1
|
Bracci N, Baer A, Flor R, Petraccione K, Stocker T, Zhou W, Ammosova T, Dinglasan RR, Nekhai S, Kehn-Hall K. CK1 and PP1 regulate Rift Valley fever virus genome replication through L protein phosphorylation. Antiviral Res 2024; 226:105895. [PMID: 38679165 DOI: 10.1016/j.antiviral.2024.105895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Rift Valley fever virus (RVFV) is an arbovirus in the Phenuiviridae family identified initially by the large 'abortion storms' observed among ruminants; RVFV can also infect humans. In humans, there is a wide variation of clinical symptoms ranging from subclinical to mild febrile illness to hepatitis, retinitis, delayed-onset encephalitis, or even hemorrhagic fever. The RVFV is a tri-segmented negative-sense RNA virus consisting of S, M, and L segments. The L segment encodes the RNA-dependent RNA polymerase (RdRp), termed the L protein, which is responsible for both viral mRNA synthesis and genome replication. Phosphorylation of viral RdRps is known to regulate viral replication. This study shows that RVFV L protein is serine phosphorylated and identified Casein Kinase 1 alpha (CK1α) and protein phosphatase 1 alpha (PP1α) as L protein binding partners. Inhibition of CK1 and PP1 through small molecule inhibitor treatment, D4476 and 1E7-03, respectively, caused a change in the phosphorylated status of the L protein. Inhibition of PP1α resulted in increased L protein phosphorylation whereas inhibition of CK1α decreased L protein phosphorylation. It was also found that in RVFV infected cells, PP1α localized to the cytoplasmic compartment. Treatment of RVFV infected cells with CK1 inhibitors reduced virus production in both mammalian and mosquito cells. Lastly, inhibition of either CK1 or PP1 reduced viral genomic RNA levels. These data indicate that L protein is phosphorylated and that CK1 and PP1 play a crucial role in regulating the L protein phosphorylation cycle, which is critical to viral RNA production and viral replication.
Collapse
Affiliation(s)
- Nicole Bracci
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Virginia, USA; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Virginia, USA
| | - Alan Baer
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Rafaela Flor
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Virginia, USA; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Virginia, USA
| | - Kaylee Petraccione
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Virginia, USA; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Virginia, USA
| | - Timothy Stocker
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Virginia, USA; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Virginia, USA
| | - Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Tatiana Ammosova
- Center for Sickle Cell Disease, Department of Medicine, Howard University, Washington D.C., USA
| | - Rhoel R Dinglasan
- Emerging Pathogens Institute, University of Florida, Florida, USA; Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Florida, USA
| | - Sergei Nekhai
- Center for Sickle Cell Disease, Department of Medicine, Howard University, Washington D.C., USA
| | - Kylene Kehn-Hall
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Virginia, USA; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Virginia, USA.
| |
Collapse
|
2
|
Cheng CC, Ke GM, Chu PY, Ke LY. Elucidating the Implications of Norovirus N- and O-Glycosylation, O-GlcNAcylation, and Phosphorylation. Viruses 2023; 15:v15030798. [PMID: 36992506 PMCID: PMC10054809 DOI: 10.3390/v15030798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
Norovirus is the most common cause of foodborne gastroenteritis, affecting millions of people worldwide annually. Among the ten genotypes (GI-GX) of norovirus, only GI, GII, GIV, GVIII, and GIX infect humans. Some genotypes reportedly exhibit post-translational modifications (PTMs), including N- and O-glycosylation, O-GlcNAcylation, and phosphorylation, in their viral antigens. PTMs have been linked to increased viral genome replication, viral particle release, and virulence. Owing to breakthroughs in mass spectrometry (MS) technologies, more PTMs have been discovered in recent years and have contributed significantly to preventing and treating infectious diseases. However, the mechanisms by which PTMs act on noroviruses remain poorly understood. In this section, we outline the current knowledge of the three common types of PTM and investigate their impact on norovirus pathogenesis. Moreover, we summarize the strategies and techniques for the identification of PTMs.
