1
|
Huang X, Li Y, Li J, Jiang Y, Cui W, Zhou H, Tang L. The long noncoding RNA loc107053557 acts as a gga-miR-3530-5p sponge to suppress the replication of vvIBDV through regulating STAT1 expression. Virulence 2024; 15:2333237. [PMID: 38528779 PMCID: PMC10984138 DOI: 10.1080/21505594.2024.2333237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/16/2024] [Indexed: 03/27/2024] Open
Abstract
Infectious bursal disease virus (IBDV) causes immunosuppression and high mortality in young chickens. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are important regulators during viral infection. However, detailed the regulatory mechanisms of lncRNA-miRNA-mRNA have not yet been described in IBDV infection. Here, we analysed the role of lncRNA53557/gga-miR-3530-5p/STAT1 axis in very virulent IBDV (vvIBDV) infection. Evidently upregulated expression of lncRNA53557 was observed in bursa of Fabricius and DT40 cells. Meanwhile, overexpression of lncRNA53557 promoted STAT1 expression and inhibited vvIBDV replication and vice versa, indicating that the upregulation of lncRNA53557 was part of the host antiviral defence. The subcellular fractionation assay confirmed that lncRNA53557 can be localized in the cytoplasm. Further, dual-luciferase reporter, RNA pulldown, FISH and RT-qPCR assays revealed that lncRNA53557 were directly bound to gga-miR-3530-5p and had a negative regulatory relationship between them. Subsequent mechanistic analysis showed that lncRNA53557 acted as a competing endogenous RNA (ceRNA) of gga-miR-3530-5p to relieve the repressive effect of gga-miR-3530-5p on its target STAT1, as well as Mx1, OASL, and ISG15, thereby suppressing vvIBDV replication. The study reveals that a network of enriched lncRNAs and lncRNA-associated ceRNA is involved in the regulation of IBDV infection, offering new insight into the mechanisms underlying IBDV-host interaction.
Collapse
Affiliation(s)
- Xuewei Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, P.R. China
| | - Yue Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, P.R. China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, P.R. China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, P.R. China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, P.R. China
| |
Collapse
|
2
|
Hu Y, Hao C, Wang D, Guo M, Chu H, Jin X, Zu S, Ding X, Zhang H, Hu H. Porcine deltacoronavirus nucleocapsid protein antagonizes JAK-STAT signaling pathway by targeting STAT1 through KPNA2 degradation. J Virol 2024; 98:e0033424. [PMID: 38829137 PMCID: PMC11264599 DOI: 10.1128/jvi.00334-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/09/2024] [Indexed: 06/05/2024] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an enteric pathogenic coronavirus that causes acute and severe watery diarrhea in piglets and has the ability of cross-species transmission, posing a great threat to swine production and public health. The interferon (IFN)-mediated signal transduction represents an important component of virus-host interactions and plays an essential role in regulating viral infection. Previous studies have suggested that multifunctional viral proteins encoded by coronaviruses antagonize the production of IFN via various means. However, the function of these viral proteins in regulating IFN-mediated signaling pathways is largely unknown. In this study, we demonstrated that PDCoV and its encoded nucleocapsid (N) protein antagonize type I IFN-mediated JAK-STAT signaling pathway. We identified that PDCoV infection stimulated but delayed the production of IFN-stimulated genes (ISGs). In addition, PDCoV inhibited JAK-STAT signal transduction by targeting the nuclear translocation of STAT1 and ISGF3 formation. Further evidence showed that PDCoV N is the essential protein involved in the inhibition of type I IFN signaling by targeting STAT1 nuclear translocation via its C-terminal domain. Mechanistically, PDCoV N targets STAT1 by interacting with it and subsequently inhibiting its nuclear translocation. Furthermore, PDCoV N inhibits STAT1 nuclear translocation by specifically targeting KPNA2 degradation through the lysosomal pathway, thereby inhibiting the activation of downstream sensors in the JAK-STAT signaling pathway. Taken together, our results reveal a novel mechanism by which PDCoV N interferes with the host antiviral response.IMPORTANCEPorcine deltacoronavirus (PDCoV) is a novel enteropathogenic coronavirus that receives increased attention and seriously threatens the pig industry and public health. Understanding the underlying mechanism of PDCoV evading the host defense during infection is essential for developing targeted drugs and effective vaccines against PDCoV. This study demonstrated that PDCoV and its encoded nucleocapsid (N) protein antagonize type I interferon signaling by targeting STAT1, which is a crucial signal sensor in the JAK-STAT signaling pathway. Further experiments suggested that PDCoV N-mediated inhibition of the STAT1 nuclear translocation involves the degradation of KPNA2, and the lysosome plays a role in KPNA2 degradation. This study provides new insights into the regulation of PDCoV N in the JAK-STAT signaling pathway and reveals a novel mechanism by which PDCoV evades the host antiviral response. The novel findings may guide us to discover new therapeutic targets and develop live attenuated vaccines for PDCoV infection.
Collapse
Affiliation(s)
- Yating Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Chenlin Hao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Donghan Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Meng Guo
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Hongyan Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xiaohui Jin
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Province Key Laboratory of Animal Food Pathogens Surveillance, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Shaopo Zu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Province Key Laboratory of Animal Food Pathogens Surveillance, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Xueyan Ding
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Province Key Laboratory of Animal Food Pathogens Surveillance, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Honglei Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Province Key Laboratory of Animal Food Pathogens Surveillance, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Hui Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Province Key Laboratory of Animal Food Pathogens Surveillance, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| |
Collapse
|
3
|
Yu R, Dong S, Chen B, Si F, Li C. Developing Next-Generation Live Attenuated Vaccines for Porcine Epidemic Diarrhea Using Reverse Genetic Techniques. Vaccines (Basel) 2024; 12:557. [PMID: 38793808 PMCID: PMC11125984 DOI: 10.3390/vaccines12050557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is the etiology of porcine epidemic diarrhea (PED), a highly contagious digestive disease in pigs and especially in neonatal piglets, in which a mortality rate of up to 100% will be induced. Immunizing pregnant sows remains the most promising and effective strategy for protecting their neonatal offspring from PEDV. Although half a century has passed since its first report in Europe and several prophylactic vaccines (inactivated or live attenuated) have been developed, PED still poses a significant economic concern to the swine industry worldwide. Hence, there is an urgent need for novel vaccines in clinical practice, especially live attenuated vaccines (LAVs) that can induce a strong protective lactogenic immune response in pregnant sows. Reverse genetic techniques provide a robust tool for virological research from the function of viral proteins to the generation of rationally designed vaccines. In this review, after systematically summarizing the research progress on virulence-related viral proteins, we reviewed reverse genetics techniques for PEDV and their application in the development of PED LAVs. Then, we probed into the potential methods for generating safe, effective, and genetically stable PED LAV candidates, aiming to provide new ideas for the rational design of PED LAVs.
Collapse
Affiliation(s)
| | | | | | - Fusheng Si
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201106, China; (R.Y.); (S.D.); (B.C.)
| | - Chunhua Li
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201106, China; (R.Y.); (S.D.); (B.C.)
| |
Collapse
|
4
|
Xia T, Xu S, Li X, Ruan W. Avian coronavirus infectious bronchitis virus Beaudette strain NSP9 interacts with STAT1 and inhibits its phosphorylation to facilitate viral replication. Virology 2024; 590:109944. [PMID: 38141500 DOI: 10.1016/j.virol.2023.109944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 12/25/2023]
Abstract
Avian coronavirus, known as infectious bronchitis virus (IBV), is the causative agent of infectious bronchitis (IB). Viral nonstructural proteins play important roles in viral replication and immune modulation. IBV NSP9 is a component of the RNA replication complex for viral replication. In this study, we uncovered a function of NSP9 in immune regulation. First, the host proteins that interacted with NSP9 were screened. The immune-related protein signal transducer and activator of transcription 1 (STAT1) was identified and the interaction between NSP9 and STAT1 was further confirmed. Furthermore, IBV replication was inhibited in STAT1-overexpressing cells but inversely affected in STAT1 knock-down cells. Importantly, NSP9 inhibited STAT1 phosphorylation. Finally, the expression of JAK/STAT pathway downstream genes IRF7 and ISG20 was significantly decreased in NSP9-overexpressing cells. These results showed the important role of IBV NSP9 in immunosuppression.
Collapse
Affiliation(s)
- Ting Xia
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Shengkui Xu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Xueyan Li
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Wenke Ruan
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
5
|
Luo L, Gu Z, Pu J, Chen D, Tian G, He J, Zheng P, Mao X, Yu B. Synbiotics improve growth performance and nutrient digestibility, inhibit PEDV infection, and prevent intestinal barrier dysfunction by mediating innate antivirus immune response in weaned piglets. J Anim Sci 2024; 102:skae023. [PMID: 38271094 PMCID: PMC10894507 DOI: 10.1093/jas/skae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/24/2024] [Indexed: 01/27/2024] Open
Abstract
This experiment was conducted to explore the effects of dietary synbiotics (SYB) supplementation on growth performance, immune function, and intestinal barrier function in piglets challenged with porcine epidemic diarrhea virus (PEDV). Forty crossbred (Duroc × Landrace × Yorkshire) weaned piglets (26 ± 1 d old) with a mean body weight (BW) of 6.62 ± 0.36 kg were randomly allotted to five groups: control (CON) I and CONII group, both fed basal diet; 0.1% SYB group, 0.2% SYB group, and 0.2% yeast culture (YC) group, fed basal diet supplemented with 0.1%, 0.2% SYB, and 0.2% YC, respectively. On day 22, all piglets were orally administrated with 40 mL PEDV (5.6 × 103 TCID50/mL) except piglets in CONI group, which were administrated with the same volume of sterile saline. The trial lasted for 26 d. Before PEDV challenge, dietary 0.1% SYB supplementation increased final BW, average daily gain (ADG), and decreased the ratio of feed to gain during 0 to 21 d (P < 0.05), as well as improved the apparent nutrient digestibility of dry matter (DM), organic matter (OM), crude protein, ether extract (EE), and gross energy (GE). At the same time, 0.2% YC also improved the apparent nutrient digestibility of DM, OM, EE, and GE (P < 0.05). PEDV challenge increased diarrhea rate and diarrhea indexes while decreased ADG (P < 0.05) from days 22 to 26, and induced systemic and intestinal mucosa innate immune and proinflammatory responses, destroyed intestinal barrier integrity. The decrease in average daily feed intake and ADG induced by PEDV challenge was suppressed by dietary SYB and YC supplementation, and 0.1% SYB had the best-alleviating effect. Dietary 0.1% SYB supplementation also increased serum interleukin (IL)-10, immunoglobulin M, complement component 4, and jejunal mucosal IL-4 levels, while decreased serum diamine oxidase activity compared with CONII group (P < 0.05). Furthermore, 0.1% SYB improved mRNA expressions of claudin-1, zonula occludens protein-1, mucin 2, interferon-γ, interferon regulatory factor-3, signal transducers and activators of transcription (P < 0.05), and protein expression of occludin, and downregulated mRNA expressions of toll-like receptor 3 and tumor necrosis factor-α (P < 0.05) in jejunal mucosa. Supplementing 0.2% SYB or 0.2% YC also had a positive effect on piglets, but the effect was not as good as 0.1% SYB. These results indicated that dietary 0.1% SYB supplementation improved growth performance under normal conditions, and alleviated the inflammatory response and the damage of intestinal barrier via improving innate immune function and decreasing PEDV genomic copies, showed optimal protective effects against PEDV infection.
Collapse
Affiliation(s)
- Luhong Luo
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhemin Gu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Junning Pu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Daiwen Chen
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Gang Tian
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jun He
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Ping Zheng
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiangbing Mao
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Bing Yu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
6
|
Li X, Yan Z, Ma J, Li G, Liu X, Peng Z, Zhang Y, Huang S, Luo J, Guo X. TRIM28 promotes porcine epidemic diarrhea virus replication by mitophagy-mediated inhibition of the JAK-STAT1 pathway. Int J Biol Macromol 2024; 254:127722. [PMID: 37907173 DOI: 10.1016/j.ijbiomac.2023.127722] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023]
Abstract
Porcine epidemic diarrhea virus (PEDV) infection causes immunosuppression and clinical symptoms such as vomiting, watery diarrhea, dehydration, and even death in piglets. TRIM28, an E3 ubiquitin ligase, is involved in the regulation of autophagy. However, the role of TRIM28 in PEDV infection is unknown. This study aimed to determine whether TRIM28 acts as a host factor for PEDV immune escape. We found that depletion of TRIM28 inhibited PEDV replication, whereas overexpression of TRIM28 promoted the viral replication in host cells. Furthermore, knockdown of TRIM28 reversed PEDV-induced downregulation of the JAK/STAT1 pathway. Treatment with the mitophagic activator carbonyl cyanide 3-chlorophenylhydrazone (CCCP) attenuated the activating effect of TRIM28 depletion on the expression of the STAT1 pathway-related proteins. Treatment with CCCP also reduced the nuclear translocation of pSTAT1. Moreover, TRIM28, via its RING domain, interacted with PEDV N. Overexpression of TRIM28 induced mitophagy, which could be enhanced by co-expression with PEDV N. The results indicate that PEDV infection upregulates the expression of TRIM28, which induces mitophagy, leading to inhibition of the JAK-STAT1 pathway. This research unveils a new mechanism by which PEDV can hijack host cellular TRIM28 to promote its own replication.
Collapse
Affiliation(s)
- Xin Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Zhibin Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Jiaojie Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Gen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xinhui Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhuoen Peng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Yuanyuan Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA; Department of Hematology and Oncology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA; Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA.
| | - Jun Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China.
