1
|
Lee S. Norovirus cell tropism: The road to uncovering its secret hideout. Cell Host Microbe 2022; 30:454-457. [PMID: 35421342 DOI: 10.1016/j.chom.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Here, I revisit our early Cell Host & Microbe publications, which show how norovirus builds its comfortable home in an extremely rare intestinal cell population for persistent infection. This commentary covers insights from previous works and advances in the current research.
Collapse
Affiliation(s)
- Sanghyun Lee
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI, USA.
| |
Collapse
|
2
|
Pohl C, Szczepankiewicz G, Liebert UG. Analysis and optimization of a Caco-2 cell culture model for infection with human norovirus. Arch Virol 2022; 167:1421-1431. [PMID: 35415782 PMCID: PMC9123034 DOI: 10.1007/s00705-022-05437-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 03/05/2022] [Indexed: 11/25/2022]
Abstract
Human noroviruses (hNoVs) are an important cause of acute gastroenteritis worldwide. However, the lack of a reproducible in vitro cell culture system has impaired research and the development of preventive measures, therapeutic drugs, and vaccines. The aim of this study was to analyze and optimize a suitable cell line for in vitro cultivation of hNoV. The Caco-2 cell line, which is of colorectal origin and differentiates spontaneously into intestinal enterocyte-like cells, was chosen as a model. It was found that differentiated cells were more susceptible to infection with hNoV, resulting in a higher virus yield. This was accompanied by an increase in H type 1 antigen in the cell membrane during differentiation, which functions as an attachment factor for hNoV. Induced overexpression of H type 1 antigen in undifferentiated Caco-2 cells resulted in an increase in viral output to a level similar to that in differentiated cells. However, the relatively low level of viral output, which contrasts with what is observed in vivo, shows that the viral replication cycle is restricted in this model. The results indicate that there is a block at the level of viral release.
Collapse
Affiliation(s)
- Clara Pohl
- Department of Virology, University of Leipzig, Johannisallee 30, 04103, Leipzig, Germany
| | - Grit Szczepankiewicz
- Department of Virology, University of Leipzig, Johannisallee 30, 04103, Leipzig, Germany
| | - Uwe Gerd Liebert
- Department of Virology, University of Leipzig, Johannisallee 30, 04103, Leipzig, Germany.
| |
Collapse
|
3
|
Multiple Signals in the Gut Contract the Mouse Norovirus Capsid To Block Antibody Binding While Enhancing Receptor Affinity. J Virol 2021; 95:e0147121. [PMID: 34468172 DOI: 10.1128/jvi.01471-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human norovirus is the leading cause of gastroenteritis worldwide, with no approved vaccine or antiviral treatment to mitigate infection. These plus-strand RNA viruses have T = 3 icosahedral protein capsids with 90 pronounced protruding (P) domain dimers, to which antibodies and cellular receptors bind. We previously demonstrated that bile binding to the capsid of mouse norovirus (MNV) causes several major conformational changes; the entire P domain rotates by ∼90° and contracts onto the shell, the P domain dimers rotate about each other, and the structural equilibrium of the epitopes at the top of the P domain shifts toward the closed conformation, which favors receptor binding while blocking antibody binding. Here, we demonstrate that MNV undergoes reversible conformational changes at pH 5.0 that are nearly identical to those observed when bile binds. Notably, at low pH or when metals bind, a cluster of acidic resides in the G'-H' loop interact and distort the G'-H' loop, and this may drive C'-D' loop movement toward the closed conformation. Enzyme-linked immunosorbent assays with infectious virus particles at low pH or in the presence of metals demonstrated that all tested antibodies do not bind to this contracted form, akin to what was observed with the MNV-bile complex. Therefore, low pH, cationic metals, and bile salts are physiological triggers in the gut for P domain contraction and structural rearrangement, which synergistically prime the virus for receptor binding while blocking antibody binding. IMPORTANCE The protruding domains on the calicivirus capsids are recognized by cell receptors and antibodies. We demonstrated that MNV P domains are highly mobile, and bile causes contraction onto the shell surface while allosterically blocking antibody binding. We present the near-atomic cryo-electron microscopy structures of infectious MNV at pH 5.0 and pH 7.5. Surprisingly, low pH is sufficient to cause the same conformational changes as when bile binds. A cluster of acidic residues on the G'-H' loop were most likely involved in the pH effects. These residues also bound divalent cations and had the same conformation as observed here at pH 5. Binding assays demonstrated that low pH and metals block antibody binding, and thus the G'-H' loop might be driving the conformational changes. Therefore, low pH, cationic metals, and bile salts in the gut synergistically prime the virus for receptor binding while blocking antibody binding.