Collapse
Affiliation(s)
- Chia-Chi Cheng
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Guan-Ming Ke
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| | - Pei-Yu Chu
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
- Center for Lipid Biosciences, Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| |
Collapse
|
3
|
Sequential Phosphorylation of Hepatitis C Virus NS5A Protein Requires the ATP-Binding Domain of NS3 Helicase. J Virol 2022; 96:e0010722. [PMID: 35293767 DOI: 10.1128/jvi.00107-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The propagation of the hepatitis C virus (HCV) is regulated in part by the phosphorylation of its nonstructural protein NS5A that undergoes sequential phosphorylation on several highly conserved serine residues and switches from a hypo- to a hyperphosphorylated state. Previous studies have shown that NS5A sequential phosphorylation requires NS3 encoded on the same NS3-NS4A-NS4B-NS5A polyprotein. Subtle mutations in NS3 without affecting its protease activity could affect NS5A phosphorylation. Given the ATPase domain in the NS3 COOH terminus, we tested whether NS3 participates in NS5A phosphorylation similarly to the nucleoside diphosphate kinase-like activity of the rotavirus NSP2 nucleoside triphosphatase (NTPase). Mutations in the NS3 ATP-binding motifs blunted NS5A hyperphosphorylation and phosphorylation at serines 225, 232, and 235, whereas a mutation in the RNA-binding domain did not. The phosphorylation events were not rescued with wild-type NS3 provided in trans. When provided with an NS3 ATPase-compatible ATP analog, N6-benzyl-ATP-γ-S, thiophosphorylated NS5A was detected in the cells expressing the wild-type NS3-NS5B polyprotein. The thiophosphorylation level was lower in the cells expressing NS3-NS5B with a mutation in the NS3 ATP-binding domain. In vitro assays with a synthetic peptide and purified wild-type NS3 followed by dot blotting and mass spectrometry found weak NS5A phosphorylation at serines 222 and 225 that was sensitive to an inhibitor of casein kinase Iα but not helicase. When casein kinase Iα was included in the assay, much stronger phosphorylation was observed at serines 225, 232, and 235. We concluded that NS5A sequential phosphorylation requires the ATP-binding domain of the NS3 helicase and that casein kinase Iα is a potent NS5A kinase. IMPORTANCE For more than 20 years, NS3 was known to participate in NS5A sequential phosphorylation. In the present study, we show for the first time that the ATP-binding domain of NS3 is involved in NS5A phosphorylation. In vitro assays showed that casein kinase Iα is a very potent kinase responsible for NS5A phosphorylation at serines 225, 232, and 235. Our data suggest that ATP binding by NS3 probably results in conformational changes that recruit casein kinase Iα to phosphorylate NS5A, initially at S225 and subsequently at S232 and S235. Our discovery reveals intricate requirements of the structural integrity of NS3 for NS5A hyperphosphorylation and HCV replication.
Collapse
|
4
|
Ward JC, Bowyer S, Chen S, Fernandes Campos GR, Ramirez S, Bukh J, Harris M. Insights into the unique characteristics of hepatitis C virus genotype 3 revealed by development of a robust sub-genomic DBN3a replicon. J Gen Virol 2020; 101:1182-1190. [PMID: 32897181 PMCID: PMC7879556 DOI: 10.1099/jgv.0.001486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) is an important human pathogen causing 400 000 chronic liver disease-related deaths annually. Until recently, the majority of laboratory-based investigations into the biology of HCV have focused on the genotype 2 isolate, JFH-1, involving replicons and infectious cell culture systems. However, genotype 2 is one of eight major genotypes of HCV and there is great sequence variation among these genotypes (>30 % nucleotide divergence). In this regard, genotype 3 is the second most common genotype and accounts for 30 % of global HCV cases. Further, genotype 3 is associated with both high levels of inherent resistance to direct-acting antiviral (DAA) therapy, and a more rapid progression to chronic liver diseases. Neither of these two attributes are fully understood, thus robust genotype 3 culture systems to unravel viral replication are required. Here we describe the generation of robust genotype 3 sub-genomic replicons (SGRs) based on the adapted HCV NS3-NS5B replicase from the DBN3a cell culture infectious clone. Such infectious cell culture-adaptive mutations could potentially promote the development of robust SGRs for other HCV strains and genotypes. The novel genotype 3 SGRs have been used both transiently and to establish stable SGR-harbouring cell lines. We show that these resources can be used to investigate aspects of genotype 3 biology, including NS5A function and DAA resistance. They will be useful tools for these studies, circumventing the need to work under the biosafety level 3 (BSL3) containment required in many countries.
