1
|
Barboza MGL, Dyna AL, Lima TF, Tavares ER, Yamada-Ogatta SF, Deduch F, Orsato A, Toledo KA, Cunha AP, Ricardo NMPS, Galhardi LCF. In vitro antiviral effect of sulfated pectin from Mangifera indica against the infection of the viral agent of childhood bronchiolitis (Respiratory Syncytial Virus - RSV). Int J Biol Macromol 2024; 280:135387. [PMID: 39260645 DOI: 10.1016/j.ijbiomac.2024.135387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 08/21/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
The Human Respiratory Syncytial Virus (RSV) is the leading cause of acute respiratory infections in children. Currently, no safe, effective, or feasible option for pharmacological management of RSV exists. Hence, plant-derived natural compounds have been explored as promising antiviral agents. Mangifera indica is a globally distributed plant with reported anti-inflammatory, cardioprotective, and antiviral activities. Our study investigated the antiviral potential of a novel pectin from M. indica peels (PMi) and its chemically sulfated derivative (PSMi) against RSV in HEp-2 cells. The compounds were characterized using Fourier-transform infrared spectroscopy and nuclear magnetic resonance (NMR). NMR analysis revealed the presence of ester and carboxylic acid groups in PMi, and sulfation resulted in a sulfation degree of 0.5. PMi and PSMi showed no cytotoxic effects even at concentrations as high as 2000 μg/mL. PSMi completely inhibited RSV infectivity (100-1.56 μg/mL, 50 % inhibitory concentration of viral infectivity = 0.77 ± 0.11 μg/mL). The mechanism of action was investigated using the 50 % tissue culture infectious dose assay. PSMi displayed virucidal activity at concentrations from 100 to 6.25 μg/mL, and a significant reduction in viral infection was observed at all treatment times. Overall, PSMi is antiviral, cell-safe, and exhibits promising potential as an RSV treatment.
Collapse
Affiliation(s)
- Mario Gabriel Lopes Barboza
- Departamento de Microbiologia - Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil
| | - André Luiz Dyna
- Departamento de Microbiologia - Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil
| | - Thiago Ferreira Lima
- Departamento de Microbiologia - Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil
| | - Eliandro Reis Tavares
- Departamento de Microbiologia - Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil; Departamento de Medicina, Pontifícia Universidade Católica do Paraná, Londrina, Paraná 86067-000, Brazil
| | - Sueli Fumie Yamada-Ogatta
- Departamento de Microbiologia - Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil
| | - Flávia Deduch
- Departamento de Química - Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil
| | - Alexandre Orsato
- Departamento de Química - Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil
| | - Karina Alves Toledo
- Departamento de Ciências Biológicas, Universidade Estadual Paulista Júlio de Mesquita Filho, Assis, São Paulo 19806-900, Brazil
| | - Arcelina Pacheco Cunha
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Ceará 60455-760, Brazil
| | | | - Ligia Carla Faccin Galhardi
- Departamento de Microbiologia - Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil.
| |
Collapse
|
2
|
Turner DL, Amoozadeh S, Baric H, Stanley E, Werder RB. Building a human lung from pluripotent stem cells to model respiratory viral infections. Respir Res 2024; 25:277. [PMID: 39010108 PMCID: PMC11251358 DOI: 10.1186/s12931-024-02912-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
To protect against the constant threat of inhaled pathogens, the lung is equipped with cellular defenders. In coordination with resident and recruited immune cells, this defence is initiated by the airway and alveolar epithelium following their infection with respiratory viruses. Further support for viral clearance and infection resolution is provided by adjacent endothelial and stromal cells. However, even with these defence mechanisms, respiratory viral infections are a significant global health concern, causing substantial morbidity, socioeconomic losses, and mortality, underlining the need to develop effective vaccines and antiviral medications. In turn, the identification of new treatment options for respiratory infections is critically dependent on the availability of tractable in vitro experimental models that faithfully recapitulate key aspects of lung physiology. For such models to be informative, it is important these models incorporate human-derived, physiologically relevant versions of all cell types that normally form part of the lungs anti-viral response. This review proposes a guideline using human induced pluripotent stem cells (iPSCs) to create all the disease-relevant cell types. iPSCs can be differentiated into lung epithelium, innate immune cells, endothelial cells, and fibroblasts at a large scale, recapitulating in vivo functions and providing genetic tractability. We advocate for building comprehensive iPSC-derived in vitro models of both proximal and distal lung regions to better understand and model respiratory infections, including interactions with chronic lung diseases.
Collapse
Affiliation(s)
- Declan L Turner
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Sahel Amoozadeh
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Hannah Baric
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Ed Stanley
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Rhiannon B Werder
- Murdoch Children's Research Institute, Melbourne, 3056, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia.
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia.
| |
Collapse
|
3
|
Van Den Bergh A, Bailly B, Guillon P, von Itzstein M, Dirr L. Novel insights into the host cell glycan binding profile of human metapneumovirus. J Virol 2024; 98:e0164123. [PMID: 38690874 PMCID: PMC11237588 DOI: 10.1128/jvi.01641-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/28/2024] [Indexed: 05/03/2024] Open
Abstract
Numerous viruses have been found to exploit glycoconjugates expressed on human cells as their initial attachment factor for viral entry and infection. The virus-cell glycointeractome, when characterized, may serve as a template for antiviral drug design. Heparan sulfate proteoglycans extensively decorate the human cell surface and were previously described as a primary receptor for human metapneumovirus (HMPV). After respiratory syncytial virus, HMPV is the second most prevalent respiratory pathogen causing respiratory tract infection in young children. To date, there is neither vaccine nor drug available to prevent or treat HMPV infection. Using a multidisciplinary approach, we report for the first time the glycointeractome of the HMPV fusion (F) protein, a viral surface glycoprotein that is essential for target-cell recognition, attachment, and entry. Our glycan microarray and surface plasmon resonance results suggest that Galβ1-3/4GlcNAc moieties that may be sialylated or fucosylated are readily recognized by HMPV F. The bound motifs are highly similar to the N-linked and O-linked glycans primarily expressed on the human lung epithelium. We demonstrate that the identified glycans have the potential to compete with the cellular receptors used for HMPV entry and consequently block HMPV infection. We found that lacto-N-neotetraose demonstrated the strongest HMPV binding inhibition in a cell infection assay. Our current findings offer an encouraging and novel avenue for the design of anti-HMPV drug candidates using oligosaccharide templates.IMPORTANCEAll cells are decorated with a dense coat of sugars that makes a sugar code. Many respiratory viruses exploit this sugar code by binding to these sugars to cause infection. Human metapneumovirus is a leading cause for acute respiratory tract infections. Despite its medical importance, there is no vaccine or antiviral drug available to prevent or treat human metapneumovirus infection. This study investigates how human metapneumovirus binds to sugars in order to more efficiently infect the human host. We found that human metapneumovirus binds to a diverse range of sugars and demonstrated that these sugars can ultimately block viral infection. Understanding how viruses can take advantage of the sugar code on our cells could identify new intervention and treatment strategies to combat viral disease.
Collapse
Affiliation(s)
| | - Benjamin Bailly
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Patrice Guillon
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Larissa Dirr
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
4
|
Ribó-Molina P, van Nieuwkoop S, Mykytyn AZ, van Run P, Lamers MM, Haagmans BL, Fouchier RAM, van den Hoogen BG. Human metapneumovirus infection of organoid-derived human bronchial epithelium represents cell tropism and cytopathology as observed in in vivo models. mSphere 2024; 9:e0074323. [PMID: 38265200 PMCID: PMC10900881 DOI: 10.1128/msphere.00743-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
Human metapneumovirus (HMPV), a member of the Pneumoviridae family, causes upper and lower respiratory tract infections in humans. In vitro studies with HMPV have mostly been performed in monolayers of undifferentiated epithelial cells. In vivo studies in cynomolgus macaques and cotton rats have shown that ciliated epithelial cells are the main target of HMPV infection, but these observations cannot be studied in monolayer systems. Here, we established an organoid-derived bronchial culture model that allows physiologically relevant studies on HMPV. Inoculation with multiple prototype HMPV viruses and recent clinical virus isolates led to differences in replication among HMPV isolates. Prolific HMPV replication in this model caused damage to the ciliary layer, including cilia loss at advanced stages post-infection. These cytopathic effects correlated with those observed in previous in vivo studies with cynomolgus macaques. The assessment of the innate immune responses in three donors upon HMPV and RSV inoculation highlighted the importance of incorporating multiple donors to account for donor-dependent variation. In conclusion, these data indicate that the organoid-derived bronchial cell culture model resembles in vivo findings and is therefore a suitable and robust model for future HMPV studies. IMPORTANCE Human metapneumovirus (HMPV) is one of the leading causative agents of respiratory disease in humans, with no treatment or vaccine available yet. The use of primary epithelial cultures that recapitulate the tissue morphology and biochemistry of the human airways could aid in defining more relevant targets to prevent HMPV infection. For this purpose, this study established the first primary organoid-derived bronchial culture model suitable for a broad range of HMPV isolates. These bronchial cultures were assessed for HMPV replication, cellular tropism, cytopathology, and innate immune responses, where the observations were linked to previous in vivo studies with HMPV. This study exposed an important gap in the HMPV field since extensively cell-passaged prototype HMPV B viruses did not replicate in the bronchial cultures, underpinning the need to use recently isolated viruses with a controlled passage history. These results were reproducible in three different donors, supporting this model to be suitable to study HMPV infection.