Collapse
|
4
|
Noroviruses-The State of the Art, Nearly Fifty Years after Their Initial Discovery. Viruses 2021; 13:v13081541. [PMID: 34452406 PMCID: PMC8402810 DOI: 10.3390/v13081541] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/06/2021] [Accepted: 07/31/2021] [Indexed: 12/11/2022] Open
Abstract
Human noroviruses are recognised as the major global cause of viral gastroenteritis. Here, we provide an overview of notable advances in norovirus research and provide a short recap of the novel model systems to which much of the recent progress is owed. Significant advances include an updated classification system, the description of alternative virus-like protein morphologies and capsid dynamics, and the further elucidation of the functions and roles of various viral proteins. Important milestones include new insights into cell tropism, host and microbial attachment factors and receptors, interactions with the cellular translational apparatus, and viral egress from cells. Noroviruses have been detected in previously unrecognised hosts and detection itself is facilitated by improved analytical techniques. New potential transmission routes and/or viral reservoirs have been proposed. Recent in vivo and in vitro findings have added to the understanding of host immunity in response to norovirus infection, and vaccine development has progressed to preclinical and even clinical trial testing. Ongoing development of therapeutics includes promising direct-acting small molecules and host-factor drugs.
Collapse
|
5
|
Chhabra P, Rouhani S, Browne H, Peñataro Yori P, Siguas Salas M, Paredes Olortegui M, Moulton LH, Kosek MN, Vinjé J. Homotypic and Heterotypic Protection and Risk of Reinfection Following Natural Norovirus Infection in a Highly Endemic Setting. Clin Infect Dis 2021; 72:222-229. [PMID: 33501947 PMCID: PMC7840104 DOI: 10.1093/cid/ciaa019] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/08/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Norovirus is a leading cause of acute gastroenteritis worldwide, yet there is limited information on homotypic or heterotypic protection following natural infection to guide vaccine development. METHODS A total of 6020 stools collected from 299 Peruvian children between 2010 and 2014 were tested by norovirus real-time reverse-transcription polymerase chain reaction followed by sequence-based genotyping. Cox proportional hazards models were used to derive adjusted hazard ratios (HRs) of infection among children with vs without prior exposure. RESULTS Norovirus was detected in 1288 (21.3%) samples. GII.4 (26%), GII.6 (19%), and GI.3 (9%) viruses accounted for 54% of infections. Homotypic protection for GI.3 (HR, 0.35; P = .015), GI.7 (HR, 0.19; P = .022), GII.4 (HR, 0.39; P < .001), and GII.6 (HR, 0.52; P = .006) infections was observed. Hazard analysis showed that children with prior GII.4 infection exhibited heterotypic protection with a 48% reduction of subsequent GI.3 infection (HR, 0.52; P = .005). Prior exposure to GI.3, GII.2, and GII.17 infections enhanced susceptibility to subsequent infections with several other norovirus genotypes. CONCLUSIONS Children up to 2 years of age infected with GII.4 noroviruses demonstrated both homotypic and heterotypic protection to reinfection with other genotypes. These data support the need for ongoing vaccine development efforts with GII.4 as the main component and caution the inclusion of genotypes that may enhance susceptibility to infections.