Collapse
Affiliation(s)
- Joseph C. Ward
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Sebastian Bowyer
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Shucheng Chen
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Guilherme Rodrigues Fernandes Campos
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- Present address: São Paulo State University, Institute of Biosciences, Languages and Exact Sciences, Cristóvão Colombo Street, 2265, Post Code 15054-000, São José do Rio Preto, São Paulo State, Brazil
| | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, Kettegård Allé 30, DK-2650 Hvidovre, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, Kettegård Allé 30, DK-2650 Hvidovre, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
5
|
Sequential Phosphorylation of the Hepatitis C Virus NS5A Protein Depends on NS3-Mediated Autocleavage between NS3 and NS4A. J Virol 2020; 94:JVI.00420-20. [PMID: 32699091 DOI: 10.1128/jvi.00420-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
Replication of the genotype 2 hepatitis C virus (HCV) requires hyperphosphorylation of the nonstructural protein NS5A. It has been known that NS5A hyperphosphorylation results from the phosphorylation of a cluster of highly conserved serine residues (S2201, S2208, S2211, and S2214) in a sequential manner. It has also been known that NS5A hyperphosphorylation requires an NS3 protease encoded on one single NS3-5A polyprotein. It was unknown whether NS3 protease participates in this sequential phosphorylation process. Using an inventory of antibodies specific to S2201, S2208, S2211, and S2214 phosphorylation, we found that protease-dead S1169A mutation abrogated NS5A hyperphosphorylation and phosphorylation at all serine residues measured, consistent with the role of NS3 in NS5A sequential phosphorylation. These effects were not rescued by a wild-type NS3 protease provided in trans by another molecule. Mutations (T1661R, T1661Y, or T1661D) that prohibited proper cleavage at the NS3-4A junction also abolished NS5A hyperphosphorylation and phosphorylation at all serine residues, whereas mutations at the other cleavage sites, NS4A-4B (C1715S) or NS4B-5A (C1976F), did not. In fact, any combinatory mutations that prohibited NS3-4A cleavage (T1661Y/C1715S or T1661Y/C1976F) abrogated NS5A hyperphosphorylation and phosphorylation at all serine residues. In the C1715S/C1976F double mutant, which resulted in an NS4A-NS4B-NS5A fusion polyprotein, a hyperphosphorylated band was observed and was phosphorylated at all serine residues. We conclude that NS3-mediated autocleavage at the NS3-4A junction is critical to NS5A hyperphosphorylation at S2201, S2208, S2211, and S2214 and that NS5A hyperphosphorylation could occur in an NS4A-NS4B-NS5A polyprotein.IMPORTANCE For ca. 20 years, the HCV protease NS3 has been implicated in NS5A hyperphosphorylation. We now show that it is the NS3-mediated cis cleavage at the NS3-4A junction that permits NS5A phosphorylation at serines 2201, 2208, 2211, and 2214, leading to hyperphosphorylation, which is a necessary condition for genotype 2 HCV replication. We further show that NS5A may already be phosphorylated at these serine residues right after NS3-4A cleavage and before NS5A is released from the NS4A-5A polyprotein. Our data suggest that the dual-functional NS3, a protease and an ATP-binding RNA helicase, could have a direct or indirect role in NS5A hyperphosphorylation.
Collapse
|
6
|
HCV-2a NS5A downregulates viral translation predominantly through domain I. Biochem Biophys Res Commun 2020; 529:77-84. [PMID: 32560823 DOI: 10.1016/j.bbrc.2020.05.177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 11/21/2022]
Abstract
Hepatitis C virus (HCV) non-structural protein NS5A is a multifunctional protein with critical roles in viral replication and assembly. We previously showed that HCV-1b NS5A downregulates viral translation only in the presence of the poly(U/UC) tract in 3'UTR. As NS5A of different HCV genotypes may have different functions or carry out the same functions through genotype-specific mechanisms, we investigated the effect of HCV-2a NS5A on viral translation. We found that HCV-2a NS5A downregulates RNA translation of both HCV-2a and -1b, whereas the effect of HCV-1b NS5A is limited to HCV-1b only. In addition, individual regions of 3'UTR are not required for HCV-2a NS5A to downregulate viral RNA translation. We also found that HCV-2a NS5A inhibits capped mRNA translation. Mapping experiments showed that the translation downregulation by HCV-2a NS5A is predominantly mediated by domain I. Furthermore, we found that the integrity of serine-146 residue plays an important role in translation downregulation by NS5A. Our results increased our understanding on genotype-specific functions of HCV NS5A.
