1
|
Kalyar F, Chen X, Chughtai AA, MacIntyre CR. Origin of the H1N1 (Russian influenza) pandemic of 1977-A risk assessment using the modified Grunow-Finke tool (mGFT). RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2024; 44:2696-2706. [PMID: 38853024 DOI: 10.1111/risa.14343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 06/11/2024]
Abstract
In 1977, the Soviet Union (Union of Soviet Socialist Republics [USSR]) notified the World Health Organization (WHO) about an outbreak of H1N1 influenza, which later spread to many countries. The H1N1 strain of 1977 reappeared after being absent from the world for over 20 years. This pandemic simultaneously spread to several cities in the USSR and China. Many theories have been postulated to account for the emergence of this pandemic, including natural and unnatural origins. The purpose of this study was to use the modified Grunow-Finke risk assessment tool (modified Grunow-Finke tool [mGFT]) to investigate the origin of the 1977 H1N1 pandemic. Data was collected from WHO archives and published documents. The assessment of the pandemic's origin involved the utilization of a modified version of the original Grunow-Finke risk assessment tool (GFT). Using the mGFT, the final score was 37 out of 60 points (probability: 62%), indicating a high likelihood that the Russian influenza pandemic of 1977 was of unnatural origin. Several variables supported this finding, including the sudden re-emergence of a previously extinct strain, a genetic signature of laboratory modification for vaccine development, and unusual epidemiology. Inter-rater reliability was moderate to high. By applying the mGFT to the 1977 Russian influenza pandemic, we established a high probability that this pandemic was of unnatural origin. Although this is not definitive, it is consistent with the possibility that it originated from an incompletely attenuated live influenza vaccine. The mGFT is a useful risk analysis tool to evaluate the origin of epidemics.
Collapse
Affiliation(s)
- Fatema Kalyar
- Faculty of Medicine, School of Population Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Xin Chen
- Faculty of Medicine, Biosecurity Program, The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Abrar Ahmad Chughtai
- Faculty of Medicine, School of Population Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Chandini Raina MacIntyre
- Faculty of Medicine, Biosecurity Program, The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
- College of Public Service & Community Solutions, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
2
|
Khatun MN, Tasnim S, Hossain MR, Rahman MZ, Hossain MT, Chowdhury EH, Parvin R. Molecular epidemiology of avian influenza viruses and avian coronaviruses in environmental samples from migratory bird inhabitants in Bangladesh. Front Vet Sci 2024; 11:1446577. [PMID: 39434717 PMCID: PMC11491338 DOI: 10.3389/fvets.2024.1446577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/13/2024] [Indexed: 10/23/2024] Open
Abstract
Migratory birds are a natural reservoir for major respiratory viruses such as the avian influenza virus (AIV) and the avian coronavirus (AvCoV). Transmission of these viruses from migratory birds to domestic birds increases the prevalence of those diseases that cause severe economic and public health concerns in Bangladesh. The study focused on active surveillance of major respiratory viral pathogens in migratory birds, molecular identification of the viruses, and their phylogenetic origin. To conduct this study, 850 environmental samples (830 fecal samples, 10 soil samples, and 10 water samples) were collected during three consecutive winter seasons from three divisions (Dhaka, Sylhet, and Mymensingh) and pooled according to the year of collection and locations, resulting in a total of 184 tested samples. Using gene-specific primers and probes in TaqMan-and SYBR Green-based RT-qPCR assays, the samples were screened for AIV and AvCoV, respectively. Out of the 184 pooled samples, 37 were found to be positive for these respiratory pathogens. Furthermore, out of the 37 (20.11%) positive respiratory pathogens, 11.96% were AIV (n = 22) and 8.15% were AvCoV (n = 15). For the first time in Bangladesh, AIV H4N2, H4N6, and AvCoVs have been found in fecal samples from migratory birds through surveillance. Phylogenetic analyses of the HA and NA genes of AIV and the polymerase gene (Orf 1) of AvCoV revealed that these strains share a close phylogenetic relationship with the isolates from wild birds in Europe and Asia. The Bangladeshi strains with Eurasian ancestry might pose a significant threat to migratory birds flying through the Asian flyways. They might also be a potential source of virus introduction and spread to poultry raised on land. These findings emphasize the significance of ongoing AIV and AvCoV surveillance in migratory birds in Bangladesh.
Collapse
Affiliation(s)
- Most. Nahida Khatun
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Shadia Tasnim
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Riabbel Hossain
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Ziaur Rahman
- Molecular Radiobiology and Biodosimetry Division, Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Dhaka, Bangladesh
| | - Md. Tofazzal Hossain
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Emdadul Haque Chowdhury
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Rokshana Parvin
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
3
|
Hubbard LE, Givens CE, Stelzer EA, Killian ML, Kolpin DW, Szablewski CM, Poulson RL. Environmental Surveillance and Detection of Infectious Highly Pathogenic Avian Influenza Virus in Iowa Wetlands. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2023; 10:1181-1187. [PMID: 38106530 PMCID: PMC10720465 DOI: 10.1021/acs.estlett.3c00668] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 12/19/2023]
Abstract
Avian influenza viruses (AIVs) infect both wild birds and domestic poultry, resulting in economically costly outbreaks that have the potential to impact public health. Currently, a knowledge gap exists regarding the detection of infectious AIVs in the aquatic environment. In response to the 2021-2022 Eurasian strain highly pathogenic avian influenza (HPAI) A/goose/Guangdong/1/1996 clade 2.3.4.4 lineage H5 outbreak, an AIV environmental outbreak response study was conducted using a One Health approach. An optimized method was used to temporally sample (April and May 2022) and analyze (culture and molecular methods) surface water from five water bodies (four wetlands and one lake used as a comparison location) in areas near confirmed HPAI detections in wild bird or poultry operations. Avian influenza viruses were isolated from water samples collected in April from all four wetlands (not from the comparison lake sample); HPAI H5N1 was isolated from one wetland. No virus was isolated from the May samples. Several factors, including increased water temperatures, precipitation, biotic and abiotic factors, and absence of AIV-contaminated fecal material due to fewer waterfowl present, may have contributed to the lack of virus isolation from May samples. Results demonstrate surface water as a plausible medium for transmission of AIVs, including the HPAI virus.
Collapse
Affiliation(s)
- Laura E. Hubbard
- U.S.
Geological Survey, Upper Midwest Water Science
Center, 1 Gifford Pinchot
Drive, Madison, Wisconsin 53726, United States
| | - Carrie E. Givens
- U.S.
Geological Survey, Upper Midwest Water Science
Center, 5840 Enterprise
Drive, Lansing, Michigan 48911 United States
| | - Erin A. Stelzer
- U.S.
Geological Survey, Ohio-Kentucky-Indiana
Water Science Center, 6460 Busch Blvd, Ste 100, Columbus, Ohio 43229 United States
| | - Mary L. Killian
- U.S.
Department of Agriculture, Animal and Plant Health Inspection Service, National Veterinary Services Laboratories, 1920 Dayton Avenue, Ames, Iowa 50010 United States
| | - Dana W. Kolpin
- U.S.
Geological Survey, Central Midwest Water
Science Center, 400 S.
Clinton Street, Rm 269, Iowa City, Iowa 52240, United States
| | - Christine M. Szablewski
- Influenza
Division, Centers for Disease Control and
Prevention, Atlanta, Georgia 30329 United States
| | - Rebecca L. Poulson
- Southeastern
Cooperative Wildlife Disease Study, Department of Population Health,
College of Veterinary Medicine, University
of Georgia, 589 D.W.
Brooks Drive, Athens, Georgia 30602, United States
| |
Collapse
|
4
|
Mármol-Sánchez E, Fromm B, Oskolkov N, Pochon Z, Kalogeropoulos P, Eriksson E, Biryukova I, Sekar V, Ersmark E, Andersson B, Dalén L, Friedländer MR. Historical RNA expression profiles from the extinct Tasmanian tiger. Genome Res 2023; 33:1299-1316. [PMID: 37463752 PMCID: PMC10552650 DOI: 10.1101/gr.277663.123] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023]
Abstract
Paleogenomics continues to yield valuable insights into the evolution, population dynamics, and ecology of our ancestors and other extinct species. However, DNA sequencing cannot reveal tissue-specific gene expression, cellular identity, or gene regulation, which are only attainable at the transcriptional level. Pioneering studies have shown that useful RNA can be extracted from ancient specimens preserved in permafrost and historical skins from extant canids, but no attempts have been made so far on extinct species. We extract, sequence, and analyze historical RNA from muscle and skin tissue of a ∼130-year-old Tasmanian tiger (Thylacinus cynocephalus) preserved in desiccation at room temperature in a museum collection. The transcriptional profiles closely resemble those of extant species, revealing specific anatomical features such as slow muscle fibers or blood infiltration. Metatranscriptomic analysis, RNA damage, tissue-specific RNA profiles, and expression hotspots genome-wide further confirm the thylacine origin of the sequences. RNA sequences are used to improve protein-coding and noncoding annotations, evidencing missing exonic loci and the location of ribosomal RNA genes while increasing the number of annotated thylacine microRNAs from 62 to 325. We discover a thylacine-specific microRNA isoform that could not have been confirmed without RNA evidence. Finally, we detect traces of RNA viruses, suggesting the possibility of profiling viral evolution. Our results represent the first successful attempt to obtain transcriptional profiles from an extinct animal species, providing thought-to-be-lost information on gene expression dynamics. These findings hold promising implications for the study of RNA molecules across the vast collections of natural history museums and from well-preserved permafrost remains.