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China.
| |
Collapse
|
7
|
Luo M, Ma J, Pan X, Zhang X, Yao H. AEN Suppresses the Replication of Porcine Epidemic Diarrhea Virus by Inducing the Expression of Type I IFN and ISGs in MARC-145 Cells. Pathogens 2023; 13:24. [PMID: 38251332 PMCID: PMC10819003 DOI: 10.3390/pathogens13010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
Apoptosis-enhancing nuclease (AEN), which shares close evolutionary relationships with the interferon-stimulated gene 20 protein (ISG20) homologs in humans, is a member of the DEDDh exonuclease family. Numerous studies on various pathogens have identified the essential roles of ISG20 in inhibiting virus replication. However, the fundamental functions of AEN during viral infection remain largely unknown. This study discovered that AEN expression was significantly upregulated in MARC-145 cells infected with Porcine epidemic diarrhea virus (PEDV) strain 85-7. In contrast, the amount of AEN protein decreased as viral replication increased. It was found that PEDV nsp1 and nsp5 mediated the decrease in AEN production, suggesting that an increase in AEN was not conducive to virus replication. By comparing AEN and its exonuclease-inactive mutant AEN-4A, we determined that the antiviral activity of AEN was independent of its exonuclease function. qPCR analyses revealed that AEN and AEN-4A could induce a significant increase in the transcription levels of IFN-α, IFN-β, and ISGs (OASL, IFI44, IFIT2, ISG15, Mx1, Mx2), and that AEN-4A has a higher induction ability. Overexpression of AEN and AEN-4A in MARC-145 cells targeting IFN-β knockdown or IFN-deficient Vero cells showed reduced or a complete loss of antiviral activity of both, suggesting that AEN may activate the type I IFN immune response and promote the expression of ISGs, thereby inhibiting PEDV replication. Taken together, our data prove the novel mechanism of AEN-mediated virus restriction.
Collapse
Affiliation(s)
- Miao Luo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiale Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinming Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinqin Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Song J, Guo Y, Wang D, Quan R, Wang J, Liu J. Seneca Valley virus 3C pro antagonizes type I interferon response by targeting STAT1-STAT2-IRF9 and KPNA1 signals. J Virol 2023; 97:e0072723. [PMID: 37819133 PMCID: PMC10617416 DOI: 10.1128/jvi.00727-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/10/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE Type I interferon (IFN) signaling plays a principal role in host innate immune responses against invading viruses. Viruses have evolved diverse mechanisms that target the Janus kinase-signal transducer and activator of transcription (STAT) signaling pathway to modulate IFN response negatively. Seneca Valley virus (SVV), an emerging porcine picornavirus, has received great interest recently because it poses a great threat to the global pork industry. However, the molecular mechanism by which SVV evades host innate immunity remains incompletely clear. Our results revealed that SVV proteinase (3Cpro) antagonizes IFN signaling by degrading STAT1, STAT2, and IRF9, and cleaving STAT2 to escape host immunity. SVV 3Cpro also degrades karyopherin 1 to block IFN-stimulated gene factor 3 nuclear translocation. Our results reveal a novel molecular mechanism by which SVV 3Cpro antagonizes the type I IFN response pathway by targeting STAT1-STAT2-IRF9 and karyopherin α1 signals, which has important implications for our understanding of SVV-evaded host innate immune responses.
Collapse
Affiliation(s)
- Jiangwei Song
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yitong Guo
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Dan Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jing Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province, China
| |
Collapse
|
9
|
Wu Y, Li M, Tian J, Yan H, Pan Y, Shi H, Shi D, Chen J, Guo L, Feng L. Broad antagonism of coronaviruses nsp5 to evade the host antiviral responses by cleaving POLDIP3. PLoS Pathog 2023; 19:e1011702. [PMID: 37801439 PMCID: PMC10602385 DOI: 10.1371/journal.ppat.1011702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/26/2023] [Accepted: 09/22/2023] [Indexed: 10/08/2023] Open
Abstract
Coronaviruses (CoVs) are a family of the largest RNA viruses that typically cause respiratory, enteric, and hepatic diseases in animals and humans, imposing great threats to the public safety and animal health. Porcine deltacoronavirus (PDCoV), a newly emerging enteropathogenic coronavirus, causes severe diarrhea in suckling piglets all over the world and poses potential risks of cross-species transmission. Here, we use PDCoV as a model of CoVs to illustrate the reciprocal regulation between CoVs infection and host antiviral responses. In this study, downregulation of DNA polymerase delta interacting protein 3 (POLDIP3) was confirmed in PDCoV infected IPEC-J2 cells by isobaric tags for relative and absolute quantification (iTRAQ) and Western blotting analysis. Overexpression of POLDIP3 inhibits PDCoV infection, whereas POLDIP3 knockout (POLDIP3-/-) by CRISPR-Cas9 editing significantly promotes PDCoV infection, indicating POLDIP3 as a novel antiviral regulator against PDCoV infection. Surprisingly, an antagonistic strategy was revealed that PDCoV encoded nonstructural protein 5 (nsp5) was responsible for POLDIP3 reduction via its 3C-like protease cleavage of POLDIP3 at the glutamine acid 176 (Q176), facilitating PDCoV infection due to the loss of antiviral effects of the cleaved fragments. Consistent with the obtained data in IPEC-J2 cell model in vitro, POLDIP3 reduction by cleavage was also corroborated in PDCoV infected-SPF piglets in vivo. Collectively, we unveiled a new antagonistic strategy evolved by PDCoV to counteract antiviral innate immunity by nsp5-mediated POLDIP3 cleavage, eventually ensuring productive virus replication. Importantly, we further demonstrated that nsp5s from PEDV and TGEV harbor the conserved function to cleave porcine POLDIP3 at the Q176 to despair POLDIP3-mediated antiviral effects. In addition, nsp5 from SARS-CoV-2 also cleaves human POLDIP3. Therefore, we speculate that coronaviruses employ similar POLDIP3 cleavage mechanisms mediated by nsp5 to antagonize the host antiviral responses to sustain efficient virus infection.
Collapse
Affiliation(s)
- Yang Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mingwei Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jin Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Haoxin Yan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yudi Pan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyan Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Da Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jianfei Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Longjun Guo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Li Feng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
10
|
Zong Q, Qu H, Zheng X, Wang H, Wu S, Yin Z, Bao W. Hypomethylated interferon regulatory factor 8 recruits activating protein-2α to attenuate porcine epidemic diarrhea virus infection in porcine jejunum. Front Immunol 2023; 14:1187144. [PMID: 37593742 PMCID: PMC10427914 DOI: 10.3389/fimmu.2023.1187144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/12/2023] [Indexed: 08/19/2023] Open
Abstract
Interferon regulatory factor 8 (IRF8) is a key regulator of innate immune receptor signaling that resists pathogen invasion by regulating cell growth and differentiation. Porcine epidemic diarrhea virus (PEDV) targets the intestine and damages the mucosal barrier. However, whether IRF8 regulates PEDV replication remains unclear. We revealed that PEDV infection activated IRF8 expression. Moreover, IRF8 deletion drastically promoted PEDV replication and invasion, increasing the virus copies and titers. Hypomethylation enrichment of activating protein (AP)-2α was significantly negatively correlated with high IRF8 expression, and AP-2α directly targeted the IRF8 promoter to regulate PEDV replication. Furthermore, IRF8 overexpression decreased the cellular reactive oxygen species levels and mitochondrial membrane potential and increased the antioxidant enzyme activities to alleviate PEDV-induced oxidative damage. IRF8 overexpression suppressed apoptotic gene expression, thereby inhibiting apoptosis in response to PEDV stimulation. Taken together, this study demonstrates that AP-2α is involved in PEDV-induced epigenetic modification of IRF8 to reduce cell apoptosis and oxidative stress and facilitate host resistance to PEDV in the intestinal epithelium.
Collapse
Affiliation(s)
- Qiufang Zong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Huan Qu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xianrui Zheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Haifei Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shenglong Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Wenbin Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
11
|
Zheng L, Liu H, Tian Z, Kay M, Wang H, Cheng L, Xia W, Zhang J, Wang W, Cao H, Xu X, Gao Z, Geng R, Wu Z, Zhang H. Porcine epidemic diarrhea virus (PEDV) ORF3 protein inhibits cellular type I interferon signaling through down-regulating proteins expression in RLRs-mediated pathway. Res Vet Sci 2023; 159:146-159. [PMID: 37148734 DOI: 10.1016/j.rvsc.2023.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 01/13/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023]
Abstract
Porcine epidemic diarrhea virus (PEDV) is an entero-pathogenic coronavirus, which belongs to the genus Alphacoronavirus in the family Coronaviridae, causing lethal watery diarrhea in piglets. Previous studies have shown that PEDV has developed an antagonistic mechanism by which it evades the antiviral activities of interferon (IFN), such as the sole accessory protein open reading frame 3 (ORF3) being found to inhibit IFN-β promoter activities, but how this mechanism used by PEDV ORF3 inhibits activation of the type I signaling pathway remains not fully understood. Thus, in this present study, we showed that PEDV ORF3 inhibited both polyinosine-polycytidylic acid (poly(I:C))- and IFNα2b-stimulated transcription of IFN-β and interferon-stimulated genes (ISGs) mRNAs. The expression levels of antiviral proteins in the retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs)-mediated pathway was down-regulated in cells with over-expression of PEDV ORF3 protein, but global protein translation remained unchanged and the association of ORF3 with RLRs-related antiviral proteins was not detected, implying that ORF3 only specifically suppressed the expression of these signaling molecules. At the same time, we also found that the PEDV ORF3 protein inhibited interferon regulatory factor 3 (IRF3) phosphorylation and poly(I:C)-induced nuclear translocation of IRF3, which further supported the evidence that type I IFN production was abrogated by PEDV ORF3 through interfering with RLRs signaling. Furthermore, PEDV ORF3 counteracted transcription of IFN-β and ISGs mRNAs, which were triggered by over-expression of signal proteins in the RLRs-mediated pathway. However, to our surprise, PEDV ORF3 initially induced, but subsequently reduced the transcription of IFN-β and ISGs mRNAs to normal levels. Additionally, mRNA transcriptional levels of signaling molecules located at IFN-β upstream were not inhibited, but elevated by PEDV ORF3 protein. Collectively, these results demonstrate that inhibition of type I interferon signaling by PEDV ORF3 can be realized through down-regulating the expression of signal molecules in the RLRs-mediated pathway, but not via inhibiting their mRNAs transcription. This study points to a new mechanism evolved by PEDV through blockage of the RLRs-mediated pathway by ORF3 protein to circumvent the host's antiviral immunity.
Collapse
Affiliation(s)
- Liang Zheng
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, PR China
| | - Hongxian Liu
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, PR China
| | - Zhipiao Tian
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, PR China
| | - Matthew Kay
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, PR China
| | - Hongyu Wang
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, PR China
| | - Lixin Cheng
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, PR China
| | - Wenlong Xia
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224007, PR China
| | - Jiankang Zhang
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, PR China
| | - Wenling Wang
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, PR China
| | - Hongwei Cao
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, PR China
| | - Xiaojuan Xu
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, PR China
| | - Zhenqiu Gao
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, PR China.
| | - Rongqing Geng
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, PR China.
| | - Zhijun Wu
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, PR China; Yancheng Engineering Technology Research Center of Antibody Drugs and Immunodetection, Yancheng Teachers University, Yancheng 224007, PR China; Jiangsu Province Engineering Research Center of Tumor Targeted Nano Diagnostic and Therapeutic Materials, Yancheng Teachers University, Yancheng 224007, PR China; Zhengzhou Dabai Biotechnology Co., Ltd, Zhengzhou 451163, PR China.
| | - Hua Zhang
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, PR China; Yancheng Engineering Technology Research Center of Antibody Drugs and Immunodetection, Yancheng Teachers University, Yancheng 224007, PR China; Jiangsu Province Engineering Research Center of Tumor Targeted Nano Diagnostic and Therapeutic Materials, Yancheng Teachers University, Yancheng 224007, PR China; Zhengzhou Dabai Biotechnology Co., Ltd, Zhengzhou 451163, PR China.
| |
Collapse
|
12
|
Zhu M, Lv J, Wang W, Guo R, Zhong C, Antia A, Zeng Q, Li J, Liu Q, Zhou J, Zhu X, Fan B, Ding S, Li B. CMPK2 is a host restriction factor that inhibits infection of multiple coronaviruses in a cell-intrinsic manner. PLoS Biol 2023; 21:e3002039. [PMID: 36930652 PMCID: PMC10058120 DOI: 10.1371/journal.pbio.3002039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 03/29/2023] [Accepted: 02/16/2023] [Indexed: 03/18/2023] Open
Abstract
Coronaviruses (CoVs) comprise a group of important human and animal pathogens. Despite extensive research in the past 3 years, the host innate immune defense mechanisms against CoVs remain incompletely understood, limiting the development of effective antivirals and non-antibody-based therapeutics. Here, we performed an integrated transcriptomic analysis of porcine jejunal epithelial cells infected with porcine epidemic diarrhea virus (PEDV) and identified cytidine/uridine monophosphate kinase 2 (CMPK2) as a potential host restriction factor. CMPK2 exhibited modest antiviral activity against PEDV infection in multiple cell types. CMPK2 transcription was regulated by interferon-dependent and interferon regulatory factor 1 (IRF1)-dependent pathways post-PEDV infection. We demonstrated that 3'-deoxy-3',4'-didehydro-cytidine triphosphate (ddhCTP) catalysis by Viperin, another interferon-stimulated protein, was essential for CMPK2's antiviral activity. Both the classical catalytic domain and the newly identified antiviral key domain of CMPK2 played crucial roles in this process. Together, CMPK2, viperin, and ddhCTP suppressed the replication of several other CoVs of different genera through inhibition of the RNA-dependent RNA polymerase activities. Our results revealed a previously unknown function of CMPK2 as a restriction factor for CoVs, implying that CMPK2 might be an alternative target of interfering with the viral polymerase activity.
