1
|
Huang C, Yu L, Xu Y, Huang J, Qin Y, Guo X, Zeng Y, Qin Y, Ouyang K, Wei Z, Huang W, García-Sastre A, Chen Y. Long-term co-circulation of multiple influenza A viruses in pigs, Guangxi, China. Emerg Microbes Infect 2024; 13:2337673. [PMID: 38572517 PMCID: PMC11005871 DOI: 10.1080/22221751.2024.2337673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
Influenza A viruses (IAVs) pose a persistent potential threat to human health because of the spillover from avian and swine infections. Extensive surveillance was performed in 12 cities of Guangxi, China, during 2018 and 2023. A total of 2540 samples (including 2353 nasal swabs and 187 lung tissues) were collected from 18 pig farms with outbreaks of respiratory disease. From these, 192 IAV-positive samples and 19 genomic sequences were obtained. We found that the H1 and H3 swine influenza A viruses (swIAVs) of multiple lineages and genotypes have continued to co-circulate during that time in this region. Genomic analysis revealed the Eurasian avian-like H1N1 swIAVs (G4) still remained predominant in pig populations. Strikingly, the novel multiple H3N2 genotypes were found to have been generated through the repeated introduction of the early H3N2 North American triple reassortant viruses (TR H3N2 lineage) that emerged in USA and Canada in 1998 and 2005, respectively. Notably, when the matrix gene segment derived from the H9N2 avian influenza virus was introduced into endemic swIAVs, this produced a novel quadruple reassortant H1N2 swIAV that could pose a potential risk for zoonotic infection.
Collapse
Affiliation(s)
- Chongqiang Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, People’s Republic of China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, People’s Republic of China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, People’s Republic of China
| | - Liangzheng Yu
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, People’s Republic of China
| | - Yi Xu
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, People’s Republic of China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, People’s Republic of China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, People’s Republic of China
| | - Jiamo Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, People’s Republic of China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, People’s Republic of China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, People’s Republic of China
| | - Yibin Qin
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, People’s Republic of China
- Guangxi Institute of Veterinary Medicine, Nanning, People’s Republic of China
| | - Xuan Guo
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, People’s Republic of China
- Guangxi Nongken Yongxin Animal Husbandry Group Co. Ltd., Nanning, People’s Republic of China
| | - Yongfang Zeng
- Nanning Zhufulai Animal Health Management Co. Ltd., Nanning, People’s Republic of China
| | - Yifeng Qin
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, People’s Republic of China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, People’s Republic of China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, People’s Republic of China
| | - Kang Ouyang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, People’s Republic of China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, People’s Republic of China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, People’s Republic of China
| | - Zuzhang Wei
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, People’s Republic of China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, People’s Republic of China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, People’s Republic of China
| | - Weijian Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, People’s Republic of China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, People’s Republic of China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, People’s Republic of China
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ying Chen
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, People’s Republic of China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, People’s Republic of China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, People’s Republic of China
| |
Collapse
|
2
|
Curran SJ, Griffin EF, Ferreri LM, Kyriakis CS, Howerth EW, Perez DR, Tompkins SM. Swine influenza A virus isolates containing the pandemic H1N1 origin matrix gene elicit greater disease in the murine model. Microbiol Spectr 2024; 12:e0338623. [PMID: 38299860 PMCID: PMC10913740 DOI: 10.1128/spectrum.03386-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