Collapse
Affiliation(s)
- Emilio Mármol-Sánchez
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, 114 18 Stockholm, Sweden;
- Centre for Palaeogenetics, 106 91 Stockholm, Sweden
| | - Bastian Fromm
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, 114 18 Stockholm, Sweden
- The Arctic University Museum of Norway, UiT - The Arctic University of Norway, 9006 Tromsø, Norway
| | - Nikolay Oskolkov
- Department of Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, 223 62 Lund, Sweden
| | - Zoé Pochon
- Centre for Palaeogenetics, 106 91 Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, 106 91 Stockholm, Sweden
| | - Panagiotis Kalogeropoulos
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, 114 18 Stockholm, Sweden
| | - Eli Eriksson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, 114 18 Stockholm, Sweden
| | - Inna Biryukova
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, 114 18 Stockholm, Sweden
| | - Vaishnovi Sekar
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, 114 18 Stockholm, Sweden
| | - Erik Ersmark
- Centre for Palaeogenetics, 106 91 Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 104 05 Stockholm, Sweden
| | - Björn Andersson
- Department of Cell and Molecular Biology (CMB), Karolinska Institute, 171 77 Stockholm, Sweden
| | - Love Dalén
- Centre for Palaeogenetics, 106 91 Stockholm, Sweden;
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 104 05 Stockholm, Sweden
- Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| | - Marc R Friedländer
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, 114 18 Stockholm, Sweden;
| |
Collapse
|
5
|
Russo G, Crispino E, Maleki A, Di Salvatore V, Stanco F, Pappalardo F. Beyond the state of the art of reverse vaccinology: predicting vaccine efficacy with the universal immune system simulator for influenza. BMC Bioinformatics 2023; 24:231. [PMID: 37271819 PMCID: PMC10239721 DOI: 10.1186/s12859-023-05374-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023] Open
Abstract
When it was first introduced in 2000, reverse vaccinology was defined as an in silico approach that begins with the pathogen's genomic sequence. It concludes with a list of potential proteins with a possible, but not necessarily, list of peptide candidates that need to be experimentally confirmed for vaccine production. During the subsequent years, reverse vaccinology has dramatically changed: now it consists of a large number of bioinformatics tools and processes, namely subtractive proteomics, computational vaccinology, immunoinformatics, and in silico related procedures. However, the state of the art of reverse vaccinology still misses the ability to predict the efficacy of the proposed vaccine formulation. Here, we describe how to fill the gap by introducing an advanced immune system simulator that tests the efficacy of a vaccine formulation against the disease for which it has been designed. As a working example, we entirely apply this advanced reverse vaccinology approach to design and predict the efficacy of a potential vaccine formulation against influenza H5N1. Climate change and melting glaciers are critical due to reactivating frozen viruses and emerging new pandemics. H5N1 is one of the potential strains present in icy lakes that can raise a pandemic. Investigating structural antigen protein is the most profitable therapeutic pipeline to generate an effective vaccine against H5N1. In particular, we designed a multi-epitope vaccine based on predicted epitopes of hemagglutinin and neuraminidase proteins that potentially trigger B-cells, CD4, and CD8 T-cell immune responses. Antigenicity and toxicity of all predicted CTL, Helper T-lymphocytes, and B-cells epitopes were evaluated, and both antigenic and non-allergenic epitopes were selected. From the perspective of advanced reverse vaccinology, the Universal Immune System Simulator, an in silico trial computational framework, was applied to estimate vaccine efficacy using a cohort of 100 digital patients.
Collapse
Affiliation(s)
- Giulia Russo
- Department of Health and Drug Sciences, Università degli Studi di Catania, Catania, Italy
| | - Elena Crispino
- Department of Biomedical and Biotechnological Sciences, Università degli Studi di Catania, Catania, Italy
| | - Avisa Maleki
- Department of Mathematics and Computer Science, Università degli Studi di Catania, Catania, Italy
| | - Valentina Di Salvatore
- Department of Health and Drug Sciences, Università degli Studi di Catania, Catania, Italy
| | - Filippo Stanco
- Department of Mathematics and Computer Science, Università degli Studi di Catania, Catania, Italy
| | - Francesco Pappalardo
- Department of Health and Drug Sciences, Università degli Studi di Catania, Catania, Italy.
| |
Collapse
|
6
|
Treshchalina A, Postnikova Y, Gambaryan A, Ishmukhametov A, Prilipov A, Sadykova G, Lomakina N, Boravleva E. Monitoring of Avian Influenza Viruses and Paramyxoviruses in Ponds of Moscow and the Moscow Region. Viruses 2022; 14:v14122624. [PMID: 36560628 PMCID: PMC9781285 DOI: 10.3390/v14122624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022] Open
Abstract
The ponds of the Moscow region during the autumn migration of birds are a place with large concentrations of mallard ducks, which are the main hosts of avulaviruses (avian paramyxoviruses) and influenza A viruses (IAV). The purpose of this study was the determination of the biological diversity of IAV and avulaviruses isolated from mallards in Moscow's ponds. A phylogenetic analysis of IAV was performed based on complete genome sequencing, and virus genomic reassortment in nature was studied. Almost all IAV genome segments clustered with apathogenic duck viruses according to phylogenetic analysis. The origin of the genes of Moscow isolates were different; some of them belong to European evolutionary branches, some to Asian ones. The majority of closely related viruses have been isolated in the Western Eurasian region. Much less frequently, closely related viruses have been isolated in Siberia, China, and Korea. The quantity and diversity of isolated viruses varied considerably depending on the year and have decreased since 2014, perhaps due to the increasing proportion of nesting and wintering ducks in Moscow.
Collapse
Affiliation(s)
- Anastasia Treshchalina
- M. P. Chumakov Federal Scientific Center for the Research and Development of Immune-and-Biological Products, Village of Institute of Poliomyelitis, Settlement “Moskovskiy”, 108819 Moscow, Russia
- Correspondence: ; Tel.: +7-(985)476-77-54
| | - Yulia Postnikova
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Alexandra Gambaryan
- M. P. Chumakov Federal Scientific Center for the Research and Development of Immune-and-Biological Products, Village of Institute of Poliomyelitis, Settlement “Moskovskiy”, 108819 Moscow, Russia
| | - Aydar Ishmukhametov
- M. P. Chumakov Federal Scientific Center for the Research and Development of Immune-and-Biological Products, Village of Institute of Poliomyelitis, Settlement “Moskovskiy”, 108819 Moscow, Russia
| | - Alexei Prilipov
- Gamaleya National Center of Epidemiology and Microbiology of the Russian Ministry of Health, 123098 Moscow, Russia
| | - Galina Sadykova
- Gamaleya National Center of Epidemiology and Microbiology of the Russian Ministry of Health, 123098 Moscow, Russia
| | - Natalia Lomakina
- Gamaleya National Center of Epidemiology and Microbiology of the Russian Ministry of Health, 123098 Moscow, Russia
| | - Elizaveta Boravleva
- M. P. Chumakov Federal Scientific Center for the Research and Development of Immune-and-Biological Products, Village of Institute of Poliomyelitis, Settlement “Moskovskiy”, 108819 Moscow, Russia
| |
Collapse
|
7
|
Gass JD, Kellogg HK, Hill NJ, Puryear WB, Nutter FB, Runstadler JA. Epidemiology and Ecology of Influenza A Viruses among Wildlife in the Arctic. Viruses 2022; 14:1531. [PMID: 35891510 PMCID: PMC9315492 DOI: 10.3390/v14071531] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/10/2022] [Accepted: 07/10/2022] [Indexed: 02/01/2023] Open
Abstract
Arctic regions are ecologically significant for the environmental persistence and geographic dissemination of influenza A viruses (IAVs) by avian hosts and other wildlife species. Data describing the epidemiology and ecology of IAVs among wildlife in the arctic are less frequently published compared to southern temperate regions, where prevalence and subtype diversity are more routinely documented. Following PRISMA guidelines, this systematic review addresses this gap by describing the prevalence, spatiotemporal distribution, and ecological characteristics of IAVs detected among wildlife and the environment in this understudied region of the globe. The literature search was performed in PubMed and Google Scholar using a set of pre-defined search terms to identify publications reporting on IAVs in Arctic regions between 1978 and February 2022. A total of 2125 articles were initially screened, 267 were assessed for eligibility, and 71 articles met inclusion criteria. IAVs have been detected in multiple wildlife species in all Arctic regions, including seabirds, shorebirds, waterfowl, seals, sea lions, whales, and terrestrial mammals, and in the environment. Isolates from wild birds comprise the majority of documented viruses derived from wildlife; however, among all animals and environmental matrices, 26 unique low and highly pathogenic subtypes have been characterized in the scientific literature from Arctic regions. Pooled prevalence across studies indicates 4.23% for wild birds, 3.42% among tested environmental matrices, and seroprevalences of 9.29% and 1.69% among marine and terrestrial mammals, respectively. Surveillance data are geographically biased, with most data from the Alaskan Arctic and many fewer reports from the Russian, Canadian, North Atlantic, and Western European Arctic. We highlight multiple important aspects of wildlife host, pathogen, and environmental ecology of IAVs in Arctic regions, including the role of avian migration and breeding cycles for the global spread of IAVs, evidence of inter-species and inter-continental reassortment at high latitudes, and how climate change-driven ecosystem shifts, including changes in the seasonal availability and distribution of dietary resources, have the potential to alter host-pathogen-environment dynamics in Arctic regions. We conclude by identifying gaps in knowledge and propose priorities for future research.