Collapse
Affiliation(s)
- Mingjun Zhu
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Nanjing, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jiahuang Lv
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Nanjing, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- College of Animal Science, Tibet Agricultural and Animal Husbandry University College of Veterinary Medicine, Nyingchi, Tibet, China
| | - Wei Wang
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Nanjing, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Rongli Guo
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Nanjing, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chunyan Zhong
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Nanjing, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Biological Engineering Department, Southwest Guizhou Vocational and Technical College for Nationalities, Xingyi, China
| | - Avan Antia
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Qiru Zeng
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jizong Li
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Nanjing, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qingtao Liu
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Nanjing, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jinzhu Zhou
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Nanjing, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xuejiao Zhu
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Nanjing, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Baochao Fan
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Nanjing, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Bin Li
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Nanjing, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
13
|
Kong X, Lu X, Wang S, Hao J, Guo D, Wu H, Jiang Y, Sun Y, Wang J, Zhang G, Cai Z. Type I interferon/STAT1 signaling regulates UBE2M-mediated antiviral innate immunity in a negative feedback manner. Cell Rep 2023; 42:112002. [PMID: 36662617 DOI: 10.1016/j.celrep.2023.112002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 11/20/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Type I interferon (IFN-I) signaling is central to inducing antiviral innate immunity. However, the mechanisms for IFN-I signaling self-regulation are still largely unknown. Here, we report that RNA virus-infected macrophages with UBE2M deficiency produced decreased IFN-I expression in a RIG-I-dependent manner, causing an aggravated viral infection. Mechanistically, UBE2M inhibits RIG-I degradation by preventing the interaction of RIG-I and E3 ligase STUB1, resulting in antiviral IFN-I signaling activation. Simultaneously, IFN-I signaling-activated STAT1 facilitates the transcription of Trim21, leading to increased UBE2M degradation and blunted antiviral immunity. Translationally, oral administration of milk-derived extracellular vesicles containing RING domain-truncated TRIM21 (TRIM21-ΔRING) lacking E3 ligase activity efficiently transfers TRIM21-ΔRING into macrophages. TRIM21-ΔRING suppresses UBE2M degradation by competitively binding to UBE2M with TRIM21, thereby enhancing antiviral immunity. Overall, we reveal a negative feedback loop of IFN-I signaling and develop a reagent to improve innate immunity against RNA viruses.
Collapse
Affiliation(s)
- Xianghui Kong
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310006, China
| | - Xinliang Lu
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310006, China.
| | - Shibo Wang
- Institute of Immunology, and Department of Orthopedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jiayue Hao
- Institute of Immunology, and Department of Orthopedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Danfeng Guo
- Henan Key Laboratory for Digestive Organ Transplantation, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hao Wu
- Gastroenterology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yu Jiang
- Department of Clinical Laboratory Medicine, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Yi Sun
- Cancer Institute of the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Jianli Wang
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310006, China.
| | - Gensheng Zhang
- Department of Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Zhijian Cai
- Institute of Immunology, and Department of Orthopedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| |
Collapse
|
14
|
Zhang Y, Chen Y, Zhou J, Wang X, Ma L, Li J, Yang L, Yuan H, Pang D, Ouyang H. Porcine Epidemic Diarrhea Virus: An Updated Overview of Virus Epidemiology, Virulence Variation Patterns and Virus-Host Interactions. Viruses 2022; 14:2434. [PMID: 36366532 PMCID: PMC9695474 DOI: 10.3390/v14112434] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
The porcine epidemic diarrhea virus (PEDV) is a member of the coronavirus family, causing deadly watery diarrhea in newborn piglets. The global pandemic of PEDV, with significant morbidity and mortality, poses a huge threat to the swine industry. The currently developed vaccines and drugs are only effective against the classic GI strains that were prevalent before 2010, while there is no effective control against the GII variant strains that are currently a global pandemic. In this review, we summarize the latest progress in the biology of PEDV, including its transmission and origin, structure and function, evolution, and virus-host interaction, in an attempt to find the potential virulence factors influencing PEDV pathogenesis. We conclude with the mechanism by which PEDV components antagonize the immune responses of the virus, and the role of host factors in virus infection. Essentially, this review serves as a valuable reference for the development of attenuated virus vaccines and the potential of host factors as antiviral targets for the prevention and control of PEDV infection.
Collapse
Affiliation(s)
- Yuanzhu Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Yiwu Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jian Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Xi Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Lerong Ma
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jianing Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Lin Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Hongming Yuan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
| | - Daxin Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China
| | - Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China
| |
Collapse
|
15
|
Wu Y, Shi Z, Chen J, Zhang H, Li M, Zhao Y, Shi H, Shi D, Guo L, Feng L. Porcine deltacoronavirus E protein induces interleukin-8 production via NF-κB and AP-1 activation. Vet Microbiol 2022; 274:109553. [PMID: 36181744 PMCID: PMC9428115 DOI: 10.1016/j.vetmic.2022.109553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 11/23/2022]
Abstract
Infection induces the production of proinflammatory cytokines and chemokines such as interleukin-8 (IL-8) and interleukin-6 (IL-6). Although they facilitate local antiviral immunity, their excessive release leads to life-threatening cytokine release syndrome, exemplified by the severe cases of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In the present study, we found that interleukin-8 (IL-8) was upregulated by PDCoV infection. We then demonstrated that PDCoV E protein induced IL-8 production and that the TM domain and the C-terminal domain of the E protein were important for IL-8 production. Subsequently, we showed here that deleting the AP-1 and NF-κB binding motif in porcine IL-8 promoter abrogated its activation, suggesting that IL-8 expression was dependent on AP-1 and NF-κB. Furthermore, PDCoV E induced IL-8 production, which was also dependent on the NF-κB pathway through activating nuclear factor p65 phosphorylation and NF-κB inhibitor alpha (IκBα) protein phosphorylation, as well as inducing the nuclear translocation of p65, eventually resulting in the promotion of IL-8 production. PDCoV E also activated c-fos and c-jun, both of which are members of the AP-1 family. These findings provide new insights into the molecular mechanisms of PDCoV-induced IL-8 production and help us further understand the pathogenesis of PDCoV infection.
Collapse
Affiliation(s)
- Yang Wu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Zhaorong Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Jianfei Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Hongling Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Mingwei Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Ying Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Hongyan Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Da Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Longjun Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|
16
|
UBR5 Acts as an Antiviral Host Factor against MERS-CoV via Promoting Ubiquitination and Degradation of ORF4b. J Virol 2022; 96:e0074122. [PMID: 35980206 PMCID: PMC9472757 DOI: 10.1128/jvi.00741-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Within the past 2 decades, three highly pathogenic human coronaviruses have emerged, namely, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The health threats and economic burden posed by these tremendously severe coronaviruses have paved the way for research on their etiology, pathogenesis, and treatment. Compared to SARS-CoV and SARS-CoV-2, MERS-CoV genome encoded fewer accessory proteins, among which the ORF4b protein had anti-immunity ability in both the cytoplasm and nucleus. Our work for the first time revealed that ORF4b protein was unstable in the host cells and could be degraded by the ubiquitin proteasome system. After extensive screenings, it was found that UBR5 (ubiquitin protein ligase E3 component N-recognin 5), a member of the HECT E3 ubiquitin ligases, specifically regulated the ubiquitination and degradation of ORF4b. Similar to ORF4b, UBR5 can also translocate into the nucleus through its nuclear localization signal, enabling it to regulate ORF4b stability in both the cytoplasm and nucleus. Through further experiments, lysine 36 was identified as the ubiquitination site on the ORF4b protein, and this residue was highly conserved in various MERS-CoV strains isolated from different regions. When UBR5 was knocked down, the ability of ORF4b to suppress innate immunity was enhanced and MERS-CoV replication was stronger. As an anti-MERS-CoV host protein, UBR5 targets and degrades ORF4b protein through the ubiquitin proteasome system, thereby attenuating the anti-immunity ability of ORF4b and ultimately inhibiting MERS-CoV immune escape, which is a novel antagonistic mechanism of the host against MERS-CoV infection. IMPORTANCE ORF4b was an accessory protein unique to MERS-CoV and was not present in SARS-CoV and SARS-CoV-2 which can also cause severe respiratory disease. Moreover, ORF4b inhibited the production of antiviral cytokines in both the cytoplasm and the nucleus, which was likely to be associated with the high lethality of MERS-CoV. However, whether the host proteins regulate the function of ORF4b is unknown. Our study first determined that UBR5, a host E3 ligase, was a potential host anti-MERS-CoV protein that could reduce the protein level of ORF4b and diminish its anti-immunity ability by inducing ubiquitination and degradation. Based on the discovery of ORF4b-UBR5, a critical molecular target, further increasing the degradation of ORF4b caused by UBR5 could provide a new strategy for the clinical development of drugs for MERS-CoV.
Collapse
|
17
|
Wu Y, Zhang H, Chen J, Shi Z, Li M, Zhao Y, Shi H, Shi D, Guo L, Feng L. Stromal Antigen 2 Deficiency Induces Interferon Responses and Restricts Porcine Deltacoronavirus Infection. Viruses 2022; 14:1783. [PMID: 36016405 PMCID: PMC9414771 DOI: 10.3390/v14081783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV) is a recently discovered enteropathogenic coronavirus and has caused significant economic impacts on the pork industry. Although studies have partly uncovered the molecular mechanism of PDCoV-host interaction, it requires further research. In this study, we explored the roles of Stromal Antigen 2 (STAG2) in PDCoV infection. We found that STAG2-deficient cells inhibited infection with vesicular stomatitis virus (VSV) and PDCoV, whereas restoration of STAG2 expression in STAG2-depleted (STAG2-/-) IPEC-J2 cells line restored PDCoV infection, suggesting that STAG2 is involved in the PDCoV replication. Furthermore, we found that STAG2 deficiency results in robust interferon (IFN) expression. Subsequently, we found that STAG2 deficiency results in the activation of JAK-STAT signaling and the expression of IFN stimulated gene (ISG), which establish an antiviral state. Taken together, the depletion of STAG2 activates the JAK-STAT signaling and induces the expression of ISG, thereby inhibiting PDCoV replication. Our study provides new insights and potential therapeutic targets for unraveling the mechanism of PDCoV replication.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Longjun Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| |
Collapse
|
18
|
Sun D, Kong N, Dong S, Chen X, Qin W, Wang H, Jiao Y, Zhai H, Li L, Gao F, Yu L, Zheng H, Tong W, Yu H, Zhang W, Tong G, Shan T. 2AB protein of Senecavirus A antagonizes selective autophagy and type I interferon production by degrading LC3 and MARCHF8. Autophagy 2022; 18:1969-1981. [PMID: 34964697 PMCID: PMC9450971 DOI: 10.1080/15548627.2021.2015740] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Senecavirus A (SVA), an important emerging porcine virus, has outbreaks in different regions and countries each year, becoming a virus with global prevalence. SVA infection has been reported to induce macroautophagy/autophagy; however, the molecular mechanisms of autophagy induction and the effect of SVA on autophagy remain unknown. This study showed that SVA infection induced the autophagy process in the early stage of SVA infection, and the rapamycin-induced autophagy inhibited SVA replication by degrading virus 3 C protein. To counteract this, SVA utilized 2AB protein inhibiting the autophagy process from promoting viral replication in the late stage of SVA infection. Further study showed that SVA 2AB protein interacted with MARCHF8/MARCH8 and LC3 to degrade the latter and inhibit the autophagy process. In addition, we found that MARCHF8 was a positive regulator of type I IFN (IFN-I) signaling. During the autophagy process, the SVA 2AB protein targeted MARCHF8 and MAVS forming a large complex for degradation to deactivate IFN-I signaling. Together, our study reveals the molecular mechanisms of selective autophagy in the host against viruses and reveals potential viral strategies to evade the autophagic process and IFN-I signaling for successful pathogenesis.Abbreviations: Baf A1: bafilomycin A1; Co-IP: co-immunoprecipitation; CQ: chloroquine; DAPI: 4',6-diamidino-2-phenylindole; hpi: hours post-infection; IFN: interferon; ISG: IFN-stimulated gene; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MARCHF8/MARCH8: membrane associated ring-CH-type finger 8; MAVS: mitochondrial antiviral signaling protein; MOI: multiplicity of infection; Rapa: rapamycin; RT: room temperature; siRNA: small interfering RNA; SVA: Senecavirus A; TCID50: 50% tissue culture infectious doses.