Collapse
Affiliation(s)
- Pau Ribó-Molina
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Anna Z. Mykytyn
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Peter van Run
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Mart M. Lamers
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Bart L. Haagmans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | | |
Collapse
|
5
|
Sepúlveda-Alfaro J, Catalán EA, Vallejos OP, Ramos-Tapia I, Madrid-Muñoz C, Mendoza-León MJ, Suazo ID, Rivera-Asin E, Silva PH, Alvarez-Mardones O, Castillo-Godoy DP, Riedel CA, Schinnerling K, Ugalde JA, Soto JA, Bueno SM, Kalergis AM, Melo-Gonzalez F. Human metapneumovirus respiratory infection affects both innate and adaptive intestinal immunity. Front Immunol 2024; 15:1330209. [PMID: 38404579 PMCID: PMC10884822 DOI: 10.3389/fimmu.2024.1330209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/15/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction Respiratory infections are one of the leading causes of morbidity and mortality worldwide, mainly in children, immunocompromised people, and the elderly. Several respiratory viruses can induce intestinal inflammation and alterations in intestinal microbiota composition. Human metapneumovirus (HMPV) is one of the major respiratory viruses contributing to infant mortality in children under 5 years of age worldwide, and the effect of this infection at the gut level has not been studied. Methods Here, we evaluated the distal effects of HMPV infection on intestinal microbiota and inflammation in a murine model, analyzing several post-infection times (days 1, 3, and 5). Six to eight-week-old C57BL/6 mice were infected intranasally with HMPV, and mice inoculated with a non-infectious supernatant (Mock) were used as a control group. Results We did not detect HMPV viral load in the intestine, but we observed significant changes in the transcription of IFN-γ in the colon, analyzed by qPCR, at day 1 post-infection as compared to the control group. Furthermore, we analyzed the frequencies of different innate and adaptive immune cells in the colonic lamina propria, using flow cytometry. The frequency of monocyte populations was altered in the colon of HMPV -infected mice at days 1 and 3, with no significant difference from control mice at day 5 post-infection. Moreover, colonic CD8+ T cells and memory precursor effector CD8+ T cells were significantly increased in HMPV-infected mice at day 5, suggesting that HMPV may also alter intestinal adaptive immunity. Additionally, we did not find alterations in antimicrobial peptide expression, the frequency of colonic IgA+ plasma cells, and levels of fecal IgA. Some minor alterations in the fecal microbiota composition of HMPV -infected mice were detected using 16s rRNA sequencing. However, no significant differences were found in β-diversity and relative abundance at the genus level. Discussion To our knowledge, this is the first report describing the alterations in intestinal immunity following respiratory infection with HMPV infection. These effects do not seem to be mediated by direct viral infection in the intestinal tract. Our results indicate that HMPV can affect colonic innate and adaptive immunity but does not significantly alter the microbiota composition, and further research is required to understand the mechanisms inducing these distal effects in the intestine.
Collapse
Affiliation(s)
- Javiera Sepúlveda-Alfaro
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eduardo A. Catalán
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Omar P. Vallejos
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ignacio Ramos-Tapia
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | | | - María J. Mendoza-León
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Isidora D. Suazo
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Elizabeth Rivera-Asin
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Pedro H. Silva
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Oscar Alvarez-Mardones
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | | | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | | | - Juan A. Ugalde
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Jorge A. Soto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Melo-Gonzalez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
6
|
Martínez-Espinoza I, Bungwon AD, Guerrero-Plata A. Human Metapneumovirus-Induced Host microRNA Expression Impairs the Interferon Response in Macrophages and Epithelial Cells. Viruses 2023; 15:2272. [PMID: 38005948 PMCID: PMC10675405 DOI: 10.3390/v15112272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Human metapneumovirus (HMPV) is a nonsegmented, single-stranded negative RNA virus and a member of the Pneumoviridae family. During HMPV infection, macrophages play a critical role in defending the respiratory epithelium by secreting large amounts of type I interferon (IFN). MicroRNAs (miRNAs) are small, noncoding, single-stranded RNAs that play an essential role in regulating gene expression during normal cellular homeostasis and disease by binding to specific mRNAs, thereby regulating at the transcriptional and post-transcriptional levels with a direct impact on the immune response and other cellular processes. However, the role of miRNAs in macrophages and respiratory viral infections remains largely unknown. Here, we characterized the susceptibility of THP-1-derived macrophages to HMPV infection and the effect of hsa-miR-4634 on these cells. Transfection of an miRNA mimic and inhibitor demonstrated that hsa-miR-4634 regulates the IFN response in HMPV-infected macrophages, suggesting that HMPV induces the expression of the miRNA as a subversion mechanism of the antiviral response. This effect was not limited to macrophages, as a similar effect was also observed in epithelial cells. Overall, our results demonstrate that hsa-miR-4634 is an important factor in regulating the IFN response in macrophages and epithelial cells during HMPV infection.
Collapse
Affiliation(s)
| | | | - Antonieta Guerrero-Plata
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (I.M.-E.); (A.D.B.)
| |
Collapse
|
7
|
Li J, Zhao Y, Dai Y, Zhao J. Identification of γ-Fagarine as a novel antiviral agent against respiratory virus (hMPV) infection. Virus Res 2023; 336:199223. [PMID: 37734492 PMCID: PMC10522984 DOI: 10.1016/j.virusres.2023.199223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
Human metapneumovirus (hMPV) causes significant upper and lower respiratory disease in all age groups worldwide. However, there is no licensed drugs or vaccine available against hMPV. γ-Fagarine, an alkaloid isolated from the root of zanthoxylum, has been reported to be effective in the treatment of cancer, inflammatory diseases and antivirals. However, little is known about the inhibitory effect of γ-Fagarine against respiratory virus infection and the mechanism. In this study, we aim to investigate the effect of γ-Fagarine on hMPV infection and explore its underlying molecular mechanisms. Vero-E6 and 16HBE cells were used as cell models. Virus replication and microcosm character were explored in Vero-E6 cells. Then, the antiviral activities were investigated by quantitative real-time PCR (RT-qPCR), western blotting (WB), and indirect immunofluorescence assays (IFAs) in Vero-E6 and 16HBE. Potential mechanisms of γ-Fagarine related to HSPG and lysosome pH were assessed in 16HBE cells. Lastly, a virus-infected mouse model was established and antiviral assay in vivo was conducted. γ-Fagarine showed no toxicity toward Vero-E6 cells and 16HBE cells but demonstrated anti-hMPV activity. Virus titers of γ-Fagarine group were reduced to 33% and 45% of the hMPV groups, respectively. Besides, mechanistic studies revealed that γ-Fagarine could inhibit hMPV by dual mechanisms of direct restraining virus binding with HSPG and influencing lysosome pH. Furthermore, oral delivery of γ-Fagarine to hMPV-infected mice at a dosage of 25 mg/kg reduced the hMPV load in lung tissues. After γ-Fagarine treatment, pathological damage caused by viral infection was also ameliorated. These findings suggest that γ-Fagarine has antiviral effects in vitro and in vivo, which are associated with its ability to restrain virus binding with HSPG and influence lysosome pH, thus indicating that γ-Fagarine has the potential to serve as a candidate to fight against hMPV infection and other respiratory viruses such as influenza viruses and SARS-CoV-2.
Collapse
Affiliation(s)
- Jinhua Li
- Department of Pharmacognosy, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yao Zhao
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Ying Dai
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan 610041, China
| | - Junning Zhao
- Department of Pharmacognosy, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; National Key Laboratory of Drug Regulatory Science, National Medical Products Administration (NMPA), Beijing 100038, China.
| |
Collapse
|
8
|
Lauster D, Osterrieder K, Haag R, Ballauff M, Herrmann A. Respiratory viruses interacting with cells: the importance of electrostatics. Front Microbiol 2023; 14:1169547. [PMID: 37440888 PMCID: PMC10333706 DOI: 10.3389/fmicb.2023.1169547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
The COVID-19 pandemic has rekindled interest in the molecular mechanisms involved in the early steps of infection of cells by viruses. Compared to SARS-CoV-1 which only caused a relatively small albeit deadly outbreak, SARS-CoV-2 has led to fulminant spread and a full-scale pandemic characterized by efficient virus transmission worldwide within a very short time. Moreover, the mutations the virus acquired over the many months of virus transmission, particularly those seen in the Omicron variant, have turned out to result in an even more transmissible virus. Here, we focus on the early events of virus infection of cells. We review evidence that the first decisive step in this process is the electrostatic interaction of the spike protein with heparan sulfate chains present on the surface of target cells: Patches of cationic amino acids located on the surface of the spike protein can interact intimately with the negatively charged heparan sulfate chains, which results in the binding of the virion to the cell surface. In a second step, the specific interaction of the receptor binding domain (RBD) within the spike with the angiotensin-converting enzyme 2 (ACE2) receptor leads to the uptake of bound virions into the cell. We show that these events can be expressed as a semi-quantitative model by calculating the surface potential of different spike proteins using the Adaptive Poison-Boltzmann-Solver (APBS). This software allows visualization of the positive surface potential caused by the cationic patches, which increased markedly from the original Wuhan strain of SARS-CoV-2 to the Omicron variant. The surface potential thus enhanced leads to a much stronger binding of the Omicron variant as compared to the original wild-type virus. At the same time, data taken from the literature demonstrate that the interaction of the RBD of the spike protein with the ACE2 receptor remains constant within the limits of error. Finally, we briefly digress to other viruses and show the usefulness of these electrostatic processes and calculations for cell-virus interactions more generally.
Collapse
Affiliation(s)
- Daniel Lauster
- Institut für Pharmazie, Biopharmazeutika, Freie Universität Berlin, Berlin, Germany
| | | | - Rainer Haag
- Institut für Chemie und Biochemie, SupraFAB, Freie Universität Berlin, Berlin, Germany
| | - Matthias Ballauff
- Institut für Chemie und Biochemie, SupraFAB, Freie Universität Berlin, Berlin, Germany
| | - Andreas Herrmann
- Institut für Chemie und Biochemie, SupraFAB, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
9
|
Papakonstantinou E, Christopoulou ME, Karakioulaki M, Grize L, Tamm M, Stolz D. Ηeparan sulphate in infectious and non-infectious exacerbations of COPD. Respirology 2023. [PMID: 37311657 DOI: 10.1111/resp.14531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/24/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Acute exacerbations of chronic obstructive pulmonary disease (AECOPD) are associated with worsening health outcomes and effective treatment of each episode is essential. In this study, we aimed to investigate if plasma levels of heparan sulphate (HS) are associated with the aetiology of AECOPD. METHODS COPD patients (N = 1189), GOLD grade II-IV, from a discovery cohort (N = 638) and from a validation cohort (N = 551), were included in the study. HS and heparanase (HSPE-1) were measured longitudinally in plasma at stable state, at AECOPD and at 4 weeks follow-up. RESULTS Plasma HS was higher in patients with COPD as compared with non-COPD controls and was significantly increased at AECOPD as compared to stable state (p < 0.001) in the discovery and in the validation cohorts. Four distinct exacerbation groups were classified based on aetiology (no-infection/bacterial-infection/viral-infection/bacterial and viral coinfection) in the validation cohort. The fold-increase of HS from stable state to AECOPD was associated with the aetiology of exacerbation and was higher in cases with bacterial and viral coinfections. HSPE-1 was also significantly increased at AECOPD, however, there was no association of HSPE-1 levels with the aetiology of these events. The probability of having an infection at AECOPD was raised as HS levels increased from stable state to AECOPD. This probability was higher for bacterial infections than viral infections. CONCLUSION The results of our study indicate that circulating levels of HS are increased at AECOPD and this increase may be associated with the aetiology of these events.
