues that should be considered when designing experimental infection studies with BTV in in vivo infection models. Examples are provided from the authors' own laboratory where the three Rs (replacement, reduction and refinement) have been implemented in the design of experimental infection studies with BTV in mice and goats. The use of the ARRIVE guidelines for the reporting of data from animal infection studies is emphasized.
Collapse
Affiliation(s)
- Peter Coetzee
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria 0110, South Africa; Department of Production Animal Clinical Sciences, Norwegian School of Veterinary Science, P. O. Box 8146 Dep., N-0033 Oslo, Norway.
| | - Moritz van Vuuren
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria 0110, South Africa.
| | - Estelle H Venter
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria 0110, South Africa.
| | - Maria Stokstad
- Department of Production Animal Clinical Sciences, Norwegian School of Veterinary Science, P. O. Box 8146 Dep., N-0033 Oslo, Norway.
| |
Collapse
|
28
|
The evolution of bluetongue virus: genetic and phenotypic diversity of field strains. Pol J Vet Sci 2013; 16:611-6. [PMID: 24195303 DOI: 10.2478/pjvs-2013-0086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bluetongue virus (BTV), the aetiological agent of bluetongue (BT), is a small (about 70 nm in diameter) icosahedral virus with a genome composed of ten linear segments of double-stranded RNA (dsRNA), which is packaged within an icosahedral nucleocapsid composed of seven structural proteins. The BTV genome evolves rapidly via genetic drift, reassortment of genome segments (genetic shift) and intragenic recombination. This evolution, and random fixation of quasispecies variants during transmission of BTV between susceptible animals and vectors appear to be the main mechanism leading to the observed genetic diversity amongst BTV field strains. The individual BTV gene segments evolve independently of one another by genetic drift in a host-specific fashion, generating quasispecies populations in both ruminant and insect hosts. Reassortment of BTV genes is responsible for genetic shift among strains of BTV, and has been demonstrated after infection of either the ruminant host or insect vector with different strains or serotypes of BTV. Intragenetic recombination, whereby mosaic genes are generated from the "splicing" together of homologous genes from different ancestral viral strains, has been demonstrated for BTV. The genetic variation of BTV is likely responsible for differences in the virulence and other phenotypic properties of individual field strains of the virus.
Collapse
|
29
|
Dal Pozzo F, Martinelle L, Thys C, Sarradin P, De Leeuw I, Van Campe W, De Clercq K, Thiry E, Saegerman C. Experimental co-infections of calves with bluetongue virus serotypes 1 and 8. Vet Microbiol 2013; 165:167-72. [DOI: 10.1016/j.vetmic.2013.01.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/05/2013] [Accepted: 01/18/2013] [Indexed: 10/27/2022]
|
30
|
Evidence of recombination and genetic diversity in southern rice black-streaked dwarf virus. Arch Virol 2013; 158:2147-51. [PMID: 23605668 DOI: 10.1007/s00705-013-1696-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 03/11/2013] [Indexed: 01/04/2023]
Abstract
Southern rice black-streaked dwarf virus (SRBSDV) causes one of the most serious viral diseases of rice in China and Vietnam. Sequence identities of S10, encoding the major capsid protein, were 98.0 %-100 % and 98.3 %-100 % at the nucleotide and amino acid level, respectively. Our results suggest that the codon at position 550 of S10 is under positive selection, while most of the other codons are under neutral evolution. Putative recombination events were identified in genomic RNA segments S1, 2, 4, 5, 6 and 10, which are rare in plant-infecting dsRNA viruses. This study reveals the current state of SRBSDV evolution.