Collapse
|
7
|
Goonawardane N, Yin C, Harris M. Phenotypic analysis of mutations at residue 146 provides insights into the relationship between NS5A hyperphosphorylation and hepatitis C virus genome replication. J Gen Virol 2020; 101:252-264. [PMID: 31821131 PMCID: PMC7416608 DOI: 10.1099/jgv.0.001366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/19/2019] [Indexed: 12/23/2022] Open
Abstract
The hepatitis C virus genotype 2a isolate, JFH-1, exhibits much more efficient genome replication than other isolates. Although basic replication mechanisms must be conserved, this raises the question of whether the regulation of replication might exhibit isolate- and/or genotype-specific characteristics. Exemplifying this, the phenotype of NS5A hyperphosphorylation is genotype-dependent; in genotype 1b a loss of hyperphosphorylation correlates with an enhancement of replication. In contrast, the replication of JFH-1 is not regulated by hyperphosphorylation. We previously identified a novel phosphorylation site in JFH-1 NS5A: S146. A phosphomimetic substitution (S146D) had no effect on replication but correlated with a loss of hyperphosphorylation. In genotype 1b, residue 146 is alanine and we therefore investigated whether the substitution of A146 with a phosphorylatable (S), or phosphomimetic, residue would recapitulate the JFH-1 phenotype, decoupling hyperphosphorylation from replication. This was not the case, as A146D exhibited both a loss of hyperphosphorylation and a reduction in replication, accompanied by a perinuclear restriction of replication complexes, reductions in lipid droplet and PI4P lipid accumulation, and a disruption of NS5A dimerization. In contrast, the S232I culture-adaptive mutation in the low-complexity sequence I (LCSI) also exhibited a loss of hyperphosphorylation, but was associated with an increase in replication. Taken together, these data imply that hyperphosphorylation does not directly regulate replication. In contrast, the loss of hyperphosphorylation is a consequence of perturbing genome replication and NS5A function. Furthermore, we show that mutations in either domain I or LCSI of NS5A can disrupt hyperphosphorylation, demonstrating that multiple parameters influence the phosphorylation status of NS5A.
Collapse
Affiliation(s)
- Niluka Goonawardane
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- Present address: Experimental Medicine, Nuffield Department of Medicine, The Peter Medawar Building for Pathogen Research, South Parks Road, University of Oxford, Oxford, OX1 3SY, UK
| | - Chunhong Yin
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- Present address: Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, PR China
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
8
|
Serine 229 Balances the Hepatitis C Virus Nonstructural Protein NS5A between Hypo- and Hyperphosphorylated States. J Virol 2019; 93:JVI.01028-19. [PMID: 31511391 DOI: 10.1128/jvi.01028-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/08/2019] [Indexed: 12/19/2022] Open
Abstract
The nonstructural protein NS5A of hepatitis C virus (HCV) is a phosphorylated protein that is indispensable for viral replication and assembly. We previously showed that NS5A undergoes sequential serine S232/S235/S238 phosphorylation resulting in NS5A transition from a hypo- to a hyperphosphorylated state. Here, we studied functions of S229 with a newly generated antibody specific to S229 phosphorylation. In contrast to S232, S235, or S238 phosphorylation detected only in the hyperphosphorylated NS5A, S229 phosphorylation was found in both hypo- and hyperphosphorylated NS5A, suggesting that S229 phosphorylation initiates NS5A sequential phosphorylation. Immunoblotting showed an inverse relationship between S229 phosphorylation and S235 phosphorylation. When S235 was phosphorylated as in the wild-type NS5A, the S229 phosphorylation level was low; when S235 could not be phosphorylated as in the S235A mutant NS5A, the