Collapse
Affiliation(s)
- Dage Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, PR China
| | - Ning Kong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, PR China,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, PR China
| | - Sujie Dong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, PR China
| | - Xiaoyong Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, PR China
| | - Wenzhen Qin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, PR China
| | - Hua Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, PR China
| | - Yajuan Jiao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, PR China
| | - Huanjie Zhai
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, PR China
| | - Liwei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, PR China,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, PR China
| | - Fei Gao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, PR China,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, PR China
| | - Lingxue Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, PR China,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, PR China
| | - Hao Zheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, PR China,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, PR China
| | - Wu Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, PR China,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, PR China
| | - Hai Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, PR China,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, PR China
| | - Wen Zhang
- School of Medicine, Jiangsu University, Zhenjiang, PR China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, PR China,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, PR China,CONTACT Guangzhi Tong ; Tongling Shan
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, PR China,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, PR China
| |
Collapse
|
19
|
Chen P, Zhu J, Yu J, Liu R, Lao M, Yu L, Gao F, Jiang Y, Liu C, Tong W, Liu H, Tong G, Zhou Y. Porcine epidemic diarrhea virus strain FJzz1 infection induces type I/III IFNs production through RLRs and TLRs-mediated signaling. Front Immunol 2022; 13:984448. [PMID: 35958569 PMCID: PMC9357978 DOI: 10.3389/fimmu.2022.984448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Interferons (IFNs) including type I/III IFNs are the major components of the host innate immune response against porcine epidemic diarrhea virus (PEDV) infection, and several viral proteins have been identified to antagonize type I/III IFNs productions through diverse strategies. However, the modulation of PEDV infection upon the activation of the host’s innate immune response has not been fully characterized. In this study, we observed that various IFN-stimulated genes (ISGs) were upregulated significantly in a time- and dose-dependent manner in LLC-PK1 cells infected with the PEDV G2 strain FJzz1. The transcriptions of IRF9 and STAT1 were increased markedly in the late stage of FJzz1 infection and the promotion of the phosphorylation and nuclear translocation of STAT1, implicating the activation of the JAK-STAT signaling pathway during FJzz1 infection. In addition, abundant type I/III IFNs were produced after FJzz1 infection. However, type I/III IFNs and ISGs decreased greatly in FJzz1-infected LLC-PK1 cells following the silencing of the RIG-I-like receptors (RLRs), including RIG-I and MDA5, and the Toll-like receptors (TLRs) adaptors, MyD88 and TRIF. Altogether, FJzz1 infection induces the production of type-I/III IFNs in LLC-PK1 cells, in which RLRs and TLRs signaling pathways are involved, followed by the activation of the JAK-STAT signaling cascade, triggering the production of numerous ISGs to exert antiviral effects of innate immunity.
Collapse
Affiliation(s)
- Pengfei Chen
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Institute of Animal Husbandry and Veterinary, Shanghai Academy of Agricultural Science, Shanghai, China
| | - Junrui Zhu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jiarong Yu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ruilin Liu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Mengqin Lao
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lingxue Yu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Fei Gao
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yifeng Jiang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Changlong Liu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wu Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huili Liu
- Institute of Animal Husbandry and Veterinary, Shanghai Academy of Agricultural Science, Shanghai, China
| | - Guangzhi Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- *Correspondence: Guangzhi Tong, ; Yanjun Zhou,
| | - Yanjun Zhou
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Guangzhi Tong, ; Yanjun Zhou,
| |
Collapse
|
20
|
Screening Host Antiviral Proteins under the Enhanced Immune Responses Induced by a Variant Strain of Porcine Epidemic Diarrhea Virus. Microbiol Spectr 2022; 10:e0066122. [PMID: 35762780 PMCID: PMC9430966 DOI: 10.1128/spectrum.00661-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
While discussing the ideal candidates of viral restriction factor, the interferon (IFN) and interferon-stimulated genes (ISGs) could be considered potential targets. However, numerous viruses have evolved multiple strategies to modulate the host innate immune signaling for optimal infection, including the porcine epidemic diarrhea virus (PEDV), a coronavirus spreading widely around the world with high morbidity and mortality in piglets. The immunosuppression mediated by PEDV infection creates an impediment for studying the host-virus interactions and screening the antiviral ISGs. Here, the PEDV variant strain 85-7C40 was screened using the continuous passaging, which showed significantly attenuated viral replication compared with its parent on MARC-145 cells. The comparative transcriptome analysis (accession nos. SRR13154018 to SRR13154026) indicated that 85-7C40 infection led to enhanced immune response on MARC-145 cells, particularly to the IFN antiviral signaling, which mediated the stronger activation of numerous ISGs. Numerous ISGs activated by 85-7C40 showed antiviral effects against the wild-type strain infection, particularly the IFI44 (an ISG upregulated specifically by the 85-7C40 infection) and OASL (upregulated higher in 85-7C40 than 85-7-infected cells), exhibited powerful antiviral activity. IFI44 promoted the production of RIG-I, while the OASL interacted directly with RIG-I, and then they both activated the phosphorylation of STAT1, indicating that they restricted PEDV replication by positively regulating the type I IFN response. Our results provided insight into the ISGs with antiviral activity against PEDV infection and also expanded our understanding of the innate immune response to PEDV infection, which may promote the development of novel therapeutics. IMPORTANCE Host innate immune responses, particularly interferon (IFN) antiviral signaling, can activate diverse downstream ISGs to exert antiviral effects. However, porcine epidemic diarrhea virus (PEDV) infection has evolved multiple strategies to escape from this immune clearance. The immunosuppression mediated by PEDV infection creates an impediment for studying the host-virus interactions. We screened a PEDV variant strain, 85-7C40, which induced enhanced immune responses on MARC-145 cells and thus mediated the stronger activation of numerous ISGs. The laboratory-generated variant might induce inconsistent immune responses with a natural wild-type strain during infection, while numerous ISGs activated by 85-7C40 showed antiviral effects against the wild-type strain infection, particularly the IFI44 and OASL, restricted PEDV replication by positively regulating the type I IFN response. These findings were suggestive of the immune-enhanced variant being capable of using as an ideal viral model for screening the efficient antiviral proteins and elucidating the underlying mechanisms between PEDV and host innate immune responses.
Collapse
|
21
|
Genome-wide identification of chicken bursae of Fabricius miRNAs in response to very virulent infectious bursal disease virus. Arch Virol 2022; 167:1855-1864. [PMID: 35752686 DOI: 10.1007/s00705-022-05496-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/19/2022] [Indexed: 11/02/2022]
Abstract
Infectious bursal disease virus (IBDV) can cause a highly contagious immunosuppressive disease in young chickens. MicroRNAs (miRNAs) are crucial regulators of gene expression and are involved in the pathogenesis of IBDV infection. To investigate the roles of miRNA in chicken bursae of Fabricius in response to very virulent IBDV (vvIBDV) infection, RNA sequencing was performed to compare the small RNA libraries from uninfected and vvIBDV-infected group which was infected for 3 days. A total of 77 differentially expressed (DE) miRNAs were identified in BF, of which 42 DE miRNAs were upregulated and 35 DE miRNAs were downregulated. A gene ontology analysis showed that genes associated with cellular processes, cells, and binding were enriched. Moreover, pathway analyses suggested that apoptosis, T cell receptor signaling pathways, and chemokine signaling pathways may be activated following vvIBDV infection. In addition, we predicted the target genes of DE miRNAs and constructed an miRNA-mRNA regulatory network. In total, 189 pairs of miRNA-target genes were identified, comprising 67 DE miRNAs and 73 mRNAs. In this network, gga-miR-1684b-3p was identified with the highest fold change, as well as gga-miR-1788-3p and gga-miR-3530-5p showed a high degree of change. The above three miRNAs were considered to play vital roles in vvIBDV-host interactions. This study was the first to perform a comprehensive analysis of DE miRNAs in the bursa of Fabricius in response to vvIBDV infection, and it provided new insights into molecular mechanisms underlying vvIBDV infection and pathogenesis.
Collapse
|
22
|
Zhang J, Yuan S, Peng Q, Ding Z, Hao W, Peng G, Xiao S, Fang L. Porcine Epidemic Diarrhea Virus nsp7 Inhibits Interferon-Induced JAK-STAT Signaling through Sequestering the Interaction between KPNA1 and STAT1. J Virol 2022; 96:e0040022. [PMID: 35442061 PMCID: PMC9093119 DOI: 10.1128/jvi.00400-22] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/01/2022] [Indexed: 11/20/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly pathogenic enteric coronavirus that causes high mortality in piglets. Interferon (IFN) responses are the primary defense mechanism against viral infection; however, viruses always evolve elaborate strategies to antagonize the antiviral action of IFN. Previous study showed that PEDV nonstructural protein 7 (nsp7), a component of the viral replicase polyprotein, can antagonize ploy(I:C)-induced type I IFN production. Here, we found that PEDV nsp7 also antagonized IFN-α-induced JAK-STAT signaling and the production of IFN-stimulated genes. PEDV nsp7 did not affect the protein and phosphorylation levels of JAK1, Tyk2, STAT1, and STAT2 or the formation of the interferon-stimulated gene factor 3 (ISGF3) complex. However, PEDV nsp7 prevented the nuclear translocation of STAT1 and STAT2. Mechanistically, PEDV nsp7 interacted with the DNA binding domain of STAT1/STAT2, which sequestered the interaction between karyopherin α1 (KPNA1) and STAT1, thereby blocking the nuclear transport of ISGF3. Collectively, these data reveal a new mechanism developed by PEDV to inhibit type I IFN signaling pathway. IMPORTANCE In recent years, an emerging porcine epidemic diarrhea virus (PEDV) variant has gained attention because of serious outbreaks of piglet diarrhea in China and the United States. Coronavirus nonstructural protein 7 (nsp7) has been proposed to act with nsp8 as part of an RNA primase to generate RNA primers for viral RNA synthesis. However, accumulating evidence indicates that coronavirus nsp7 can also antagonize type I IFN production. Our present study extends previous findings and demonstrates that PEDV nsp7 also antagonizes IFN-α-induced IFN signaling by competing with KPNA1 for binding to STAT1, thereby enriching the immune regulation function of coronavirus nsp7.
Collapse
Affiliation(s)
- Jiansong Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shuangling Yuan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Qi Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhen Ding
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Wenqi Hao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
23
|
Xu X, Wang L, Liu Y, Shi X, Yan Y, Zhang S, Zhang Q. TRIM56 overexpression restricts porcine epidemic diarrhoea virus replication in Marc-145 cells by enhancing TLR3-TRAF3-mediated IFN-β antiviral response. J Gen Virol 2022; 103. [PMID: 35503719 DOI: 10.1099/jgv.0.001748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Infection with the porcine epidemic diarrhoea virus (PEDV) causes severe enteric disease in suckling piglets, causing massive economic losses in the swine industry worldwide. Tripartite motif-containing 56 (TRIM56) has been shown to augment type I IFN response, but whether it affects PEDV replication remains uncharacterized. Here we investigated the role of TRIM56 in Marc-145 cells during PEDV infection. We found that TRIM56 expression was upregulated in cells infected with PEDV. Overexpression of TRIM56 effectively reduced PEDV replication, while knockdown of TRIM56 resulted in increased viral replication. TRIM56 overexpression significantly increased the phosphorylation of IRF3 and NF-κB P65, and enhanced the IFN-β antiviral response, while silencing TRIM56 did not affect IRF3 activation. TRIM56 overexpression increased the protein level of TRAF3, the component of the TLR3 pathway, thereby significantly activating downstream IRF3 and NF-κB signalling. We demonstrated that TRIM56 overexpression inhibited PEDV replication and upregulated expression of IFN-β, IFN-stimulated genes (ISGs) and chemokines in a dose-dependent manner. Moreover, truncations of the RING domain, N-terminal domain or C-terminal portion on TRIM56 were unable to induce IFN-β expression and failed to restrict PEDV replication. Together, our results suggested that TRIM56 was upregulated in Marc-145 cells in response to PEDV infection. Overexpression of TRIM56 inhibited PEDV replication by positively regulating the TLR3-mediated antiviral signalling pathway. These findings provide evidence that TRIM56 plays a positive role in the innate immune response during PEDV infection.
Collapse
Affiliation(s)
- Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Lixiang Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yi Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaojie Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yuchao Yan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Shuxia Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Qi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| |
Collapse
|
24
|
Abstract
In the 21st century, several human and swine coronaviruses (CoVs) have emerged suddenly and caused great damage to people's lives and property. The porcine epidemic diarrhea virus (PEDV), leading to enormous economic losses to the pork industry and remains a large challenge. PEDV showed extensive cell tropism, and we cannot ignore the potential risk of cross-species transmission. However, the mechanism of adaptation and cell tropism of PEDV remains largely unknown and in vitro isolation of PEDV remains a huge challenge, which seriously impedes the development of vaccines. In this study, we confirmed that the spike (S) protein determines the adaptability of PEDV to monkey Vero cells and LLC-PK1 porcine cells, and isolated exchange of S1 and S2 subunits of adaptive strains did not make PEDV adapt to cells. Further, we found that the cellular adaptability of rCH/SX/2016-SHNXP depends on S1 and the first half of S2 (S3), and the 803L and 976H of the S2 subunit are critical for rCH/SX/2016-S1HNXP+S3HNXP adaptation to Vero cells. These findings highlight the decisive role of PEDV S protein in cell tropism and the potential role of coronaviruses S protein in cross-species transmissibility. Besides, our work also provides some different insight into finding PEDV receptors and developing PEDV and other coronaviruses vaccines. IMPORTANCE CoVs can spill from an animal reservoir into a naive host to cause diseases in humans or domestic animals. PEDV results in high mortality in piglets, which has caused immense economic losses in the pork industry. Virus isolation is the first step in studying viral pathogenesis and developing effective vaccines. However, the molecular mechanism of PEDV cell tropism is largely unknown, and isolation of endemic PEDV strains remains a major challenge. This study confirmed that the S gene is the decisive gene of PEDV adaptability to monkey Vero cells and porcine LLC-PK1 cells by the PEDV reverse genetics system. Isolated exchange of S1 and S2 of adaptive strains did not make PEDV adapt to cells, and the 803L and 976H of S2 subunit are critical for rCH/SX/2016-S1HNXP+S3HNXP adaptation to Vero cells. These results illustrate the decisive role of PEDV S protein in cell tropism and highlight the potential role of coronaviruses S protein in cross-species transmissibility. Besides, our finding also provides some unique insight into identifying PEDV functional receptors and has guiding significance for developing PEDV and other coronavirus vaccines.