Collapse
Affiliation(s)
- Preeti Chhabra
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Saba Rouhani
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hannah Browne
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Pablo Peñataro Yori
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA.,Investigaciones Biomédicas, AB PRISMA, Iquitos, Peru
| | | | | | - Lawrence H Moulton
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Margaret N Kosek
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA.,Investigaciones Biomédicas, AB PRISMA, Iquitos, Peru
| | - Jan Vinjé
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Tian J, Kang H, Huang J, Li Z, Pan Y, Li Y, Chen S, Zhang J, Yin H, Qu L. Feline calicivirus strain 2280 p30 antagonizes type I interferon-mediated antiviral innate immunity through directly degrading IFNAR1 mRNA. PLoS Pathog 2020; 16:e1008944. [PMID: 33075108 PMCID: PMC7571719 DOI: 10.1371/journal.ppat.1008944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022] Open
Abstract
Feline calicivirus (FCV) belongs to the Caliciviridae, which comprises small RNA viruses of both medical and veterinary importance. Once infection has occurred, FCV can persist in the cat population, but the molecular mechanism of how it escapes the innate immune response is still unknown. In this study, we found FCV strain 2280 to be relatively resistant to treatment with IFN-β. FCV 2280 infection inhibited IFN-induced activation of the ISRE (Interferon-stimulated response element) promoter and transcription of ISGs (Interferon-stimulated genes). The mechanistic analysis showed that the expression of IFNAR1, but not IFNAR2, was markedly reduced in FCV 2280-infected cells by inducing the degradation of IFNAR1 mRNA, which inhibited the phosphorylation of downstream adaptors. Further, overexpression of the FCV 2280 nonstructural protein p30, but not p30 of the attenuated strain F9, downregulated the expression of IFNAR1 mRNA. His-p30 fusion proteins were produced in Escherichia coli and purified, and an in vitro digestion assay was performed. The results showed that 2280 His-p30 could directly degrade IFNAR1 RNA but not IFNAR2 RNA. Moreover, the 5’UTR of IFNAR1 mRNA renders it directly susceptible to cleavage by 2280 p30. Next, we constructed two chimeric viruses: rFCV 2280-F9 p30 and rFCV F9-2280 p30. Compared to infection with the parental virus, rFCV 2280-F9 p30 infection displayed attenuated activities in reducing the level of IFNAR1 and inhibiting the phosphorylation of STAT1 and STAT2, whereas rFCV F9-2280 p30 displayed enhanced activities. Animal experiments showed that the virulence of rFCV 2280-F9 p30 infection was attenuated but that the virulence of rFCV F9-2280 p30 was increased compared to that of the parental viruses. Collectively, these data show that FCV 2280 p30 could directly and selectively degrade IFNAR1 mRNA, thus blocking the type I interferon-induced activation of the JAK-STAT signalling pathway, which may contribute to the pathogenesis of FCV infection. Vaccination against FCV has been available for many years and has effectively reduced the incidence of clinical disease. However, vaccines cannot prevent infection, and vaccinated cats can still become persistently infected by FCV, suggesting that FCV has evolved several strategies for counteracting various components of the innate and adaptive immune systems. Here, we show that FCV strain 2280 is resistant to the antiviral effect of IFN. The molecular mechanism by which this occurs is that FCV 2280 infection blocks the JAK-STAT pathway through promoting the degradation of IFNAR1 mRNA by FCV p30 protein. An in vitro degradation assay demonstrated that 2280 p30, but not p30 of the vaccine strain F9, could directly and selectively decay IFNAR1 RNA. The exchange of p30 between 2280 and F9 strains using a reverse genetic system also showed that 2280 p30 is a key factor that contributes to the resistance to IFN and enhances virulence. Our findings reveal a new mechanism evolved by FCV to circumvent the host antiviral response.
Collapse
Affiliation(s)
- Jin Tian
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
- * E-mail: (JT); (LQ)
| | - Hongtao Kang
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Jiapei Huang
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Zhijie Li
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Yudi Pan
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Yin Li
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Si Chen
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Jikai Zhang
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Hang Yin
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Liandong Qu
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
- * E-mail: (JT); (LQ)
| |
Collapse
|
7
|
Furlong K, Biering SB, Choi J, Wilen CB, Orchard RC, Wobus CE, Nelson CA, Fremont DH, Baldridge MT, Randall G, Hwang S. CD300LF Polymorphisms of Inbred Mouse Strains Confer Resistance to Murine Norovirus Infection in a Cell Type-Dependent Manner. J Virol 2020; 94:e00837-20. [PMID: 32581099 PMCID: PMC7431780 DOI: 10.1128/jvi.00837-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