S229 phosphorylation level was high. These results suggest an intrinsic feedback regulation between S229 phosphorylation and S235 phosphorylation. It has been known that NS5A distributes in large static and small dynamic intracellular structures and that both structures are required for the HCV life cycle. We found that S229A or S229D mutation was lethal to the virus and that both increased NS5A in large intracellular structures. Similarly, the lethal S235A mutation also increased NS5A in large structures. Likewise, the replication-compromised S235D mutation also increased NS5A in large structures, albeit to a lesser extent. Our data suggest that S229 probably cycles through phosphorylation and dephosphorylation to maintain a delicate balance of NS5A between hypo- and hyperphosphorylated states and the intracellular distribution necessary for the HCV life cycle.IMPORTANCE This study joins our previous efforts to elucidate how NS5A transits between hypo- and hyperphosphorylated states via phosphorylation on a series of highly conserved serine residues. Of the serine residues, serine 229 is the most interesting since phosphorylation-mimicking and phosphorylation-ablating mutations at this serine residue are both lethal. With a new high-quality antibody specific to serine 229 phosphorylation, we concluded that serine 229 must remain wild type so that it can dynamically cycle through phosphorylation and dephosphorylation that govern NS5A between hypo- and hyperphosphorylated states. Both are required for the HCV life cycle. When phosphorylated, serine 229 signals phosphorylation on serine 232 and 235 in a sequential manner, leading NS5A to the hyperphosphorylated state. As serine 235 phosphorylation is reached, serine 229 is dephosphorylated, stopping signal for hyperphosphorylation. This balances NS5A between two phosphorylation states and in intracellular structures that warrant a productive HCV life cycle.
Collapse
|
9
|
HCV NS5A hyperphosphorylation is involved in viral translation modulation. Biochem Biophys Res Commun 2019; 520:192-197. [PMID: 31585734 DOI: 10.1016/j.bbrc.2019.09.105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 09/25/2019] [Indexed: 01/28/2023]
Abstract
Hepatitis C virus (HCV) non-structural (NS) 5A protein is a multifunctional phosphoprotein. NS5A exists as hypo- and hyper-phosphorylated forms and the dynamic transitions between these two states are involved in the functions of NS5A. Hyperphosphorylation occurs primarily at six serine residues within the low complexity sequence I of NS5A. We previously showed that NS5A downregulates viral translation. In this study, we investigated the role of NS5A hyperphosphorylation in translation modulation. By analyzing the effects of phospho-ablative and phospho-mimetic mutants of the six serine residues on translation, we showed that NS5A hyperphospho-ablative mutation at all six serine residues can no longer downregulate viral translation. We then studied the effects of phospho-mutations at each of the six serine residues on translation. We found that phosphorylation of S222, S225, S235 is not involved in translation downregulation by NS5A. In contrast, NS5A with alanine mutations at S229 or S238 can no longer downregulate translation, whereas S229D or S238D mutations have no effect. Interestingly, S232D NS5A, but not S232A, abrogates translation downregulation by NS5A. Since dimerization of NS5A plays an important role in its functions, we also studied the effects of phospho-mutants of S229, S232, and S238 on dimerization in a protein-protein interaction assay. We showed that phopho-mimetic S229D or S238D mutations enhances NS5A dimerization, whereas the phospho-ablative mutations of these two residues have no effect. Neither phospho-ablative nor phopho-mimetic mutations of S232 affect dimerization. These results indicate that phosphorylation of NS5A at S229, S232, and S238 is involved in viral translation regulation and NS5A dimerization.
