1
|
Meir M, Kahn A, Farage C, Maoz Y, Harel N, Ben Zvi A, Segev S, Volkov M, Yahud R, Gophna U, Stern A. Navigating a Fine Balance: Point-Mutant Cheater Viruses Disrupt the Viral Replication Cycle. Mol Biol Evol 2025; 42:msae258. [PMID: 39703047 DOI: 10.1093/molbev/msae258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/03/2024] [Accepted: 12/08/2024] [Indexed: 12/21/2024] Open
Abstract
Cheater viruses cannot replicate on their own yet replicate faster than the wild type (WT) when the 2 viruses coinfect the same cell. Cheaters must possess dual genetic features: a defect, which leads to their inability to infect cells on their own, and a selective advantage over WT during coinfection. Previously, we have discovered 2 point-mutant cheaters of the MS2 bacteriophage. Here, we set out to discover the possible repertoire of cheater MS2 viruses by performing experimental evolution at a very high multiplicity of infection. Our results revealed a third point-mutant cheater that arose in 8 biological replicas. Each of the 3 primary cheaters disrupts the fine balance necessary for phage replication, in different ways that create a defect + advantage. We found that over time, the point-mutant cheaters accumulate additional secondary mutations, which alter other stages of the viral replication cycle, complementing the disruptions created by the original cheater. Intriguingly, cheater and secondary mutations almost always reside in very close proximity on the genome. This region encodes for multiple functions: overlapping reading frames as well as overlapping RNA structures critical for transitioning from one stage to another in the viral replication cycle. This region of overlap explains the dual functions of cheaters, as one mutation can have pleiotropic effects. Overall, these findings underscore how viruses, whose dense genomes often have overlapping functions, can easily evolve point-mutant cheaters, and how cheaters can evolve to alter the intricate balance of the viral replication cycle.
Collapse
Affiliation(s)
- Moran Meir
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Arielle Kahn
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Carmel Farage
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Yael Maoz
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel
| | - Noam Harel
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel
| | - Adi Ben Zvi
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel
| | - Shir Segev
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Maria Volkov
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Ravit Yahud
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Uri Gophna
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel
| | - Adi Stern
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Zinnecker T, Reichl U, Genzel Y. Innovations in cell culture-based influenza vaccine manufacturing - from static cultures to high cell density cultivations. Hum Vaccin Immunother 2024; 20:2373521. [PMID: 39007904 PMCID: PMC11253887 DOI: 10.1080/21645515.2024.2373521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Influenza remains a serious global health concern, causing significant morbidity and mortality each year. Vaccination is crucial to mitigate its impact, but requires rapid and efficient manufacturing strategies to handle timing and supply. Traditionally relying on egg-based production, the field has witnessed a paradigm shift toward cell culture-based methods offering enhanced flexibility, scalability, and process safety. This review provides a concise overview of available cell substrates and technological advancements. We summarize crucial steps toward process intensification - from roller bottle production to dynamic cultures on carriers and from suspension cultures in batch mode to high cell density perfusion using various cell retention devices. Moreover, we compare single-use and conventional systems and address challenges including defective interfering particles. Taken together, we describe the current state-of-the-art in cell culture-based influenza virus production to sustainably meet vaccine demands, guarantee a timely supply, and keep up with the challenges of seasonal epidemics and global pandemics.
Collapse
Affiliation(s)
- Tilia Zinnecker
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Bioprocess Engineering, Otto-von-Guericke University, Magdeburg, Germany
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| |
Collapse
|
3
|
Pelz L, Dogra T, Marichal-Gallardo P, Hein MD, Hemissi G, Kupke SY, Genzel Y, Reichl U. Production of antiviral "OP7 chimera" defective interfering particles free of infectious virus. Appl Microbiol Biotechnol 2024; 108:97. [PMID: 38229300 DOI: 10.1007/s00253-023-12959-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/26/2023] [Accepted: 11/05/2023] [Indexed: 01/18/2024]
Abstract
Defective interfering particles (DIPs) of influenza A virus (IAV) are suggested for use as broad-spectrum antivirals. We discovered a new type of IAV DIP named "OP7" that carries point mutations in its genome segment (Seg) 7 instead of a deletion as in conventional DIPs (cDIPs). Recently, using genetic engineering tools, we generated "OP7 chimera DIPs" that carry point mutations in Seg 7 plus a deletion in Seg 1. Together with cDIPs, OP7 chimera DIPs were produced in shake flasks in the absence of infectious standard virus (STV), rendering UV inactivation unnecessary. However, only part of the virions harvested were OP7 chimera DIPs (78.7%) and total virus titers were relatively low. Here, we describe the establishment of an OP7 chimera DIP production process applicable for large-scale production. To increase total virus titers, we reduced temperature from 37 to 32 °C during virus replication. Production of almost pure OP7 chimera DIP preparations (99.7%) was achieved with a high titer of 3.24 log10(HAU/100 µL). This corresponded to an 11-fold increase relative to the initial process. Next, this process was transferred to a stirred tank bioreactor resulting in comparable yields. Moreover, DIP harvests purified and concentrated by steric exclusion chromatography displayed an increased interfering efficacy in vitro. Finally, a perfusion process with perfusion rate control was established, resulting in a 79-fold increase in total virus yields compared to the original batch process in shake flasks. Again, a very high purity of OP7 chimera DIPs was obtained. This process could thus be an excellent starting point for good manufacturing practice production of DIPs for use as antivirals. KEY POINTS: • Scalable cell culture-based process for highly effective antiviral OP7 chimera DIPs • Production of almost pure OP7 chimera DIPs in the absence of infectious virus • Perfusion mode production and purification train results in very high titers.