Collapse
|
25
|
Xue W, Ding C, Qian K, Liao Y. The Interplay Between Coronavirus and Type I IFN Response. Front Microbiol 2022; 12:805472. [PMID: 35317429 PMCID: PMC8934427 DOI: 10.3389/fmicb.2021.805472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/24/2021] [Indexed: 12/14/2022] Open
Abstract
In the past few decades, newly evolved coronaviruses have posed a global threat to public health and animal breeding. To control and prevent the coronavirus-related diseases, understanding the interaction of the coronavirus and the host immune system is the top priority. Coronaviruses have evolved multiple mechanisms to evade or antagonize the host immune response to ensure their replication. As the first line and main component of innate immune response, type I IFN response is able to restrict virus in the initial infection stage; it is thus not surprising that the primary aim of the virus is to evade or antagonize the IFN response. Gaining a profound understanding of the interaction between coronaviruses and type I IFN response will shed light on vaccine development and therapeutics. In this review, we provide an update on the current knowledge on strategies employed by coronaviruses to evade type I IFN response.
Collapse
Affiliation(s)
- Wenxiang Xue
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Kun Qian
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Ying Liao,
| |
Collapse
|
26
|
MGF360-9L Is a Major Virulence Factor Associated with the African Swine Fever Virus by Antagonizing the JAK/STAT Signaling Pathway. mBio 2022; 13:e0233021. [PMID: 35076286 PMCID: PMC8788333 DOI: 10.1128/mbio.02330-21] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
African swine fever (ASF)-an aggressive infectious disease caused by the African swine fever virus (ASFV)-is significantly unfavorable for swine production. ASFV has a complex structure and encodes 150-167 proteins; however, the function of most of these proteins is unknown. This study identified ASFV MGF360-9L as a negative regulator of the interferon (IFN)-β signal. Further evidence showed that MGF360-9L interacts with signal transducer and activator of transcription (STAT) 1 and STAT2 and degrades STAT1 and STAT2 through apoptosis and ubiquitin-proteasome pathways, respectively. Subsequently, the activation of IFN-β signaling was inhibited. Naturally isolated or genetically manipulated live attenuated viruses are known to protect against the virulent parental ASFV strains. Therefore, through homologous recombination, we deleted MGF360-9L from the virulent ASFV CN/GS/2018 strain to construct a recombinant strain, ASFV-Δ360-9L. Compared with the parent ASFV CN/GS/2018 strain, the replication level of ASFV-Δ360-9L decreased in primary porcine alveolar macrophage cultures at 24 h postinfection, but the difference is unlikely to be biologically relevant. Notably, ASFV-Δ360-9L was partially attenuated in pigs. To our knowledge, this study is the first to uncover the function of MGF360-9L during ASFV infection. MGF360-9L inhibits IFN-β signaling through the targeted degradation of STAT1 and STAT2. Furthermore, MGF360-9L is a key virulence gene of ASFV. Our findings reveal a new mechanism by which ASFV inhibits host antiviral response; this might facilitate the development of live attenuated ASFV vaccines. IMPORTANCE African swine fever-an acute, febrile, hemorrhagic, highly contacting, and highly lethal disease caused by African swine fever virus (ASFV)-jeopardizes the global pig industry. Understanding the mechanism ASFV employs to evade host defense during infection is essential for developing targeted drugs and vaccines against ASFV. To our knowledge, this study identifies the mechanism of innate immunity against by MGF360-9L and the effect of MGF360-9L on ASFV pathogenicity. The results showed that MGF360-9L may help ASFV escape the host immunity by degrading STAT1 and STAT2 and thus inhibiting IFN-β signaling. MGF360-9L is also an important virulence factor of ASFV. The deletion of MGF360-9L reduces ASFV virulence in pigs. This study explored a new mechanism of ASFV against innate immunity and identified a new ASFV virulence factor; these findings may guide the development of live attenuated ASFV vaccines.
Collapse
|
27
|
Qu H, Wen Y, Hu J, Xiao D, Li S, Zhang L, Liao Y, Chen R, Zhao Y, Wen Y, Wu R, Zhao Q, Du S, Yan Q, Wen X, Cao S, Huang X. Study of the inhibitory effect of STAT1 on PDCoV infection. Vet Microbiol 2022; 266:109333. [PMID: 35033844 DOI: 10.1016/j.vetmic.2022.109333] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/24/2021] [Accepted: 01/02/2022] [Indexed: 11/27/2022]
Abstract
Porcine deltacoronavirus (PDCoV) is an enteropathogen found in many pig producing countries. It can cause acute diarrhea, vomiting, dehydration, and death in newborn piglets, seriously affecting the development of pig breeding industries. To date, our knowledge of the pathogenesis of PDCoV and its interactions with host cell factors remains incomplete. Using Co-IP coupled with LC/MS-MS, we identified 67 proteins that potentially interact with PDCoV in LLC-PK1 cells; five of the identified proteins were chosen for further evaluation (IMMT, STAT1, XPO5, PIK3AP1, and TMPRSS11E). Five LLC-PK1 cell lines, each with one of the genes of interest knocked down, were constructed using CRISPR/cas9. In these knockdown cells lines, only STAT1KD resulted in a significantly greater virus yield. Knockdown of the remaining four genes resulted, to varying degrees, in a lower virus yield that wild-type LLC-PK1 cells. The absence of STAT1 did not significantly affect the attachment of PDCoV to cells, but did result in increased viral internalization. Additionally, PDCoV infection stimulated expression of interferon stimulated genes (ISGs) downstream of STAT1 (IFIT1, IFIT2, RADS2, ISG15, MX1, and OAS1) while knockdown of STAT1 resulted in a greater than 80 % decrease in the expression of all six ISGs. Our findings show that STAT1 interacts with PDCoV, and plays a negative regulatory role in PDCoV infection.
Collapse
Affiliation(s)
- Huan Qu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yimin Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Jingfei Hu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Dai Xiao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Shiqian Li
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Luwen Zhang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yijie Liao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Rui Chen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yujia Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yiping Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Rui Wu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Qin Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Senyan Du
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Qigui Yan
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xintian Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Sanjie Cao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China; Sichuan Science-observation Experiment Station of Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, 611130, China; National Animal Experiments Teaching Demonstration Center, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xiaobo Huang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China; Sichuan Science-observation Experiment Station of Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, 611130, China; National Animal Experiments Teaching Demonstration Center, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
28
|
Huang H, Li Y, Wang L, Song Y, Zhang G. Membrane proteomic analysis identifies the polarity protein PARD3 as a novel antiviral protein against PEDV infection. J Proteomics 2021; 253:104462. [PMID: 34954106 PMCID: PMC8695312 DOI: 10.1016/j.jprot.2021.104462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/01/2021] [Accepted: 12/17/2021] [Indexed: 11/23/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly pathogenic enteric coronavirus causing lethal watery diarrhea in suckling piglets. PEDV could remodel host membrane structures for their replication, assembly and escape from host cells. However, little is known about the host membrane proteins of PEDV infection. In this study, we analyzed differentially abundant proteins (DAPs) between PEDV infection group and control group and identified the polarity protein PARD3 as one of the most significantly DAPs. PARD3 is implicated in the formation of tight junctions at epithelial cell-cell contacts. Then, we found that PEDV infection promoted the degradation of PARD3 via the ubiquitin proteasome pathway. Moreover, knockdown of PARD3 promoted the proliferation of PEDV. Further study showed that the downregulation of PARD3 altered the normal morphology of the tight junction proteins and promoted apical and basolateral virus proliferation. Tight junctions enable epithelial cells to form physical barriers, which act as an innate immune mechanism that can impede viral infection and PEDV affected the barrier functions by causing degradation of PARD3. Taken together, this work is the first time to investigate the membrane protein profile of PEDV-infected cells using quantitative proteomics and suggests that PARD3 could be a potential novel antiviral protein against PEDV infection. Significance Membrane proteins are involved in various physiological and biochemical functions critical for cellular function. It is also dynamic in nature, where many proteins are changed during in response to environmental stress. However, membrane proteins are difficult to study because of their hydrophobicity. Membrane proteomic methods using mass spectrometry analysis have been developed and applied for the characterization of the plasma membrane and subcellular organelles of various virus infected cells. Porcine epidemic diarrhea virus (PEDV) is an enteric pathogen of importance to the swine industry, causing high mortality in neonatal piglets. Because PEDV infected Vero cells can lead to significant changes in cell membrane morphology and form syncytial lesions. Here, we isolated the membrane proteins of PEDV infected and control cells and applied isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to quantitatively identify the differentially abundant proteins (DAPs) in PEDV-infected Vero cells and confirmed the DAPs by performing RT-qPCR and Western blot analysis. Among these differential proteins, we focused on a down-regulated protein PARD3 which is important for cell tight junction and cell polarity. Loss of PARD3 can destroy the tight junction of cells and promote the proliferation of PEDV in the apical and basolateral sides. These findings will provide valuable information to better understand the mechanisms underlying the host defense responses to PEDV infection.
Collapse
Affiliation(s)
- Huimin Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yongtao Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Li Wang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Huayuan Road No. 116, Zhengzhou 450002, China
| | - Yapeng Song
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Huayuan Road No. 116, Zhengzhou 450002, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| |
Collapse
|
29
|
Ouyang T, Yang Z, Wan J, Zhang Y, Wang X, Kong L, Wang T, Li Y. Transcriptome analysis of host response to porcine epidemic diarrhea virus nsp15 in IPEC-J2 cells. Microb Pathog 2021; 162:105195. [PMID: 34571150 DOI: 10.1016/j.micpath.2021.105195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/14/2021] [Accepted: 09/11/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Porcine epidemic diarrhea virus (PEDV) is an enveloped positive-sense ssRNA virus which is highly lethal to piglets, causing enormous economic losses to swine industry worldwide. Nsp15 protein is an endoribonuclease of PEDV and plays an indispensable role in the viral proliferation. We reported the transcription files of nsp15 transfected IPEC-J2 cells for the first time to broaden our understanding of PEDV pathogenesis. METHODS RNA-seq was performed to compare gene expression profiles between pCAGGS-HA-nsp15 transfected IPEC-J2 cells and pCAGGS-HA (empty vector) transfected IPEC-J2 cells. Immune-related genes and pathways were identified and analyzed to deepen our understanding of nsp15 for PEDV pathogenicity. IPEC-J2 cells transfected with pCAGGS-HA-CCL5/CXCL8/CXCL10 were infected with CV777 and the virus load of PEDV was detected by qRT-PCR. RESULTS A total of 21,654 genes were obtained by RNA-Seq and 415 differential expressed genes (DEGs) were identified, including 136 up-regulated and 279 down-regulated genes. A number of effect genes involved in immune responses and inflammation were differentially expressed. GO and KEGG enrichment analysis showed that 32 GO terms were significantly enriched and the DEGs were mainly enriched in immune-related pathways such as TNF signaling pathway, RIG-I-like receptor signaling pathway and Cytosolic DNA-sensing pathway. qRT-PCR results indicated the overexpression of selected chemokines, CCL5/CXCL8/CXCL10, can inhibit PEDV proliferation in IPEC-J2 cells. CONCLUSIONS Our transcriptome profile illustrated a number of genes involving in immune responses and inflammation were inhibited by nsp15, such as CCL5, CXCL8, CXCL10, OAS, MXs, STAT1 and IRF9. The results suggested that nsp15 can antagonize IFNs and block chemokine system to provide an adequate intracellular environment for viral proliferation.
Collapse
Affiliation(s)
- Tao Ouyang
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Zibing Yang
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Jiawu Wan
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yanni Zhang
- Jiangxi Province Center for Disease Control and Prevention, Nanchang, Jiangxi, China
| | - Xiaoling Wang
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lingbao Kong
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ting Wang
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| | - Yihan Li
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
30
|
Innate Immune Evasion of Porcine Epidemic Diarrhea Virus through Degradation of F-box and WD repeat domain-containing 7 protein via Ubiquitin-proteasome Pathway. J Virol 2021; 96:e0088921. [PMID: 34495699 DOI: 10.1128/jvi.00889-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes a porcine disease associated with swine epidemic diarrhea. Different antagonistic strategies have been identified, and the mechanism by which PEDV infection impairs the production of interferon (IFN) and delays the activation of the IFN response to escape host innate immunity has been determined, but the pathogenic mechanisms of PEDV infection remain enigmatic. Our preliminary results revealed that endogenous F-box and WD repeat domain-containing 7 (FBXW7), the substrate recognition component of the SCF-type E3 ubiquitin ligase, is downregulated in PEDV-infected Vero E6 cells, according to the results from an isobaric tags for relative and absolute quantification (iTRAQ) analysis. Overexpression of FBXW7 in target cells makes them more resistant to PEDV infection, whereas ablation of FBXW7 expression by small interfering RNA (siRNA) significantly promotes PEDV infection. In addition, FBXW7 was verified as an innate antiviral factor capable of enhancing the expression of RIG-I and TBK1, and it was found to induce interferon-stimulated genes (ISGs), which led to an elevated antiviral state of the host cells. Moreover, we revealed that PEDV nonstructural protein 2 (nsp2) interacts with FBXW7 and targets FBXW7 for degradation through the K48-linked ubiquitin-proteasome pathway. Consistent with the results proven in vitro, FBXW7 reduction was also confirmed in different intestinal tissues from PEDV-infected specific-pathogen-free (SPF) pigs. Taken together, the data indicated that PEDV has evolved with a distinct antagonistic strategy to circumvent the host antiviral response by targeting the ubiquitin-proteasome-mediated degradation of FBXW7. Our findings provide novel insights into PEDV infection and pathogenesis. IMPORTANCE To counteract the host antiviral defenses, most viruses, including coronaviruses, have evolved with diverse strategies to dampen host IFN-mediated antiviral response, wither by interfering with or evading specific host regulators at multiple steps of this response. In this study, a novel antagonistic strategy was revealed showing that PEDV infection could circumvent the host innate response by targeted degradation of endogenous FBXW7 in target cells, a process that was verified to be a positive modulator for the host innate immune system. Degradation of FBXW7 hampers host innate antiviral activation and facilitates PEDV replication. Our findings reveal a new mechanism exploited by PEDV to suppress the host antiviral response.