Collapse
|
10
|
Pan TC, Lo CW, Chong WM, Tsai CN, Lee KY, Chen PY, Liao JC, Yu MJ. Differential Proteomics Reveals Discrete Functions of Proteins Interacting with Hypo- versus Hyper-phosphorylated NS5A of the Hepatitis C Virus. J Proteome Res 2019; 18:2813-2825. [PMID: 31199160 DOI: 10.1021/acs.jproteome.9b00130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Protein phosphorylation is a reversible post-translational modification that regulates many biological processes in almost all living forms. In the case of the hepatitis C virus (HCV), the nonstructural protein 5A (NS5A) is believed to transit between hypo- and hyper-phosphorylated forms that interact with host proteins to execute different functions; however, little was known about the proteins that bind either form of NS5A. Here, we generated two high-quality antibodies specific to serine 235 nonphosphorylated hypo- vs serine 235 phosphorylated (pS235) hyper-phosphorylated form of NS5A and for the first time segregated these two forms of NS5A plus their interacting proteins for dimethyl-labeling based proteomics. We identified 629 proteins, of which 238 were quantified in three replicates. Bioinformatics showed 46 proteins that preferentially bind hypo-phosphorylated NS5A are involved in antiviral response and another 46 proteins that bind pS235 hyper-phosphorylated NS5A are involved in liver cancer progression. We further identified a DNA-dependent kinase (DNA-PK) that binds hypo-phosphorylated NS5A. Inhibition of DNA-PK with an inhibitor or via gene-specific knockdown significantly reduced S232 phosphorylation and NS5A hyper-phosphorylation. Because S232 phosphorylation initiates sequential S232/S235/S238 phosphorylation leading to NS5A hyper-phosphorylation, we identified a new protein kinase that regulates a delicate balance of NS5A between hypo- and hyper-phosphorylation states, respectively, involved in host antiviral responses and liver cancer progression.
Collapse
Affiliation(s)
- Ting-Chun Pan
- Institute of Biochemistry and Molecular Biology, College of Medicine , National Taiwan University , Taipei 10051 , Taiwan
| | - Chieh-Wen Lo
- Institute of Biochemistry and Molecular Biology, College of Medicine , National Taiwan University , Taipei 10051 , Taiwan
| | - Weng Man Chong
- Institute of Atomic and Molecular Sciences , Academia Sinica , Taipei 10617 , Taiwan
| | - Chia-Ni Tsai
- Institute of Biochemistry and Molecular Biology, College of Medicine , National Taiwan University , Taipei 10051 , Taiwan
| | - Kuan-Ying Lee
- Institute of Biochemistry and Molecular Biology, College of Medicine , National Taiwan University , Taipei 10051 , Taiwan
| | - Pin-Yin Chen
- Institute of Biochemistry and Molecular Biology, College of Medicine , National Taiwan University , Taipei 10051 , Taiwan
| | - Jung-Chi Liao
- Institute of Atomic and Molecular Sciences , Academia Sinica , Taipei 10617 , Taiwan
| | - Ming-Jiun Yu
- Institute of Biochemistry and Molecular Biology, College of Medicine , National Taiwan University , Taipei 10051 , Taiwan
| |
Collapse
|
11
|
Itoh K, Kondoh G, Miyachi H, Sugai M, Kaneko Y, Kitano S, Watanabe H, Maeda R, Imura A, Liu Y, Ito C, Itohara S, Toshimori K, Fujita J. Dephosphorylation of protamine 2 at serine 56 is crucial for murine sperm maturation in vivo. Sci Signal 2019; 12:12/574/eaao7232. [PMID: 30914484 DOI: 10.1126/scisignal.aao7232] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The posttranslational modification of histones is crucial in spermatogenesis, as in other tissues; however, during spermiogenesis, histones are replaced with protamines, which are critical for the tight packaging of the DNA in sperm cells. Protamines are also posttranslationally modified by phosphorylation and dephosphorylation, which prompted our investigation of the underlying mechanisms and biological consequences of their regulation. On the basis of a screen that implicated the heat shock protein Hspa4l in spermatogenesis, we generated mice deficient in Hspa4l (Hspa4l-null mice), which showed male infertility and the malformation of sperm heads. These phenotypes are similar to those of Ppp1cc-deficient mice, and we found that the amount of a testis- and sperm-specific isoform of the Ppp1cc phosphatase (Ppp1cc2) in the chromatin-binding fraction was substantially less in Hspa4l-null spermatozoa than that in those of wild-type mice. We further showed that Ppp1cc2 was a substrate of the chaperones Hsc70 and Hsp70 and that Hspa4l enhanced the release of Ppp1cc2 from these complexes, enabling the freed Ppp1cc2 to localize to chromatin. Pull-down and in vitro phosphatase assays suggested the dephosphorylation of protamine 2 at serine 56 (Prm2 Ser56) by Ppp1cc2. To confirm the biological importance of Prm2 Ser56 dephosphorylation, we mutated Ser56 to alanine in Prm2 (Prm2 S56A). Introduction of this mutation to Hspa4l-null mice (Hspa4l -/-; Prm2 S56A/S56A) restored the malformation of sperm heads and the infertility of Hspa4l -/- mice. The dephosphorylation signal to eliminate phosphate was crucial, and these results unveiled the mechanism and biological relevance of the dephosphorylation of Prm2 for sperm maturation in vivo.