Collapse
Affiliation(s)
- Lars Pelz
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Tanya Dogra
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Pavel Marichal-Gallardo
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Marc Dominique Hein
- Otto Von Guericke University Magdeburg, Bioprocess Engineering, Magdeburg, Germany
| | - Ghada Hemissi
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Sascha Young Kupke
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany.
| | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany.
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
- Otto Von Guericke University Magdeburg, Bioprocess Engineering, Magdeburg, Germany
| |
Collapse
|
4
|
Swaminath S, Mendes M, Zhang Y, Remick KA, Mejia I, Güereca M, te Velthuis AJ, Russell AB. Efficient genome replication in influenza A virus requires NS2 and sequence beyond the canonical promoter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612348. [PMID: 39314307 PMCID: PMC11419028 DOI: 10.1101/2024.09.10.612348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Influenza A virus encodes promoters in both the sense and antisense orientations. These support the generation of new genomes, antigenomes, and mRNA transcripts. Using minimal replication assays-transfections with viral polymerase, nucleoprotein, and a genomic template-the influenza promoter sequences were identified as 13nt at the 5' end of the viral genomic RNA (U13) and 12nt at the 3' end (U12). Other than the fourth 3' nucleotide, the U12 and U13 sequences are identical between all eight RNA molecules that comprise the segmented influenza genome. Despite possessing identical promoters, individual segments can exhibit different transcriptional dynamics during infection. However flu promoter sequences were defined in experiments without influenza NS2, a protein which modulates transcription and replication differentially between genomic segments. This suggests that the identity of the "complete" promoter may depend on NS2. Here we assess how internal sequences of two genomic segments, HA and PB1, may contribute to NS2-dependent replication as well as map such interactions down to individual nucleotides in PB1. We find that the expression of NS2 significantly alters sequence requirements for efficient replication beyond the identical U12 and U13 sequence, providing a mechanism for the divergent replication and transcription dynamics across the influenza A virus genome.
Collapse
Affiliation(s)
- Sharmada Swaminath
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Marisa Mendes
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yipeng Zhang
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kaleigh A. Remick
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Isabel Mejia
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Melissa Güereca
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Aartjan J.W. te Velthuis
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Alistair B. Russell
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
5
|
Agu I, José I, Ram A, Oberbauer D, Albeck J, Díaz Muñoz SL. Influenza A defective viral genomes and non-infectious particles are increased by host PI3K inhibition via anti-cancer drug alpelisib. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601932. [PMID: 39005364 PMCID: PMC11245024 DOI: 10.1101/2024.07.03.601932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
RNA viruses produce abundant defective viral genomes during replication, setting the stage for interactions between viral genomes that alter the course of pathogenesis. Harnessing these interactions to develop antivirals has become a recent goal of intense research focus. Despite decades of research, the mechanisms that regulate the production and interactions of Influenza A defective viral genomes are still unclear. The role of the host is essentially unexplored; specifically, it remains unknown whether host metabolism can influence the formation of defective viral genomes and the particles that house them. To address this question, we manipulated host cell anabolic signaling activity and monitored the production of defective viral genomes and particles by A/H1N1 and A/H3N2 strains, using a combination of single-cell immunofluorescence quantification, third-generation long-read sequencing, and the cluster-forming assay, a method we developed to titer defective and fully-infectious particles simultaneously. Here we show that alpelisib (Piqray), a highly selective inhibitor of mammalian Class 1a phosphoinositide-3 kinase (PI3K) receptors, significantly changed the proportion of defective particles and viral genomes (specifically deletion-containing viral genomes) in a strain-specific manner, under conditions that minimize multiple cycles of replication. Alpelisib pre-treatment of cells led to an increase in defective particles in the A/H3N2 strain, while the A/H1N1 strain showed a decrease in total viral particles. In the same infections, we found that defective viral genomes of polymerase and antigenic segments increased in the A/H1N1 strain, while the total particles decreased suggesting defective interference. We also found that the average deletion size in polymerase complex viral genomes increased in both the A/H3N2 and A/H1N1 strains. The A/H1N1 strain, additionally showed a dose-dependent increase in total number of defective viral genomes. In sum, we provide evidence that host cell metabolism can increase the production of defective viral genomes and particles at an early stage of infection, shifting the makeup of the infection and potential interactions among virions. Given that Influenza A defective viral genomes can inhibit pathogenesis, our study presents a new line of investigation into metabolic states associated with less severe flu infection and the potential induction of these states with metabolic drugs.