Human norovirus is the leading cause of gastroenteritis worldwide, yet basic questions about its life cycle remain unanswered due to an historical lack of robust experimental systems. Recent studies on the closely related murine norovirus (MNV) have identified CD300LF as an indispensable entry factor for MNV. We compared the MNV susceptibilities of cells from different mouse strains and identified polymorphisms in murine CD300LF which are critical for its function as an MNV receptor. Bone marrow-derived macrophages (BMDMs) from I/LnJ mice were resistant to infection from multiple MNV strains which readily infect BMDMs from C57BL/6J mice. The resistance of I/LnJ BMDMs was specific to MNV, since the cells supported infection of other viruses comparably to C57BL/6J BMDMs. Transduction of I/LnJ BMDMs with C57BL/6J CD300LF made the cells permissible to MNV infection, suggesting that the cause of resistance lies in the entry step of MNV infection. In fact, we mapped this phenotype to a 4-amino-acid difference at the CC' loop of CD300LF; swapping of these amino acids between C57BL/6J and I/LnJ CD300LF proteins made the mutant C57BL/6J CD300LF functionally impaired and the corresponding mutant of I/LnJ CD300LF functional as an MNV entry factor. Surprisingly, expression of the I/LnJ CD300LF in other cell types made the cells infectible by MNV, even though the I/LnJ allele did not function as an MNV receptor in macrophage-like cells. Correspondingly, I/LnJ CD300LF bound MNV virions in permissive cells but not in nonpermissive cells. Collectively, our data suggest the existence of a cell type-specific modifier of MNV entry.IMPORTANCE MNV is a prevalent model system for studying human norovirus, which is the leading cause of gastroenteritis worldwide and thus a sizeable public health burden. Elucidating mechanisms underlying susceptibility of host cells to MNV infection can lead to insights on the roles that specific cell types play during norovirus pathogenesis. Here, we show that different alleles of the proteinaceous receptor for MNV, CD300LF, function in a cell type-dependent manner. In contrast to the C57BL/6J allele, which functions as an MNV entry factor in all tested cell types, including human cells, I/LnJ CD300LF does not function as an MNV entry factor in macrophage-like cells but does allow MNV entry in other cell types. Together, these observations indicate the existence of cell type-specific modifiers of CD300LF-dependent MNV entry.
Collapse
MESH Headings
- Animals
- Binding Sites
- Caliciviridae Infections/virology
- Disease Resistance/genetics
- Gastroenteritis/virology
- Macrophages/virology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Models, Molecular
- Norovirus
- Polymorphism, Genetic
- Protein Conformation
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Sequence Analysis, Protein
- Virus Internalization
Collapse
Affiliation(s)
- Kevin Furlong
- Committee on Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Scott B Biering
- Committee on Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Jayoung Choi
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | - Craig B Wilen
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Robert C Orchard
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Christopher A Nelson
- Department of Pathology & Immunology, Washington University, St. Louis, Missouri, USA
- Department of Biochemistry & Molecular Biophysics, Washington University, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University, St. Louis, Missouri, USA
| | - Daved H Fremont
- Department of Pathology & Immunology, Washington University, St. Louis, Missouri, USA
- Department of Biochemistry & Molecular Biophysics, Washington University, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University, St. Louis, Missouri, USA
| | - Megan T Baldridge
- Department of Molecular Microbiology, Washington University, St. Louis, Missouri, USA
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Glenn Randall
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Seungmin Hwang
- Committee on Microbiology, The University of Chicago, Chicago, Illinois, USA
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
8
|
Kennedy S, Leroux MM, Simons A, Malve B, Devocelle M, Varbanov M. Apoptosis and autophagy as a turning point in viral–host interactions: the case of human norovirus and its surrogates. Future Virol 2020. [DOI: 10.2217/fvl-2019-0111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Human gastroenteritis viruses are amid the major causes of disease worldwide, responsible for more than 2 million deaths per year. Human noroviruses play a leading role in the gastroenteritis outbreaks and the continuous emergence of new strains contributes to the significant morbidity and mortality. Many aspects of the viral entry and infection process remain unclear, including the major response of the host cell to the virus, which is the trigger of several programmed cell death related mechanisms. In this review, we assessed apoptosis and autophagy at various stages in the infection process to provide better understanding of the viral–host interaction. This brings us closer to fully understanding how noroviruses work, thus allowing the development of specific antiviral therapies.