Collapse
Affiliation(s)
- Katsuhiko Itoh
- Department of Clinical Molecular Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan. .,Division of Medical Equipment Management, Department of Patient Safety, Kyoto University Hospital, Kyoto 606-8507, Japan
| | - Gen Kondoh
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Hitoshi Miyachi
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Manabu Sugai
- Department of Molecular Genetics, Unit of Biochemistry and Bioinformative Sciences, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan.,Life Science Innovation Center, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| | - Yoshiyuki Kaneko
- Department of Clinical Molecular Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Satsuki Kitano
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Hitomi Watanabe
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Ryota Maeda
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Akihiro Imura
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yu Liu
- Department of Clinical Molecular Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.,Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Chizuru Ito
- Department of Functional Anatomy, Reproductive Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, Wako 351-0198, Japan
| | - Kiyotaka Toshimori
- Department of Functional Anatomy, Reproductive Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan.,Future Medical Research Center, Chiba University, Chiba 260-8670, Japan
| | - Jun Fujita
- Department of Clinical Molecular Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.,Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
12
|
Schenk C, Meyrath M, Warnken U, Schnölzer M, Mier W, Harak C, Lohmann V. Characterization of a Threonine-Rich Cluster in Hepatitis C Virus Nonstructural Protein 5A and Its Contribution to Hyperphosphorylation. J Virol 2018; 92:JVI.00737-18. [PMID: 30258001 PMCID: PMC6258934 DOI: 10.1128/jvi.00737-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/20/2018] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is a phosphoprotein with key functions in regulating viral RNA replication and assembly. Two phosphoisoforms are discriminated by their different apparent molecular weights: a basally phosphorylated (p56) and a hyperphosphorylated (p58) variant. The precise mechanisms governing p58 synthesis and specific functions of the isoforms are poorly understood. Our study aimed at a deeper understanding of determinants involved in p58 synthesis. We analyzed two variants of p56 and p58 of isolate JFH-1 separately by mass spectrometry using an expression model and thereby identified a threonine-rich phosphopeptide exclusively found in the hyperphosphorylated variant. Individual exchange of possible phosphoacceptor sites to phosphoablatant or -mimetic residues had little impact on HCV replication or assembly in cell culture. A phosphospecific antibody recognizing pT242 revealed that this position was indeed phosphorylated only in p58 and depended on casein kinase Iα. Importantly, phosphoablative mutations at positions T244 and S247 abrogated pT242 detection without substantial effects on global p58 levels, whereas mutations in the preceding serine-rich cluster dramatically reduced total p58 levels but had minor impact on pT242 levels, suggesting the existence of distinct subspecies of hyperphosphorylated NS5A. Mass spectrometry analyses of different genotypes showed variable phosphorylation patterns across NS5A and suggested that the threonine-rich region is also phosphorylated at T242 in gt4a and at S249 in gt1a, gt1b, and gt4a. Our data therefore indicate that p58 is not a single homogenously phosphorylated protein species but rather a population of various phosphoisoforms, with high variability between genotypes.IMPORTANCE Hepatitis C virus infections affect 71 million people worldwide and cause severe chronic liver disease. Recently, efficient antiviral therapies have been established, with inhibitors of nonstructural protein NS5A as a cornerstone. NS5A is a central regulator of HCV replication and assembly but is still enigmatic in its molecular functions. It exists in two phosphoisoforms, p56 and p58. We identified a phosphopeptide exclusively found in p58 and analyzed the determinants involved in phosphorylation of this region. We found evidence for very different phosphorylation patterns resulting in p58. These results challenge the concept of p58 being a homogenous species of NS5A molecules phosphorylated at the same positions and argues for at least two independently phosphorylated variants showing the same electrophoretic mobility, likely serving different functions.
Collapse
Affiliation(s)
- Christian Schenk
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Max Meyrath
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Uwe Warnken
- Functional Proteome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martina Schnölzer
- Functional Proteome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Walter Mier
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Harak
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|