Collapse
Affiliation(s)
- Jonathon D. Gass
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA; (H.K.K.); (W.B.P.); (F.B.N.); (J.A.R.)
| | - Hunter K. Kellogg
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA; (H.K.K.); (W.B.P.); (F.B.N.); (J.A.R.)
| | - Nichola J. Hill
- Department of Biology, University of Massachusetts, Boston, MA 02125, USA;
| | - Wendy B. Puryear
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA; (H.K.K.); (W.B.P.); (F.B.N.); (J.A.R.)
| | - Felicia B. Nutter
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA; (H.K.K.); (W.B.P.); (F.B.N.); (J.A.R.)
| | - Jonathan A. Runstadler
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA; (H.K.K.); (W.B.P.); (F.B.N.); (J.A.R.)
| |
Collapse
|
8
|
A SYSTEMATIC REVIEW AND NARRATIVE SYNTHESIS OF THE USE OF ENVIRONMENTAL SAMPLES FOR THE SURVEILLANCE OF AVIAN INFLUENZA VIRUSES IN WILD WATERBIRDS. J Wildl Dis 2021; 57:1-18. [PMID: 33635994 DOI: 10.7589/jwd-d-20-00082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/25/2020] [Indexed: 11/20/2022]
Abstract
Wild waterbirds are reservoir hosts for avian influenza viruses (AIV), which can cause devastating outbreaks in multiple species, making them a focus for surveillance efforts. Traditional AIV surveillance involves direct sampling of live or dead birds, but environmental substrates present an alternative sample for surveillance. Environmental sampling analyzes AIV excreted by waterbirds into the environment and complements direct bird sampling by minimizing financial, logistic, permitting, and spatial-temporal constraints associated with traditional surveillance. Our objectives were to synthesize the literature on environmental AIV surveillance, to compare and contrast the different sample types, and to identify key themes and recommendations to aid in the implementation of AIV surveillance using environmental samples. The four main environmental substrates for AIV surveillance are feces, feathers, water, and sediment or soil. Feces were the most common environmental substrate collected. The laboratory analysis of water and sediment provided challenges, such as low AIV concentration, heterogenous AIV distribution, or presence of PCR inhibitors. There are a number of abiotic and biotic environmental factors, including temperature, pH, salinity, or presence of filter feeders, that can influence the presence and persistence of AIV in environmental substrates; however, the nature of this influence is poorly understood in field settings, and field data from southern, coastal, and tropical ecosystems are underrepresented. Similarly, there are few studies comparing the performance of environmental samples to each other and to samples collected in wild waterbirds, and environmental surveillance workflows have yet to be validated or optimized. Environmental samples, particularly when used in combination with new technology such as environmental DNA and next generation sequencing, provided information on trends in AIV detection rates and circulating subtypes that complemented traditional, direct waterbird sampling. The use of environmental samples for AIV surveillance also shows significant promise for programs whose goal is early warning of high-risk subtypes.
Collapse
|
9
|
Yarzábal LA, Salazar LMB, Batista-García RA. Climate change, melting cryosphere and frozen pathogens: Should we worry…? ENVIRONMENTAL SUSTAINABILITY (SINGAPORE) 2021; 4:489-501. [PMID: 38624658 PMCID: PMC8164958 DOI: 10.1007/s42398-021-00184-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 11/21/2022]
Abstract
Permanently frozen environments (glaciers, permafrost) are considered as natural reservoirs of huge amounts of microorganisms, mostly dormant, including human pathogens. Due to global warming, which increases the rate of ice-melting, approximately 4 × 1021 of these microorganisms are released annually from their frozen confinement and enter natural ecosystems, in close proximity to human settlements. Some years ago, the hypothesis was put forward that this massive release of potentially-pathogenic microbes-many of which disappeared from the face of the Earth thousands and even millions of years ago-could give rise to epidemics. The recent anthrax outbreaks that occurred in Siberia, and the presence of bacterial and viral pathogens in glaciers worldwide, seem to confirm this hypothesis. In that context, the present review summarizes the currently available scientific evidence that allows us to imagine a near future in which epidemic outbreaks, similar to the abovementioned, could occur as a consequence of the resurrection and release of microbes from glaciers and permafrost. Supplementary Information The online version of this article (10.1007/s42398-021-00184-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luis Andrés Yarzábal
- Unidad de Salud y Bienestar, Universidad Católica de Cuenca, Av. Las Américas and Calle Humboldt, Cuenca, Ecuador
- Centro de Investigación, Innovación y Transferencia de Tecnología (CIITT), Universidad Católica de Cuenca, Campus Miracielos, Ricaurte, Ecuador
| | - Lenys M. Buela Salazar
- Unidad de Salud y Bienestar, Universidad Católica de Cuenca, Av. Las Américas and Calle Humboldt, Cuenca, Ecuador
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos Mexico
| |
Collapse
|
10
|
El-Sayed A, Kamel M. Future threat from the past. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:1287-1291. [PMID: 33068243 PMCID: PMC7567650 DOI: 10.1007/s11356-020-11234-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/12/2020] [Indexed: 05/03/2023]
Abstract
Global warming is one of the major challenges facing humanity. The increase in the Earth's temperature and thawing of ancient ice release viable viruses, bacteria, fungi, and other microorganisms which were trapped for thousands and millions of years. Such microorganisms may belong to novel microbial species, unknown genotypes of present pathogens, already eradicated pathogens, or even known pathogens that gained extremely robust characteristics due to their subjection to long-term stress. These worries drew more attention following the death of a child by ancient anthrax spores in Siberian in 2016 and the reconstruction of smallpox and Spanish flu genomes from ancient frozen biological samples. The present review illustrates some examples of recently recovered pathogens after being buried for millions of years, including some identified viable ancient viruses, bacteria and even other forms of life. While some pathogens could be revived, genomes of other ancient pathogens which could not be revived were re-constructed. The present study aims to highlight and alarm the hidden aspect of global warming on the international public health, which represents future threats from the past for humanity.
Collapse
Affiliation(s)
- Amr El-Sayed
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
11
|
Sajjad W, Rafiq M, Din G, Hasan F, Iqbal A, Zada S, Ali B, Hayat M, Irfan M, Kang S. Resurrection of inactive microbes and resistome present in the natural frozen world: Reality or myth? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:139275. [PMID: 32480145 DOI: 10.1016/j.scitotenv.2020.139275] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
The present world faces a new threat of ancient microbes and resistomes that are locked in the cryosphere and now releasing upon thawing due to climate change and anthropogenic activities. The cryosphere act as the best preserving place for these microbes and resistomes that stay alive for millions of years. Current reviews extensively discussed whether the resurrection of microbes and resistomes existing in these pristine environments is true or just a hype. Release of these ancient microorganisms and naked DNA is of great concern for society as these microbes can either cause infections directly or they can interact with contemporary microorganisms and affect their fitness, survival, and mutation rate. Moreover, the contemporary microorganisms may uptake the unlocked naked DNA, which might transform non-pathogenic microorganisms into deadly antibiotic-resistant microbes. Additionally, the resurrection of glacial microorganisms can cause adverse effects on ecosystems downstream. The release of glacial pathogens and naked DNA is real and can lead to fatal outbreaks; therefore, we must prepare ourselves for the possible reemergence of diseases caused by these microbes. This study provides a scientific base for the adoption of actions by international cooperation to develop preventive measures.
Collapse
Affiliation(s)
- Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Muhammad Rafiq
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of IT, Engineering and Management Sciences, Quetta, Pakistan
| | - Ghufranud Din
- Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Fariha Hasan
- Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Awais Iqbal
- School of Life Sciences, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou, China
| | - Sahib Zada
- Department of Biology, College of Science, Shantou University, Shantou, China
| | - Barkat Ali
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Muhammad Hayat
- Institute of Microbial Technology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao Campus, China
| | - Muhammad Irfan
- College of Dentistry, Department of Oral Biology, University of Florida, Gainesville, FL. USA
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China.
| |
Collapse
|
12
|
Using geospatial methods to measure the risk of environmental persistence of avian influenza virus in South Carolina. Spat Spatiotemporal Epidemiol 2020; 34:100342. [PMID: 32807394 DOI: 10.1016/j.sste.2020.100342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 03/07/2020] [Accepted: 03/20/2020] [Indexed: 11/24/2022]
Abstract
Avian influenza (AIV) is a highly contagious virus that can infect both wild birds and domestic poultry. This study aimed to define areas within the state of South Carolina (SC) at heightened risk for environmental persistence of AIV using geospatial methods. Environmental factors known to influence AIV survival were identified through the published literature and using a multi-criteria decision analysis with GIS was performed. Risk was defined using five categories following the World Organization for Animal Health Risk Assessment Guidelines. Less than 1% of 1km grid cells in SC showed a high risk of AIV persistence. Approximately 2% - 17% of counties with high or very high environmental risk also had medium to very high numbers of commercial poultry operations. Results can be used to improve surveillance activities and to inform biosecurity practices and emergency preparedness efforts.
Collapse
|
13
|
Smith O, Dunshea G, Sinding MHS, Fedorov S, Germonpre M, Bocherens H, Gilbert MTP. Ancient RNA from Late Pleistocene permafrost and historical canids shows tissue-specific transcriptome survival. PLoS Biol 2019; 17:e3000166. [PMID: 31361744 PMCID: PMC6667121 DOI: 10.1371/journal.pbio.3000166] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/25/2019] [Indexed: 01/31/2023] Open
Abstract
While sequencing ancient DNA (aDNA) from archaeological material is now commonplace, very few attempts to sequence ancient transcriptomes have been made, even from typically stable deposition environments such as permafrost. This is presumably due to assumptions that RNA completely degrades relatively quickly, particularly when dealing with autolytic, nuclease-rich mammalian tissues. However, given the recent successes in sequencing ancient RNA (aRNA) from various sources including plants and animals, we suspect that these assumptions may be incorrect or exaggerated. To challenge the underlying dogma, we generated shotgun RNA data from sources that might normally be dismissed for such study. Here, we present aRNA data generated from two historical wolf skins, and permafrost-preserved liver tissue of a 14,300-year-old Pleistocene canid. Not only is the latter the oldest RNA ever to be sequenced, but it also shows evidence of biologically relevant tissue specificity and close similarity to equivalent data derived from modern-day control tissue. Other hallmarks of RNA sequencing (RNA-seq) data such as exon-exon junction presence and high endogenous ribosomal RNA (rRNA) content confirms our data’s authenticity. By performing independent technical library replicates using two high-throughput sequencing platforms, we show not only that aRNA can survive for extended periods in mammalian tissues but also that it has potential for tissue identification. aRNA also has possible further potential, such as identifying in vivo genome activity and adaptation, when sequenced using this technology. Ancient DNA is known to survive in cold environments for tens of millennia, but it is assumed that ancient RNA could not persist in such a way due to its relative instability. However, this study shows that under permafrost conditions, ancient RNA can survive well enough to show tissue specificity even in mammalian soft tissues.