Collapse
|
31
|
Du J, Chen D, Yu B, He J, Yu J, Mao X, Luo Y, Zheng P, Luo J. L-Leucine Promotes STAT1 and ISGs Expression in TGEV-Infected IPEC-J2 Cells via mTOR Activation. Front Immunol 2021; 12:656573. [PMID: 34367129 PMCID: PMC8339710 DOI: 10.3389/fimmu.2021.656573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/30/2021] [Indexed: 12/18/2022] Open
Abstract
L-leucine (Leu), as one of the effective amino acids to activate the mTOR signaling pathway, can alleviate transmissible gastroenteritis virus (TGEV) infection. However, the underlying mechanism by which Leu alleviates the virus infection has not been fully characterized. In particular, how Leu impacts TGEV replication through mTOR signaling has yet to be elucidated. In the present study, we found that TGEV proliferated efficiently in intestinal porcine epithelial cells (IPEC-J2 cells) as evidenced by the increase in viral contents by flow cytometry, the inhibition of cell proliferation by CCK-8 assay as well as the reduction of PCNA level by western blot. Besides, western blot analysis showed that STAT1 expression was markedly reduced in TGEV-infected cells. The results of ELISA revealed the inhibition of ISGs (ISG56, MxA, and PKR) expressions by TGEV infection. TGEV-induced mTOR and its downstream p70 S6K and 4E-BP1, STAT1 and ISGs downregulation were blocked by an mTOR activator-MHY1485 but not by an mTOR inhibitor-RAPA. Concurrently, mTOR activation by MHY1485 reduced the contents of TGEV and vice versa. Furthermore, Leu reversed the inhibition of STAT1 and ISGs by activating mTOR and its downstream p70 S6K and 4E-BP1 in TEGV-infected cells. Our findings demonstrated that Leu promoted the expressions of STAT1 and ISGs via activating mTOR signaling in IPEC-J2 cells, aiming to prevent TGEV infection.
Collapse
Affiliation(s)
- Jian Du
- Key Laboratory for Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jie Yu
- Key Laboratory for Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiangbing Mao
- Key Laboratory for Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Junqiu Luo
- Key Laboratory for Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
32
|
Liu Y, Liang QZ, Lu W, Yang YL, Chen R, Huang YW, Wang B. A Comparative Analysis of Coronavirus Nucleocapsid (N) Proteins Reveals the SADS-CoV N Protein Antagonizes IFN-β Production by Inducing Ubiquitination of RIG-I. Front Immunol 2021; 12:688758. [PMID: 34220846 PMCID: PMC8242249 DOI: 10.3389/fimmu.2021.688758] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/27/2021] [Indexed: 12/23/2022] Open
Abstract
Coronaviruses (CoVs) are a known global threat, and most recently the ongoing COVID-19 pandemic has claimed more than 2 million human lives. Delays and interference with IFN responses are closely associated with the severity of disease caused by CoV infection. As the most abundant viral protein in infected cells just after the entry step, the CoV nucleocapsid (N) protein likely plays a key role in IFN interruption. We have conducted a comprehensive comparative analysis and report herein that the N proteins of representative human and animal CoVs from four different genera [swine acute diarrhea syndrome CoV (SADS-CoV), porcine epidemic diarrhea virus (PEDV), severe acute respiratory syndrome CoV (SARS-CoV), SARS-CoV-2, Middle East respiratory syndrome CoV (MERS-CoV), infectious bronchitis virus (IBV) and porcine deltacoronavirus (PDCoV)] suppress IFN responses by multiple strategies. In particular, we found that the N protein of SADS-CoV interacted with RIG-I independent of its RNA binding activity, mediating K27-, K48- and K63-linked ubiquitination of RIG-I and its subsequent proteasome-dependent degradation, thus inhibiting the host IFN response. These data provide insight into the interaction between CoVs and host, and offer new clues for the development of therapies against these important viruses.
Collapse
Affiliation(s)
- Yan Liu
- Department of Veterinary Medicine, Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Qi-Zhang Liang
- Department of Veterinary Medicine, Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Wan Lu
- Department of Veterinary Medicine, Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Yong-Le Yang
- Department of Veterinary Medicine, Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Ruiai Chen
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| | - Yao-Wei Huang
- Department of Veterinary Medicine, Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| | - Bin Wang
- Department of Veterinary Medicine, Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| |
Collapse
|
33
|
Zhang L, Zhang L, Pan Y, Gao J, Xu Y, Li X, Tian Z, Chen H, Wang Y. Downregulation of miR-218 by porcine reproductive and respiratory syndrome virus facilitates viral replication via inhibition of type I interferon responses. J Biol Chem 2021; 296:100683. [PMID: 33887325 PMCID: PMC8131720 DOI: 10.1016/j.jbc.2021.100683] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 12/15/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a devastating pathogen in the swine industry worldwide. miRNAs are reported to be involved in virus-host interaction. Here, we used high-throughput sequencing and miRNA inhibitors to screen possible miRNAs that can inhibit PRRSV infection on its target cell, porcine alveolar macrophages. We observed that miR-218 was downregulated upon virus infection, and knockdown of miR-218 significantly enhanced PRRSV replication. Overexpression of miR-218 resulted in a decrease in PRRSV replication, and this overexpression did not alter viral genomic RNA levels, but rather increased antiviral interferon signaling. Further analysis revealed that miR-218 regulated PRRSV replication by directly targeting porcine suppressor of cytokine signaling 3 (SOCS3), a JAK2 kinase inhibitor. Knockdown of the endogenous SOCS3 expression led to augmentation of type I interferon genes and resulted in decreased PRRSV replication, and vice versa. During PRRSV infection in vivo and in vitro, cellular miR-218 expression was downregulated and SOCS3 expression was upregulated, further supporting the inverse correlation between miR-218 and SOCS3 expression. The data on SOCS3 depletion in combination with miR-218 inhibition suggested that the antiviral activity of miR-218 required the SOCS3-mediated signaling pathway. Similarly, miR-218 negatively regulated PRRSV replication in Marc-145 cells, as well as the replication of porcine epidemic diarrhea virus and transmissible gastroenteritis virus in Vero and ST cells respectively. Taken together, these results demonstrate that PRRSV-induced miR-218 downregulation serves to inhibit the type I interferon response and may provide a novel therapeutic target for treatment of PRRSV and other viral infections.
Collapse
Affiliation(s)
- Lin Zhang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lu Zhang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yu Pan
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Junxin Gao
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yunfei Xu
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xi Li
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhijun Tian
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyan Chen
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yue Wang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|
34
|
Screening interferon antagonists from accessory proteins encoded by P gene for immune escape of Caprine parainfluenza virus 3. Vet Microbiol 2021; 254:108980. [PMID: 33445054 DOI: 10.1016/j.vetmic.2021.108980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/03/2021] [Indexed: 12/25/2022]
Abstract
The Caprine parainfluenza virus 3 (CPIV3) is a novel Paramyxovirus that is isolated from goats suffering from respiratory diseases. Presently, the pathogenesis of CPIV3 infection has not yet been fully characterized. The Type I interferon (IFN) is a key mediator of innate antiviral responses, as many viruses have developed strategies to circumvent IFN response, whether or how CPIV3 antagonizes type I IFN antiviral effects have not yet been characterized. This study observed that CPIV3 was resistant to IFN-α treatment and antagonized IFN-α antiviral responses on MDBK and goat tracheal epithelial (GTE) cell models. Western blot analysis showed that CPIV3 infection reduced STAT1 expression and phosphorylation, which inhibited IFN-α signal transduction on GTE cells. By screening and utilizing specific monoclonal antibodies (mAbs), three CPIV3 accessory proteins C, V and D were identified during the virus infection process on the GTE cell models. Accessory proteins C and V, but not protein D, was identified to antagonize IFN-α antiviral signaling. Furthermore, accessory protein C, but not protein V, reduced the level of IFN-α driven phosphorylated STAT1 (pSTAT1), and then inhibit STAT1 signaling. Genetic variation analysis to the PIV3 accessory protein C has found two highly variable regions (VR), with VR2 (31-70th aa) being involved in for the CPIV3 accessory protein C to hijack the STAT1 signaling activation. The above data indicated that CPIV3 is capable of inhibiting IFN-α signal transduction by reducing STAT1 expression and activation, and that the accessory protein C, plays vital roles in the immune escape process.
Collapse
|
35
|
Hu Z, Li Y, Du H, Ren J, Zheng X, Wei K, Liu J. Transcriptome analysis reveals modulation of the STAT family in PEDV-infected IPEC-J2 cells. BMC Genomics 2020; 21:891. [PMID: 33317444 PMCID: PMC7734901 DOI: 10.1186/s12864-020-07306-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 12/07/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Porcine epidemic diarrhea virus (PEDV) is a causative agent of serious viral enteric disease in suckling pigs. Such diseases cause considerable economic losses in the global swine industry. Enhancing our knowledge of PEDV-induced transcriptomic responses in host cells is imperative to understanding the molecular mechanisms involved in the immune response. Here, we analyzed the transcriptomic profile of intestinal porcine epithelial cell line J2 (IPEC-J2) after infection with a classical strain of PEDV to explore the host response. RESULTS In total, 854 genes were significantly differentially expressed after PEDV infection, including 716 upregulated and 138 downregulated genes. Functional annotation analysis revealed that the differentially expressed genes were mainly enriched in the influenza A, TNF signaling, inflammatory response, cytokine receptor interaction, and other immune-related pathways. Next, the putative promoter regions of the 854 differentially expressed genes were examined for the presence of transcription factor binding sites using the MEME tool. As a result, 504 sequences (59.02%) were identified as possessing at least one binding site of signal transducer and activator of transcription (STAT), and five STAT transcription factors were significantly induced by PEDV infection. Furthermore, we revealed the regulatory network induced by STAT members in the process of PEDV infection. CONCLUSION Our transcriptomic analysis described the host genetic response to PEDV infection in detail in IPEC-J2 cells, and suggested that STAT transcription factors may serve as key regulators in the response to PEDV infection. These results further our understanding of the pathogenesis of PEDV.
Collapse
Affiliation(s)
- Zhengzheng Hu
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuchen Li
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Heng Du
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junxiao Ren
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xianrui Zheng
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kejian Wei
- Shenzhen Kingsino Technology Co., Ltd., Shenzhen, China
| | - Jianfeng Liu
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
36
|
Abstract
Viruses commonly antagonize the antiviral type I interferon response by targeting signal transducer and activator of transcription 1 (STAT1) and STAT2, key mediators of interferon signaling. Other STAT family members mediate signaling by diverse cytokines important to infection, but their relationship with viruses is more complex. Importantly, virus-STAT interaction can be antagonistic or stimulatory depending on diverse viral and cellular factors. While STAT antagonism can suppress immune pathways, many viruses promote activation of specific STATs to support viral gene expression and/or produce cellular conditions conducive to infection. It is also becoming increasingly clear that viruses can hijack noncanonical STAT functions to benefit infection. For a number of viruses, STAT function is dynamically modulated through infection as requirements for replication change. Given the critical role of STATs in infection by diverse viruses, the virus-STAT interface is an attractive target for the development of antivirals and live-attenuated viral vaccines. Here, we review current understanding of the complex and dynamic virus-STAT interface and discuss how this relationship might be harnessed for medical applications.
Collapse
|
37
|
Tian J, Kang H, Huang J, Li Z, Pan Y, Li Y, Chen S, Zhang J, Yin H, Qu L. Feline calicivirus strain 2280 p30 antagonizes type I interferon-mediated antiviral innate immunity through directly degrading IFNAR1 mRNA. PLoS Pathog 2020; 16:e1008944. [PMID: 33075108 PMCID: PMC7571719 DOI: 10.1371/journal.ppat.1008944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022] Open
Abstract
Feline calicivirus (FCV) belongs to the Caliciviridae, which comprises small RNA viruses of both medical and veterinary importance. Once infection has occurred, FCV can persist in the cat population, but the molecular mechanism of how it escapes the innate immune response is still unknown. In this study, we found FCV strain 2280 to be relatively resistant to treatment with IFN-β. FCV 2280 infection inhibited IFN-induced activation of the ISRE (Interferon-stimulated response element) promoter and transcription of ISGs (Interferon-stimulated genes). The mechanistic analysis showed that the expression of IFNAR1, but not IFNAR2, was markedly reduced in FCV 2280-infected cells by inducing the degradation of IFNAR1 mRNA, which inhibited the phosphorylation of downstream adaptors. Further, overexpression of the FCV 2280 nonstructural protein p30, but not p30 of the attenuated strain F9, downregulated the expression of IFNAR1 mRNA. His-p30 fusion proteins were produced in Escherichia coli and purified, and an in vitro digestion assay was performed. The results showed that 2280 His-p30 could directly degrade IFNAR1 RNA but not IFNAR2 RNA. Moreover, the 5’UTR of IFNAR1 mRNA renders it directly susceptible to cleavage by 2280 p30. Next, we constructed two chimeric viruses: rFCV 2280-F9 p30 and rFCV F9-2280 p30. Compared to infection with the parental virus, rFCV 2280-F9 p30 infection displayed attenuated activities in reducing the level of IFNAR1 and inhibiting the phosphorylation of STAT1 and STAT2, whereas rFCV F9-2280 p30 displayed enhanced activities. Animal experiments showed that the virulence of rFCV 2280-F9 p30 infection was attenuated but that the virulence of rFCV F9-2280 p30 was increased compared to that of the parental viruses. Collectively, these data show that FCV 2280 p30 could directly and selectively degrade IFNAR1 mRNA, thus blocking the type I interferon-induced activation of the JAK-STAT signalling pathway, which may contribute to the pathogenesis of FCV infection. Vaccination against FCV has been available for many years and has effectively reduced the incidence of clinical disease. However, vaccines cannot prevent infection, and vaccinated cats can still become persistently infected by FCV, suggesting that FCV has evolved several strategies for counteracting various components of the innate and adaptive immune systems. Here, we show that FCV strain 2280 is resistant to the antiviral effect of IFN. The molecular mechanism by which this occurs is that FCV 2280 infection blocks the JAK-STAT pathway through promoting the degradation of IFNAR1 mRNA by FCV p30 protein. An in vitro degradation assay demonstrated that 2280 p30, but not p30 of the vaccine strain F9, could directly and selectively decay IFNAR1 RNA. The exchange of p30 between 2280 and F9 strains using a reverse genetic system also showed that 2280 p30 is a key factor that contributes to the resistance to IFN and enhances virulence. Our findings reveal a new mechanism evolved by FCV to circumvent the host antiviral response.