Since the 1990s, endemic North American swine influenza A viruses (swFLUAVs) contained an internal gene segment constellation, the triple reassortment internal gene (TRIG) cassette. In 2009, the H1N1 pandemic (pdmH1N1) virus spilled back into swine but did not become endemic. However, the pdmH1N1 contributed the matrix gene (pdmM) to the swFLUAVs circulating in the pig population, which replaced the classical swine matrix gene (swM) found in the TRIG cassette, suggesting the pdmM has a fitness benefit. Others have shown that swFLUAVs containing the pdmM have greater transmission efficiency compared to viruses containing the swM gene segment. We hypothesized that the matrix (M) gene could also affect disease and utilized two infection models, resistant BALB/c and susceptible DBA/2 mice, to assess pathogenicity. We infected BALB/c and DBA/2 mice with H1 and H3 swFLUAVs containing the swM or pdmM and measured lung virus titers, morbidity, mortality, and lung histopathology. H1 influenza strains containing the pdmM gene caused greater morbidity and mortality in resistant and susceptible murine strains, while H3 swFLUAVs caused no clinical disease. However, both H1 and H3 swFLUAVs containing the pdmM replicated to higher viral titers in the lungs and pdmM containing H1 viruses induced greater histological changes compared to swM H1 viruses. While the surface glycoproteins and other gene segments may contribute to swFLUAV pathogenicity in mice, these data suggest that the origin of the matrix gene also contributes to pathogenicity of swFLUAV in mice, although we must be cautious in translating these conclusions to their natural host, swine. IMPORTANCE The 2009 pandemic H1N1 virus rapidly spilled back into North American swine, reassorting with the already genetically diverse swFLUAVs. Notably, the M gene segment quickly replaced the classical M gene segment, suggesting a fitness benefit. Here, using two murine models of infection, we demonstrate that swFLUAV isolates containing the pandemic H1N1 origin M gene caused increased disease compared to isolates containing the classical swine M gene. These results suggest that, in addition to other influenza virus gene segments, the swFLUAV M gene segment contributes to pathogenesis in mammals.
Collapse
Affiliation(s)
- Shelly J. Curran
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, Georgia, USA
| | - Emily F. Griffin
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, Georgia, USA
| | - Lucas M. Ferreri
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Constantinos S. Kyriakis
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, Georgia, USA
| | - Elizabeth W. Howerth
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Daniel R. Perez
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - S. Mark Tompkins
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, Georgia, USA
| |
Collapse
|
3
|
Zeller MA, Ma J, Wong FY, Tum S, Hidano A, Holt H, Chhay T, Sorn S, Koeut D, Seng B, Chao S, Ng GGK, Yan Z, Chou M, Rudge JW, Smith GJD, Su YCF. The genomic landscape of swine influenza A viruses in Southeast Asia. Proc Natl Acad Sci U S A 2023; 120:e2301926120. [PMID: 37552753 PMCID: PMC10438389 DOI: 10.1073/pnas.2301926120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/07/2023] [Indexed: 08/10/2023] Open
Abstract
Swine are a primary source for the emergence of pandemic influenza A viruses. The intensification of swine production, along with global trade, has amplified the transmission and zoonotic risk of swine influenza A virus (swIAV). Effective surveillance is essential to uncover emerging virus strains; however gaps remain in our understanding of the swIAV genomic landscape in Southeast Asia. More than 4,000 nasal swabs were collected from pigs in Cambodia, yielding 72 IAV-positive samples by RT-qPCR and 45 genomic sequences. We unmasked the cocirculation of multiple lineages of genetically diverse swIAV of pandemic concern. Genomic analyses revealed a novel European avian-like H1N2 swIAV reassortant variant with North American triple reassortant internal genes, that emerged approximately seven years before its first detection in pigs in 2021. Using phylogeographic reconstruction, we identified south central China as the dominant source of swine viruses disseminated to other regions in China and Southeast Asia. We also identified nine distinct swIAV lineages in Cambodia, which diverged from their closest ancestors between two and 15 B.P., indicating significant undetected diversity in the region, including reverse zoonoses of human H1N1/2009 pandemic and H3N2 viruses. A similar period of cryptic circulation of swIAVs occurred in the decades before the H1N1/2009 pandemic. The hidden diversity of swIAV observed here further emphasizes the complex underlying evolutionary processes present in this region, reinforcing the importance of genomic surveillance at the human-swine interface for early warning of disease emergence to avoid future pandemics.