Collapse
Affiliation(s)
- Oliver Smith
- Section for Evogenomics, The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| | - Glenn Dunshea
- Section for Evogenomics, The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel-Holger S. Sinding
- Section for Evogenomics, The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Greenland Institute of Natural Resources, Nuuk, Greenland
| | - Sergey Fedorov
- Mammoth Museum, Institute of Applied Ecology of the North of the North-Eastern Federal University, Yakutsk, Russia
| | - Mietje Germonpre
- Directorate Earth and History of Life, Royal Belgian Institute of Natural Science, Brussels, Belgium
| | - Hervé Bocherens
- Department of Geosciences, Palaeobiology, University of Tübingen, Tübingen, Germany
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany
| | - M. T. P. Gilbert
- Section for Evogenomics, The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Norwegian University of Science and Technology, University Museum, Trondheim, Norway
| |
Collapse
|
14
|
Blanco A, Abid I, Al-Otaibi N, Pérez-Rodríguez FJ, Fuentes C, Guix S, Pintó RM, Bosch A. Glass Wool Concentration Optimization for the Detection of Enveloped and Non-enveloped Waterborne Viruses. FOOD AND ENVIRONMENTAL VIROLOGY 2019; 11:184-192. [PMID: 30903596 PMCID: PMC7090506 DOI: 10.1007/s12560-019-09378-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 03/13/2019] [Indexed: 05/15/2023]
Abstract
An extremely affordable virus concentration method based on adsorption-elution to glass wool and subsequent reconcentration through polyethylene glycol 6000 (PEG) precipitation was optimized to recover not only non-enveloped viruses but also enveloped viruses. Hepatitis A virus (HAV) and transmissible gastroenteritis virus (TGEV) were employed as surrogates for naked and enveloped viruses, respectively, to set up the methodology. Initial experimentation in small-volume samples showed that both types of particles readily adsorbed to the positively charged glass wool but were poorly detached from it through standard elution with 0.05 M glycine with 3% of beef extract buffer, pH 9.5, with elution efficiencies of 7.2% and 2.6%, for HAV and TGEV, respectively. To improve the recovery of enveloped viruses, several modifications in the elution were assayed: increasing the elution pH, extending glass wool and eluent contact time, adding a detergent, or performing the elution by recirculation or under agitation. Considering practicability and performance, recircularization of the eluent at pH 11.0 for 20 min was the elution procedure of choice, with efficiencies of 25.7% and 18.8% for HAV and TGEV in 50 L of water. Additionally, employing 20% PEG instead of 10% for virus reconcentration improved recoveries up to 47% and 51%, respectively. The optimized procedure was applied to detect naturally occurring HAV and coronaviruses in surface water of Wadi Hanifa, Riyadh. HAV was detected in 38% of the samples, while one sample was positive for an alphacoronavirus. This cheap virus detection system enables the comprehensive surveillance of viruses present in water samples.
Collapse
Affiliation(s)
- Albert Blanco
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain
| | - Islem Abid
- Botany and Microbiology Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Nawal Al-Otaibi
- Botany and Microbiology Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Francisco José Pérez-Rodríguez
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain
| | - Cristina Fuentes
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain
| | - Susana Guix
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain
| | - Rosa M Pintó
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain
| | - Albert Bosch
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain.
- Institute of Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain.
| |
Collapse
|
15
|
Labadie T, Batéjat C, Manuguerra JC, Leclercq I. Influenza Virus Segment Composition Influences Viral Stability in the Environment. Front Microbiol 2018; 9:1496. [PMID: 30038604 PMCID: PMC6046443 DOI: 10.3389/fmicb.2018.01496] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/18/2018] [Indexed: 11/19/2022] Open
Abstract
The transmission routes of Influenza A viruses (IAVs) submit virus particles to a wide range of environmental conditions that affect their transmission. In water, temperature, salinity, and pH are important factors modulating viral persistence in a strain-dependent manner, and the viral factors driving IAV persistence remain to be described. We used an innovative method based on a real-time cell system analysis to quantify viral decay in an environmental model. Thus, we identified the viral hemagglutinin (HA) and neuraminidase (NA) as the main proteins driving the environmental persistence by comparing the inactivation slopes of several reassortant viruses. We also introduced synonymous and non-synonymous mutations in the HA or in the NA that modulated IAV persistence. Our results demonstrate that HA stability and expression level, as well as calcium-binding sites of the NA protein, are molecular determinants of viral persistence. Finally, IAV particles could not trigger membrane fusion after environmental exposure, stressing the importance of the HA and the NA for environmental persistence.
Collapse
Affiliation(s)
- Thomas Labadie
- Institut Pasteur, Department of Infection and Epidemiology, Environment and Infectious Risks Unit, Laboratory for Urgent Response to Biological Threats (CIBU), Paris, France.,Sorbonne Paris Cité (Cellule Pasteur), Paris Diderot University, Paris, France
| | - Christophe Batéjat
- Institut Pasteur, Department of Infection and Epidemiology, Environment and Infectious Risks Unit, Laboratory for Urgent Response to Biological Threats (CIBU), Paris, France
| | - Jean-Claude Manuguerra
- Institut Pasteur, Department of Infection and Epidemiology, Environment and Infectious Risks Unit, Laboratory for Urgent Response to Biological Threats (CIBU), Paris, France
| | - India Leclercq
- Institut Pasteur, Department of Infection and Epidemiology, Environment and Infectious Risks Unit, Laboratory for Urgent Response to Biological Threats (CIBU), Paris, France.,Sorbonne Paris Cité (Cellule Pasteur), Paris Diderot University, Paris, France
| |
Collapse
|
16
|
Gaidet N, Leclercq I, Batéjat C, Grassin Q, Daufresne T, Manuguerra JC. Avian Influenza Virus Surveillance in High Arctic Breeding Geese, Greenland. Avian Dis 2018; 62:237-240. [DOI: 10.1637/11793-010418-resnote.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Nicolas Gaidet
- CIRAD, UMR ASTRE, Département BIOS, TA C-47/F111, Campus international de Baillarguet, 34398 Montpellier Cedex 5, France
- Institut Pasteur, Unité Environnement et Risques Infectieux, Cellule d'Intervention Biologique d'Urgence (CIBU), 28 rue du Dr Roux, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité (Cellule Pasteur), rue du Dr Roux 75015 Paris, France
| | - India Leclercq
- Institut Pasteur, Unité Environnement et Risques Infectieux, Cellule d'Intervention Biologique d'Urgence (CIBU), 28 rue du Dr Roux, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité (Cellule Pasteur), rue du Dr Roux 75015 Paris, France
| | - Christophe Batéjat
- Institut Pasteur, Unité Environnement et Risques Infectieux, Cellule d'Intervention Biologique d'Urgence (CIBU), 28 rue du Dr Roux, Paris, France
| | - Quentin Grassin
- Institut Pasteur, Unité Environnement et Risques Infectieux, Cellule d'Intervention Biologique d'Urgence (CIBU), 28 rue du Dr Roux, Paris, France
| | - Tanguy Daufresne
- INRA, UMR 210 Eco&Sols, Bat 12, 2 Place Viala, F-34060 Montpellier Cedex 1, France
| | - Jean-Claude Manuguerra
- Institut Pasteur, Unité Environnement et Risques Infectieux, Cellule d'Intervention Biologique d'Urgence (CIBU), 28 rue du Dr Roux, Paris, France
| |
Collapse
|
17
|
Lickfett TM, Clark E, Gehring TM, Alm EW. Detection of Influenza A viruses at migratory bird stopover sites in Michigan, USA. Infect Ecol Epidemiol 2018; 8:1474709. [PMID: 29805786 PMCID: PMC5965024 DOI: 10.1080/20008686.2018.1474709] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/25/2018] [Indexed: 11/04/2022] Open
Abstract
Introduction: Influenza A viruses have the potential to cause devastating illness in humans and domestic poultry. Wild birds are the natural reservoirs of Influenza A viruses and migratory birds are implicated in their global dissemination. High concentrations of this virus are excreted in the faeces of infected birds and faecal contamination of shared aquatic habitats can lead to indirect transmission among birds via the faecal-oral route. The role of migratory birds in the spread of avian influenza has led to large-scale surveillance efforts of circulating avian influenza viruses through direct sampling of live and dead wild birds. Environmental monitoring of bird habitats using molecular detection methods may provide additional information on the persistence of influenza virus at migratory stopover sites distributed across large spatial scales. Materials and methods: In the current study, faecal and water samples were collected at migratory stopover sites and evaluated for Influenza A by real-time quantitative reverse transcriptase PCR. Results and Discussion: This study found that Influenza A was detected at 53% of the evaluated stopover sites, and 7% and 4.8% of the faecal and water samples, respectively, tested positive for Influenza A virus. Conclusion: Environmental monitoring detected Influenza A at stopover sites used by migratory birds.
Collapse
Affiliation(s)
- Todd M Lickfett
- Department of Biology and Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, MI, USA.,Region 6 Ecological Services, U.S. Fish and Wildlife Service, Lakewood, CO, USA
| | - Erica Clark
- Department of Biology and Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, MI, USA.,Silver Spring, MD, USA
| | - Thomas M Gehring
- Department of Biology and Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, MI, USA
| | - Elizabeth W Alm
- Department of Biology and Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, MI, USA
| |
Collapse
|
18
|
Macacu A, Bicout DJ. Effect of the epidemiological heterogeneity on the outbreak outcomes. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2017; 14:735-754. [PMID: 28092961 DOI: 10.3934/mbe.2017041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Multi-host pathogens infect and are transmitted by different kinds of hosts and, therefore, the host heterogeneity may have a great impact on the outbreak outcome of the system. This paper deals with the following problem: consider the system of interacting and mixed populations of hosts epidemiologically different, what would be the outbreak outcome for each host population composing the system as a result of mixing in comparison to the situation with zero mixing? To address this issue we have characterized the epidemic response function for a single-host population and defined a heterogeneity index measuring how host systems are epidemiologically different in terms of generation time, basic reproduction number R0 and, therefore, epidemic response function. Based on the individual epidemiological characteristics of populations, with heterogeneities and mixing affinities, the response of subpopulations in a multi-host system is compared to that of a single-host system. The case of a two-host system, in which the infection transmission depends solely on the infection susceptibility of the receiver, is analyzed in detail. Three types of responses are observed: dilution, amplification or no effect, corresponding to lower, higher or equal attack rates, respectively, for a host population in an interacting multi-host system compared to the zero-mixing situation. We find that no effect is generally observed for zero heterogeneity. A dilution effect is always observed for all the host populations when their individual R0,i < 1. Whereas, when at least one of the individual R0,i > 1, then the hosts ''i'' with R0,i > R0,j undergo a dilution effect while the hosts ''j'' undergo an amplification effect.