Collapse
Affiliation(s)
- Jin Tian
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
- * E-mail: (JT); (LQ)
| | - Hongtao Kang
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Jiapei Huang
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Zhijie Li
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Yudi Pan
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Yin Li
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Si Chen
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Jikai Zhang
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Hang Yin
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Liandong Qu
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
- * E-mail: (JT); (LQ)
| |
Collapse
|
38
|
Matsuyama T, Kubli SP, Yoshinaga SK, Pfeffer K, Mak TW. An aberrant STAT pathway is central to COVID-19. Cell Death Differ 2020. [PMID: 33037393 DOI: 10.1038/s41418‐020‐00633‐7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
COVID-19 is caused by SARS-CoV-2 infection and characterized by diverse clinical symptoms. Type I interferon (IFN-I) production is impaired and severe cases lead to ARDS and widespread coagulopathy. We propose that COVID-19 pathophysiology is initiated by SARS-CoV-2 gene products, the NSP1 and ORF6 proteins, leading to a catastrophic cascade of failures. These viral components induce signal transducer and activator of transcription 1 (STAT1) dysfunction and compensatory hyperactivation of STAT3. In SARS-CoV-2-infected cells, a positive feedback loop established between STAT3 and plasminogen activator inhibitor-1 (PAI-1) may lead to an escalating cycle of activation in common with the interdependent signaling networks affected in COVID-19. Specifically, PAI-1 upregulation leads to coagulopathy characterized by intravascular thrombi. Overproduced PAI-1 binds to TLR4 on macrophages, inducing the secretion of proinflammatory cytokines and chemokines. The recruitment and subsequent activation of innate immune cells within an infected lung drives the destruction of lung architecture, which leads to the infection of regional endothelial cells and produces a hypoxic environment that further stimulates PAI-1 production. Acute lung injury also activates EGFR and leads to the phosphorylation of STAT3. COVID-19 patients' autopsies frequently exhibit diffuse alveolar damage (DAD) and increased hyaluronan (HA) production which also leads to higher levels of PAI-1. COVID-19 risk factors are consistent with this scenario, as PAI-1 levels are increased in hypertension, obesity, diabetes, cardiovascular diseases, and old age. We discuss the possibility of using various approved drugs, or drugs currently in clinical development, to treat COVID-19. This perspective suggests to enhance STAT1 activity and/or inhibit STAT3 functions for COVID-19 treatment. This might derail the escalating STAT3/PAI-1 cycle central to COVID-19.
Collapse
Affiliation(s)
- Toshifumi Matsuyama
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shawn P Kubli
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | | | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tak W Mak
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON, M5G 2M9, Canada. .,Department of Medical Biophysics and Department of Immunology, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada. .,Department of Medicine, University of Hong Kong, Pok Fu Lam, 999077, Hong Kong.
| |
Collapse
|
39
|
An aberrant STAT pathway is central to COVID-19. Cell Death Differ 2020; 27:3209-3225. [PMID: 33037393 PMCID: PMC7545020 DOI: 10.1038/s41418-020-00633-7] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/20/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
COVID-19 is caused by SARS-CoV-2 infection and characterized by diverse clinical symptoms. Type I interferon (IFN-I) production is impaired and severe cases lead to ARDS and widespread coagulopathy. We propose that COVID-19 pathophysiology is initiated by SARS-CoV-2 gene products, the NSP1 and ORF6 proteins, leading to a catastrophic cascade of failures. These viral components induce signal transducer and activator of transcription 1 (STAT1) dysfunction and compensatory hyperactivation of STAT3. In SARS-CoV-2-infected cells, a positive feedback loop established between STAT3 and plasminogen activator inhibitor-1 (PAI-1) may lead to an escalating cycle of activation in common with the interdependent signaling networks affected in COVID-19. Specifically, PAI-1 upregulation leads to coagulopathy characterized by intravascular thrombi. Overproduced PAI-1 binds to TLR4 on macrophages, inducing the secretion of proinflammatory cytokines and chemokines. The recruitment and subsequent activation of innate immune cells within an infected lung drives the destruction of lung architecture, which leads to the infection of regional endothelial cells and produces a hypoxic environment that further stimulates PAI-1 production. Acute lung injury also activates EGFR and leads to the phosphorylation of STAT3. COVID-19 patients' autopsies frequently exhibit diffuse alveolar damage (DAD) and increased hyaluronan (HA) production which also leads to higher levels of PAI-1. COVID-19 risk factors are consistent with this scenario, as PAI-1 levels are increased in hypertension, obesity, diabetes, cardiovascular diseases, and old age. We discuss the possibility of using various approved drugs, or drugs currently in clinical development, to treat COVID-19. This perspective suggests to enhance STAT1 activity and/or inhibit STAT3 functions for COVID-19 treatment. This might derail the escalating STAT3/PAI-1 cycle central to COVID-19.
Collapse
|
40
|
Wu J, Chi H, Fu Y, Cao A, Shi J, Zhu M, Zhang L, Hua D, Huang J. The antiviral protein viperin interacts with the viral N protein to inhibit proliferation of porcine epidemic diarrhea virus. Arch Virol 2020; 165:2279-2289. [PMID: 32719955 PMCID: PMC7382991 DOI: 10.1007/s00705-020-04747-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 06/22/2020] [Indexed: 12/15/2022]
Abstract
In the early stage of virus infection, the pattern recognition receptor (PRR) signaling pathway of the host cell is activated to induce interferon production, activating interferon-stimulated genes (ISGs) that encode antiviral proteins that exert antiviral effects. Viperin is one of the innate antiviral proteins that exert broad-spectrum antiviral effects by various mechanisms. Porcine epidemic diarrhea virus (PEDV) is a coronavirus that causes huge losses to the pig industry. Research on early antiviral responses in the gastrointestinal tract is essential for developing strategies to prevent the spread of PEDV. In this study, we investigated the mechanisms of viperin in PEDV-infected IPEJ-C2 cells. Increased expression of interferon and viperin and decreased replication of PEDV with a clear reduction in the viral load were observed in PEDV-infected IPEC-J2 cells. Amino acids 1-50 of porcine viperin contain an endoplasmic reticulum signal sequence that allows viperin to be anchored to the endoplasmic reticulum and are necessary for its function in inhibiting PEDV proliferation. The interaction of the viperin S-adenosylmethionine domain with the N protein of PEDV was confirmed via confocal laser scanning microscopy and co-immunoprecipitation. This interaction might interfere with viral replication or assembly to reduce virus proliferation. Our results highlight a potential mechanism whereby viperin is able to inhibit PEDV replication and play an antiviral role in innate immunity.
Collapse
Affiliation(s)
- Jiaqi Wu
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Heng Chi
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Yali Fu
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Aiping Cao
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Jingxuan Shi
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Min Zhu
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Lilin Zhang
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Deping Hua
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China
| | - Jinhai Huang
- School of Life Sciences, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, China.
| |
Collapse
|
41
|
Zhang M, Fu M, Li M, Hu H, Gong S, Hu Q. Herpes Simplex Virus Type 2 Inhibits Type I IFN Signaling Mediated by the Novel E3 Ubiquitin Protein Ligase Activity of Viral Protein ICP22. THE JOURNAL OF IMMUNOLOGY 2020; 205:1281-1292. [PMID: 32699158 DOI: 10.4049/jimmunol.2000418] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/25/2020] [Indexed: 01/06/2023]
Abstract
Type I IFNs play an important role in innate immunity against viral infections by inducing the expression of IFN-stimulated genes (ISGs), which encode effectors with various antiviral functions. We and others previously reported that HSV type 2 (HSV-2) inhibits the synthesis of type I IFNs, but how HSV-2 suppresses IFN-mediated signaling is less understood. In the current study, after the demonstration of HSV-2 replication resistance to IFN-β treatment in human epithelial cells, we reveal that HSV-2 and the viral protein ICP22 significantly decrease the expression of ISG54 at both mRNA and protein levels. Likewise, us1 del HSV-2 (ICP22-deficient HSV-2) replication is more sensitive to IFN-β treatment, indicating that ICP22 is a vital viral protein responsible for the inhibition of type I IFN-mediated signaling. In addition, overexpression of HSV-2 ICP22 inhibits the expression of STAT1, STAT2, and IFN regulatory factor 9 (IRF9), resulting in the blockade of ISG factor 3 (ISGF3) nuclear translocation, and mechanistically, this is due to ICP22-induced ubiquitination of STAT1, STAT2, and IRF9. HSV-2 ICP22 appears to interact with STAT1, STAT2, IRF9, and several other ubiquitinated proteins. Following further biochemical study, we show that HSV-2 ICP22 functions as an E3 ubiquitin protein ligase to induce the formation of polyubiquitin chains. Taken together, we demonstrate that HSV-2 interferes with type I IFN-mediated signaling by degrading the proteins of ISGF3, and we identify HSV-2 ICP22 as a novel E3 ubiquitin protein ligase to induce the degradation of ISGF3. Findings in this study highlight a new mechanism by which HSV-2 circumvents the host antiviral responses through a viral E3 ubiquitin protein ligase.
Collapse
Affiliation(s)
- Mudan Zhang
- The Joint Laboratory of Translational Precision Medicine, Guangzhou Women and Children's Medical Center, Guangzhou 510623, China.,The Joint Laboratory of Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ming Fu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miaomiao Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huimin Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 440106, China; and
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; .,Institute for Infection and Immunity, St George's University of London, London SW17 0RE, United Kingdom
| |
Collapse
|
42
|
Niu Y, Fu X, Liu L, Lin Q, Liang H, Huang Z, Li N. Molecular characterization and function of EGFR during viral infectionprocess in Mandarin fishSiniperca chuatsi. FISH & SHELLFISH IMMUNOLOGY 2020; 102:211-217. [PMID: 32298770 DOI: 10.1016/j.fsi.2020.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/24/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Epidermal growth factor receptor (EGFR) is a tyrosine kinase protein and plays a critical role in virus infection by modulating innate immunity. In this study, we cloned and sequenced the EGFR coding sequence of mandarin fish, designed as scEGFR, and explored its characteristics. scEGFR mRNA was widely expressed in the tested tissues of mandarin fish, and the higher mRNA levels were expressed in kidney and spleen. scEGFR expression was up-regulated in spleen and CPB cells at early stage of ISKNV and SCRV infection. Gefitinib (EGFR inhibitor) inhibited ISKNV and SCRV replication, and increased the expression of the interferon-stimulated genes (ISG). However the EGF (EGFR activator) promoted ISKNV and SCRV replication, and decreased the interferon-stimulated genes. Those results indicated that scEGFR and its signaling involved in ISKNV and SCRV infection, and EGFR activation negatively regulated the interferon response, providing a potential target for the development of new therapic strategy against ISKNV and SCRV.
Collapse
Affiliation(s)
- Yinjie Niu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou, 510380, China
| | - Xiaozhe Fu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou, 510380, China
| | - Lihui Liu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou, 510380, China
| | - Qiang Lin
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou, 510380, China
| | - Hongru Liang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou, 510380, China
| | - Zhibin Huang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou, 510380, China
| | - Ningqiu Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou, 510380, China.
| |
Collapse
|
43
|
Li X, Sun J, Prinz RA, Liu X, Xu X. Inhibition of porcine epidemic diarrhea virus (PEDV) replication by A77 1726 through targeting JAK and Src tyrosine kinases. Virology 2020; 551:75-83. [PMID: 32829915 PMCID: PMC7301827 DOI: 10.1016/j.virol.2020.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/15/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022]
Abstract
Porcine epidemic diarrhea (PED) virus (PEDV) is a coronavirus that primarily infects porcine intestinal epithelial cells and causes severe diarrhea and high fatality in piglets. A77 1726 is the active metabolite of leflunomide, a clinically approved anti-rheumatoid arthritis (RA) drug. A77 1726 inhibits the activity of protein tyrosine kinases (PTKs), p70 S6 kinase (S6K1), and dihydroorotate dehydrogenase (DHO-DHase). Whether A77 1726 can control coronavirus infections has not been investigated. Here we report that A77 1726 effectively restricted PEDV replication by inhibiting Janus kinases (JAKs) and Src kinase activities but not by inhibiting DHO-DHase and S6K1 activities. Overexpression of Src, JAK2 or its substrate STAT3 enhanced PEDV replication and attenuated the antiviral activity of A77 1726. Our study demonstrates for the first time the ability of A77 1726 to control coronavirus replication by inhibiting PTK activities. Leflunomide has potential therapeutic value for the control of PEDV and other coronavirus infections.