Collapse
|
31
|
de Diego ACP, Sánchez-Cordón PJ, Sánchez-Vizcaíno JM. Bluetongue in Spain: From the First Outbreak to 2012. Transbound Emerg Dis 2013; 61:e1-11. [DOI: 10.1111/tbed.12068] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Indexed: 01/01/2023]
Affiliation(s)
- A. C. Pérez de Diego
- VISAVET Health Surveillance Centre and Animal Health Department; Veterinary Faculty; Complutense University of Madrid; Madrid Spain
| | - P. J. Sánchez-Cordón
- Department of Comparative Pathology; Veterinary Faculty; University of Córdoba; Córdoba Spain
| | - J. M. Sánchez-Vizcaíno
- VISAVET Health Surveillance Centre and Animal Health Department; Veterinary Faculty; Complutense University of Madrid; Madrid Spain
| |
Collapse
|
32
|
Arenas M. Computer programs and methodologies for the simulation of DNA sequence data with recombination. Front Genet 2013; 4:9. [PMID: 23378848 PMCID: PMC3561691 DOI: 10.3389/fgene.2013.00009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/17/2013] [Indexed: 11/13/2022] Open
Abstract
Computer simulations are useful in evolutionary biology for hypothesis testing, to verify analytical methods, to analyze interactions among evolutionary processes, and to estimate evolutionary parameters. In particular, the simulation of DNA sequences with recombination may help in understanding the role of recombination in diverse evolutionary questions, such as the genome structure. Consequently, plenty of computer simulators have been developed to simulate DNA sequence data with recombination. However, the choice of an appropriate tool, among all currently available simulators, is critical if recombination simulations are to be biologically meaningful. This review provides a practical survival guide to commonly used computer programs and methodologies for the simulation of coding and non-coding DNA sequences with recombination. It may help in the correct design of computer simulation experiments of recombination. In addition, the study includes a review of simulation studies investigating the impact of ignoring recombination when performing various evolutionary analyses, such as phylogenetic tree and ancestral sequence reconstructions. Alternative analytical methodologies accounting for recombination are also reviewed.
Collapse
Affiliation(s)
- Miguel Arenas
- Centre for Molecular Biology "Severo Ochoa," Consejo Superior de Investigaciones Científicas Madrid, Spain
| |
Collapse
|
33
|
He CQ, Meng SL, Yan HY, Ding NZ, He HB, Yan JX, Xu GL. Isolation and identification of a novel rabies virus lineage in China with natural recombinant nucleoprotein gene. PLoS One 2012; 7:e49992. [PMID: 23226506 PMCID: PMC3514186 DOI: 10.1371/journal.pone.0049992] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 10/19/2012] [Indexed: 12/25/2022] Open
Abstract
Rabies virus (RABV) causes severe neurological disease and death. As an important mechanism for generating genetic diversity in viruses, homologous recombination can lead to the emergence of novel virus strains with increased virulence and changed host tropism. However, it is still unclear whether recombination plays a role in the evolution of RABV. In this study, we isolated and sequenced four circulating RABV strains in China. Phylogenetic analyses identified a novel lineage of hybrid origin that comprises two different strains, J and CQ92. Analyses revealed that the virus 3′ untranslated region (UTR) and part of the N gene (approximate 500 nt in length) were likely derived from Chinese lineage I while the other part of the genomic sequence was homologous to Chinese lineage II. Our findings reveal that homologous recombination can occur naturally in the field and shape the genetic structure of RABV populations.