Collapse
Affiliation(s)
- Ilechukwu Agu
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Ave, Davis CA 95616
| | - Ivy José
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Ave, Davis CA 95616
| | - Abhineet Ram
- Department of Molecular and Cellular Biology, University of California, Davis, One Shields Ave, Davis CA 95616
| | - Daniel Oberbauer
- Department of Molecular and Cellular Biology, University of California, Davis, One Shields Ave, Davis CA 95616
| | - John Albeck
- Department of Molecular and Cellular Biology, University of California, Davis, One Shields Ave, Davis CA 95616
| | - Samuel L. Díaz Muñoz
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Ave, Davis CA 95616
- Genome Center, University of California, Davis, One Shields Ave, Davis CA 95616
| |
Collapse
|
6
|
Martin MA, Berg N, Koelle K. Influenza A genomic diversity during human infections underscores the strength of genetic drift and the existence of tight transmission bottlenecks. Virus Evol 2024; 10:veae042. [PMID: 38883977 PMCID: PMC11179161 DOI: 10.1093/ve/veae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 05/06/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
Influenza infections result in considerable public health and economic impacts each year. One of the contributing factors to the high annual incidence of human influenza is the virus's ability to evade acquired immunity through continual antigenic evolution. Understanding the evolutionary forces that act within and between hosts is therefore critical to interpreting past trends in influenza virus evolution and in predicting future ones. Several studies have analyzed longitudinal patterns of influenza A virus genetic diversity in natural human infections to assess the relative contributions of selection and genetic drift on within-host evolution. However, in these natural infections, within-host viral populations harbor very few single-nucleotide variants, limiting our resolution in understanding the forces acting on these populations in vivo. Furthermore, low levels of within-host viral genetic diversity limit the ability to infer the extent of drift across transmission events. Here, we propose to use influenza virus genomic diversity as an alternative signal to better understand within- and between-host patterns of viral evolution. Specifically, we focus on the dynamics of defective viral genomes (DVGs), which harbor large internal deletions in one or more of influenza virus's eight gene segments. Our longitudinal analyses of DVGs show that influenza A virus populations are highly dynamic within hosts, corroborating previous findings based on viral genetic diversity that point toward the importance of genetic drift in driving within-host viral evolution. Furthermore, our analysis of DVG populations across transmission pairs indicates that DVGs rarely appeared to be shared, indicating the presence of tight transmission bottlenecks. Our analyses demonstrate that viral genomic diversity can be used to complement analyses based on viral genetic diversity to reveal processes that drive viral evolution within and between hosts.
Collapse
Affiliation(s)
- Michael A Martin
- Department of Pathology, Johns Hopkins School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA
- Graduate Program in Population Biology, Ecology, and Evolution, Emory University, 1462 Clifton Road NE, Atlanta, GA 30322, USA
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Nick Berg
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
- Department of Biochemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
- National Institute of Allergy and Infectious Diseases Laboratory of Viral Disease, National Institutes of Health, 33 North Drive, Bethesda, MD 20814, USA
| | - Katia Koelle
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
- Emory Center of Excellence for Influenza Research and Response (Emory-CEIRR), 1510 Clifton Road NE, Atlanta, GA 30322, USA
| |
Collapse
|
7
|
Achleitner L, Winter M, Aguilar PP, Lingg N, Jungbauer A, Klausberger M, Satzer P. Robust and resource-efficient production process suitable for large-scale production of baculovirus through high cell density seed train and optimized infection strategy. N Biotechnol 2024; 80:46-55. [PMID: 38302001 DOI: 10.1016/j.nbt.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
The aim of this study was the development of a scalable production process for high titer (108 pfu/mL and above) recombinant baculovirus stocks with low cell line-derived impurities for the production of virus-like particles (VLP). To achieve this, we developed a high cell density (HCD) culture for low footprint cell proliferation, compared different infection strategies at multiplicity of infection (MOI) 0.05 and 0.005, different infection strategies and validated generally applicable harvest criteria of cell viability ≤ 80%. We also investigated online measurable parameters to observe the baculovirus production. The infection strategy employing a very low virus inoculum of MOI 0.005 and a 1:2 dilution with fresh medium one day after infection proved to be the most resource efficient. There, we achieved higher cell-specific titers and lower host cell protein concentrations at harvest than other tested infection strategies with the same MOI, while saving half of the virus stock for infecting the culture compared to other tested infection strategies. HCD culture by daily medium exchange was confirmed as suitable for seed train propagation, infection, and baculovirus production, equally efficient as the conventionally propagated seed train. Online measurable parameters for cell concentration and average cell diameter were found to be effective in monitoring the production process. The study concluded that a more efficient VLP production process in large scale can be achieved using this virus stock production strategy, which could also be extended to produce other proteins or extracellular vesicles with the baculovirus expression system.