Collapse
Affiliation(s)
- Eleni Papakonstantinou
- Clinic of Respiratory Medicine and Pulmonary cell Research, University Hospital, Basel, Switzerland
- Department of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maria-Elpida Christopoulou
- Department of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Meropi Karakioulaki
- Clinic of Respiratory Medicine and Pulmonary cell Research, University Hospital, Basel, Switzerland
| | - Leticia Grize
- Clinic of Respiratory Medicine and Pulmonary cell Research, University Hospital, Basel, Switzerland
| | - Michael Tamm
- Clinic of Respiratory Medicine and Pulmonary cell Research, University Hospital, Basel, Switzerland
| | - Daiana Stolz
- Clinic of Respiratory Medicine and Pulmonary cell Research, University Hospital, Basel, Switzerland
- Department of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Characterization of prefusion-F-specific antibodies elicited by natural infection with human metapneumovirus. Cell Rep 2022; 40:111399. [PMID: 36130517 DOI: 10.1016/j.celrep.2022.111399] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/23/2022] [Accepted: 09/01/2022] [Indexed: 12/20/2022] Open
Abstract
Human metapneumovirus (hMPV) is a major cause of acute respiratory infections in infants and older adults, for which no vaccines or therapeutics are available. The viral fusion (F) glycoprotein is required for entry and is the primary target of neutralizing antibodies; however, little is known about the humoral immune response generated from natural infection. Here, using prefusion-stabilized F proteins to interrogate memory B cells from two older adults, we obtain over 700 paired non-IgM antibody sequences representing 563 clonotypes, indicative of a highly polyclonal response. Characterization of 136 monoclonal antibodies reveals broad recognition of the protein surface, with potently neutralizing antibodies targeting each antigenic site. Cryo-EM studies further reveal two non-canonical sites and the molecular basis for recognition of the apex of hMPV F by two prefusion-specific neutralizing antibodies. Collectively, these results provide insight into the humoral response to hMPV infection in older adults and will help guide vaccine development.
Collapse
|
11
|
Hoffmann M, Snyder NL, Hartmann L. Polymers Inspired by Heparin and Heparan Sulfate for Viral Targeting. Macromolecules 2022; 55:7957-7973. [PMID: 36186574 PMCID: PMC9520969 DOI: 10.1021/acs.macromol.2c00675] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/12/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Miriam Hoffmann
- Department of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Nicole L. Snyder
- Department of Chemistry, Davidson College, Davidson, North Carolina 28035, United States
| | - Laura Hartmann
- Department of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
12
|
Van Den Bergh A, Bailly B, Guillon P, von Itzstein M, Dirr L. Antiviral strategies against human metapneumovirus: Targeting the fusion protein. Antiviral Res 2022; 207:105405. [PMID: 36084851 DOI: 10.1016/j.antiviral.2022.105405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/02/2022]
Abstract
Human metapneumoviruses have emerged in the past decades as an important global pathogen that causes severe upper and lower respiratory tract infections. Children under the age of 2, the elderly and immunocompromised individuals are more susceptible to HMPV infection than the general population due to their suboptimal immune system. Despite the recent discovery of HMPV as a novel important respiratory virus, reports have rapidly described its epidemiology, biology, and pathogenesis. However, progress is still to be made in the development of vaccines and drugs against HMPV infection as none are currently available. Herein, we discuss the importance of HMPV and review the reported strategies for anti-HMPV drug candidates. We also present the fusion protein as a promising antiviral drug target due to its multiple roles in the HMPV lifecycle. This key viral protein has previously been targeted by a range of inhibitors, which will be discussed as they represent opportunities for future drug design.
Collapse
Affiliation(s)
| | - Benjamin Bailly
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Patrice Guillon
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia.
| | - Larissa Dirr
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia.
| |
Collapse
|
13
|
Francese R, Donalisio M, Rittà M, Capitani F, Mantovani V, Maccari F, Tonetto P, Moro GE, Bertino E, Volpi N, Lembo D. Human milk glycosaminoglycans inhibit cytomegalovirus and respiratory syncytial virus infectivity by impairing cell binding. Pediatr Res 2022:10.1038/s41390-022-02091-y. [PMID: 35513714 DOI: 10.1038/s41390-022-02091-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND The antiviral role of glycosaminoglycans in human milk (HM-GAGs) has been poorly investigated. They are highly sulfated polysaccharides, which were proposed to act as decoy receptors according to their structure. The aim of this study is to evaluate the antiviral potential and the mechanism of action of total and individual HM-GAGs against three pediatric clinically relevant viruses: respiratory syncytial virus (RSV), cytomegalovirus (HCMV), and rotavirus. METHODS HM-GAGs were isolated from HM and a library of individual GAGs, structurally related to HM-GAGs, was prepared. The antiviral activity of HM-GAGs and the impact of thermal treatment were investigated in vitro by specific antiviral assays. RESULTS We demonstrated that HM-GAGs are endowed with anti-HCMV and anti-RSV activity and that they act by altering virus attachment to cell. We clarified the contribution of individual HM-GAGs, showing a specific structure-related activity. We did not observe any alteration of HM-GAG antiviral activity after thermal treatment. CONCLUSIONS We showed that HM-GAGs contribute to the overall antiviral activity of HM, likely exerting a synergic action with other HM antiviral agents. HM-GAGs can now be added to the list of endogenous factors that may reduce breast-milk-acquired HCMV symptomatic infections and protecting infants from respiratory tract infections by RSV. IMPACT HM-GAGs have been poorly investigated for their antiviral action so far. We demonstrated that HM-GAGs are endowed with significant anti-HCMV and anti-RSV activity and that they are able to alter virus binding to the cell. The contribution of individual HM-GAGs is mainly exerted by the FMHep and is not based on a simple charge interaction between the virus and sulfate groups but involves a specific GAG structural configuration. Our results contribute to identifying the multiple factors synergically acting in mediating HM antiviral properties and to clarifying their specific mechanism of action.
Collapse
Affiliation(s)
- Rachele Francese
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, Orbassano (TO), Italy
| | - Manuela Donalisio
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, Orbassano (TO), Italy
| | - Massimo Rittà
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, Orbassano (TO), Italy
| | - Federica Capitani
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Veronica Mantovani
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Maccari
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Paola Tonetto
- Department of Public Health and Pediatrics, Neonatal Intensive Care Unit, University of Turin, Turin, Italy
| | - Guido E Moro
- Italian Association of Human Milk Banks (AIBLUD), Milan, Italy
| | - Enrico Bertino
- Department of Public Health and Pediatrics, Neonatal Intensive Care Unit, University of Turin, Turin, Italy
| | - Nicola Volpi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - David Lembo
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, Orbassano (TO), Italy.
| |
Collapse
|
14
|
Reis JG, Cadamuro RD, Cabral AC, Thaís da Silva I, Rodríguez-Lázaro D, Fongaro G. Broad Spectrum Algae Compounds Against Viruses. Front Microbiol 2022; 12:809296. [PMID: 35095816 PMCID: PMC8795700 DOI: 10.3389/fmicb.2021.809296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/24/2021] [Indexed: 12/24/2022] Open
Abstract
The pharmaceutical industry is currently trying to develop new bioactive compounds to inactivate both enveloped and non-enveloped viruses for therapeutic purposes. Consequently, microalgal and macroalgal bioactive compounds are being explored by pharmaceutical, as well as biotechnology and food industries. In this review, we show how compounds produced by algae include important candidates for viral control applications. We discuss their mechanisms of action and activity against enveloped and non-enveloped viruses, including those causing infections by enteric, parenteral, and respiratory routes. Indeed, algal products have potential in human and animal medicine.
Collapse
Affiliation(s)
- Jacqueline Graff Reis
- Laboratory of Applied Virology, Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Rafael Dorighello Cadamuro
- Laboratory of Applied Virology, Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Ariadne Cristiane Cabral
- Laboratory of Applied Virology, Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
- Department of Dentistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Izabella Thaís da Silva
- Laboratory of Applied Virology, Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - David Rodríguez-Lázaro
- Microbiology Division, Faculty of Sciences, University of Burgos, Burgos, Spain
- Research Centre for Emerging Pathogens and Global Health, University of Burgos, Burgos, Spain
| | - Gislaine Fongaro
- Laboratory of Applied Virology, Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
- *Correspondence: Gislaine Fongaro,
| |
Collapse
|
15
|
Influence of the Structural Features of Carrageenans from Red Algae of the Far Eastern Seas on Their Antiviral Properties. Mar Drugs 2022; 20:md20010060. [PMID: 35049914 PMCID: PMC8779503 DOI: 10.3390/md20010060] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 01/27/2023] Open
Abstract
The structural diversity and unique physicochemical properties of sulphated polysaccharides of red algae carrageenans (CRGs), to a great extent, determine the wide range of their antiviral properties. This work aimed to compare the antiviral activities of different structural types of CRGs: against herpes simplex virus type 1 (HSV-1) and enterovirus (ECHO-1). We found that CRGs significantly increased the resistance of Vero cells to virus infection (preventive effect), directly affected virus particles (virucidal effect), inhibited the attachment and penetration of virus to cells, and were more effective against HSV-1. CRG1 showed the highest virucidal effect on HSV-1 particles with a selective index (SI) of 100. CRG2 exhibited the highest antiviral activity by inhibiting HSV-1 and ECHO-1 plaque formation, with a SI of 110 and 59, respectively, when it was added before virus infection. CRG2 also significantly reduced the attachment of HSV-1 and ECHO-1 to cells compared to other CRGs. It was shown by molecular docking that tetrasaccharides—CRGs are able to bind with the HSV-1 surface glycoprotein, gD, to prevent virus–cell interactions. The revealed differences in the effect of CRGs on different stages of the lifecycle of the viruses are apparently related to the structural features of the investigated compounds.