Collapse
Affiliation(s)
- Cheng-Qiang He
- Key Laboratory of Systems Biology in Universities of Shandong, College of Life Science, Shandong Normal University, Jinan, China
- * E-mail: (CQH); (HBH)
| | - Sheng-Li Meng
- Wuhan Institute of Biological Products, Wuhan, China
| | - Hong-Yan Yan
- Key Laboratory of Systems Biology in Universities of Shandong, College of Life Science, Shandong Normal University, Jinan, China
| | - Nai-Zheng Ding
- Key Laboratory of Systems Biology in Universities of Shandong, College of Life Science, Shandong Normal University, Jinan, China
| | - Hong-Bin He
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
- * E-mail: (CQH); (HBH)
| | - Jia-Xin Yan
- Wuhan Institute of Biological Products, Wuhan, China
| | - Ge-Lin Xu
- Wuhan Institute of Biological Products, Wuhan, China
| |
Collapse
|
34
|
Coetzee P, Stokstad M, Venter EH, Myrmel M, Van Vuuren M. Bluetongue: a historical and epidemiological perspective with the emphasis on South Africa. Virol J 2012; 9:198. [PMID: 22973992 PMCID: PMC3492172 DOI: 10.1186/1743-422x-9-198] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 08/29/2012] [Indexed: 02/08/2023] Open
Abstract
Bluetongue (BT) is a non-contagious, infectious, arthropod transmitted viral disease of domestic and wild ruminants that is caused by the bluetongue virus (BTV), the prototype member of the Orbivirus genus in the family Reoviridae. Bluetongue was first described in South Africa, where it has probably been endemic in wild ruminants since antiquity. Since its discovery BT has had a major impact on sheep breeders in the country and has therefore been a key focus of research at the Onderstepoort Veterinary Research Institute in Pretoria, South Africa. Several key discoveries were made at this Institute, including the demonstration that the aetiological agent of BT was a dsRNA virus that is transmitted by Culicoides midges and that multiple BTV serotypes circulate in nature. It is currently recognized that BT is endemic throughout most of South Africa and 22 of the 26 known serotypes have been detected in the region. Multiple serotypes circulate each vector season with the occurrence of different serotypes depending largely on herd-immunity. Indigenous sheep breeds, cattle and wild ruminants are frequently infected but rarely demonstrate clinical signs, whereas improved European sheep breeds are most susceptible. The immunization of susceptible sheep remains the most effective and practical control measure against BT. In order to protect sheep against multiple circulating serotypes, three pentavalent attenuated vaccines have been developed. Despite the proven efficacy of these vaccines in protecting sheep against the disease, several disadvantages are associated with their use in the field.
Collapse
Affiliation(s)
- Peter Coetzee
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Medicine, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria 0110, South Africa.
| | | | | | | | | |
Collapse
|
35
|
Discovery of severe fever with thrombocytopenia syndrome bunyavirus strains originating from intragenic recombination. J Virol 2012; 86:12426-30. [PMID: 22933273 DOI: 10.1128/jvi.01317-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
This study analyzes available severe fever with thrombocytopenia syndrome virus (SFTSV) genomes and reports that a sublineage of lineage I bears a unique M segment recombined from two of three prevailing SFTSV lineages. Through recombination, the sublineage has acquired nearly complete G1 associated with protective epitopes from lineage III, suggesting that this recombination has the capacity to induce antigenic shift of the virus. Therefore, this study provides some valuable implications for the vaccine design of SFTSV.
Collapse
|
36
|
Coetzee P, Van Vuuren M, Stokstad M, Myrmel M, Venter EH. Bluetongue virus genetic and phenotypic diversity: towards identifying the molecular determinants that influence virulence and transmission potential. Vet Microbiol 2012; 161:1-12. [PMID: 22835527 DOI: 10.1016/j.vetmic.2012.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 06/22/2012] [Accepted: 07/02/2012] [Indexed: 12/23/2022]
Abstract
Bluetongue virus (BTV) is the prototype member of the Orbivirus genus in the family Reoviridae and is the aetiological agent of the arthropod transmitted disease bluetongue (BT) that affects both ruminant and camelid species. The disease is of significant global importance due to its economic impact and effect on animal welfare. Bluetongue virus, a dsRNA virus, evolves through a process of quasispecies evolution that is driven by genetic drift and shift as well as intragenic recombination. Quasispecies evolution coupled with founder effect and evolutionary selective pressures has over time led to the establishment of genetically distinct strains of the virus in different epidemiological systems throughout the world. Bluetongue virus field strains may differ substantially from each other with regards to their phenotypic properties (i.e. virulence and/or transmission potential). The intrinsic molecular determinants that influence the phenotype of BTV have not clearly been characterized. It is currently unclear what contribution each of the viral genome segments have in determining the phenotypic properties of the virus and it is also unknown how genetic variability in the individual viral genes and their functional domains relate to differences in phenotype. In order to understand how genetic variation in particular viral genes could potentially influence the phenotypic properties of the virus; a closer understanding of the BTV virion, its encoded proteins and the evolutionary mechanisms that shape the diversity of the virus is required. This review provides a synopsis of these issues and highlights some of the studies that have been conducted on BTV and the closely related African horse sickness virus (AHSV) that have contributed to ongoing attempts to identify the molecular determinants that influence the virus' phenotype. Different strategies that can be used to generate BTV mutants in vitro and methods through which the causality between particular genetic modifications and changes in phenotype may be determined are also described. Finally examples are highlighted where a clear understanding of the molecular determinants that influence the phenotype of the virus may have contributed to risk assessment and mitigation strategies during recent outbreaks of BT in Europe.