Collapse
Affiliation(s)
- Alina Macacu
- Biomathematics and Epidemiology, EPSP - TIMC, UMR 5525 CNRS, Grenoble Alpes University, VetAgro Sup Lyon, 1 avenue Bourgelat - 69280 Marcy l'Etoile, France.
| | | |
Collapse
|
19
|
Abstract
In this chapter, we describe 73 zoonotic viruses that were isolated in Northern Eurasia and that belong to the different families of viruses with a single-stranded RNA (ssRNA) genome. The family includes viruses with a segmented negative-sense ssRNA genome (families Bunyaviridae and Orthomyxoviridae) and viruses with a positive-sense ssRNA genome (families Togaviridae and Flaviviridae). Among them are viruses associated with sporadic cases or outbreaks of human disease, such as hemorrhagic fever with renal syndrome (viruses of the genus Hantavirus), Crimean–Congo hemorrhagic fever (CCHFV, Nairovirus), California encephalitis (INKV, TAHV, and KHATV; Orthobunyavirus), sandfly fever (SFCV and SFNV, Phlebovirus), Tick-borne encephalitis (TBEV, Flavivirus), Omsk hemorrhagic fever (OHFV, Flavivirus), West Nile fever (WNV, Flavivirus), Sindbis fever (SINV, Alphavirus) Chikungunya fever (CHIKV, Alphavirus) and others. Other viruses described in the chapter can cause epizootics in wild or domestic animals: Geta virus (GETV, Alphavirus), Influenza A virus (Influenzavirus A), Bhanja virus (BHAV, Phlebovirus) and more. The chapter also discusses both ecological peculiarities that promote the circulation of these viruses in natural foci and factors influencing the occurrence of epidemic and epizootic outbreaks
Collapse
|
20
|
De Marco MA, Delogu M, Sivay M, Sharshov K, Yurlov A, Cotti C, Shestopalov A. Virological evaluation of avian influenza virus persistence in natural and anthropic ecosystems of Western Siberia (Novosibirsk Region, summer 2012). PLoS One 2014; 9:e100859. [PMID: 24972026 PMCID: PMC4074073 DOI: 10.1371/journal.pone.0100859] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 05/30/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Wild aquatic birds, reservoir of low-pathogenicity (LP) avian influenza viruses (AIVs), congregate in huge numbers in Western Siberia wetlands, where major intra- and inter-continental bird flyways overlap. In 2005 and 2006, highly pathogenic (HP) AIV H5N1 epizootics affected wild and domestic birds in the Novosibirsk Region. In 2012, we evaluated AIV persistence in Siberian natural and anthropic ecosystems. METHODOLOGY/PRINCIPAL FINDINGS In Novosibirsk Region, 166 wild birds ecologically linked to aquatic environments and 152 domestic waterfowl were examined for AIV isolation in embryonating chicken eggs. Biological samples were obtained by integrating the conventional cloacal swab collection with the harvesting of samples from birds' plumage. Haemagglutinating allantoic fluids were further characterized by serological and molecular methods. In August-September 2012, 17 AIVs, including three H3N8, eight H4N6, two H4N?, one H2N?, one H?N2, and two unsubtyped LPAIVs, were isolated from 15 wild ducks. Whereas comparable proportions of wild Anseriformes (n.118) tested virus isolation (VI)-positive from cloaca and feathers (5.9% vs 8.5%) were detected, the overall prevalence of virus isolation, obtained from both sampling methods, was 2.4 times higher than that calculated on results from cloacal swab examination only (14.4% vs 5.9%). Unlike previously described in this area, the H4N6 antigenic subtype was found to be the prevalent one in 2012. Both cloacal and feather samples collected from domestic waterfowl tested VI-negative. CONCLUSION/SIGNIFICANCE We found lack of evidence for the H5N1 HPAIV circulation, explainable by the poor environmental fitness of HPAIVs in natural ecosystems. Our LPAIV isolation data emphasise the importance of Siberia wetlands in influenza A virus ecology, providing evidence of changes in circulation dynamics of HN antigenic subtypes harboured in wild bird reservoirs. Further studies of isolates, based on bioinformatic approaches to virus molecular evolution and phylogenesis, will be needed to better elucidate mechanisms involved in AIV perpetuation in this area.
Collapse
Affiliation(s)
- Maria A. De Marco
- Laboratorio di Genetica, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Ozzano Emilia (BO), Italy
- * E-mail:
| | - Mauro Delogu
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia (BO), Italy
| | - Mariya Sivay
- Research Center of Clinical and Experimental Medicine, Siberian Division of the Russian Academy of Medical Sciences, Novosibirsk, Russia
| | - Kirill Sharshov
- Research Center of Clinical and Experimental Medicine, Siberian Division of the Russian Academy of Medical Sciences, Novosibirsk, Russia
| | - Alexander Yurlov
- Institute of Systematics and Ecology of Animals of the Siberian Branch of the Russian Academy of Sciences (RAS), Novosibirsk, Russia
| | - Claudia Cotti
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia (BO), Italy
| | - Alexander Shestopalov
- Research Center of Clinical and Experimental Medicine, Siberian Division of the Russian Academy of Medical Sciences, Novosibirsk, Russia
- Research Division, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
21
|
|
22
|
Giammarino M, Quatto P, Rizzo F, Mandola ML. Influenza A virus prevalence and its implications on survival in mallard. Isr J Ecol Evol 2014. [DOI: 10.1080/15659801.2014.950478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Avian influenza is an infectious viral disease of birds caused by type A strains of the influenza virus. Aquatic bird species have adapted to carry and transmit a wide range of influenza strains in nature. Here we report the results of a 4.5-year monitoring program forOrthomyxovirusprevalence in a population of wild mallard (Anas plathyrynchos) in northwestern Italy. To determine whetherOrthomyxovirusprevalence affects survival, we used MARK software to compare the survival of AIV-positive versus AIV-negative birds. Prevalence rates and variance were estimated using inverse sampling method. The prevalence rate of influenza A virus was 4.3% (SE 0.00116) and lifespan was shorter (29.8%) for the young infected birds than for the young non-infected birds.
Collapse
Affiliation(s)
| | - Piero Quatto
- Department of Economics, Management and Statistics, University of Milano – Bicocca
| | - Francesca Rizzo
- Department of Virology, Istituto Zooprofilattico Sperimentale del Piemonte
| | | |
Collapse
|
23
|
Smith O, Clapham A, Rose P, Liu Y, Wang J, Allaby RG. A complete ancient RNA genome: identification, reconstruction and evolutionary history of archaeological Barley Stripe Mosaic Virus. Sci Rep 2014; 4:4003. [PMID: 24499968 PMCID: PMC3915304 DOI: 10.1038/srep04003] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/20/2014] [Indexed: 01/12/2023] Open
Abstract
The origins of many plant diseases appear to be recent and associated with the rise of domestication, the spread of agriculture or recent global movements of crops. Distinguishing between these possibilities is problematic because of the difficulty of determining rates of molecular evolution over short time frames. Heterochronous approaches using recent and historical samples show that plant viruses exhibit highly variable and often rapid rates of molecular evolution. The accuracy of estimated evolution rates and age of origin can be greatly improved with the inclusion of older molecular data from archaeological material. Here we present the first reconstruction of an archaeological RNA genome, which is of Barley Stripe Mosaic Virus (BSMV) isolated from barley grain ~750 years of age. Phylogenetic analysis of BSMV that includes this genome indicates the divergence of BSMV and its closest relative prior to this time, most likely around 2000 years ago. However, exclusion of the archaeological data results in an apparently much more recent origin of the virus that postdates even the archaeological sample. We conclude that this viral lineage originated in the Near East or North Africa, and spread to North America and East Asia with their hosts along historical trade routes.
Collapse
Affiliation(s)
- Oliver Smith
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL
| | - Alan Clapham
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL
| | - Pam Rose
- The Austrian Archaeological Institute; Cairo Branch, Zamalek, Sharia Ismail Muhammed, Apt 62/72, Cairo, Egypt
| | - Yuan Liu
- BGI-Europe-UK, 9 Devonshire Square, London, EC2M 4YF, UK
| | - Jun Wang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Robin G Allaby
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL
| |
Collapse
|
24
|
Guy PL. Prospects for analyzing ancient RNA in preserved materials. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:87-94. [DOI: 10.1002/wrna.1199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 06/23/2013] [Accepted: 07/02/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Paul L. Guy
- Department of Botany; University of Otago; Dunedin New Zealand
| |
Collapse
|
25
|
Guy PL. Ancient RNA? RT-PCR of 50-year-old RNA identifies peach latent mosaic viroid. Arch Virol 2012; 158:691-4. [DOI: 10.1007/s00705-012-1527-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 09/26/2012] [Indexed: 11/28/2022]
|
26
|
Kraus RHS, van Hooft P, Megens HJ, Tsvey A, Fokin SY, Ydenberg RC, Prins HHT. Global lack of flyway structure in a cosmopolitan bird revealed by a genome wide survey of single nucleotide polymorphisms. Mol Ecol 2012; 22:41-55. [PMID: 23110616 DOI: 10.1111/mec.12098] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 09/19/2012] [Accepted: 09/20/2012] [Indexed: 01/13/2023]
Abstract
Knowledge about population structure and connectivity of waterfowl species, especially mallards (Anas platyrhynchos), is a priority because of recent outbreaks of avian influenza. Ringing studies that trace large-scale movement patterns have to date been unable to detect clearly delineated mallard populations. We employed 363 single nucleotide polymorphism markers in combination with population genetics and phylogeographical approaches to conduct a population genomic test of panmixia in 801 mallards from 45 locations worldwide. Basic population genetic and phylogenetic methods suggest no or very little population structure on continental scales. Nor could individual-based structuring algorithms discern geographical structuring. Model-based coalescent analyses for testing models of population structure pointed to strong genetic connectivity among the world's mallard population. These diverse approaches all support the conclusion that there is a lack of clear population structure, suggesting that the world's mallards, perhaps with minor exceptions, form a single large, mainly interbreeding population.