Collapse
Affiliation(s)
- Lena Achleitner
- acib - Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria; Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Martina Winter
- acib - Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria; Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Patricia Pereira Aguilar
- acib - Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria; Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Nico Lingg
- acib - Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria; Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Alois Jungbauer
- acib - Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria; Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Miriam Klausberger
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Peter Satzer
- acib - Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria; Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
8
|
Rüdiger D, Piasecka J, Küchler J, Pontes C, Laske T, Kupke SY, Reichl U. Mathematical model calibrated to in vitro data predicts mechanisms of antiviral action of the influenza defective interfering particle "OP7". iScience 2024; 27:109421. [PMID: 38523782 PMCID: PMC10959662 DOI: 10.1016/j.isci.2024.109421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/08/2024] [Accepted: 02/29/2024] [Indexed: 03/26/2024] Open
Abstract
Defective interfering particles (DIPs) are regarded as potent broad-spectrum antivirals. We developed a mathematical model that describes intracellular co-infection dynamics of influenza standard virus (STV) and "OP7", a new type of influenza DIP discovered recently. Based on experimental data from in vitro studies to calibrate the model and confirm its predictions, we deduce OP7's mechanisms of interference, which were yet unknown. Simulations suggest that the "superpromoter" on OP7 genomic viral RNA enhances its replication and results in a depletion of viral proteins. This reduces STV genomic RNA replication, which appears to constitute an antiviral effect. Further, a defective viral protein (M1-OP7) likely causes the deficiency of OP7's replication. It appears unable to bind to genomic viral RNAs to facilitate their nuclear export, a critical step in the viral life cycle. An improved understanding of OP7's antiviral mechanism is crucial toward application in humans as a prospective antiviral treatment strategy.
Collapse
Affiliation(s)
- Daniel Rüdiger
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Saxony-Anhalt, Germany
| | - Julita Piasecka
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Saxony-Anhalt, Germany
| | - Jan Küchler
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Saxony-Anhalt, Germany
| | - Carolina Pontes
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Saxony-Anhalt, Germany
| | - Tanja Laske
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Saxony-Anhalt, Germany
- Institute for Computational Systems Biology, University of Hamburg, 20148 Hamburg, Germany
| | - Sascha Y. Kupke
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Saxony-Anhalt, Germany
| | - Udo Reichl
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Saxony-Anhalt, Germany
- Chair of Bioprocess Engineering, Otto-von-Guericke University, 39106 Magdeburg, Saxony-Anhalt, Germany
| |
Collapse
|
9
|
Dogra T, Pelz L, Boehme JD, Kuechler J, Kershaw O, Marichal-Gallardo P, Baelkner M, Hein MD, Gruber AD, Benndorf D, Genzel Y, Bruder D, Kupke SY, Reichl U. Generation of "OP7 chimera" defective interfering influenza A particle preparations free of infectious virus that show antiviral efficacy in mice. Sci Rep 2023; 13:20936. [PMID: 38017026 PMCID: PMC10684881 DOI: 10.1038/s41598-023-47547-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023] Open
Abstract
Influenza A virus (IAV) defective interfering particles (DIPs) are considered as new promising antiviral agents. Conventional DIPs (cDIPs) contain a deletion in the genome and can only replicate upon co-infection with infectious standard virus (STV), during which they suppress STV replication. We previously discovered a new type of IAV DIP "OP7" that entails genomic point mutations and displays higher antiviral efficacy than cDIPs. To avoid safety concerns for the medical use of OP7 preparations, we developed a production system that does not depend on infectious IAV. We reconstituted a mixture of DIPs consisting of cDIPs and OP7 chimera DIPs, in which both harbor a deletion in their genome. To complement the defect, the deleted viral protein is expressed by the suspension cell line used for production in shake flasks. Here, DIP preparations harvested are not contaminated with infectious virions, and the fraction of OP7 chimera DIPs depended on the multiplicity of infection. Intranasal administration of OP7 chimera DIP material was well tolerated in mice. A rescue from an otherwise lethal IAV infection and no signs of disease upon OP7 chimera DIP co-infection demonstrated the remarkable antiviral efficacy. The clinical development of this new class of broad-spectrum antiviral may contribute to pandemic preparedness.