Collapse
Affiliation(s)
- Peter Coetzee
- Department of Veterinary Tropical Diseases, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa.
| | | | | | | | | |
Collapse
|
37
|
Georgiades K, Raoult D. How microbiology helps define the rhizome of life. Front Cell Infect Microbiol 2012; 2:60. [PMID: 22919651 PMCID: PMC3417629 DOI: 10.3389/fcimb.2012.00060] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 04/16/2012] [Indexed: 01/24/2023] Open
Abstract
In contrast to the tree of life (TOF) theory, species are mosaics of gene sequences with different origins. Observations of the extensive lateral sequence transfers in all organisms have demonstrated that the genomes of all life forms are collections of genes with different evolutionary histories that cannot be represented by a single TOF. Moreover, genes themselves commonly have several origins due to recombination. The human genome is not free from recombination events, so it is a mosaic like other organisms' genomes. Recent studies have demonstrated evidence for the integration of parasitic DNA into the human genome. Lateral transfer events have been accepted as major contributors of genome evolution in free-living bacteria. Furthermore, the accumulation of genomic sequence data provides evidence for extended genetic exchanges in intracellular bacteria and suggests that such events constitute an agent that promotes and maintains all bacterial species. Archaea and viruses also form chimeras containing primarily bacterial but also eukaryotic sequences. In addition to lateral transfers, orphan genes are indicative of the fact that gene creation is a permanent and unsettled phenomenon. Currently, a rhizome may more adequately represent the multiplicity and de novo creation of a genome. We wanted to confirm that the term “rhizome” in evolutionary biology applies to the entire cellular life history. This view of evolution should resemble a clump of roots representing the multiple origins of the repertoires of the genes of each species.
Collapse
Affiliation(s)
- Kalliopi Georgiades
- Faculté de Médecine La Timone, Unité de Recherche en Maladies Infectieuses Tropical Emergentes (URMITE), CNRS-IRD UMR 6236-198, Université de la Méditerranée Marseille, France
| | | |
Collapse
|
38
|
He CQ, Ding NZ, Mou X, Xie ZX, Si HL, Qiu R, Ni S, Zhao H, Lu Y, Yan HY, Gao YX, Chen LL, Shen XH, Cao RN. Identification of three H1N1 influenza virus groups with natural recombinant genes circulating from 1918 to 2009. Virology 2012; 427:60-6. [DOI: 10.1016/j.virol.2012.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 11/29/2011] [Accepted: 01/17/2012] [Indexed: 11/16/2022]
|
39
|
Genomic sequences of Australian bluetongue virus prototype serotypes reveal global relationships and possible routes of entry into Australia. J Virol 2012; 86:6724-31. [PMID: 22514341 DOI: 10.1128/jvi.00182-12] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Bluetongue virus (BTV) is transmitted by biting midges (Culicoides spp.). It causes disease mainly in sheep and occasionally in cattle and other species. BTV has spread into northern Europe, causing disease in sheep and cattle. The introduction of new serotypes, changes in vector species, and climate change have contributed to these changes. Ten BTV serotypes have been isolated in Australia without apparent associated disease. Simplified methods for preferential isolation of double-stranded RNA (dsRNA) and template preparation enabled high-throughput sequencing of the 10 genome segments of all Australian BTV prototype serotypes. Phylogenetic analysis reinforced the Western and Eastern topotypes previously characterized but revealed unique features of several Australian BTVs. Many of the Australian BTV genome segments (Seg-) were closely related, clustering together within the Eastern topotypes. A novel Australian topotype for Seg-5 (NS1) was identified, with taxa spread across several serotypes and over time. Seg-1, -2, -3, -4, -6, -7, -9, and -10 of BTV_2_AUS_2008 were most closely related to the cognate segments of viruses from Taiwan and Asia and not other Australian viruses, supporting the conclusion that BTV_2 entered Australia recently. The Australian BTV_15_AUS_1982 prototype was revealed to be unusual among the Australian BTV isolates, with Seg-3 and -8 distantly related to other BTV sequences from all serotypes.