Collapse
Affiliation(s)
- Sean Kennedy
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, 1st Floor Ardilaun House Block B, 111 St Stephen’s Green, Dublin 2, Ireland
| | - Mélanie M Leroux
- Faculté de Pharmacie, 7 avenue de la forêt de Haye, 54505 Vandoeuvre-Lès-Nancy, France
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
- Toxicology and Molecular Biology, Institute Jean Lamour UMR 7198 du CNRS, Université deLorraine, F‐54000, Nancy, France
| | - Alexis Simons
- Faculté de Pharmacie, 7 avenue de la forêt de Haye, 54505 Vandoeuvre-Lès-Nancy, France
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
- Bactéries Pathogènes et Santé, Faculté de Pharmacie, 5 Rue Jean-Baptiste Clément, Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 92296 Châtenay-Malabry, France
| | - Brice Malve
- Université deLorraine, CHRU-Nancy, Laboratoire de Virologie, F-54000 Nancy, France
| | - Marc Devocelle
- Synthesis & Solid State Pharmaceutical Centre, Research Centre and Department of Chemistry, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen’s Green, Dublin 2, Ireland
| | - Mihayl Varbanov
- Faculté de Pharmacie, 7 avenue de la forêt de Haye, 54505 Vandoeuvre-Lès-Nancy, France
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| |
Collapse
|
9
|
Hassan E, Baldridge MT. Norovirus encounters in the gut: multifaceted interactions and disease outcomes. Mucosal Immunol 2019; 12:1259-1267. [PMID: 31501514 PMCID: PMC7479810 DOI: 10.1038/s41385-019-0199-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/20/2019] [Indexed: 02/04/2023]
Abstract
Noroviruses are major causes of gastroenteritis, with epidemic outbreaks occurring frequently. They are an important global health concern, especially for pediatric and immunocompromised populations, and are challenging pathogens to target immunologically due to their rapid rates of genetic and antigenic evolution and failure to stimulate durable protective immunity. In this Review, we summarize our current understanding of norovirus pathogenesis, noting the prominent role of murine norovirus as a small animal model for norovirus research. We highlight intriguing data supporting the possible involvement of norovirus in sequelae including irritable bowel syndrome and inflammatory bowel diseases, and describe the innate and adaptive immune mechanisms involved in control of both human and murine norovirus infection. Furthermore, we discuss the potential implications of recent discoveries regarding norovirus interactions with the gut microbiota, and briefly detail current understanding of noroviral evolution and its influence on viral pathogenesis. Our mechanistic understanding of norovirus pathogenesis continues to improve with increasing availability of powerful model systems, which will ultimately facilitate development of effective preventive and therapeutic approaches for this pathogen.
Collapse
Affiliation(s)
- Ebrahim Hassan
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan T. Baldridge
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.,Correspondence: Megan T. Baldridge, MD, PhD, Phone: 314-273-1212, Fax: 314-362-2156,
| |
Collapse
|
10
|
Bhar S, Jones MK. In Vitro Replication of Human Norovirus. Viruses 2019; 11:v11060547. [PMID: 31212759 PMCID: PMC6630950 DOI: 10.3390/v11060547] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 12/18/2022] Open
Abstract
Human norovirus (HuNoV) infection is a major cause of gastroenteritis all over the world. Despite this, these non-enveloped RNA viruses are poorly characterized due to the lack of robust and widely available HuNoV culture systems. The two published systems (B cell line and stem cell-derived enteroids) support replication of HuNoVs but the levels of replication are not sufficient for the generation of highly purified virus stocks or the development of culture-based quantification assays. Therefore, improvement of HuNoV in vitro replication is still needed. Murine norovirus and other caliciviruses have provided insights into norovirus replication that paved the way for the development of the current HuNoV culture systems and may also aid in the improvement of these systems. This review will highlight ways in which previous research guided and impacted the development of HuNoV culture systems and discuss ways in which more recent discoveries might be utilized to improve the quality of the HuNoV in vitro replication.
Collapse
Affiliation(s)
- Sutonuka Bhar
- Microbiology and Cell Science Department, University of Florida, Gainesville, FL 32611, USA.