Collapse
|
16
|
Chaturvedi P, Kelich P, Nitka TA, Vuković L. Computational Modeling of the Virucidal Inhibition Mechanism for Broad-Spectrum Antiviral Nanoparticles and HPV16 Capsid Segments. J Phys Chem B 2021; 125:13122-13131. [PMID: 34845905 DOI: 10.1021/acs.jpcb.1c07436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Solid core nanoparticles (NPs) coated with sulfonated ligands that mimic heparan sulfate proteoglycans (HSPGs) can exhibit virucidal activity against many viruses that utilize HSPG interactions with host cells for the initial stages of infection. How the interactions of these NPs with large capsid segments of HSPG-interacting viruses lead to their virucidal activity has been unclear. Here, we describe the interactions between sulfonated NPs and segments of the human papilloma virus type 16 (HPV16) capsids using atomistic molecular dynamics simulations. The simulations demonstrate that the NPs primarily bind at the interfaces of two HPV16 capsid proteins. After equilibration, the distances and angles between capsid proteins in the capsid segments are larger for the systems in which the NPs bind at the interfaces of capsid proteins. Over time, NP binding can lead to breaking of contacts between two neighboring proteins. The revealed mechanism of NPs targeting the interfaces between pairs of capsid proteins can be utilized for designing new generations of virucidal materials and contribute to the development of new broad-spectrum non-toxic virucidal materials.
Collapse
Affiliation(s)
- Parth Chaturvedi
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Payam Kelich
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Tara A Nitka
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Lela Vuković
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
17
|
New Insights into the Structure of Kappa/Beta-Carrageenan: A Novel Potential Inhibitor of HIV-1. Int J Mol Sci 2021; 22:ijms222312905. [PMID: 34884718 PMCID: PMC8657973 DOI: 10.3390/ijms222312905] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
New insights into the structure of the hybrid κ/β-carrageenan (κ/β-CRG) of the red alga Tichocarpus crinitus have been obtained. Carrageenan oligosaccharides were prepared through the chemical and enzymatic depolymerization of κ/β-CRG with κ-carrageenase and its the enzyme-resistant fraction. The composition and distribution of the repetition units of κ/β- CRG were investigated by using the negative ion tandem MALDI-TOFMS and ESIMS method, which made it possible to prove and characterize the hybrid structure of this polysaccharide. An analysis revealed the blockwise distribution of the long β-blocks along the polysaccharide chain, with the inclusion of κ/β, μ/ν-blocks and some ι-blocks. Furthermore, the desulfated κ/β-CRG was shown to contain of –G–D– repeating units up to 3.5 kDa. Previous studies have demonstrated that CRGs suppress the replication of several viruses. Here, we established that κ/β-CRG and its oligosaccharides significantly inhibit the transduction efficiency of replication-defective lentiviral particles pseudotyped with the envelope proteins of three different viruses. We found that the polysaccharide and its oligosaccharides strongly reduced the transduction efficiency of lentiviral particles pseudotyped with GP160—the envelope protein of the human immunodeficiency virus HIV-1—when added to T-lymphocyte Jurkat cells. The CRG oligosaccharides displayed significantly higher antiviral activity.
Collapse
|
18
|
Rüger N, Sid H, Meens J, Szostak MP, Baumgärtner W, Bexter F, Rautenschlein S. New Insights into the Host-Pathogen Interaction of Mycoplasma gallisepticum and Avian Metapneumovirus in Tracheal Organ Cultures of Chicken. Microorganisms 2021; 9:microorganisms9112407. [PMID: 34835532 PMCID: PMC8618481 DOI: 10.3390/microorganisms9112407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 01/04/2023] Open
Abstract
Respiratory pathogens are a health threat for poultry. Co-infections lead to the exacerbation of clinical symptoms and lesions. Mycoplasma gallisepticum (M. gallispeticum) and Avian Metapneumovirus (AMPV) are two avian respiratory pathogens that co-circulate worldwide. The knowledge about the host-pathogen interaction of M. gallispeticum and AMPV in the chicken respiratory tract is limited. We aimed to investigate how co-infections affect the pathogenesis of the respiratory disease and whether the order of invading pathogens leads to changes in host-pathogen interaction. We used chicken tracheal organ cultures (TOC) to investigate pathogen invasion and replication, lesion development, and selected innate immune responses, such as interferon (IFN) α, inducible nitric oxide synthase (iNOS) and IFNλ mRNA expression levels. We performed mono-inoculations (AMPV or M. gallispeticum) or dual-inoculations in two orders with a 24-h interval between the first and second pathogen. Dual-inoculations compared to mono-inoculations resulted in more severe host reactions. Pre-infection with AMPV followed by M. gallispeticum resulted in prolonged viral replication, more significant innate immune responses, and lesions (p < 0.05). AMPV as the secondary pathogen impaired the bacterial attachment process. Consequently, the M. gallispeticum replication was delayed, the innate immune response was less pronounced, and lesions appeared later. Our results suggest a competing process in co-infections and offer new insights in disease processes.
Collapse
Affiliation(s)
- Nancy Rüger
- Clinic for Poultry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (N.R.); (F.B.)
| | - Hicham Sid
- Reproductive Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Munich, Germany;
| | - Jochen Meens
- Institute for Microbiology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Michael P. Szostak
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Frederik Bexter
- Clinic for Poultry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (N.R.); (F.B.)
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (N.R.); (F.B.)
- Correspondence: ; Tel.: +49-511-953-8779
| |
Collapse
|
19
|
Figueroa JM, Lombardo ME, Dogliotti A, Flynn LP, Giugliano R, Simonelli G, Valentini R, Ramos A, Romano P, Marcote M, Michelini A, Salvado A, Sykora E, Kniz C, Kobelinsky M, Salzberg DM, Jerusalinsky D, Uchitel O. Efficacy of a Nasal Spray Containing Iota-Carrageenan in the Postexposure Prophylaxis of COVID-19 in Hospital Personnel Dedicated to Patients Care with COVID-19 Disease. Int J Gen Med 2021; 14:6277-6286. [PMID: 34629893 PMCID: PMC8493111 DOI: 10.2147/ijgm.s328486] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Iota-Carrageenan (I-C) is a sulfate polysaccharide synthesized by red algae, with demonstrated antiviral activity and clinical efficacy as nasal spray in the treatment of common cold. In vitro, I-C inhibits SARS-CoV-2 infection in cell culture. RESEARCH QUESTION Can a nasal spray with Iota-Carrageenan be useful in the prophylaxis of COVID-19 in health care workers managing patients with COVID-19 disease? STUDY DESIGN AND METHODS This is a pilot pragmatic multicenter, randomized, double-blind, placebo-controlled study assessing the use of a nasal spray containing I-C in the prophylaxis of COVID-19 in hospital personnel dedicated to care of COVID-19 patients. Clinically healthy physicians, nurses, kinesiologists and other health care providers managing patients hospitalized for COVID-19 were assigned in a 1:1 ratio to receive four daily doses of I-C spray or placebo for 21 days. The primary end point was clinical COVID-19, as confirmed by reverse transcriptase polymerase chain reaction testing, over a period of 21 days. The trial is registered at ClinicalTrials.gov (NCT04521322). RESULTS A total of 394 individuals were randomly assigned to receive I-C or placebo. Both treatment groups had similar baseline characteristics. The incidence of COVID-19 differs significantly between subjects receiving the nasal spray with I-C (2 of 196 [1.0%]) and those receiving placebo (10 of 198 [5.0%]). Relative risk reduction: 79.8% (95% CI 5.3 to 95.4; p=0.03). Absolute risk reduction: 4% (95% CI 0.6 to 7.4). INTERPRETATION In this pilot study a nasal spray with I-C showed significant efficacy in preventing COVID-19 in health care workers managing patients with COVID-19 disease. CLINICAL TRIALS REGISTRATION NCT04521322.
Collapse
Affiliation(s)
- Juan Manuel Figueroa
- Sleep and Respiratory Research Center, Instituto de Ciencia y Tecnología Cesar Milstein, Ciudad Autónoma de Buenos Aires, Argentina
| | - Mónica Edith Lombardo
- Clinical Research Unit, Hospital Universitario CEMIC, Ciudad Autónoma de Buenos Aires, Argentina
- Scientific Direction, Nobeltri S.R.L, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ariel Dogliotti
- Department of Cardiology, Instituto Cardiovascular de Rosario, Rosario, Santa Fe, Argentina
| | - Luis Pedro Flynn
- Department of Infectology, Sanatorio de Niños de Rosario, Rosario, Santa Fe, Argentina
| | - Robert Giugliano
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Guido Simonelli
- Département de Médecine, Université de Montréal and Centre d'études avancées en médecine du sommeil, Hôpital du Sacré-Coeur de Montréal, Montréal, Quebec, Canada
| | - Ricardo Valentini
- Clinical Research Unit, Hospital Universitario CEMIC, Ciudad Autónoma de Buenos Aires, Argentina
| | - Agñel Ramos
- Intensive Care Department, Sanatorio Parque de Rosario, Rosario, Santa Fe, Argentina
| | - Pablo Romano
- Otolaryngology Department, Clínica y Maternidad Santa Isabel, Ciudad Autónoma de Buenos Aires, Argentina
| | - Marcelo Marcote
- Medical Direction Department, Hospital Interzonal de Agudos Pte. Perón, Avellaneda, Buenos Aires, Argentina
| | - Alicia Michelini
- Pulmonology Department, Hospital Pediátrico Avelino Castelán, Resistencia, Chaco, Argentina
| | - Alejandro Salvado
- Pulmonology Department, Hospital Británico de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Emilio Sykora
- Department of Medicine, Clínica Monte Grande, Monte Grande, Buenos Aires, Argentina
| | - Cecilia Kniz
- Pulmonology Department, Hospital 4 de Junio Dr Ramón Carrillo, Chaco, Argentina
| | - Marcelo Kobelinsky
- Medical Direction, Clínica Modelo De Morón, Morón, Provincia de Buenos Aires, Argentina
| | - David Manuel Salzberg
- Department of Family Medicine, Hospital Gral. de Agudos Dr. Teodoro Alvarez, Ciudad Autónoma de Buenos Aires, Argentina
| | - Diana Jerusalinsky
- Cell Biology and Neurosciences Institute (IBCN), Buenos Aires University-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Osvaldo Uchitel
- Institute of Physiology, Molecular Biology and Neurosciences, Buenos Aires University-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
20
|
Antivirals targeting paramyxovirus membrane fusion. Curr Opin Virol 2021; 51:34-47. [PMID: 34592709 DOI: 10.1016/j.coviro.2021.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 01/29/2023]
Abstract
The Paramyxoviridae family includes enveloped single-stranded negative-sense RNA viruses such as measles, mumps, human parainfluenza, canine distemper, Hendra, and Nipah viruses, which cause a tremendous global health burden. The ability of paramyxoviral glycoproteins to merge viral and host membranes allows entry of the viral genome into host cells, as well as cell-cell fusion, an important contributor to disease progression. Recent molecular and structural advances in our understanding of the paramyxovirus membrane fusion machinery gave rise to various therapeutic approaches aiming at inhibiting viral infection, spread, and cytopathic effects. These therapeutic approaches include peptide mimics, antibodies, and small molecule inhibitors with various levels of success at inhibiting viral entry, increasing the potential of effective antiviral therapeutic development.