Collapse
Affiliation(s)
- Michael A. Zeller
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore169857, Singapore
| | - Jordan Ma
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore169857, Singapore
| | - Foong Ying Wong
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore169857, Singapore
| | - Sothyra Tum
- National Animal Health and Production Research Institute, General Directorate of Animal Health and Production, Phnom Penh120608, Cambodia
| | - Arata Hidano
- Department of Global Health and Development, London School of Hygiene & Tropical Medicine, LondonWC1E 7HT, United Kingdom
| | - Hannah Holt
- Department of Global Health and Development, London School of Hygiene & Tropical Medicine, LondonWC1E 7HT, United Kingdom
| | - Ty Chhay
- Livestock Development for Community Livelihood, Phnom Penh120108, Cambodia
| | - San Sorn
- National Animal Health and Production Research Institute, General Directorate of Animal Health and Production, Phnom Penh120608, Cambodia
| | - Dina Koeut
- National Animal Health and Production Research Institute, General Directorate of Animal Health and Production, Phnom Penh120608, Cambodia
| | - Bunnary Seng
- National Animal Health and Production Research Institute, General Directorate of Animal Health and Production, Phnom Penh120608, Cambodia
| | - Sovanncheypo Chao
- National Animal Health and Production Research Institute, General Directorate of Animal Health and Production, Phnom Penh120608, Cambodia
| | - Giselle G. K. Ng
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore169857, Singapore
| | - Zhuang Yan
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore169857, Singapore
| | - Monidarin Chou
- University of Health Sciences, Phnom Penh120210, Cambodia
| | - James W. Rudge
- Department of Global Health and Development, London School of Hygiene & Tropical Medicine, LondonWC1E 7HT, United Kingdom
| | - Gavin J. D. Smith
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore169857, Singapore
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore169857, Singapore
- SingHealth Duke-NUS Global Health Institute,SingHealth Duke-NUS Academic Medical Centre, Singapore169857, Singapore
- Duke Global Health Institute, Duke University, Durham, NC27708
| | - Yvonne C. F. Su
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore169857, Singapore
| |
Collapse
|
4
|
Jallow MM, Barry MA, Fall A, Ndiaye NK, Kiori D, Sy S, Goudiaby D, Niang MN, Fall G, Fall M, Dia N. Influenza A Virus in Pigs in Senegal and Risk Assessment of Avian Influenza Virus (AIV) Emergence and Transmission to Human. Microorganisms 2023; 11:1961. [PMID: 37630521 PMCID: PMC10459748 DOI: 10.3390/microorganisms11081961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
We conducted an active influenza surveillance in the single pig slaughterhouse in Dakar to investigate the epidemiology and genetic characteristics of influenza A viruses (IAVs) and to provide serologic evidence of avian influenza virus (AIV) infection in pigs at interfaces with human populations in Senegal. Nasal swab and blood samples were collected on a weekly basis from the same animal immediately after slaughter. Influenza A viruses were diagnosed using RT-qPCR and a subset of positive samples for H3 and H1 subtypes were selected for full genome amplification and NGS sequencing. Serum samples were tested by HI assay for the detection of antibodies recognizing four AIVs, including H9N2, H5N1, H7N7 and H5N2. Between September 2018 and December 2019, 1691 swine nasal swabs were collected and tested. Influenza A virus was detected in 30.7% (520/1691), and A/H1N1pdm09 virus was the most commonly identified subtype with 38.07% (198/520), followed by A/H1N2 (16.3%) and A/H3N2 (5.2%). Year-round influenza activity was noted in pigs, with the highest incidence between June and September. Phylogenetic analyses revealed that the IAVs were closely related to human IAV strains belonging to A/H1N1pdm09 and seasonal H3N2 lineages. Genetic analysis revealed that Senegalese strains possessed several key amino acid changes, including D204 and N241D in the receptor binding site, S31N in the M2 gene and P560S in the PA protein. Serological analyses revealed that 83.5% (95%CI = 81.6-85.3) of the 1636 sera tested were positive for the presence of antibodies against either H9N2, H5N1, H7N7 or H5N2. Influenza H7N7 (54.3%) and H9N2 (53.6%) were the dominant avian subtypes detected in Senegalese pigs. Given the co-circulation of multiple subtypes of influenza viruses among Senegalese pigs, the potential exists for the emergence of new hybrid viruses of unpredictable zoonotic and pandemic potential in the future.
Collapse
Affiliation(s)
- Mamadou Malado Jallow
- Institut Pasteur de Dakar, Département de Virologie, Dakar BP 220, Senegal; (M.M.J.); (A.F.); (N.K.N.); (D.K.); (S.S.); (D.G.); (M.N.N.); (G.F.)
- Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta DIOP de Dakar, Dakar BP 206, Senegal;
| | - Mamadou Aliou Barry
- Institut Pasteur de Dakar, Unité d’Epidémiologie des Maladies Infectieuses, Dakar BP 220, Senegal;
| | - Amary Fall
- Institut Pasteur de Dakar, Département de Virologie, Dakar BP 220, Senegal; (M.M.J.); (A.F.); (N.K.N.); (D.K.); (S.S.); (D.G.); (M.N.N.); (G.F.)
| | - Ndiendé Koba Ndiaye
- Institut Pasteur de Dakar, Département de Virologie, Dakar BP 220, Senegal; (M.M.J.); (A.F.); (N.K.N.); (D.K.); (S.S.); (D.G.); (M.N.N.); (G.F.)
| | - Davy Kiori
- Institut Pasteur de Dakar, Département de Virologie, Dakar BP 220, Senegal; (M.M.J.); (A.F.); (N.K.N.); (D.K.); (S.S.); (D.G.); (M.N.N.); (G.F.)
| | - Sara Sy
- Institut Pasteur de Dakar, Département de Virologie, Dakar BP 220, Senegal; (M.M.J.); (A.F.); (N.K.N.); (D.K.); (S.S.); (D.G.); (M.N.N.); (G.F.)
| | - Déborah Goudiaby
- Institut Pasteur de Dakar, Département de Virologie, Dakar BP 220, Senegal; (M.M.J.); (A.F.); (N.K.N.); (D.K.); (S.S.); (D.G.); (M.N.N.); (G.F.)
| | - Mbayame Ndiaye Niang
- Institut Pasteur de Dakar, Département de Virologie, Dakar BP 220, Senegal; (M.M.J.); (A.F.); (N.K.N.); (D.K.); (S.S.); (D.G.); (M.N.N.); (G.F.)
| | - Gamou Fall
- Institut Pasteur de Dakar, Département de Virologie, Dakar BP 220, Senegal; (M.M.J.); (A.F.); (N.K.N.); (D.K.); (S.S.); (D.G.); (M.N.N.); (G.F.)
| | - Malick Fall
- Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta DIOP de Dakar, Dakar BP 206, Senegal;
| | - Ndongo Dia
- Institut Pasteur de Dakar, Département de Virologie, Dakar BP 220, Senegal; (M.M.J.); (A.F.); (N.K.N.); (D.K.); (S.S.); (D.G.); (M.N.N.); (G.F.)
| |
Collapse
|
5
|
Koutsoumanis K, Allende A, Alvarez Ordoñez A, Bolton D, Bover‐Cid S, Chemaly M, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Skandamis P, Suffredini E, Fernandez Escamez P, Gonzales‐Barron U, Roberts H, Ru G, Simmons M, Cruz RB, Lourenço Martins J, Messens W, Ortiz‐Pelaez A, Simon AC, De Cesare A. Assessment on the efficacy of methods 2 to 5 and method 7 set out in Commission Regulation (EU) No 142/2011 to inactivate relevant pathogens when producing processed animal protein of porcine origin intended to feed poultry and aquaculture animals. EFSA J 2023; 21:e08093. [PMID: 37416785 PMCID: PMC10320699 DOI: 10.2903/j.efsa.2023.8093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023] Open
Abstract
An assessment was conducted on the level of inactivation of relevant pathogens that could be present in processed animal protein of porcine origin intended to feed poultry and aquaculture animals when methods 2 to 5 and method 7, as detailed in Regulation (EU) No 142/2011, are applied. Five approved scenarios were selected for method 7. Salmonella Senftenberg, Enterococcus faecalis, spores of Clostridium perfringens and parvoviruses were shortlisted as target indicators. Inactivation parameters for these indicators were extracted from extensive literature search and a recent EFSA scientific opinion. An adapted Bigelow model was fitted to retrieved data to estimate the probability that methods 2 to 5, in coincidental and consecutive modes, and the five scenarios of method 7 are able to achieve a 5 log10 and a 3 log10 reduction of bacterial indicators and parvoviruses, respectively. Spores of C. perfringens were the indicator with the lowest probability of achieving the target reduction by methods 2 to 5, in coincidental and consecutive mode, and by the five considered scenarios of method 7. An expert knowledge elicitation was conducted to estimate the certainty of achieving a 5 log10 reduction of spores of C. perfringens considering the results of the model and additional evidence. A 5 log10 reduction of C. perfringens spores was judged: 99-100% certain for methods 2 and 3 in coincidental mode; 98-100% certain for method 7 scenario 3; 80-99% certain for method 5 in coincidental mode; 66-100% certain for method 4 in coincidental mode and for method 7 scenarios 4 and 5; 25-75% certain for method 7 scenario 2; and 0-5% certain for method 7 scenario 1. Higher certainty is expected for methods 2 to 5 in consecutive mode compared to coincidental mode.