| | - Melissa K Jones
- Microbiology and Cell Science Department, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
11
|
Abstract
Viruses depend on the host cells they infect to provide the machinery and substrates for replication. Host cells are highly dynamic systems that can alter their intracellular environment and metabolic behavior, which may be helpful or inhibitory for an infecting virus. In this study, we show that macrophages, a target cell of murine norovirus (MNV), increase glycolysis upon viral infection, which is important for early steps in MNV infection. Human noroviruses (hNoV) are a major cause of gastroenteritis globally, causing enormous morbidity and economic burden. Currently, no effective antivirals or vaccines exist for hNoV, mainly due to the lack of high-efficiency in vitro culture models for their study. Thus, insights gained from the MNV model may reveal aspects of host cell metabolism that can be targeted for improving hNoV cell culture systems and for developing effective antiviral therapies. The metabolic pathways of central carbon metabolism, glycolysis and oxidative phosphorylation (OXPHOS), are important host factors that determine the outcome of viral infections and can be manipulated by some viruses to favor infection. However, mechanisms of metabolic modulation and their effects on viral replication vary widely. Herein, we present the first metabolomics and energetic profiling of norovirus-infected cells, which revealed increases in glycolysis, OXPHOS, and the pentose phosphate pathway (PPP) during murine norovirus (MNV) infection. Inhibiting glycolysis with 2-deoxyglucose (2DG) in macrophages revealed that glycolysis is an important factor for optimal MNV infection, while inhibiting the PPP and OXPHOS showed a relatively minor impact of these pathways on MNV infection. 2DG affected an early stage in the viral life cycle after viral uptake and capsid uncoating, leading to decreased viral protein production and viral RNA. The requirement of glycolysis was specific for MNV (but not astrovirus) infection, independent of the type I interferon antiviral response, and unlikely to be due to a lack of host cell nucleotide synthesis. MNV infection increased activation of the protein kinase Akt, but not AMP-activated protein kinase (AMPK), two master regulators of cellular metabolism, implicating Akt signaling in upregulating host metabolism during norovirus infection. In conclusion, our findings suggest that the metabolic state of target cells is an intrinsic host factor that determines the extent of norovirus replication and implicates glycolysis as a virulence determinant. They further point to cellular metabolism as a novel therapeutic target for norovirus infections and improvements in current human norovirus culture systems.
Collapse
|
12
|
Cattaneo R, Donohue RC, Generous AR, Navaratnarajah CK, Pfaller CK. Stronger together: Multi-genome transmission of measles virus. Virus Res 2019; 265:74-79. [PMID: 30853585 DOI: 10.1016/j.virusres.2019.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/29/2022]
Abstract
Measles virus (MeV) is an immunosuppressive, extremely contagious RNA virus that remains a leading cause of death among children. MeV is dual-tropic: it replicates first in lymphatic tissue, causing immunosuppression, and then in epithelial cells of the upper airways, accounting for extremely efficient contagion. Efficient contagion is counter-intuitive because the enveloped MeV particles are large and relatively unstable. However, MeV particles can contain multiple genomes, which can code for proteins with different functional characteristics. These proteins can cooperate to promote virus spread in tissue culture, prompting the question of whether multi-genome MeV transmission may promote efficient MeV spread also in vivo. Consistent with this hypothesis, in well-differentiated primary human airway epithelia large genome populations spread rapidly through intercellular pores. In another line of research, it was shown that distinct lymphocytic-adapted and epithelial-adapted genome populations exist; cyclical adaptation studies indicate that suboptimal variants in one environment may constitute a low frequency reservoir for adaptation to the other environment. Altogether, these observations suggest that, in humans, MeV spread relies on en bloc genome transmission, and that genomic diversity is instrumental for rapid MeV dissemination within hosts.
Collapse
Affiliation(s)
- Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, United States; Mayo Graduate School, Mayo Clinic, Rochester, MN, 55905, United States.