Collapse
|
21
|
Structure, Immunogenicity, and Conformation-Dependent Receptor Binding of the Postfusion Human Metapneumovirus F Protein. J Virol 2021; 95:e0059321. [PMID: 34160259 DOI: 10.1128/jvi.00593-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Human metapneumovirus (hMPV) is an important cause of acute viral respiratory infection. As the only target of neutralizing antibodies, the hMPV fusion (F) protein has been a major focus for vaccine development and targeting by drugs and monoclonal antibodies (MAbs). While X-ray structures of trimeric prefusion and postfusion hMPV F proteins from genotype A, and monomeric prefusion hMPV F protein from genotype B have been determined, structural data for the postfusion conformation for genotype B is lacking. We determined the crystal structure of this protein and compared the structural differences of postfusion hMPV F between hMPV A and B genotypes. We also assessed the receptor binding properties of the hMPV F protein to heparin and heparan sulfate (HS). A library of HS oligomers was used to verify the HS binding activity of hMPV F, and several compounds showed binding to predominantly prefusion hMPV F, but had limited binding to postfusion hMPV F. Furthermore, MAbs to antigenic sites III and the 66-87 intratrimeric epitope block heparin binding. In addition, we evaluated the efficacy of postfusion hMPV B2 F protein as a vaccine candidate in BALB/c mice. Mice immunized with hMPV B2 postfusion F protein showed a balanced Th1/Th2 immune response and generated neutralizing antibodies against both subgroup A2 and B2 hMPV strains, which protected the mice from hMPV challenge. Antibody competition analysis revealed the antibodies generated by immunization target two known antigenic sites (III and IV) on the hMPV F protein. Overall, this study provides new characteristics of the hMPV F protein, which may be informative for vaccine and therapy development. IMPORTANCE Human metapneumovirus (hMPV) is an important cause of viral respiratory disease. In this paper, we report the X-ray crystal structure of the hMPV fusion (F) protein in the postfusion conformation from genotype B. We also assessed binding of the hMPV F protein to heparin and heparan sulfate, a previously reported receptor for the hMPV F protein. Furthermore, we determined the immunogenicity and protective efficacy of postfusion hMPV B2 F protein, which is the first study using a homogenous conformation of the protein. Antibodies generated in response to vaccination give a balanced Th1/Th2 response and target two previously discovered neutralizing epitopes.
Collapse
|
22
|
Álvarez-Viñas M, Souto S, Flórez-Fernández N, Torres MD, Bandín I, Domínguez H. Antiviral Activity of Carrageenans and Processing Implications. Mar Drugs 2021; 19:437. [PMID: 34436276 PMCID: PMC8400836 DOI: 10.3390/md19080437] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
Carrageenan and carrageenan oligosaccharides are red seaweed sulfated carbohydrates with well-known antiviral properties, mainly through the blocking of the viral attachment stage. They also exhibit other interesting biological properties and can be used to prepare different drug delivery systems for controlled administration. The most active forms are λ-, ι-, and κ-carrageenans, the degree and sulfation position being determined in their properties. They can be obtained from sustainable worldwide available resources and the influence of manufacturing on composition, structure, and antiviral properties should be considered. This review presents a survey of the antiviral properties of carrageenan in relation to the processing conditions, particularly those assisted by intensification technologies during the extraction stage, and discusses the possibility of further chemical modifications.
Collapse
Affiliation(s)
- Milena Álvarez-Viñas
- CINBIO, Faculty of Science, Universidade de Vigo, Campus Ourense, As Lagoas, 32004 Ourense, Spain; (M.Á.-V.); (N.F.-F.); (M.D.T.)
| | - Sandra Souto
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.S.); (I.B.)
| | - Noelia Flórez-Fernández
- CINBIO, Faculty of Science, Universidade de Vigo, Campus Ourense, As Lagoas, 32004 Ourense, Spain; (M.Á.-V.); (N.F.-F.); (M.D.T.)
| | - Maria Dolores Torres
- CINBIO, Faculty of Science, Universidade de Vigo, Campus Ourense, As Lagoas, 32004 Ourense, Spain; (M.Á.-V.); (N.F.-F.); (M.D.T.)
| | - Isabel Bandín
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.S.); (I.B.)
| | - Herminia Domínguez
- CINBIO, Faculty of Science, Universidade de Vigo, Campus Ourense, As Lagoas, 32004 Ourense, Spain; (M.Á.-V.); (N.F.-F.); (M.D.T.)
| |
Collapse
|
23
|
Dourado D, Freire DT, Pereira DT, Amaral-Machado L, N Alencar É, de Barros ALB, Egito EST. Will curcumin nanosystems be the next promising antiviral alternatives in COVID-19 treatment trials? Biomed Pharmacother 2021; 139:111578. [PMID: 33848774 PMCID: PMC8023207 DOI: 10.1016/j.biopha.2021.111578] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/28/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023] Open
Abstract
The COVID-19 has become of striking interest since the number of deaths is constantly rising all over the globe, and the search for an efficient treatment is more urgent. In light of this worrisome scenario, this opinion review aimed to discuss the current knowledge about the potential role of curcumin and its nanostructured systems on the SARS-CoV-2 targets. From this perspective, this work demonstrated that curcumin urges as a potential antiviral key for the treatment of SARS-CoV-2 based on its relation to the infection pathways. Moreover, the use of curcumin-loaded nanocarriers for increasing its bioavailability and therapeutic efficiency was highlighted. Additionally, the potential of the nanostructured systems by themselves and their synergic action with curcumin on molecular targets for viral infections have been explored. Finally, a viewpoint of the studies that need to be carried out to implant curcumin as a treatment for COVID-19 was addressed.
Collapse
Affiliation(s)
- Douglas Dourado
- Graduate Program in Pharmaceutical Nanotechnology, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil; Dispersed Systems Laboratory (LaSiD), Pharmacy Department, UFRN, Natal, Brazil
| | - Danielle T Freire
- Dispersed Systems Laboratory (LaSiD), Pharmacy Department, UFRN, Natal, Brazil
| | - Daniel T Pereira
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil; Dispersed Systems Laboratory (LaSiD), Pharmacy Department, UFRN, Natal, Brazil
| | - Lucas Amaral-Machado
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil; Dispersed Systems Laboratory (LaSiD), Pharmacy Department, UFRN, Natal, Brazil
| | - Éverton N Alencar
- Graduate Program in Pharmaceutical Nanotechnology, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil; Dispersed Systems Laboratory (LaSiD), Pharmacy Department, UFRN, Natal, Brazil
| | | | - E Sócrates T Egito
- Graduate Program in Pharmaceutical Nanotechnology, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil; Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil; Dispersed Systems Laboratory (LaSiD), Pharmacy Department, UFRN, Natal, Brazil.
| |
Collapse
|
24
|
Heparan Sulfate Proteoglycans in Viral Infection and Treatment: A Special Focus on SARS-CoV-2. Int J Mol Sci 2021; 22:ijms22126574. [PMID: 34207476 PMCID: PMC8235362 DOI: 10.3390/ijms22126574] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 01/27/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) encompass a group of glycoproteins composed of unbranched negatively charged heparan sulfate (HS) chains covalently attached to a core protein. The complex HSPG biosynthetic machinery generates an extraordinary structural variety of HS chains that enable them to bind a plethora of ligands, including growth factors, morphogens, cytokines, chemokines, enzymes, matrix proteins, and bacterial and viral pathogens. These interactions translate into key regulatory activity of HSPGs on a wide range of cellular processes such as receptor activation and signaling, cytoskeleton assembly, extracellular matrix remodeling, endocytosis, cell-cell crosstalk, and others. Due to their ubiquitous expression within tissues and their large functional repertoire, HSPGs are involved in many physiopathological processes; thus, they have emerged as valuable targets for the therapy of many human diseases. Among their functions, HSPGs assist many viruses in invading host cells at various steps of their life cycle. Viruses utilize HSPGs for the attachment to the host cell, internalization, intracellular trafficking, egress, and spread. Recently, HSPG involvement in the pathogenesis of SARS-CoV-2 infection has been established. Here, we summarize the current knowledge on the molecular mechanisms underlying HSPG/SARS-CoV-2 interaction and downstream effects, and we provide an overview of the HSPG-based therapeutic strategies that could be used to combat such a fearsome virus.
Collapse
|
25
|
Sun Y, Chen X, Liu H, Liu S, Yu H, Wang X, Qin Y, Li P. Preparation of New Sargassum fusiforme Polysaccharide Long-Chain Alkyl Group Nanomicelles and Their Antiviral Properties against ALV-J. Molecules 2021; 26:3265. [PMID: 34071584 PMCID: PMC8199121 DOI: 10.3390/molecules26113265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 02/08/2023] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) is an immunosuppressive virus which has caused heavy losses to the poultry breeding industry. Currently, there is no effective medicine to treat this virus. In our previous experiments, the low-molecular-weight Sargassum fusiforme polysaccharide (SFP) was proven to possess antiviral activity against ALV-J, but its function was limited to the virus adsorption stage. In order to improve the antiviral activity of the SFP, in this study, three new SFP long-chain alkyl group nanomicelles (SFP-C12M, SFP-C14M and SFP-C16M) were prepared. The nanomicelles were characterized according to their physical and chemical properties. The nanomicelles were characterized by particle size, zeta potential, polydispersity index, critical micelle concentration and morphology. The results showed the particle sizes of the three nanomicelles were all approximately 200 nm and SFP-C14M and SFP-C16M were more stable than SFP-C12M. The newly prepared nanomicelles exhibited a better anti-ALV-J activity than the SFP, with SFP-C16M exhibiting the best antiviral effects in both the virus adsorption stage and the replication stage. The results of the giant unilamellar vesicle exposure experiment demonstrated that the new virucidal effect of the nanomicelles might be caused by damage to the phospholipid membrane of ALV-J. This study provides a potential idea for ALV-J prevention and development of other antiviral drugs.