Collapse
Affiliation(s)
- Tanya Dogra
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Lars Pelz
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Julia D Boehme
- Institute of Medical Microbiology, Infection Prevention and Control, Infection Immunology Group, Health Campus Immunology, Infectiology and Inflammation, Otto Von Guericke University Magdeburg, Magdeburg, Germany
- Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jan Kuechler
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Olivia Kershaw
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Pavel Marichal-Gallardo
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Maike Baelkner
- Institute of Medical Microbiology, Infection Prevention and Control, Infection Immunology Group, Health Campus Immunology, Infectiology and Inflammation, Otto Von Guericke University Magdeburg, Magdeburg, Germany
- Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Marc D Hein
- Bioprocess Engineering, Otto Von Guericke University Magdeburg, Magdeburg, Germany
| | - Achim D Gruber
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Dirk Benndorf
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
- Bioprocess Engineering, Otto Von Guericke University Magdeburg, Magdeburg, Germany
| | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Dunja Bruder
- Institute of Medical Microbiology, Infection Prevention and Control, Infection Immunology Group, Health Campus Immunology, Infectiology and Inflammation, Otto Von Guericke University Magdeburg, Magdeburg, Germany
- Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sascha Y Kupke
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany.
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
- Bioprocess Engineering, Otto Von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
10
|
Ghorbani A, Ngunjiri JM, Rendon G, Brooke CB, Kenney SP, Lee CW. Diversity and Complexity of Internally Deleted Viral Genomes in Influenza A Virus Subpopulations with Enhanced Interferon-Inducing Phenotypes. Viruses 2023; 15:2107. [PMID: 37896883 PMCID: PMC10612045 DOI: 10.3390/v15102107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Influenza A virus (IAV) populations harbor large subpopulations of defective-interfering particles characterized by internally deleted viral genomes. These internally deleted genomes have demonstrated the ability to suppress infectivity and boost innate immunity, rendering them promising for therapeutic and immunogenic applications. In this study, we aimed to investigate the diversity and complexity of the internally deleted IAV genomes within a panel of plaque-purified avian influenza viruses selected for their enhanced interferon-inducing phenotypes. Our findings unveiled that the abundance and diversity of internally deleted viral genomes were contingent upon the viral subculture and plaque purification processes. We observed a heightened occurrence of internally deleted genomes with distinct junctions in viral clones exhibiting enhanced interferon-inducing phenotypes, accompanied by additional truncation in the nonstructural 1 protein linker region (NS1Δ76-86). Computational analyses suggest the internally deleted IAV genomes can encode a broad range of carboxy-terminally truncated and intrinsically disordered proteins with variable lengths and amino acid composition. Further research is imperative to unravel the underlying mechanisms driving the increased diversity of internal deletions within the genomes of viral clones exhibiting enhanced interferon-inducing capacities and to explore their potential for modulating cellular processes and immunity.
Collapse
Affiliation(s)
- Amir Ghorbani
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA;
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - John M. Ngunjiri
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - Gloria Rendon
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA (C.B.B.)
| | - Christopher B. Brooke
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA (C.B.B.)
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Scott P. Kenney
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA;
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - Chang-Won Lee
- Southeast Poultry Research Laboratory, US National Poultry Research Center, USDA, ARS, Athens, GA 30605, USA
| |
Collapse
|
11
|
Malenovská H. Ruxolitinib accelerates influenza A virus adaptation in the Madin-Darby canine kidney (MDCK) cell line. J Appl Microbiol 2023; 134:lxad232. [PMID: 37816667 DOI: 10.1093/jambio/lxad232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 10/12/2023]
Abstract
AIM To investigate the effect of ruxolitinib medium supplement, separately and in combination with trypsin, on influenza A virus (IAV) adaptation and propagation in the Madin-Darby canine kidney (MDCK) cell line. METHODS AND RESULTS Two consecutive passages of three egg-based IAV strains were performed in the MDCK cell line with medium (a) without additives; (b) with a combination of ruxolitinib and trypsin; (c) with ruxolitinib; and (d) trypsin. Adaptation without a medium additive failed in both passages. After a single passage, the probability of the IAV adaptation was highly significantly influenced by the type of additive (binomial generalized linear model, χ22 = 23.84, P < 0.00001). The highest probability of adaptation was achieved with the combination of ruxolitinib and trypsin, followed by ruxolitinib alone and trypsin. After the two consecutive passages, the influence of the type of medium additive on the probability of virus adaptation was no longer significant. In two of three IAV MDCK-adapted strains, the type of medium additive had no significant influence on virus yields. CONCLUSION Ruxolitinib accelerates the adaptation of IAV in the MDCK cell line both individually and together with trypsin.