Collapse
|
40
|
Jere KC, Mlera L, Page NA, van Dijk AA, O'Neill HG. Whole genome analysis of multiple rotavirus strains from a single stool specimen using sequence-independent amplification and 454® pyrosequencing reveals evidence of intergenotype genome segment recombination. INFECTION GENETICS AND EVOLUTION 2011; 11:2072-82. [PMID: 22019521 DOI: 10.1016/j.meegid.2011.09.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 09/27/2011] [Accepted: 09/28/2011] [Indexed: 12/12/2022]
Abstract
Infection of a single host cell with two or more different rotavirus strains creates conditions favourable for evolutionary mechanisms like reassortment and recombination that can generate novel strains. Despite numerous reports describing mixed rotavirus infections, whole genome characterisation of rotavirus strains in a mixed infection case has not been reported. Double-stranded RNA, exhibiting a long electropherotype pattern only, was extracted from a single human stool specimen (RVA/Human-wt/ZAF/2371WC/2008/G9P[8]). Both short and long electropherotype profiles were however detected in the sequence-independent amplified cDNA derived from the dsRNA, suggesting infection with more than one rotavirus strain. 454® pyrosequencing of the amplified cDNA revealed co-infection of at least four strains. Both genotype 1 (Wa-like) and genotype 2 (DS-1-like) were assigned to the consensus sequences obtained from the nine genome segments encoding NSP1-NSP5, VP1-VP3 and VP6. Genotypes assigned to the genome segments encoding VP4 were P[4] (DS-1-like), P[6] (ST3-like) and P[8] (Wa-like) genotypes. Since four distinct genotypes [G2 (DS-1-like), G8, G9 (Wa-like) and G12] were assigned to the four consensus nucleotide sequences obtained for genome segment 9 (VP7), it was concluded that at least four distinct rotaviruses were present in the stool. Intergenotype genome recombination events were observed in genome segments encoding NSP2, NSP4 and VP6. The close similarities of some of the genome segments encoding NSP2, VP6 and VP7 to artiodactyl rotaviruses suggest that some of the infecting strains shared common ancestry with animal strains, or that interspecies transmission occurred previously. The sequence-independent genome amplification technology coupled with 454® pyrosequencing used in this study enabled the characterisation of the whole genomes of multiple rotavirus strains in a single stool specimen that was previously assigned single genotypes, i.e. G9P[8], by sequence-dependent RT-PCR.
Collapse
Affiliation(s)
- Khuzwayo C Jere
- Biochemistry Division, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | | | | | | | | |
Collapse
|
41
|
Yang HT, Jiang Q, Zhou X, Bai MQ, Si HL, Wang XJ, Lu Y, Zhao H, He HB, He CQ. Identification of a natural human serotype 3 parainfluenza virus. Virol J 2011; 8:58. [PMID: 21306605 PMCID: PMC3045893 DOI: 10.1186/1743-422x-8-58] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 02/09/2011] [Indexed: 12/21/2022] Open
Abstract
Parainfluenza virus is an important pathogen threatening the health of animals and human, which brings human many kinds of disease, especially lower respiratory tract infection involving infants and young children. In order to control the virus, it is necessary to fully understand the molecular basis resulting in the genetic diversity of the virus. Homologous recombination is one of mechanisms for the rapid change of genetic diversity. However, as a negative-strand virus, it is unknown whether the recombination can naturally take place in human PIV. In this study, we isolated and identified a mosaic serotype 3 human PIV (HPIV3) from in China, and also provided several putative PIV mosaics from previous reports to reveal that the recombination can naturally occur in the virus. In addition, two swine PIV3 isolates transferred from cattle to pigs were found to have mosaic genomes. These results suggest that homologous recombination can promote the genetic diversity and potentially bring some novel biologic characteristics of HPIV.
Collapse
Affiliation(s)
- Hui-Ting Yang
- College of Life Science, Shandong Normal University, Jinan 250014, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|