Collapse
Affiliation(s)
- Yuhao Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.S.); (H.L.); (S.L.); (H.Y.); (X.W.); (Y.Q.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Xiaolin Chen
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.S.); (H.L.); (S.L.); (H.Y.); (X.W.); (Y.Q.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Hong Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.S.); (H.L.); (S.L.); (H.Y.); (X.W.); (Y.Q.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.S.); (H.L.); (S.L.); (H.Y.); (X.W.); (Y.Q.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.S.); (H.L.); (S.L.); (H.Y.); (X.W.); (Y.Q.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Xueqin Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.S.); (H.L.); (S.L.); (H.Y.); (X.W.); (Y.Q.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Yukun Qin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.S.); (H.L.); (S.L.); (H.Y.); (X.W.); (Y.Q.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.S.); (H.L.); (S.L.); (H.Y.); (X.W.); (Y.Q.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
26
|
Yuen E, Gudis DA, Rowan NR, Nguyen SA, Schlosser RJ. Viral Infections of the Upper Airway in the Setting of COVID-19: A Primer for Rhinologists. Am J Rhinol Allergy 2021; 35:122-131. [PMID: 32762250 PMCID: PMC8685738 DOI: 10.1177/1945892420947929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Viral respiratory tract infections are associated with a significant burden of disease and represent one of the leading causes of mortality worldwide. The current Coronavirus Disease 2019 (COVID-19) pandemic highlights the devastating toll that respiratory viruses have on humanity and the desperate need to understand the biological characteristics that define them in order to develop efficacious treatments and vaccines. To date, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has infected nearly 600 times more people and resulted in 200 times more deaths relative to Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV) combined. OBJECTIVE Through this review, we aim to summarize the key characteristics of respiratory viruses that hold global significance, with a focus on SARS-CoV-2. Our goal is to disseminate our current knowledge of these infectious agents to otolaryngologists, in particular rhinologists, practicing in the COVID-19 era. METHODS The general and clinical characteristics of selected respiratory viruses along with available viral treatments and vaccines are reviewed. RESULTS There has been significant progress in our understanding of the epidemiology and pathogenesis of various respiratory viruses. However, despite the advancement in knowledge, efficacious vaccines and antiviral treatments remain elusive for most respiratory viruses. The dire need for these scientific discoveries is highlighted by the recent COVID-19 pandemic, which has prompted investigators worldwide to conduct clinical trials at an accelerated timeline in an effort to reduce the morbidity and mortality associated with SARS-CoV-2 infection. Rhinologists will continue to remain on the front-lines of pandemics associated with respiratory viruses. CONCLUSION In light of these unprecedented times, the need to understand the nuances of these viral respiratory pathogens, especially SARS-CoV-2, cannot be overemphasized. This knowledge base is of particular importance to otolaryngologists, whose expertise in the upper airway coincides with the anatomic tropism of these infectious agents.
Collapse
Affiliation(s)
- Erick Yuen
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - David A Gudis
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Irving Medical Center, New York, New York
| | - Nicholas R Rowan
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shaun A Nguyen
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Rodney J Schlosser
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
27
|
Liu J, Obaidi I, Nagar S, Scalabrino G, Sheridan H. The antiviral potential of algal-derived macromolecules. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
28
|
Respiratory Syncytial Virus and Human Metapneumovirus Infections in Three-Dimensional Human Airway Tissues Expose an Interesting Dichotomy in Viral Replication, Spread, and Inhibition by Neutralizing Antibodies. J Virol 2020; 94:JVI.01068-20. [PMID: 32759319 DOI: 10.1128/jvi.01068-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
Respiratory syncytial virus (RSV) and human metapneumovirus (HMPV) are two of the leading causes of respiratory infections in children and elderly and immunocompromised patients worldwide. There is no approved treatment for HMPV and only one prophylactic treatment against RSV, palivizumab, for high-risk infants. Better understanding of the viral lifecycles in a more relevant model system may help identify novel therapeutic targets. By utilizing three-dimensional (3-D) human airway tissues to examine viral infection in a physiologically relevant model system, we showed that RSV infects and spreads more efficiently than HMPV, with the latter requiring higher multiplicities of infection (MOIs) to yield similar levels of infection. Apical ciliated cells were the target for both viruses, but RSV apical release was significantly more efficient than HMPV. In RSV- or HMPV-infected cells, cytosolic inclusion bodies containing the nucleoprotein, phosphoprotein, and respective viral genomic RNA were clearly observed in human airway epithelial (HAE) culture. In HMPV-infected cells, actin-based filamentous extensions were more common (35.8%) than those found in RSV-infected cells (4.4%). Interestingly, neither RSV nor HMPV formed syncytia in HAE tissues. Palivizumab and nirsevimab effectively inhibited entry and spread of RSV in HAE tissues, with nirsevimab displaying significantly higher potency than palivizumab. In contrast, 54G10 completely inhibited HMPV entry but only modestly reduced viral spread, suggesting HMPV may use alternative mechanisms for spread. These results represent the first comparative analysis of infection by the two pneumoviruses in a physiologically relevant model, demonstrating an interesting dichotomy in the mechanisms of infection, spread, and consequent inhibition of the viral lifecycles by neutralizing monoclonal antibodies.IMPORTANCE Respiratory syncytial virus and human metapneumovirus are leading causes of respiratory illness worldwide, but limited treatment options are available. To better target these viruses, we examined key aspects of the viral life cycle in three-dimensional (3-D) human airway tissues. Both viruses establish efficient infection through the apical surface, but efficient spread and apical release were seen for respiratory syncytial virus (RSV) but not human metapneumovirus (HMPV). Both viruses form inclusion bodies, minimally composed of nucleoprotein (N), phosphoprotein (P), and viral RNA (vRNA), indicating that these structures are critical for replication in this more physiological model. HMPV formed significantly more long, filamentous actin-based extensions in human airway epithelial (HAE) tissues than RSV, suggesting HMPV may promote cell-to-cell spread via these extensions. Lastly, RSV entry and spread were fully inhibited by neutralizing antibodies palivizumab and the novel nirsevimab. In contrast, while HMPV entry was fully inhibited by 54G10, a neutralizing antibody, spread was only modestly reduced, further supporting a cell-to-cell spread mechanism.
Collapse
|
29
|
Lee C. Carrageenans as Broad-Spectrum Microbicides: Current Status and Challenges. Mar Drugs 2020; 18:md18090435. [PMID: 32825645 PMCID: PMC7551811 DOI: 10.3390/md18090435] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/09/2020] [Accepted: 08/18/2020] [Indexed: 01/08/2023] Open
Abstract
Different kinds of red algae are enriched with chemically diverse carbohydrates. In particular, a group of sulfated polysaccharides, which were isolated from the cell walls of red algae, gained a large amount of attention due to their broad-spectrum antimicrobial activities. Within that group, carrageenans (CGs) were expected to be the first clinically applicable microbicides that could prevent various viral infections due to their superior antiviral potency and desirable safety profiles in subclinical studies. However, their anticipated beneficial effects could not be validated in human studies. To assess the value of a second attempt at pharmacologically developing CGs as a new class of preventive microbicides, all preclinical and clinical development processes of CG-based microbicides need to be thoroughly re-evaluated. In this review, the in vitro toxicities; in vivo safety profiles; and in vitro, ex vivo, and in vivo antiviral activities of CGs are summarized according to the study volume of their target viruses, which include human immunodeficiency virus, herpesviruses, respiratory viruses, human papillomavirus, dengue virus, and other viruses along with a description of their antiviral modes of action and development of antiviral resistance. This evaluation of the strengths and weaknesses of CGs will help provide future research directions that may lead to the successful development of CG-based antimicrobial prophylactics.
Collapse
Affiliation(s)
- Choongho Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Korea
| |
Collapse
|
30
|
Koehler M, Delguste M, Sieben C, Gillet L, Alsteens D. Initial Step of Virus Entry: Virion Binding to Cell-Surface Glycans. Annu Rev Virol 2020; 7:143-165. [PMID: 32396772 DOI: 10.1146/annurev-virology-122019-070025] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Virus infection is an intricate process that requires the concerted action of both viral and host cell components. Entry of viruses into cells is initiated by interactions between viral proteins and cell-surface receptors. Various cell-surface glycans function as initial, usually low-affinity attachment factors, providing a first anchor of the virus to the cell surface, and further facilitate high-affinity binding to virus-specific cell-surface receptors, while other glycans function as specific entry receptors themselves. It is now possible to rapidly identify specific glycan receptors using different techniques, define atomic-level structures of virus-glycan complexes, and study these interactions at the single-virion level. This review provides a detailed overview of the role of glycans in viral infection and highlights experimental approaches to study virus-glycan binding along with specific examples. In particular, we highlight the development of the atomic force microscope to investigate interactions with glycans at the single-virion level directly on living mammalian cells, which offers new perspectives to better understand virus-glycan interactions in physiologically relevant conditions.
Collapse
Affiliation(s)
- Melanie Koehler
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium;
| | - Martin Delguste
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium;
| | - Christian Sieben
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Laurent Gillet
- Immunology-Vaccinology Laboratory, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals and Health center (FARAH), University of Liège, 4000 Liège, Belgium
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium; .,Walloon Excellence in Life sciences and Biotechnology (WELBIO), 1300 Wavre, Belgium
| |
Collapse
|
31
|
Nanomaterials Designed for Antiviral Drug Delivery Transport across Biological Barriers. Pharmaceutics 2020; 12:pharmaceutics12020171. [PMID: 32085535 PMCID: PMC7076512 DOI: 10.3390/pharmaceutics12020171] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/10/2020] [Accepted: 02/15/2020] [Indexed: 12/13/2022] Open
Abstract
Viral infections are a major global health problem, representing a significant cause of mortality with an unfavorable continuously amplified socio-economic impact. The increased drug resistance and constant viral replication have been the trigger for important studies regarding the use of nanotechnology in antiviral therapies. Nanomaterials offer unique physico-chemical properties that have linked benefits for drug delivery as ideal tools for viral treatment. Currently, different types of nanomaterials namely nanoparticles, liposomes, nanospheres, nanogels, nanosuspensions and nanoemulsions were studied either in vitro or in vivo for drug delivery of antiviral agents with prospects to be translated in clinical practice. This review highlights the drug delivery nanosystems incorporating the major antiviral classes and their transport across specific barriers at cellular and intracellular level. Important reflections on nanomedicines currently approved or undergoing investigations for the treatment of viral infections are also discussed. Finally, the authors present an overview on the requirements for the design of antiviral nanotherapeutics.