Collapse
Affiliation(s)
- Hana Malenovská
- Collection of Animal Pathogenic Microorganisms, Veterinary Research Institute,Hudcova 296/70, 621 00 Brno-Medlánky, Czech Republic
| |
Collapse
|
12
|
Noffel Z, Dobrovolny HM. Quantifying the effect of defective viral genomes in respiratory syncytial virus infections. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:12666-12681. [PMID: 37501460 DOI: 10.3934/mbe.2023564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Defective viral genomes (DVGs) are viral genomes that contain only a partial viral RNA and so cannot replicate within cells on their own. If a cell containing DVGs is subsequently infected with a complete viral genome, the DVG can then use the missing proteins expressed by the full genome in order to replicate itself. Since the cell is producing defective genomes, it has less resources to produce fully functional virions and thus release of complete virions is often suppressed. Here, we use data from challenge studies of respiratory syncytial virus (RSV) in healthy adults to quantify the effect of DVGs. We use a mathematical model to fit the data, finding that late onset of DVGs and prolonged DVG detection are associated with lower infection rates and higher clearance rates. This result could have implications for the use of DVGs as a therapeutic.
Collapse
Affiliation(s)
- Zakarya Noffel
- Department of Computer Science, University of Texas at Austin, Austin, TX, US
- Department of Physics & Astronomy, Texas Christian University, Fort Worth, TX, US
| | - Hana M Dobrovolny
- Department of Physics & Astronomy, Texas Christian University, Fort Worth, TX, US
| |
Collapse
|
13
|
Vicary AC, Mendes M, Swaminath S, Lekbua A, Reddan J, Rodriguez ZK, Russell AB. Maximal interferon induction by influenza lacking NS1 is infrequent owing to requirements for replication and export. PLoS Pathog 2023; 19:e1010943. [PMID: 37068114 PMCID: PMC10138204 DOI: 10.1371/journal.ppat.1010943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/27/2023] [Accepted: 03/31/2023] [Indexed: 04/18/2023] Open
Abstract
Influenza A virus exhibits high rates of replicative failure due to a variety of genetic defects. Most influenza virions cannot, when acting as individual particles, complete the entire viral life cycle. Nevertheless influenza is incredibly successful in the suppression of innate immune detection and the production of interferons, remaining undetected in >99% of cells in tissue-culture models of infection. Notably, the same variation that leads to replication failure can, by chance, inactivate the major innate immune antagonist in influenza A virus, NS1. What explains the observed rarity of interferon production in spite of the frequent loss of this, critical, antagonist? By studying how genetic and phenotypic variation in a viral population lacking NS1 correlates with interferon production, we have built a model of the "worst-case" failure from an improved understanding of the steps at which NS1 acts in the viral life cycle to prevent the triggering of an innate immune response. In doing so, we find that NS1 prevents the detection of de novo innate immune ligands, defective viral genomes, and viral export from the nucleus, although only generation of de novo ligands appears absolutely required for enhanced detection of virus in the absence of NS1. Due to this, the highest frequency of interferon production we observe (97% of infected cells) requires a high level of replication in the presence of defective viral genomes with NS1 bearing an inactivating mutation that does not impact its partner encoded on the same segment, NEP. This is incredibly unlikely to occur given the standard variation found within a viral population, and would generally require direct, artificial, intervention to achieve at an appreciable rate. Thus from our study, we procure at least a partial explanation for the seeming contradiction between high rates of replicative failure and the rarity of the interferon response to influenza infection.
Collapse
Affiliation(s)
- Alison C. Vicary
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Marisa Mendes
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Sharmada Swaminath
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Asama Lekbua
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Jack Reddan
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Zaida K. Rodriguez
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Alistair B. Russell
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
14
|
Defective Interfering Particles of Influenza Virus and Their Characteristics, Impacts, and Use in Vaccines and Antiviral Strategies: A Systematic Review. Viruses 2022; 14:v14122773. [PMID: 36560777 PMCID: PMC9781619 DOI: 10.3390/v14122773] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/02/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Defective interfering particles (DIPs) are particles containing defective viral genomes (DVGs) generated during viral replication. DIPs have been found in various RNA viruses, especially in influenza viruses. Evidence indicates that DIPs interfere with the replication and encapsulation of wild-type viruses, namely standard viruses (STVs) that contain full-length viral genomes. DIPs may also activate the innate immune response by stimulating interferon synthesis. In this review, the underlying generation mechanisms and characteristics of influenza virus DIPs are summarized. We also discuss the potential impact of DIPs on the immunogenicity of live attenuated influenza vaccines (LAIVs) and development of influenza vaccines based on NS1 gene-defective DIPs. Finally, we review the antiviral strategies based on influenza virus DIPs that have been used against both influenza virus and SARS-CoV-2. This review provides systematic insights into the theory and application of influenza virus DIPs.