Collapse
|
6
|
Liu M, van Kuppeveld FJM, de Haan CAM, de Vries E. Gradual adaptation of animal influenza A viruses to human-type sialic acid receptors. Curr Opin Virol 2023; 60:101314. [DOI: 10.1016/j.coviro.2023.101314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 04/01/2023]
|
7
|
Latinne A, Nga NTT, Long NV, Ngoc PTB, Thuy HB, Long NV, Long PT, Phuong NT, Quang LTV, Tung N, Nam VS, Duoc VT, Thinh ND, Schoepp R, Ricks K, Inui K, Padungtod P, Johnson CK, Mazet JAK, Walzer C, Olson SH, Fine AE. One Health Surveillance Highlights Circulation of Viruses with Zoonotic Potential in Bats, Pigs, and Humans in Viet Nam. Viruses 2023; 15:v15030790. [PMID: 36992498 PMCID: PMC10053906 DOI: 10.3390/v15030790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
A One Health cross-sectoral surveillance approach was implemented to screen biological samples from bats, pigs, and humans at high-risk interfaces for zoonotic viral spillover for five viral families with zoonotic potential in Viet Nam. Over 1600 animal and human samples from bat guano harvesting sites, natural bat roosts, and pig farming operations were tested for coronaviruses (CoVs), paramyxoviruses, influenza viruses, filoviruses and flaviviruses using consensus PCR assays. Human samples were also tested using immunoassays to detect antibodies against eight virus groups. Significant viral diversity, including CoVs closely related to ancestors of pig pathogens, was detected in bats roosting at the human-animal interfaces, illustrating the high risk for CoV spillover from bats to pigs in Viet Nam, where pig density is very high. Season and reproductive period were significantly associated with the detection of bat CoVs, with site-specific effects. Phylogeographic analysis indicated localized viral transmission among pig farms. Our limited human sampling did not detect any known zoonotic bat viruses in human communities living close to the bat cave and harvesting bat guano, but our serological assays showed possible previous exposure to Marburg virus-like (Filoviridae), Crimean-Congo hemorrhagic fever virus-like (Bunyaviridae) viruses and flaviviruses. Targeted and coordinated One Health surveillance helped uncover this viral pathogen emergence hotspot.