Collapse
Affiliation(s)
- Robert H S Kraus
- Resource Ecology Group, Wageningen University, PO Box 47, 6700 AA, Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
27
|
Shoham D, Jahangir A, Ruenphet S, Takehara K. Persistence of avian influenza viruses in various artificially frozen environmental water types. INFLUENZA RESEARCH AND TREATMENT 2012; 2012:912326. [PMID: 23091712 PMCID: PMC3471417 DOI: 10.1155/2012/912326] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 08/10/2012] [Accepted: 08/28/2012] [Indexed: 11/18/2022]
Abstract
Background. This study investigates the viable persistence of avian influenza viruses (AIVs) in various types of artificially frozen environmental water and evaluates the feasibility of similar occurrence taking place in nature, and allowing for prolonged abiotic virus survival, with subsequent biotic viral recirculation. Methods. Fresh, brackish, and salty water, taken in Japan from aquatic biotopes regularly visited by migratory waterfowl, were seeded with AIVs. We monthly monitored the viability of the seeded viruses in the frozen state at -20°C and -30°C, for 12 months. We also monitored virus viability following repeatedly induced freezing and thawing. Results. The viruses exhibited considerable viable persistence all along that period of time, as well as during freezing-thawing cycles. Appreciable, yet noncrucial variances were observed in relation to some of the parameters examined. Conclusions. As typical waterborne pathogens of numerous northerly aquatic birds, AIVs are innately adapted to both the body temperature of their hosts (40°C to 42°C) and, presumably, to subzero temperatures of frozen lakes (down to -54°C in parts of Siberia) occupied and virus-seeded by subclinically infected birds, prior to freezing. Marked cryostability of AIVs appears to be evident. Preservation in environmental ice has significant ecophylogenetic and epidemiological implications, potentially, and could account for various unexplained phenomena.
Collapse
Affiliation(s)
- Dany Shoham
- Laboratory of Zoonoses, School of Veterinary Medicine, Kitasato University, 35-1 Higashi 23 Bancho, Towada, Aomori 034, Japan
| | - Alam Jahangir
- Animal Health Research Division, Bangladesh Livestock Research Institute, Savar, Dhaka 1341, Bangladesh
| | - Sakchai Ruenphet
- Laboratory of Animal Health, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Kazuaki Takehara
- Laboratory of Animal Health, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| |
Collapse
|
28
|
Rönnqvist M, Ziegler T, von Bonsdorff CH, Maunula L. Detection method for avian influenza viruses in water. FOOD AND ENVIRONMENTAL VIROLOGY 2012; 4:26-33. [PMID: 23412765 DOI: 10.1007/s12560-011-9075-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 12/01/2011] [Indexed: 06/01/2023]
Abstract
Recent events have shown that humans may become infected with some pathogenic avian influenza A viruses (AIV). Since soil and water, including lakes, rivers, and seashores, may be contaminated by AIV excreted by birds, effective methods are needed for monitoring water for emerging viruses. Combining water filtration with molecular methods such as PCR is a fast and effective way for detecting viruses. The objective of this study was to apply a convenient method for the detection of AIV in natural water samples. Distilled water and lake, river, and seawater were artificially contaminated with AIV (H5N3) and passed through a filter system. AIV was detected from filter membrane by real-time RT-PCR. The performance of Zetapor, SMWP, and Sartobind D5F membranes in recovering influenza viruses was first evaluated using contaminated distilled water. SWMP, which gave the highest virus recoveries, was then compared with a pre-filter combined GF/F filter membrane in a trial using natural water samples. In this study, the cellulose membrane SMWP was found to be practical for recovery of AIVs in water. Viral yields varied between 62.1 and 65.9% in distilled water and between 1 and 16.7% in natural water samples. The borosilicate glass membrane GF/F combined with pre-filter was also feasible in filtering natural water samples with viral yields from 1.98 to 7.33%. The methods described can be used for monitoring fresh and seawater samples for the presence of AIV and to determine the source of AIV transmission in an outbreak situation.
Collapse
Affiliation(s)
- Maria Rönnqvist
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| | | | | | | |
Collapse
|
29
|
Development and validation of a concentration method for the detection of influenza a viruses from large volumes of surface water. Appl Environ Microbiol 2011; 77:3802-8. [PMID: 21498756 DOI: 10.1128/aem.02484-10] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Contamination of lakes and ponds plays an essential role as a reservoir of avian influenza A virus (AIV) in the environment. A method to concentrate waterborne AIV is a prerequisite for the detection of virus present at low levels in water. The aim of this study was to develop and validate a method for the concentration and detection of infectious AIV from large volumes of surface water samples. Two filtration systems, glass wool and electropositive NanoCeram filter, were studied. The individual effects of filtration-elution and polyethylene glycol (PEG) concentration parameters on the recovery efficiency of the H1N1 strain from 10-liter surface water samples were assessed. An ultimate 1% recovery rate of infectious viruses was achieved with the optimal protocol, corresponding to filtration through glass wool, followed by a viral elution step and then a PEG concentration. This method was validated for the detection of highly pathogenic H5N1 strains from artificially contaminated larger water volumes, from 10 to up to 50 liters, from different sources. The viral recovery efficiencies ranged from 0.01% to 7.89% and from 3.63% to 13.79% with lake water and rainwater, respectively. A theoretical detection threshold of 2.25 × 10(2) TCID(50) (50% tissue culture infectious dose) in the filtered volume was obtained for seeded lake waters by M gene reverse transcriptase PCR (RT-PCR). Moreover, the method was used successfully in field studies for the detection of naturally occurring influenza A viruses in lake water in France.
Collapse
|
30
|
|
31
|
He F, Soejoedono RD, Murtini S, Goutama M, Kwang J. Complementary monoclonal antibody-based dot ELISA for universal detection of H5 avian influenza virus. BMC Microbiol 2010; 10:330. [PMID: 21192824 PMCID: PMC3023680 DOI: 10.1186/1471-2180-10-330] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 12/30/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rapid diagnosis and surveillance for H5 subtype viruses are critical for the control of H5N1 infection. RESULTS In this study, H5 Dot ELISA, a rapid test for the detection of avian H5N1 influenza virus, was developed with two complementary H5 monoclonal antibodies. HA sequencing of escape mutants followed by epitope mapping revealed that the two Mabs target the epitope component (189th amino acid) on the HA protein but are specific for different amino acids (189Lys or 189Arg). Gene alignment indicated that these two amino acids are the most frequent types on this position among all of the H5 AIV reported in GeneBank. These two H5 Mabs were used together in a dot ELISA to detect H5 viral antigen. The detection limit of the developed test for multiple clades of H5N1 viruses, including clades 0, 1, 2.1, 2.2, 2.3, 4, 7, and 8, was less than 0.5 hemagglutinin units. The specificity of the optimized dot ELISA was examined by using 100 H5 strains, including H5N1 HPAI strains from multiple clades, 36 non-H5N1 viruses, and 4 influenza B viruses. No cross-reactivity was observed for any of the non-H5N1 viruses tested. Among 200 random poultry samples, the test gave 100% positive results for all of the twelve RT-PCR-positive samples. CONCLUSIONS Considering that the test is convenient for field use, this H5 Dot ELISA can be used for on-site detection of H5N1 infection in clinical or environmental specimens and facilitate the investigation of H5N1 influenza outbreaks and surveillance in poultry.
Collapse
Affiliation(s)
- Fang He
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604
| | - Retno D Soejoedono
- Faculty of Veterinary Medicine, Depart of Infectious diseases & Vet. Public Health, Division of Microbiology, Institute Pertanian, Bogor, Indonesia
| | - Sri Murtini
- Faculty of Veterinary Medicine, Depart of Infectious diseases & Vet. Public Health, Division of Microbiology, Institute Pertanian, Bogor, Indonesia
| | | | - Jimmy Kwang
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604
- Tridel Biosciences International Pte Ltd, Singapore
- Department of Microbiology, Faculty of Medicine, National University of Singapore, Singapore
| |
Collapse
|
32
|
Abstract
AbstractAvian influenza (AI) virus is one of the most important diseases of the poultry industry around the world. The virus has a broad host range in birds and mammals, although the natural reservoir is wild birds where it typically causes an asymptomatic to mild infection. The virus in poultry can cause a range of clinical diseases and is defined either as low pathogenic AI (LPAI) or highly pathogenic AI (HPAI) depending on the type of disease it causes in chickens. Viruses that replicate primarily on mucosal surfaces and cause mild disease with low mortality are termed LPAI. Viruses that replicate on mucosal surfaces and systemically and cause severe disease with a mortality rate of 75% or greater in experimentally infected chickens are referred to as HPAI. A virus that is highly pathogenic in chickens may infect but result in a completely different disease and replication pattern in other host species. Outbreaks of HPAI have been relatively uncommon around the world in the last 50 years and have had limited spread within a country or region with one major exception, Asian lineage H5N1 that was first identified in 1996. This lineage of virus has spread to over 60 countries and has become endemic in poultry in at least four countries. AI virus also represents a public health threat, with some infected humans having severe disease and with a high case fatality rate. AI remains a difficult disease to control because of the highly infectious nature of the virus and the interface of domestic and wild animals. A better understanding of the disease and its transmission is important for control.