Collapse
|
32
|
Abstract
The process of entry into a host cell is a key step in the life cycle of most viruses. In recent years, there has been a significant increase in our understanding of the routes and mechanisms of entry for a number of these viruses. This has led to the development of novel broad-spectrum antiviral approaches that target host cell proteins and pathways, in addition to strategies focused on individual viruses or virus families. Here we consider a number of these approaches and their broad-spectrum potential.
Collapse
Affiliation(s)
- Michela Mazzon
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Mark Marsh
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
33
|
Escaffre O, Juelich TL, Freiberg AN. Polyphenylene carboxymethylene (PPCM) in vitro antiviral efficacy against Ebola virus in the context of a sexually transmitted infection. Antiviral Res 2019; 170:104567. [PMID: 31351092 DOI: 10.1016/j.antiviral.2019.104567] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/16/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022]
Abstract
Ebola virus disease (EVD) is caused by Ebola virus (EBOV) and characterized in humans by hemorrhagic fever with high fatality rates. Human-to-human EBOV transmission occurs by physical contact with infected body fluids, or indirectly by contaminated surfaces. Sexual transmission is a route of infection only recently documented despite isolating EBOV virus or genome in the semen since 1976. Data on dissemination of EBOV from survivors remain limited and EBOV pathogenesis in humans following sexual transmission is unknown. The in vitro antiviral efficacy of polyphenylene carboxymethylene (PPCM) against EBOV was investigated considering the limited countermeasures available to block infection through sexual intercourse. PPCM is a vaginal topical contraceptive microbicide shown to prevent sexual transmission of HIV, herpes virus, and bacterial infections in several different models. Here we demonstrate its antiviral activity against EBOV. No viral replication was detected in the presence of PPCM in cell culture, including vaginal epithelial (VK2/E6E7) cells. Specifically, PPCM reduced viral attachment to cells by interfering with EBOV glycoprotein, and possibly through binding the cell surface glycosaminoglycan heparan sulfate important in the infection process. EBOV-infected VK2/E6E7 cells were found to secrete type III interferon (IFN), suggesting activation of distinct PRRs or downstream signaling factors from those required for type I and II IFN. The addition of PPCM following cell infection prevented notably the increase of these inflammation markers. Therefore, PPCM could potentially be used as a topical microbicide to reduce transmission by EBOV-positive survivors during sexual intercourse.
Collapse
Affiliation(s)
| | | | - Alexander N Freiberg
- Department of Pathology, Galveston, TX, 77555, USA; Center for Biodefense and Emerging Infectious Diseases, Galveston, TX, 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
34
|
Falcó I, Randazzo W, Sánchez G, López-Rubio A, Fabra MJ. On the use of carrageenan matrices for the development of antiviral edible coatings of interest in berries. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.01.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
35
|
Cagno V, Tseligka ED, Jones ST, Tapparel C. Heparan Sulfate Proteoglycans and Viral Attachment: True Receptors or Adaptation Bias? Viruses 2019; 11:v11070596. [PMID: 31266258 PMCID: PMC6669472 DOI: 10.3390/v11070596] [Citation(s) in RCA: 241] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/12/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPG) are composed of unbranched, negatively charged heparan sulfate (HS) polysaccharides attached to a variety of cell surface or extracellular matrix proteins. Widely expressed, they mediate many biological activities, including angiogenesis, blood coagulation, developmental processes, and cell homeostasis. HSPG are highly sulfated and broadly used by a range of pathogens, especially viruses, to attach to the cell surface.
Collapse
Affiliation(s)
- Valeria Cagno
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, 1205 Geneva, Switzerland.
| | - Eirini D Tseligka
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, 1205 Geneva, Switzerland
| | - Samuel T Jones
- School of Materials, University of Manchester, Manchester, M13 9PL, UK
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, 1205 Geneva, Switzerland
| |
Collapse
|
36
|
Consensus and variations in cell line specificity among human metapneumovirus strains. PLoS One 2019; 14:e0215822. [PMID: 31013314 PMCID: PMC6478314 DOI: 10.1371/journal.pone.0215822] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 04/09/2019] [Indexed: 11/30/2022] Open
Abstract
Human metapneumovirus (HMPV) has been a notable etiological agent of acute respiratory infection in humans, but it was not discovered until 2001, because HMPV replicates only in a limited number of cell lines and the cytopathic effect (CPE) is often mild. To promote the study of HMPV, several groups have generated green fluorescent protein (GFP)-expressing recombinant HMPV strains (HMPVGFP). However, the growing evidence has complicated the understanding of cell line specificity of HMPV, because it seems to vary notably among HMPV strains. In addition, unique A2b clade HMPV strains with a 180-nucleotide duplication in the G gene (HMPV A2b180nt-dup strains) have recently been detected. In this study, we re-evaluated and compared the cell line specificity of clinical isolates of HMPV strains, including the novel HMPV A2b180nt-dup strains, and six recombinant HMPVGFP strains, including the newly generated recombinant HMPV A2b180nt-dup strain, MG0256-EGFP. Our data demonstrate that VeroE6 and LLC-MK2 cells generally showed the highest infectivity with any clinical isolates and recombinant HMPVGFP strains. Other human-derived cell lines (BEAS-2B, A549, HEK293, MNT-1, and HeLa cells) showed certain levels of infectivity with HMPV, but these were significantly lower than those of VeroE6 and LLC-MK2 cells. Also, the infectivity in these suboptimal cell lines varied greatly among HMPV strains. The variations were not directly related to HMPV genotypes, cell lines used for isolation and propagation, specific genome mutations, or nucleotide duplications in the G gene. Thus, these variations in suboptimal cell lines are likely intrinsic to particular HMPV strains.
Collapse
|
37
|
Synthetic sulfonated derivatives of poly(allylamine hydrochloride) as inhibitors of human metapneumovirus. PLoS One 2019; 14:e0214646. [PMID: 30921418 PMCID: PMC6438514 DOI: 10.1371/journal.pone.0214646] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/18/2019] [Indexed: 11/29/2022] Open
Abstract
Human metapneumovirus (hMPV) is a widely distributed pathogen responsible for acute upper and lower respiratory infections of varying severity. Previously, we reported that N-sulfonated derivatives of poly(allylamine hydrochloride) (NSPAHs) efficiently inhibit replication of the influenza virus in vitro and ex vivo. Here, we show a dose dependent inhibition of hMPV infection by NSPAHs in LLC-MK2 cells. The results showed strong antiviral properties of NSPAHs. While the activity of NSPAHs is comparable to those of carrageenans, they show better physicochemical properties and may be delivered at high concentrations. The functional assays showed that tested polymers block hMPV release from infected cells and, consequently, constrain virus spread. Moreover, further studies on viruses utilizing different egress mechanisms suggest that observed antiviral effect depend on selective inhibition of viruses budding from the cell surface.
Collapse
|
38
|
Tamhankar M, Gerhardt DM, Bennett RS, Murphy N, Jahrling PB, Patterson JL. Heparan sulfate is an important mediator of Ebola virus infection in polarized epithelial cells. Virol J 2018; 15:135. [PMID: 30165875 PMCID: PMC6117897 DOI: 10.1186/s12985-018-1045-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 08/20/2018] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Currently, no FDA-approved vaccines or treatments are available for Ebola virus disease (EVD), and therapy remains largely supportive. Ebola virus (EBOV) has broad tissue tropism and can infect a variety of cells including epithelial cells. Epithelial cells differ from most other cell types by their polarized phenotype and barrier function. In polarized cells, the apical and basolateral membrane domains are demarcated by tight junctions, and specialized sorting machinery, which results in a difference in composition between the two membrane domains. These specialized sorting functions can have important consequences for viral infections. Differential localization of a viral receptor can restrict virus entry to a particular membrane while polarized sorting can lead to a vectorial virus release. The present study investigated the impact of cell polarity on EBOV infection. METHODS Characteristics of EBOV infection in polarized cells were evaluated in the polarized Caco-2 model grown on semipermeable transwells. Transepithelial resistance (TEER), which is a function of tight junctions, was used to assess epithelial cell polarization. EBOV infection was assessed with immunofluorescence microscopy and qPCR. Statistical significance was calculated using one-way ANOVA and significance was set at p < 0.05. RESULTS Our data indicate that EBOV preferentially infects cells from the basolateral route, and this preference may be influenced by the resistance across the Caco-2 monolayer. Infection occurs without changes in cellular permeability. Further, our data show that basolateral infection bias may be dependent on polarized distribution of heparan sulfate, a known viral attachment factor. Treatment with iota-carrageenan, or heparin lyase, which interrupts viral interaction with cellular heparan sulfate, significantly reduced cell susceptibility to basolateral infection, likely by inhibiting virus attachment. CONCLUSIONS Our results show cell polarity has an impact on EBOV infection. EBOV preferentially infects polarized cells through the basolateral route. Access to heparan sulfate is an important factor during basolateral infection and blocking interaction of cellular heparan sulfate with virus leads to significant inhibition of basolateral infection in the polarized Caco-2 cell model.