| | - Ryan C Donohue
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, United States; Mayo Graduate School, Mayo Clinic, Rochester, MN, 55905, United States
| | - Alex R Generous
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, United States; Mayo Graduate School, Mayo Clinic, Rochester, MN, 55905, United States
| | - Chanakha K Navaratnarajah
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, United States; Mayo Graduate School, Mayo Clinic, Rochester, MN, 55905, United States
| | - Christian K Pfaller
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, United States; Paul-Ehrlich-Institute, Division of Veterinary Medicine, Langen, 63225, Germany
| |
Collapse
|
13
|
Cyclical adaptation of measles virus quasispecies to epithelial and lymphocytic cells: To V, or not to V. PLoS Pathog 2019; 15:e1007605. [PMID: 30768648 PMCID: PMC6395005 DOI: 10.1371/journal.ppat.1007605] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/28/2019] [Accepted: 01/29/2019] [Indexed: 12/28/2022] Open
Abstract
Measles virus (MeV) is dual-tropic: it replicates first in lymphatic tissues and then in epithelial cells. This switch in tropism raises the question of whether, and how, intra-host evolution occurs. Towards addressing this question, we adapted MeV either to lymphocytic (Granta-519) or epithelial (H358) cells. We also passaged it consecutively in both human cell lines. Since passaged MeV had different replication kinetics, we sought to investigate the underlying genetic mechanisms of growth differences by performing deep-sequencing analyses. Lymphocytic adaptation reproducibly resulted in accumulation of variants mapping within an 11-nucleotide sequence located in the middle of the phosphoprotein (P) gene. This sequence mediates polymerase slippage and addition of a pseudo-templated guanosine to the P mRNA. This form of co-transcriptional RNA editing results in expression of an interferon antagonist, named V, in place of a polymerase co-factor, named P. We show that lymphocytic-adapted MeV indeed produce minimal amounts of edited transcripts and V protein. In contrast, parental and epithelial-adapted MeV produce similar levels of edited and non-edited transcripts, and of V and P proteins. Raji, another lymphocytic cell line, also positively selects V-deficient MeV genomes. On the other hand, in epithelial cells V-competent MeV genomes rapidly out-compete the V-deficient variants. To characterize the mechanisms of genome re-equilibration we rescued four recombinant MeV carrying individual editing site-proximal mutations. Three mutations interfered with RNA editing, resulting in almost exclusive P protein expression. The fourth preserved RNA editing and a standard P-to-V protein expression ratio. However, it altered a histidine involved in Zn2+ binding, inactivating V function. Thus, the lymphocytic environment favors replication of V-deficient MeV, while the epithelial environment has the opposite effect, resulting in rapid and thorough cyclical quasispecies re-equilibration. Analogous processes may occur in natural infections with other dual-tropic RNA viruses. Key questions in infectious disease are how pathogens adapt to different cells of their hosts, and how the interplay between the virus and host factors controls the outcome of infection. Human measles virus (MeV) and related animal morbilliviruses provide important models of pathogenesis because they are dual-tropic: they replicate first in immune cells for spread through the body, and then in epithelial cells for transmission. We sought here to define the underlying molecular and evolutionary processes that allow MeV to spread rapidly in either lymphocytic or epithelial cells. We discovered unexpectedly rapid and thorough genome adaptation to these two tissues. Genome variants that cannot express functional V protein, an innate immunity control protein, are rapidly selected in lymphocytic cells. These variants express only the P protein, a polymerase co-factor, instead of expressing P and V at similar levels. Upon passaging in epithelial cells, V-competent MeV genome variants rapidly re-gain dominance. These results suggest that cyclical quasispecies re-equilibration may occur in acute MeV infections of humans, and that suboptimal variants in one environment constitute a low frequency reservoir for adaptation to the other, where they become dominant.
Collapse
|
14
|
The Oxysterol 25-Hydroxycholesterol Inhibits Replication of Murine Norovirus. Viruses 2019; 11:v11020097. [PMID: 30682775 PMCID: PMC6409565 DOI: 10.3390/v11020097] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 01/08/2023] Open
Abstract
Cholesterol, an essential component of mammalian cells, is also an important factor in the replicative-cycles of several human and animal viruses. The oxysterol, 25-hydroxycholesterol, is produced from cholesterol by the enzyme, cholesterol 25-hydroxylase. 25-hydroxycholesterol (25-HC) has been shown to have anti-viral activities against a wide range of viruses, including a range of positive-sense RNA viruses. In this study, we have investigated the role of 25-HC in norovirus replication using murine norovirus (MNV) as a model system. As a control, we employed herpes simplex virus-1 (HSV-1), a pathogen previously shown to be inhibited by 25-HC. Consistent with previous studies, 25-HC inhibited HSV-1 replication in the MNV-susceptible cell line, RAW264.7. Treating RAW264.7 cells with sub-cytotoxic concentrations of 25-HC reduced the MNV titers. However, other sterols such as cholesterol or the oxysterol, 22-S-hydroxycholesterol (22-S-HC), did not inhibit MNV replication. Moreover, treating MNV-infected RAW264.7 cells with 25-HC-stimulated caspase 3/7 activity, which leads to enhanced apoptosis and increased cell death. Our study adds noroviruses to the list of viruses inhibited by 25-HC and begins to offer insights into the mechanism behind this inhibition.
Collapse
|