Collapse
|
15
|
Penn R, Tregoning JS, Flight KE, Baillon L, Frise R, Goldhill DH, Johansson C, Barclay WS. Levels of Influenza A Virus Defective Viral Genomes Determine Pathogenesis in the BALB/c Mouse Model. J Virol 2022; 96:e0117822. [PMID: 36226985 PMCID: PMC9645217 DOI: 10.1128/jvi.01178-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022] Open
Abstract
Defective viral genomes (DVGs), which are generated by the viral polymerase in error during RNA replication, can trigger innate immunity and are implicated in altering the clinical outcome of infection. Here, we investigated the impact of DVGs on innate immunity and pathogenicity in a BALB/c mouse model of influenza virus infection. We generated stocks of influenza viruses containing the internal genes of an H5N1 virus that contained different levels of DVGs (indicated by different genome-to-PFU ratios). In lung epithelial cells, the high-DVG stock was immunostimulatory at early time points postinfection. DVGs were amplified during virus replication in myeloid immune cells and triggered proinflammatory cytokine production. In the mouse model, infection with the different virus stocks produced divergent outcomes. The high-DVG stock induced an early type I interferon (IFN) response that limited viral replication in the lungs, resulting in minimal weight loss. In contrast, the virus stock with low levels of DVGs replicated to high titers and amplified DVGs over time, resulting in elevated levels of proinflammatory cytokines accompanied by rapid weight loss and increased morbidity and mortality. Our results suggest that the timing and levels of immunostimulatory DVGs generated during infection contribute to H5N1 pathogenesis. IMPORTANCE Mammalian infections with highly pathogenic avian influenza viruses (HPAIVs) cause severe disease associated with excessive proinflammatory cytokine production. Aberrant replication products, such as defective viral genomes (DVGs), can stimulate the antiviral response, and cytokine induction is associated with their emergence in vivo. We show that stocks of a recombinant virus containing HPAIV internal genes that differ in their amounts of DVGs have vastly diverse outcomes in a mouse model. The high-DVG stock resulted in extremely mild disease due to suppression of viral replication. Conversely, the stock that contained low DVGs but rapidly accumulated DVGs over the course of infection led to severe disease. Therefore, the timing of DVG amplification and proinflammatory cytokine production impact disease outcome, and these findings demonstrate that not all DVG generation reduces viral virulence. This study also emphasizes the crucial requirement to examine the quality of virus preparations regarding DVG content to ensure reproducible research.
Collapse
Affiliation(s)
- Rebecca Penn
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - John S. Tregoning
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Katie E. Flight
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Laury Baillon
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Rebecca Frise
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Daniel H. Goldhill
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Cecilia Johansson
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Wendy S. Barclay
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
16
|
Jones RP, Ponomarenko A. Roles for Pathogen Interference in Influenza Vaccination, with Implications to Vaccine Effectiveness (VE) and Attribution of Influenza Deaths. Infect Dis Rep 2022; 14:710-758. [PMID: 36286197 PMCID: PMC9602062 DOI: 10.3390/idr14050076] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 08/29/2023] Open
Abstract
Pathogen interference is the ability of one pathogen to alter the course and clinical outcomes of infection by another. With up to 3000 species of human pathogens the potential combinations are vast. These combinations operate within further immune complexity induced by infection with multiple persistent pathogens, and by the role which the human microbiome plays in maintaining health, immune function, and resistance to infection. All the above are further complicated by malnutrition in children and the elderly. Influenza vaccination offers a measure of protection for elderly individuals subsequently infected with influenza. However, all vaccines induce both specific and non-specific effects. The specific effects involve stimulation of humoral and cellular immunity, while the nonspecific effects are far more nuanced including changes in gene expression patterns and production of small RNAs which contribute to pathogen interference. Little is known about the outcomes of vaccinated elderly not subsequently infected with influenza but infected with multiple other non-influenza winter pathogens. In this review we propose that in certain years the specific antigen mix in the seasonal influenza vaccine inadvertently increases the risk of infection from other non-influenza pathogens. The possibility that vaccination could upset the pathogen balance, and that the timing of vaccination relative to the pathogen balance was critical to success, was proposed in 2010 but was seemingly ignored. Persons vaccinated early in the winter are more likely to experience higher pathogen interference. Implications to the estimation of vaccine effectiveness and influenza deaths are discussed.