Collapse
Affiliation(s)
- Xiaomei Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Jing Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Richard A Prinz
- Department of Surgery, NorthShore University Health System, Evanston, IL60201, USA
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Xiulong Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China; Institutes of Agricultural Science and Technology Development, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China.
| |
Collapse
|
44
|
Porcine Epidemic Diarrhea Virus nsp15 Antagonizes Interferon Signaling by RNA Degradation of TBK1 and IRF3. Viruses 2020; 12:v12060599. [PMID: 32486349 PMCID: PMC7354440 DOI: 10.3390/v12060599] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/19/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes a porcine disease associated with swine epidemic diarrhea. The type I interferon (IFN-I or IFN α/β) is a key mediator of innate antiviral response during virus infection. Different antagonistic strategies have been identified and determined as to how PEDV infection inhibits the host's IFN responses to escape the host innate immune pathway, but the pathogenic mechanisms of PEDV infection are not fully elucidated. Our preliminary results revealed that endogenous TANK-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3), the key components in the IFN signaling pathway were downregulated in PEDV infected IPEC-J2 cells by iTRAQ analysis. In this study, we screened nsp15 as the most important viral encoded protein involved in TBK1 and IRF3 reduction. Endoribonuclease (EndoU) activity has been well determined for coronavirus nsp15. Three residues (H226, H241, and K282) of PEDV nsp15 were identified as critical amino acids for PEDV EndoU but not D265, which was not well correlated with published results of other coronaviruses, such as severe acute respiratory syndrome virus (SARS-CoV). Moreover, PEDV nsp15 can directly degrade the RNA levels of TBK1 and IRF3 dependent on its EndoU activity to suppress IFN production and constrain the induction of IFN stimulated genes (ISGs), by which PEDV antagonizes the host innate response to facilitate its replication. Collectively, these results have confirmed that PEDV nsp15 was capable of subverting the IFN response by the RNA degradation of TBK1 and IRF3.
Collapse
|
45
|
Wang C, Shan L, Qu S, Xue M, Wang K, Fu F, Wang L, Wang Z, Feng L, Xu W, Liu P. The Coronavirus PEDV Evades Type III Interferon Response Through the miR-30c-5p/SOCS1 Axis. Front Microbiol 2020; 11:1180. [PMID: 32574254 PMCID: PMC7256192 DOI: 10.3389/fmicb.2020.01180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/08/2020] [Indexed: 12/14/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is an economically important pathogen that has evolved several mechanisms to evade type I IFN responses. Type III interferon (IFN-λ), an innate cytokine that primarily targets the mucosal epithelia, is critical in fighting mucosal infection in the host and has been reported to potently inhibit PEDV infection in vitro. However, how PEDV escapes IFN-λ antiviral response remains unclear. In this study, we found that PEDV infection induced significant IFN-λ expression in type I IFN-defective Vero E6 cells, but virus-induced endogenous IFN-λ did not reduce PEDV titers. Moreover, we demonstrated that PEDV escaped IFN-λ responses by substantially upregulating the suppressor of cytokine signaling protein 1 (SOCS1) expression, which impaired the induction of IFN-stimulated genes (ISGs) and dampened the IFN-λ antiviral response and facilitated PEDV replication in Vero E6 cells. We further showed that PEDV infection increased SOCS1 expression by decreasing host miR-30c-5p expression. MiR-30c-5p suppressed SOCS1 expression through targeting the 3′ untranslated region (UTR) of SOCS1. The inhibition of IFN-λ elicited ISGs expression by SOCS1 was specifically rescued by overexpression of miR-30c-5p. Collectively, our findings identify a new strategy by PEDV to escape IFN-λ-mediated antiviral immune responses by engaging the SOCS1/miR-30c axis, thus improving our understanding of its pathogenesis.
Collapse
Affiliation(s)
- Changlin Wang
- Department of Urology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lingling Shan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shuxin Qu
- Department of Urology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mei Xue
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Keliang Wang
- Department of Urology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fang Fu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lu Wang
- Department of Urology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ziqi Wang
- Department of Urology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wanhai Xu
- Department of Urology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Pinghuang Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
46
|
Porcine Epidemic Diarrhea Virus and the Host Innate Immune Response. Pathogens 2020; 9:pathogens9050367. [PMID: 32403318 PMCID: PMC7281546 DOI: 10.3390/pathogens9050367] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/27/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), a swine enteropathogenic coronavirus (CoV), is the causative agent of porcine epidemic diarrhea (PED). PED causes lethal watery diarrhea in piglets, which has led to substantial economic losses in many countries and is a great threat to the global swine industry. Interferons (IFNs) are major cytokines involved in host innate immune defense, which induce the expression of a broad range of antiviral effectors that help host to control and antagonize viral infections. PEDV infection does not elicit a robust IFN response, and some of the mechanisms used by the virus to counteract the host innate immune response have been unraveled. PEDV evades the host innate immune response by two main strategies including: (1) encoding IFN antagonists to disrupt innate immune pathway, and (2) hiding its viral RNA to avoid the exposure of viral RNA to immune sensors. This review highlights the immune evasion mechanisms employed by PEDV, which provides insights for the better understanding of PEDV-host interactions and developing effective vaccines and antivirals against CoVs.
Collapse
|
47
|
Wu M, Zhang Q, Yi D, Wu T, Chen H, Guo S, Li S, Ji C, Wang L, Zhao D, Hou Y, Wu G. Quantitative Proteomic Analysis Reveals Antiviral and Anti-inflammatory Effects of Puerarin in Piglets Infected With Porcine Epidemic Diarrhea Virus. Front Immunol 2020; 11:169. [PMID: 32174911 PMCID: PMC7055472 DOI: 10.3389/fimmu.2020.00169] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/22/2020] [Indexed: 12/22/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) has caused enormous economic losses to the swine industry worldwide in recent years. Puerarin (PR), a major isoflavonoid isolated from the Chinese herb Gegen, possesses many pharmacological activities, including anti-inflammatory, and anti-viral activities. This study was conducted with both PEDV-infected African green monkey kidney cells (Vero) and neonatal pigs to determine the effect of PR on PEDV infection and to elucidate the underlying mechanisms by using proteomic analyses. Twenty-four piglets fed a milk replacer were randomly allocated into one of three groups (Control, PEDV, and PEDV + PR). After a 5-day period of adaption, piglets (n = 8/group) in the PEDV + PR were orally administered with PR (0.5 mg/kg body weight) between days 5 and 9, whereas piglets in the other two groups received the same volume of liquid milk replacer. On day 9, piglets were orally administered with either sterile saline or PEDV (Yunnan province strain) at 104.5 TCID50 (50% tissue culture infectious dose) per pig. On day 12 of the trial, jugular vein blood and intestinal samples were collected. In addition, Vero cells were assigned randomly into three groups (Control, PEDV, PEDV + PR). Cells in the PEDV and PEDV + PR groups were infected with PEDV at a multiplicity of infection of 0.01, while cells in the control group were treated with the same volume of sterile saline. One hour later, cells in the Control and PEDV groups were cultured in serum-free DMEM, while cells in the PEDV + PR group were supplemented with PR. After 36 h of culture, cells were harvested. PR attenuated the reductions in cell proliferation in vitro and growth performance in PEDV-infected piglets, and inhibited PEDV replication and the expression of several cytokines (including IL-8) both in vitro and in vivo. Proteomic analyses identified that the abundances of 29 proteins in the ileum were altered by PEDV infection and restored to the control level by PR. Pathway analyses revealed that PR restored the expression of several interferon-stimulated genes and selectively upregulated the expression of guanylate-binding proteins. Western blot analyses showed that PR supplementation inhibited the PEDV-induced NF-κB activation. Collectively, these results indicate that PR could exert antiviral and anti-inflammatory effects in piglets infected with PEDV and have the potential to be an effective antiviral feed additive.
Collapse
Affiliation(s)
- Mengjun Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Qian Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Dan Yi
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Tao Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Hongbo Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Shuangshuang Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Siyuan Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Changzheng Ji
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Lei Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Di Zhao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Guoyao Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China.,Department of Animal Science, Texas A&M University, College Station, TX, United States
| |
Collapse
|
48
|
Host Factors Affecting Generation of Immunity Against Porcine Epidemic Diarrhea Virus in Pregnant and Lactating Swine and Passive Protection of Neonates. Pathogens 2020; 9:pathogens9020130. [PMID: 32085410 PMCID: PMC7168134 DOI: 10.3390/pathogens9020130] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 02/08/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly virulent re-emerging enteric coronavirus that causes acute diarrhea, dehydration, and up to 100% mortality in neonatal suckling piglets. Despite this, a safe and effective PEDV vaccine against highly virulent strains is unavailable, making PEDV prevention and control challenging. Lactogenic immunity induced via the gut-mammary gland-secretory IgA (sIgA) axis, remains the most promising and effective way to protect suckling piglets from PEDV. Therefore, a successful PEDV vaccine must induce protective maternal IgA antibodies that passively transfer into colostrum and milk. Identifying variables that influence lymphocyte migration and IgA secretion during gestation and lactation is imperative for designing maternal immunization strategies that generate the highest amount of lactogenic immune protection against PEDV in suckling piglets. Because pregnancy-associated immune alterations influence viral pathogenesis and adaptive immune responses in many different species, a better understanding of host immune responses to PEDV in pregnant swine may translate into improved maternal immunization strategies against enteric pathogens for multiple species. In this review, we discuss the role of host factors during pregnancy on antiviral immunity and their implications for generating protective lactogenic immunity in suckling neonates.
Collapse
|
49
|
Effects of supplementation of citrulline and Lactobacillus helveticus ASCC 511 on intestinal epithelial cell integrity. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
50
|
Kong N, Shan T, Wang H, Jiao Y, Zuo Y, Li L, Tong W, Yu L, Jiang Y, Zhou Y, Li G, Gao F, Yu H, Zheng H, Tong G. BST2 suppresses porcine epidemic diarrhea virus replication by targeting and degrading virus nucleocapsid protein with selective autophagy. Autophagy 2019; 16:1737-1752. [PMID: 31868081 DOI: 10.1080/15548627.2019.1707487] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Interferon-induced BST2 (bone marrow stromal cell antigen 2) inhibits viral replication by tethering enveloped virions to the cell surface to restrict viral release and by inducing the NFKB-dependent antiviral immune response. However, the mechanism by which BST2 uses the selective autophagy pathway to inhibit viral replication is poorly understood. In this study, we showed that BST2 expression was significantly increased during porcine epidemic diarrhea virus (PEDV) infection of Vero cells by IRF1 targeting its promoter. We also showed that BST2 suppressed PEDV replication by binding and degrading the PEDV-encoded nucleocapsid (N) protein. The downregulation of N protein was blocked by macroautophagy/autophagy inhibitors but not a proteasome inhibitor, implying that the N protein was degraded via the selective autophagy pathway. Both the BST2 and N protein interacted with the E3 ubiquitin ligase MARCHF8/MARCH8 and the cargo receptor CALCOCO2/NDP52, and the ubiquitination of N protein was necessary for the degradation of N mediated by the BST2-MARCHF8 axis. The knockdown of MARCHF8 or ATG5 with small interfering RNAs blocked the selective autophagy pathway, rescued the protein abundance of PEDV N in 293T cells, and prevented the inhibition of PEDV replication by BST2 in Vero cells. Together, our data demonstrate the novel mechanism of BST2-mediated virus restriction, in which BST2 recruits MARCHF8 to catalyze the ubiquitination of the PEDV N protein. The ubiquitinated N protein is then recognized by CALCOCO2/NDP52, which delivers it to autolysosome for degradation through the selective autophagy pathway. Abbreviations: 3MA: 3-methyladenine; ATG: autophagy-related; Baf A1: bafilomycin A1; BST2: bone marrow stromal cell antigen 2; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CC: coiled-coil; ChIP: chromatin immunoprecipitation; Co-IP: co-immunoprecipitation; CQ: chloroquine; CT: cytoplasmic tail; DAPI: 4',6-diamidino-2-phenylindole; GPI: glycosyl-phosphatidylinositol; hpi: hours post infection; IRF1: interferon regulatory factor 1; ISG: IFN-stimulated gene; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MARCHF8/MARCH8: membrane-associated ring-CH-type finger 8; MOI: multiplicity of infection; N protein: nucleocapsid protein; PED: porcine epidemic diarrhea; PEDV: porcine epidemic diarrhea virus; RT: room temperature; siRNA: small interfering RNA; STAT: signal transducer and activator of transcription; TCID50: 50% tissue culture infectious doses; TM: transmembrane.
Collapse
Affiliation(s)
- Ning Kong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Shanghai, PR China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University , Yangzhou, PR China
| | - Tongling Shan
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Shanghai, PR China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University , Yangzhou, PR China
| | - Hua Wang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Shanghai, PR China
| | - Yajuan Jiao
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Shanghai, PR China
| | - Yewen Zuo
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Shanghai, PR China
| | - Liwei Li
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Shanghai, PR China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University , Yangzhou, PR China
| | - Wu Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Shanghai, PR China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University , Yangzhou, PR China
| | - Lingxue Yu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Shanghai, PR China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University , Yangzhou, PR China
| | - Yifeng Jiang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Shanghai, PR China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University , Yangzhou, PR China
| | - Yanjun Zhou
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Shanghai, PR China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University , Yangzhou, PR China
| | - Guoxin Li
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Shanghai, PR China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University , Yangzhou, PR China
| | - Fei Gao
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Shanghai, PR China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University , Yangzhou, PR China
| | - Hai Yu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Shanghai, PR China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University , Yangzhou, PR China
| | - Hao Zheng
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Shanghai, PR China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University , Yangzhou, PR China
| | - Guangzhi Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Shanghai, PR China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University , Yangzhou, PR China
| |
Collapse
|