Collapse
|
33
|
Interspecies and intraspecies transmission of influenza A viruses: viral, host and environmental factors. Anim Health Res Rev 2010; 11:53-72. [DOI: 10.1017/s1466252310000137] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractInfluenza A viruses are enveloped viruses belonging to the familyOrthomyxoviridaethat encompasses four more genera: Influenza B, Influenza C, Isavirus and Thogotovirus. Type A viruses belong to the only genus that is highly infectious to a variety of mammalian and avian species. They are divided into subtypes based on two surface glycoproteins, the hemagglutinin (HA) and neuraminidase (NA). So far, 16 HA and 9 NA subtypes have been identified worldwide, making a possible combination of 144 subtypes between both proteins. Generally, individual viruses are host-specific, however, interspecies transmission of influenza A viruses is not uncommon. All of the HA and NA subtypes have been isolated from wild birds; however, infections in humans and other mammalian species are limited to a few subtypes. The replication of individual influenza A virus in a specific host is dependent on many factors including, viral proteins, host system and environmental conditions. In this review, the key findings that contribute to the transmission of influenza A viruses amongst different species are summarized.
Collapse
|
34
|
Spatial and temporal association of outbreaks of H5N1 influenza virus infection in wild birds with the 0 degrees C isotherm. PLoS Pathog 2010; 6:e1000854. [PMID: 20386716 PMCID: PMC2851735 DOI: 10.1371/journal.ppat.1000854] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 03/09/2010] [Indexed: 11/19/2022] Open
Abstract
Wild bird movements and aggregations following spells of cold weather may have resulted in the spread of highly pathogenic avian influenza virus (HPAIV) H5N1 in Europe during the winter of 2005–2006. Waterbirds are constrained in winter to areas where bodies of water remain unfrozen in order to feed. On the one hand, waterbirds may choose to winter as close as possible to their breeding grounds in order to conserve energy for subsequent reproduction, and may be displaced by cold fronts. On the other hand, waterbirds may choose to winter in regions where adverse weather conditions are rare, and may be slowed by cold fronts upon their journey back to the breeding grounds, which typically starts before the end of winter. Waterbirds will thus tend to aggregate along cold fronts close to the 0°C isotherm during winter, creating conditions that favour HPAIV H5N1 transmission and spread. We determined that the occurrence of outbreaks of HPAIV H5N1 infection in waterbirds in Europe during the winter of 2005–2006 was associated with temperatures close to 0°C. The analysis suggests a significant spatial and temporal association of outbreaks caused by HPAIV H5N1 in wild birds with maximum surface air temperatures of 0°C–2°C on the day of the outbreaks and the two preceding days. At locations where waterbird census data have been collected since 1990, maximum mallard counts occurred when average and maximum surface air temperatures were 0°C and 3°C, respectively. Overall, the abundance of mallards (Anas platyrhynchos) and common pochards (Aythya ferina) was highest when surface air temperatures were lower than the mean temperatures of the region investigated. The analysis implies that waterbird movements associated with cold weather, and congregation of waterbirds along the 0°C isotherm likely contributed to the spread and geographical distribution of outbreaks of HPAIV H5N1 infection in wild birds in Europe during the winter of 2005–2006. Highly pathogenic avian influenza virus of the H5N1 subtype emerged more than a decade ago in poultry in South-East Asia. In 2005, it spread outside Asia infecting both poultry and wild birds in the Middle East, Europe and Africa. Both trade of poultry and movements of wild birds were likely implicated in the spread of the infection; however, the ability of wild birds to carry the virus to novel geographical areas is still highly debated and remains obscure. In Europe, the virus mainly infected wild birds, and emergence coincided with a spell of cold weather, which is known to result in massive movements of wild waterbirds. In this paper, we demonstrate that movements of wild waterbirds associated with cold weather contributed to the spread and geographical distribution of outbreaks in Europe during the winter of 2005–2006. Higher density of wild waterbirds on bodies of water that remain unfrozen ahead of the freezing line likely favoured transmission of the virus and resulted in distinctive distribution of outbreaks at locations where surface air temperatures were 0°C–2°C. This has important implications for surveillance, which should target areas where temperatures are close to freezing in winter, especially in poultry-dense regions close to areas where waterfowl aggregate.
Collapse
|
35
|
Dovas CI, Papanastassopoulou M, Georgiadis MP, Chatzinasiou E, Maliogka VI, Georgiades GK. Detection and quantification of infectious avian influenza A (H5N1) virus in environmental water by using real-time reverse transcription-PCR. Appl Environ Microbiol 2010; 76:2165-74. [PMID: 20118369 PMCID: PMC2849232 DOI: 10.1128/aem.01929-09] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 01/25/2010] [Indexed: 01/13/2023] Open
Abstract
Routes of avian influenza virus (AIV) dispersal among aquatic birds involve direct (bird-to-bird) and indirect (waterborne) transmission. The environmental persistence of H5N1 virus in natural water reservoirs can be assessed by isolation of virus in embryonated chicken eggs. Here we describe development and evaluation of a real-time quantitative reverse transcription (RT)-PCR (qRT-PCR) method for detection of H5N1 AIV in environmental water. This method is based on adsorption of virus particles to formalin-fixed erythrocytes, followed by qRT-PCR detection. The numbers of hemagglutinin RNA copies from H5N1 highly pathogenic AIV particles adsorbed to erythrocytes detected correlated highly with the infectious doses of the virus that were determined for three different types of artificially inoculated environmental water over a 17-day incubation period. The advantages of this method include detection and quantification of infectious H5N1 AIVs with a high level of sensitivity, a wide dynamic range, and reproducibility, as well as increased biosecurity. The lowest concentration of H5N1 virus that could be reproducibly detected was 0.91 50% egg infective dose per ml. In addition, a virus with high virion stability (Tobacco mosaic virus) was used as an internal control to accurately monitor the efficiency of RNA purification, cDNA synthesis, and PCR amplification for each individual sample. This detection system could be useful for rapid high-throughput monitoring for the presence of H5N1 AIVs in environmental water and in studies designed to explore the viability and epidemiology of these viruses in different waterfowl ecosystems. The proposed method may also be adapted for detection of other AIVs and for assessment of their prevalence and distribution in environmental reservoirs.
Collapse
Affiliation(s)
- C I Dovas
- Laboratory of Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Health problems related to the environment continue to be a major source of concern all over the world. Society needs to develop measures that will eliminate or considerably reduce hazardous factors from the environment that can result in health risk to humans.
Collapse
|
37
|
Abstract
Viruses are ubiquitous in the sea and appear to outnumber all other forms of marine life by at least an order of magnitude. Through selective infection, viruses influence nutrient cycling, community structure, and evolution in the ocean. Over the past 20 years we have learned a great deal about the diversity and ecology of the viruses that constitute the marine virioplankton, but until recently the emphasis has been on DNA viruses. Along with expanding knowledge about RNA viruses that infect important marine animals, recent isolations of RNA viruses that infect single-celled eukaryotes and molecular analyses of the RNA virioplankton have revealed that marine RNA viruses are novel, widespread, and genetically diverse. Discoveries in marine RNA virology are broadening our understanding of the biology, ecology, and evolution of viruses, and the epidemiology of viral diseases, but there is still much that we need to learn about the ecology and diversity of RNA viruses before we can fully appreciate their contributions to the dynamics of marine ecosystems. As a step toward making sense of how RNA viruses contribute to the extraordinary viral diversity in the sea, we summarize in this review what is currently known about RNA viruses that infect marine organisms.
Collapse
Affiliation(s)
- Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, St John's, NL, Canada.
| | | | | | | |
Collapse
|
38
|
Chang CM, Lebarbenchon C, Gauthier-Clerc M, Le Bohec C, Beaune D, Le Maho Y, van der Werf S. Molecular surveillance for avian influenza A virus in king penguins ( Aptenodytes patagonicus). Polar Biol 2009; 32:663. [PMID: 32214634 PMCID: PMC7087602 DOI: 10.1007/s00300-009-0587-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 01/16/2009] [Accepted: 01/19/2009] [Indexed: 10/27/2022]
Abstract
An investigation of the presence of influenza A virus has been conducted in king penguins (Aptenodytes patagonicus) at the Possession Island in the Crozet Archipelago, Antarctica, using a rapid molecular diagnostic method based on real-time polymerase chain reaction. No evidence of outbreak or positive viral infection of influenza A virus was found in this study. We however recommend the implementation of long-term surveillance in seabird populations of polar ecosystems to detect the potential introduction of exotic strains and potential existence of a local epidemiological cycle for avian influenza viruses.
Collapse
Affiliation(s)
- Chung-Ming Chang
- 1Unité de Génétique Moléculaire des Virus Respiratoires, URA3015 CNRS, EA302 Université Paris-Diderot Paris 7, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France.,2Génétique et Évolution des Maladies Infectieuses, UMR 2724, IRD, 911 avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France.,5Department of Medical Biotechnology and Laboratory Science, Research Center for Emerging Viral Infections, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, 333 Taiwan
| | - Camille Lebarbenchon
- 1Unité de Génétique Moléculaire des Virus Respiratoires, URA3015 CNRS, EA302 Université Paris-Diderot Paris 7, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France.,2Génétique et Évolution des Maladies Infectieuses, UMR 2724, IRD, 911 avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France.,3Centre de Recherche de la Tour du Valat, Le Sambuc, 13200 Arles, France
| | | | - Céline Le Bohec
- 4Département d'Écologie, Physiologie et Éthologie, Institut Pluridisciplinaire Hubert Curien, UMR 7178, 23 rue Becquerel, 67087 Strasbourg Cedex 02, France
| | - David Beaune
- 4Département d'Écologie, Physiologie et Éthologie, Institut Pluridisciplinaire Hubert Curien, UMR 7178, 23 rue Becquerel, 67087 Strasbourg Cedex 02, France
| | - Yvon Le Maho
- 4Département d'Écologie, Physiologie et Éthologie, Institut Pluridisciplinaire Hubert Curien, UMR 7178, 23 rue Becquerel, 67087 Strasbourg Cedex 02, France
| | - Sylvie van der Werf
- 1Unité de Génétique Moléculaire des Virus Respiratoires, URA3015 CNRS, EA302 Université Paris-Diderot Paris 7, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
39
|
Weber TP, Stilianakis NI. Inactivation of influenza A viruses in the environment and modes of transmission: a critical review. J Infect 2008; 57:361-73. [PMID: 18848358 PMCID: PMC7112701 DOI: 10.1016/j.jinf.2008.08.013] [Citation(s) in RCA: 303] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 08/26/2008] [Accepted: 08/27/2008] [Indexed: 11/04/2022]
Abstract
OBJECTIVES The relative importance of airborne, droplet and contact transmission of influenza A virus and the efficiency of control measures depends among other factors on the inactivation of viruses in different environmental media. METHODS We systematically review available information on the environmental inactivation of influenza A viruses and employ information on infectious dose and results from mathematical models to assess transmission modes. RESULTS Daily inactivation rate constants differ by several orders of magnitude: on inanimate surfaces and in aerosols daily inactivation rates are in the order of 1-10(2), on hands in the order of 10(3). Influenza virus can survive in aerosols for several hours, on hands for a few minutes. Nasal infectious dose of influenza A is several orders of magnitude larger than airborne infectious dose. CONCLUSIONS The airborne route is a potentially important transmission pathway for influenza in indoor environments. The importance of droplet transmission has to be reassessed. Contact transmission can be limited by fast inactivation of influenza virus on hands and is more so than airborne transmission dependent on behavioral parameters. However, the potentially large inocula deposited in the environment through sneezing and the protective effect of nasal mucus on virus survival could make contact transmission a key transmission mode.