Collapse
Affiliation(s)
- Rodney P Jones
- Healthcare Analysis and Forecasting, Wantage OX12 0NE, UK
| | - Andrey Ponomarenko
- Department of Biophysics, Informatics and Medical Instrumentation, Odessa National Medical University, Valikhovsky Lane 2, 65082 Odessa, Ukraine
| |
Collapse
|
17
|
González Aparicio LJ, López CB, Felt SA. A Virus Is a Community: Diversity within Negative-Sense RNA Virus Populations. Microbiol Mol Biol Rev 2022; 86:e0008621. [PMID: 35658541 PMCID: PMC9491172 DOI: 10.1128/mmbr.00086-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Negative-sense RNA virus populations are composed of diverse viral components that interact to form a community and shape the outcome of virus infections. At the genomic level, RNA virus populations consist not only of a homogeneous population of standard viral genomes but also of an extremely large number of genome variants, termed viral quasispecies, and nonstandard viral genomes, which include copy-back viral genomes, deletion viral genomes, mini viral RNAs, and hypermutated RNAs. At the particle level, RNA virus populations are composed of pleomorphic particles, particles missing or having additional genomes, and single particles or particle aggregates. As we continue discovering more about the components of negative-sense RNA virus populations and their crucial functions during virus infection, it will become more important to study RNA virus populations as a whole rather than their individual parts. In this review, we will discuss what is known about the components of negative-sense RNA virus communities, speculate how the components of the virus community interact, and summarize what vaccines and antiviral therapies are being currently developed to target or harness these components.
Collapse
Affiliation(s)
- Lavinia J. González Aparicio
- Department of Molecular Microbiology Washington University School of Medicine, St Louis, Missouri, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, Missouri, USA
| | - Carolina B. López
- Department of Molecular Microbiology Washington University School of Medicine, St Louis, Missouri, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, Missouri, USA
| | - Sébastien A. Felt
- Department of Molecular Microbiology Washington University School of Medicine, St Louis, Missouri, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
18
|
Jakob C, Paul-Stansilaus R, Schwemmle M, Marquet R, Bolte H. The influenza A virus genome packaging network - complex, flexible and yet unsolved. Nucleic Acids Res 2022; 50:9023-9038. [PMID: 35993811 PMCID: PMC9458418 DOI: 10.1093/nar/gkac688] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/19/2022] [Accepted: 08/18/2022] [Indexed: 12/24/2022] Open
Abstract
The genome of influenza A virus (IAV) consists of eight unique viral RNA segments. This genome organization allows genetic reassortment between co-infecting IAV strains, whereby new IAVs with altered genome segment compositions emerge. While it is known that reassortment events can create pandemic IAVs, it remains impossible to anticipate reassortment outcomes with pandemic prospects. Recent research indicates that reassortment is promoted by a viral genome packaging mechanism that delivers the eight genome segments as a supramolecular complex into the virus particle. This finding holds promise of predicting pandemic IAVs by understanding the intermolecular interactions governing this genome packaging mechanism. Here, we critically review the prevailing mechanistic model postulating that IAV genome packaging is orchestrated by a network of intersegmental RNA-RNA interactions. Although we find supporting evidence, including segment-specific packaging signals and experimentally proposed RNA-RNA interaction networks, this mechanistic model remains debatable due to a current shortage of functionally validated intersegmental RNA-RNA interactions. We speculate that identifying such functional intersegmental RNA-RNA contacts might be hampered by limitations of the utilized probing techniques and the inherent complexity of the genome packaging mechanism. Nevertheless, we anticipate that improved probing strategies combined with a mutagenesis-based validation could facilitate their discovery.
Collapse
Affiliation(s)
| | | | - Martin Schwemmle
- To whom correspondence should be addressed. Tel: +49 761 203 6526; Fax: +49 761 203 6626;
| | - Roland Marquet
- Correspondence may also be addressed to Roland Marquet. Tel: +33 3 88 41 70 54; Fax: +33 3 88 60 22 18;
| | - Hardin Bolte
- Institute of Virology, Medical Center – University of Freiburg, 79104 Freiburg, Germany,Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| |
Collapse
|
19
|
Mendes M, Russell AB. Library-based analysis reveals segment and length dependent characteristics of defective influenza genomes. PLoS Pathog 2021; 17:e1010125. [PMID: 34882752 PMCID: PMC8691639 DOI: 10.1371/journal.ppat.1010125] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/21/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022] Open
Abstract
Found in a diverse set of viral populations, defective interfering particles are parasitic variants that are unable to replicate on their own yet rise to relatively high frequencies. Their presence is associated with a loss of population fitness, both through the depletion of key cellular resources and the stimulation of innate immunity. For influenza A virus, these particles contain large internal deletions in the genomic segments which encode components of the heterotrimeric polymerase. Using a library-based approach, we comprehensively profile the growth and replication of defective influenza species, demonstrating that they possess an advantage during genome replication, and that exclusion during population expansion reshapes population composition in a manner consistent with their final, observed, distribution in natural populations. We find that an innate immune response is not linked to the size of a deletion; however, replication of defective segments can enhance their immunostimulatory properties. Overall, our results address several key questions in defective influenza A virus biology, and the methods we have developed to answer those questions may be broadly applied to other defective viruses.
Collapse
Affiliation(s)
- Marisa Mendes
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Alistair B. Russell
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|