Collapse
Affiliation(s)
- Manasi Tamhankar
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX USA
- University of Texas Health Science Center at San Antonio, San Antonio, TX USA
| | - Dawn M. Gerhardt
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD USA
| | - Richard S. Bennett
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD USA
| | - Nicole Murphy
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD USA
| | - Peter B. Jahrling
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD USA
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD USA
| | - Jean L. Patterson
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX USA
| |
Collapse
|
39
|
Cagno V, Andreozzi P, D'Alicarnasso M, Jacob Silva P, Mueller M, Galloux M, Le Goffic R, Jones ST, Vallino M, Hodek J, Weber J, Sen S, Janeček ER, Bekdemir A, Sanavio B, Martinelli C, Donalisio M, Rameix Welti MA, Eleouet JF, Han Y, Kaiser L, Vukovic L, Tapparel C, Král P, Krol S, Lembo D, Stellacci F. Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism. NATURE MATERIALS 2018; 17:195-203. [PMID: 29251725 DOI: 10.1038/nmat5053] [Citation(s) in RCA: 273] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 11/10/2017] [Indexed: 05/18/2023]
Abstract
Viral infections kill millions yearly. Available antiviral drugs are virus-specific and active against a limited panel of human pathogens. There are broad-spectrum substances that prevent the first step of virus-cell interaction by mimicking heparan sulfate proteoglycans (HSPG), the highly conserved target of viral attachment ligands (VALs). The reversible binding mechanism prevents their use as a drug, because, upon dilution, the inhibition is lost. Known VALs are made of closely packed repeating units, but the aforementioned substances are able to bind only a few of them. We designed antiviral nanoparticles with long and flexible linkers mimicking HSPG, allowing for effective viral association with a binding that we simulate to be strong and multivalent to the VAL repeating units, generating forces (∼190 pN) that eventually lead to irreversible viral deformation. Virucidal assays, electron microscopy images, and molecular dynamics simulations support the proposed mechanism. These particles show no cytotoxicity, and in vitro nanomolar irreversible activity against herpes simplex virus (HSV), human papilloma virus, respiratory syncytial virus (RSV), dengue and lenti virus. They are active ex vivo in human cervicovaginal histocultures infected by HSV-2 and in vivo in mice infected with RSV.
Collapse
Affiliation(s)
- Valeria Cagno
- Dipartimento di Scienze Cliniche e Biologiche, Univerisità degli Studi di Torino, Orbassano, Italy
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Faculty of Medicine of Geneva, Department of Microbiology and Molecular medicine, Geneva, Switzerland
| | - Patrizia Andreozzi
- IFOM - FIRC Institute of Molecular Oncology, IFOM-IEO Campus, Milan, Italy
- CIC biomaGUNE Soft Matter Nanotechnology Group San Sebastian-Donostia, 20014 Donastia San Sebastián, Spain
| | | | - Paulo Jacob Silva
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Marie Mueller
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Marie Galloux
- VIM, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Samuel T Jones
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Jones Lab, School of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Marta Vallino
- Istituto per la Protezione Sostenibile delle Piante, CNR, Torino, Italy
| | - Jan Hodek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Soumyo Sen
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Emma-Rose Janeček
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ahmet Bekdemir
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Barbara Sanavio
- Fondazione IRCCS Istituto Neurologico "Carlo Besta", IFOM-IEO Campus, Milan, Italy
| | - Chiara Martinelli
- IFOM - FIRC Institute of Molecular Oncology, IFOM-IEO Campus, Milan, Italy
| | - Manuela Donalisio
- Dipartimento di Scienze Cliniche e Biologiche, Univerisità degli Studi di Torino, Orbassano, Italy
| | - Marie-Anne Rameix Welti
- UMR INSERM U1173 I2, UFR des Sciences de la Santé Simone Veil-UVSQ, Montigny-Le-Bretonneux, France
- AP-HP, Laboratoire de Microbiologie, Hôpital Ambroise Paré, 92104 Boulogne-Billancourt, France
| | | | - Yanxiao Han
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Laurent Kaiser
- Geneva University Hospitals, Infectious Diseases Divisions, Geneva, Switzerland
| | - Lela Vukovic
- Department of Chemistry, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Caroline Tapparel
- Faculty of Medicine of Geneva, Department of Microbiology and Molecular medicine, Geneva, Switzerland
- Geneva University Hospitals, Infectious Diseases Divisions, Geneva, Switzerland
| | - Petr Král
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, USA
- Department of Physics and Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Silke Krol
- Fondazione IRCCS Istituto Neurologico "Carlo Besta", IFOM-IEO Campus, Milan, Italy
- IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - David Lembo
- Dipartimento di Scienze Cliniche e Biologiche, Univerisità degli Studi di Torino, Orbassano, Italy
| | - Francesco Stellacci
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Interfaculty Bioengineering Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
40
|
Inic-Kanada A, Stein E, Stojanovic M, Schuerer N, Ghasemian E, Filipovic A, Marinkovic E, Kosanovic D, Barisani-Asenbauer T. Effects of iota-carrageenan on ocular Chlamydia trachomatis infection in vitro and in vivo. JOURNAL OF APPLIED PHYCOLOGY 2018; 30:2601-2610. [PMID: 30147240 PMCID: PMC6096786 DOI: 10.1007/s10811-018-1435-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 02/16/2018] [Accepted: 02/27/2018] [Indexed: 05/11/2023]
Abstract
Ocular chlamydial infections with the ocular serovars A, B, Ba, and C of Chlamydia trachomatis represent the world's leading cause of infectious blindness. Carrageenans are naturally occurring, sulfated polysaccharides generally considered safe for food and topical applications. Carrageenans can inhibit infection caused by a variety of viruses and bacteria. To investigate whether iota-carrageenan (I-C) isolated from the red alga Chondrus crispus could prevent ocular chlamydial infection, we assessed if targeted treatment of the conjunctival mucosa with I-C affects chlamydial attachment, entry, and replication in the host cell. Immortalized human conjunctival epithelial cells were treated with I-C prior to C. trachomatis infection and analyzed by flow cytometry and immunofluorescence microscopy. In vivo effects were evaluated in an ocular guinea pig inclusion conjunctivitis model. Ocular pathology was graded daily, and chlamydial clearance was investigated. Our study showed that I-C reduces the infectivity of C. trachomatis in vitro. In vivo results showed a slight reduced ocular pathology and significantly less shedding of infectious elementary bodies by infected animals. Our results indicate that I-C could be a promising agent to reduce the transmission of ocular chlamydial infection and opens perspectives to develop prophylactic approaches to block C. trachomatis entry into the host cell.
Collapse
Affiliation(s)
- Aleksandra Inic-Kanada
- OCUVAC – Center of Ocular Inflammation and Infection, Laura Bassi Centres of Expertise, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
| | - Elisabeth Stein
- OCUVAC – Center of Ocular Inflammation and Infection, Laura Bassi Centres of Expertise, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
| | - Marijana Stojanovic
- Department of Research and Development, Institute of Virology, Vaccines and Sera – TORLAK, Belgrade, Serbia
| | - Nadine Schuerer
- OCUVAC – Center of Ocular Inflammation and Infection, Laura Bassi Centres of Expertise, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
| | - Ehsan Ghasemian
- OCUVAC – Center of Ocular Inflammation and Infection, Laura Bassi Centres of Expertise, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
| | - Ana Filipovic
- Department of Research and Development, Institute of Virology, Vaccines and Sera – TORLAK, Belgrade, Serbia
| | - Emilija Marinkovic
- Department of Research and Development, Institute of Virology, Vaccines and Sera – TORLAK, Belgrade, Serbia
| | - Dejana Kosanovic
- Department of Research and Development, Institute of Virology, Vaccines and Sera – TORLAK, Belgrade, Serbia
| | - Talin Barisani-Asenbauer
- OCUVAC – Center of Ocular Inflammation and Infection, Laura Bassi Centres of Expertise, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
| |
Collapse
|
41
|
Shen J, Chang Y, Dong S, Chen F. Cloning, expression and characterization of a ι-carrageenase from marine bacterium Wenyingzhuangia fucanilytica : A biocatalyst for producing ι-carrageenan oligosaccharides. J Biotechnol 2017; 259:103-109. [DOI: 10.1016/j.jbiotec.2017.07.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/27/2017] [Accepted: 07/27/2017] [Indexed: 01/24/2023]
|
42
|
Abstract
Infection of pregnant women by Asian lineage strains of Zika virus (ZIKV) has been linked to brain abnormalities in their infants, yet it is uncertain when during pregnancy the human conceptus is most vulnerable to the virus. We have examined two models to study susceptibility of human placental trophoblast to ZIKV: cytotrophoblast and syncytiotrophoblast derived from placental villi at term and colonies of trophoblast differentiated from embryonic stem cells (ESC). The latter appear to be analogous to the primitive placenta formed during implantation. The cells from term placentas, which resist infection, do not express genes encoding most attachment factors implicated in ZIKV entry but do express many genes associated with antiviral defense. By contrast, the ESC-derived trophoblasts possess a wide range of attachment factors for ZIKV entry and lack components of a robust antiviral response system. These cells, particularly areas of syncytiotrophoblast within the colonies, quickly become infected, produce infectious virus and undergo lysis within 48 h after exposure to low titers (multiplicity of infection > 0.07) of an African lineage strain (MR766 Uganda: ZIKVU) considered to be benign with regards to effects on fetal development. Unexpectedly, lytic effects required significantly higher titers of the presumed more virulent FSS13025 Cambodia (ZIKVC). Our data suggest that the developing fetus might be most vulnerable to ZIKV early in the first trimester before a protective zone of mature villous trophoblast has been established. Additionally, MR766 is highly trophic toward primitive trophoblast, which may put the early conceptus of an infected mother at high risk for destruction.
Collapse
|
43
|
Márquez-Escobar VA. Current developments and prospects on human metapneumovirus vaccines. Expert Rev Vaccines 2017; 16:419-431. [PMID: 28116910 DOI: 10.1080/14760584.2017.1283223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Human metapneumovirus (hMPV) has become one of the major pathogens causing acute respiratory infections (ARI) mainly affecting young children, immunocompromised patients, and the elderly. Currently there are no licensed vaccines against this virus. Areas covered: Since the discovery of hMPV in 2001, many groups have focused on developing vaccines against this pathogen. This review presents the outcomes and perspectives derived from preclinical studies performed in cell cultures and animals as well as the only candidate that has reached evaluation in a clinical trial. Limitations of the current vaccine candidates are discussed and perspectives for the development of plant-based vaccines are analyzed. Expert commentary: Several hMPV vaccine candidates are under development with the potential to progress into clinical trials. In parallel, the molecular farming field offers new opportunities to generate innovative vaccines that will offer several advantages in the fight against hMPV.
Collapse
Affiliation(s)
- Verónica Araceli Márquez-Escobar
- a Facultad de Ciencias Químicas , Universidad Autónoma de San Luis Potosí , Av. Dr. Manuel Nava 6, San Luis Potosí 78210 , SLP , Mexico
| |
Collapse
|