Collapse
Affiliation(s)
- Thomas P Weber
- Joint Research Centre, European Commission, T.P. 267, Via Enrico Fermi 2749, I-21027 Ispra, Italy.
| | | |
Collapse
|
40
|
Greger M. The Human/Animal Interface: Emergence and Resurgence of Zoonotic Infectious Diseases. Crit Rev Microbiol 2008; 33:243-99. [DOI: 10.1080/10408410701647594] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
41
|
Gilbert M, Slingenbergh J, Xiao X. Climate change and avian influenza. REV SCI TECH OIE 2008; 27:459-466. [PMID: 18819672 PMCID: PMC2709837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This paper discusses impacts of climate change on the ecology of avian influenza viruses (AI viruses), which presumably co-evolved with migratory water birds, with virus also persisting outside the host in subarctic water bodies. Climate change would almost certainly alter bird migration, influence the AI virus transmission cycle and directly affect virus survival outside the host. The joint, net effects of these changes are rather unpredictable, but it is likely that AI virus circulation in water bird populations will continue with endless adaptation and evolution. In domestic poultry, too little is known about the direct effect of environmental factors on highly pathogenic avian influenza transmission and persistence to allow inference about the possible effect of climate change. However, possible indirect links through changes in the distribution of duck-crop farming are discussed.
Collapse
Affiliation(s)
- M Gilbert
- Biological Control and Spatial Ecology, Université Libre de Bruxelles, Brussels, Belgium.
| | | | | |
Collapse
|
42
|
Bosch A, Guix S, Sano D, Pintó RM. New tools for the study and direct surveillance of viral pathogens in water. Curr Opin Biotechnol 2008; 19:295-301. [PMID: 18508257 PMCID: PMC7126527 DOI: 10.1016/j.copbio.2008.04.006] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 04/14/2008] [Accepted: 04/17/2008] [Indexed: 12/05/2022]
Abstract
Half a century ago scientists attempted the detection of poliovirus in water. Since then other enteric viruses responsible for gastroenteritis and hepatitis have replaced enteroviruses as the main target for detection. However, most viral outbreaks are restricted to norovirus and hepatitis A virus, making them the main targets in water. The inclusion of virus analysis in regulatory standards for viruses in water samples must overcome several shortcomings such as the technical difficulties and high costs of virus monitoring, the lack of harmonised and standardised assays and the challenge posed by the ever-changing nature of viruses. However, new tools are nowadays available for the study and direct surveillance of viral pathogens in water that may contribute to fulfil these requirements.
Collapse
Affiliation(s)
- Albert Bosch
- Enteric Virus Laboratory, Department of Microbiology, University of Barcelona, Spain.
| | | | | | | |
Collapse
|
43
|
Abstract
Avian influenza A virus (an orthomyxovirus) is a zoonotic pathogen with a natural reservoir entirely in birds. The influenza virus genome is an 8-segment single-stranded RNA with high potential for in situ recombination. Two segments code for the hemagglutinin (H) and neuraminidase (N) antigens used for host-cell entry. At present, 16 H and 9 N subtypes are known, for a total of 144 possible different influenza subtypes, each with potentially different host susceptibility. With >10,000 species of birds found in nearly every terrestrial and aquatic habitat, there are few places on earth where birds cannot be found. The avian immune system differs from that of humans in several important features, including asynchronous B and T lymphocyte systems and a polymorphic multigene immune complex, but little is known about the immunogenetics of pathogenic response. Postbreeding dispersal and migration and a naturally high degree of environmental vagility mean that wild birds have the potential to be vectors that transmit highly pathogenic variants great distances from the original sources of infection.
Collapse
Affiliation(s)
- Douglas Causey
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA.
| | | |
Collapse
|
44
|
Lang AS, Kelly A, Runstadler JA. Prevalence and diversity of avian influenza viruses in environmental reservoirs. J Gen Virol 2008; 89:509-519. [PMID: 18198382 DOI: 10.1099/vir.0.83369-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Little is known about the ecology and evolution of avian influenza in the natural environment, despite how these affect the potential for transmission. Most work has focused on characterizing viruses isolated from hosts such as waterfowl, and there have also been several instances of isolation and detection from abiotic sources such as water and ice. We used RT-PCR to amplify and characterize the influenza virus sequences present in sediments of ponds that are used heavily by waterfowl. The detection rate of influenza virus was high (>50%). Characterization of the viruses present by sequencing part of the haemagglutinin (HA) gene showed that there is a diverse collection of viruses in these sediments. We sequenced 117 partial HA gene clones from 11 samples and detected four different HA subtypes (H3, H8, H11 and H12), with approximately 65% of clone sequences being unique. This culture-independent approach was also able to detect a virus subtype that was not found by sampling of birds in the same geographical region in the same year. Viruses were detected readily in the winter when the ponds were frozen, indicating that these sediments could be a year-to-year reservoir of viruses to infect birds using the ponds, although we have not shown that these viruses are viable. We demonstrate that this approach is a feasible and valuable way to assess the prevalence and diversity of viruses present in the environment, and can be a valuable complement to more difficult viral culturing in attempting to understand the ecology of influenza viruses.
Collapse
Affiliation(s)
- Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, St John's, NL A1B 3X9, Canada
| | - Anke Kelly
- Institute of Arctic Biology, PO Box 757000, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Jonathan A Runstadler
- Institute of Arctic Biology, PO Box 757000, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| |
Collapse
|
45
|
Worobey M. Phylogenetic evidence against evolutionary stasis and natural abiotic reservoirs of influenza A virus. J Virol 2008; 82:3769-74. [PMID: 18234791 PMCID: PMC2268457 DOI: 10.1128/jvi.02207-07] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 01/16/2008] [Indexed: 11/20/2022] Open
Abstract
Zhang et al. (G. Zhang, D. Shoham, D. Gilichinsky, S. Davydov, J. D. Castello, and S. O. Rogers, J. Virol. 80:12229-12235, 2006) have claimed to have recovered influenza A virus RNA from Siberian lake ice, postulating that ice might represent an important abiotic reservoir for the persistence and reemergence of this medically important pathogen. A rigorous phylogenetic analysis of these influenza A virus hemagglutinin gene sequences, however, indicates that they originated from a laboratory reference strain derived from the earliest human influenza A virus isolate, WS/33. Contrary to Zhang et al.'s assertions that the Siberian "ice viruses" are most closely related either to avian influenza virus or to human influenza virus strains from Asia from the 1960s (Zhang et al., J. Virol. 81:2538 [erratum], 2007), they are clearly contaminants from the WS/33 positive control used in their laboratory. There is thus no credible evidence that environmental ice acts as a biologically relevant reservoir for influenza viruses. Several additional cases with findings that seem at odds with the biology of influenza virus, including modern-looking avian influenza virus RNA sequences from an archival goose specimen collected in 1917 (T. G. Fanning, R. D. Slemons, A. H. Reid, T. A. Janczewski, J. Dean, and J. K. Taubenberger, J. Virol. 76:7860-7862, 2002), can also be explained by laboratory contamination or other experimental errors. Many putative examples of evolutionary stasis in influenza A virus appear to be due to laboratory artifacts.
Collapse
Affiliation(s)
- Michael Worobey
- Ecology and Evolutionary Biology, Biosciences West, 1041 E. Lowell St., University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
46
|
Abstract
Influenza pandemics have been amongst the largest and the deadliest epidemics in the history of man, and were observed already in ancient times. For example, records from the fifth century B.C. suggest that influenza pandemics were observed in ancient Greece. In Europe, during the Middle Ages and the Renaissance, numerous concordant reports from different countries describe epidemics of respiratory infections that resemble influenza pandemics. However, it is not possible to be certain that these epidemics were due to influenza. In the twentieth century, three influenza pandemics have occurred, including the deadly Spanish flu pandemic. Modern virology has unravelled the mechanisms of emergence of pandemic viruses, and considerable knowledge on influenza viruses has been accumulated. The picture is now clear: influenza A is a zoonotic virus whose reservoir is in wild birds. In rare cases, these avian viruses are introduced into man and, eventually, become pandemic viruses. Although these mechanisms are now understood, the time frame required for adaptation of the avian virus to its new host remains unknown. Maybe the next pandemic will show us how rapid this adaptation can be.
Collapse
Affiliation(s)
- Didier Raoult
- Université de la Méditerranée, 27 Boulevard Jean Moulin, 13385 Marseille France
| | - Michel Drancourt
- Université de la Méditerranée, 27 Boulevard Jean Moulin, 13385 Marseille France
| |
Collapse
|