Collapse
Affiliation(s)
- Alice Latinne
- Wildlife Conservation Society, Viet Nam Country Program, Hanoi 11111, Viet Nam
- Wildlife Conservation Society, Health Program, Bronx, NY 10460, USA
| | | | - Nguyen Van Long
- Wildlife Conservation Society, Viet Nam Country Program, Hanoi 11111, Viet Nam
| | - Pham Thi Bich Ngoc
- Wildlife Conservation Society, Viet Nam Country Program, Hanoi 11111, Viet Nam
| | - Hoang Bich Thuy
- Wildlife Conservation Society, Viet Nam Country Program, Hanoi 11111, Viet Nam
| | - Nguyen Van Long
- Department of Animal Health, Ministry of Agricultural and Rural Development of Viet Nam, Hanoi 11519, Viet Nam
| | - Pham Thanh Long
- Department of Animal Health, Ministry of Agricultural and Rural Development of Viet Nam, Hanoi 11519, Viet Nam
| | | | - Le Tin Vinh Quang
- Regional Animal Health Office No. 6, Ho Chi Minh City 72106, Viet Nam
| | - Nguyen Tung
- Department of Animal Health, Ministry of Agricultural and Rural Development of Viet Nam, Hanoi 11519, Viet Nam
| | - Vu Sinh Nam
- National Institute of Hygiene and Epidemiology, Ministry of Health, Hanoi 11611, Viet Nam
| | - Vu Trong Duoc
- National Institute of Hygiene and Epidemiology, Ministry of Health, Hanoi 11611, Viet Nam
| | - Nguyen Duc Thinh
- National Institute of Hygiene and Epidemiology, Ministry of Health, Hanoi 11611, Viet Nam
| | - Randal Schoepp
- Diagnostic Systems Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Keersten Ricks
- Diagnostic Systems Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Ken Inui
- Food and Agriculture Organization of the United Nations (FAO), Country Office for Viet Nam, Hanoi 11112, Viet Nam
| | - Pawin Padungtod
- Food and Agriculture Organization of the United Nations (FAO), Country Office for Viet Nam, Hanoi 11112, Viet Nam
| | - Christine K Johnson
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Jonna A K Mazet
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Chris Walzer
- Wildlife Conservation Society, Health Program, Bronx, NY 10460, USA
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Sarah H Olson
- Wildlife Conservation Society, Health Program, Bronx, NY 10460, USA
| | - Amanda E Fine
- Wildlife Conservation Society, Viet Nam Country Program, Hanoi 11111, Viet Nam
- Wildlife Conservation Society, Health Program, Bronx, NY 10460, USA
| |
Collapse
|
8
|
Ting NI, Dang-Xuan S, Gilbert J, Nguyen NTT, Lam S, Nguyen-Viet H. A glance into traditional pig slaughtering practices in Vietnam and opportunities for zoonotic disease prevention. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2023.1101282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
IntroductionAfrican swine fever in Vietnam is contributing to existing concerns over zoonotic disease transmission from sick pigs to humans. While slaughterhouses are key sites of occupational hazards to workers and contamination of meat, the specific slaughtering practices contributing to zoonotic occupational and foodborne disease risks remain under-researched. Our objective is to identify and characterize aspects of pig slaughtering processes that contribute to such risks.MethodsWe draw on qualitative observations, photos, and videos from three mobile slaughterhouses and seven abattoirs in Hung Yen, Vietnam.ResultsBased on our analysis, areas likely leading to zoonotic disease risks include slaughtering procedures, personal hygiene of workers, equipment sanitation, and facility sanitation. Within the small-scale swine industry, slaughtering practices are long-standing and difficult to change.ConclusionOur study underscores the importance of hygiene training of workers, improvements to equipment and facilities, and awareness-building activities targeting consumers to reduce the burden of zoonotic disease risks in small-scale pig slaughter settings.
Collapse
|
9
|
Wang Q, Zeng X, Tang S, Lan L, Wang X, Lai Z, Liu Z, Hou X, Gao L, Yun C, Zhang Z, Leng J, Fan X. Pathogenicity and anti-infection immunity of animal H3N2 and H6N6 subtype influenza virus cross-species infection with tree shrews. Virus Res 2023; 324:199027. [PMID: 36543317 DOI: 10.1016/j.virusres.2022.199027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/11/2022] [Accepted: 12/17/2022] [Indexed: 12/23/2022]
Abstract
Animal influenza viruses can spread across species and pose a fatal threat to human health due to the high pathogenicity and mortality. Animal models are crucial for studying cross-species infection and the pathogenesis of influenza viruses. Tupaia belangeri (tree shrew) has been emerging as an animal model for multiple human virus infections recently because of the close genetic relationship and phylogeny with humans. So far, tree shrew has been reported to be susceptible to human influenza virus subtype H1N1, avian influenza viruses subtype H9N2, subtype H5N1, and subtype H7N9. However, the pathogenicity, infection, and immunity of swine and land avian influenza viruses with low pathogenicity and the potential to jump to humans remain largely unexplored in the tree shrew model. Previously, our team has successfully isolated the newly emerging swine influenza virus subtype H3N2 (A/Swine/GX/NS2783/2010, SW2783) and avian influenza virus subtype H6N6 (A/CK/ZZ/346/2014, ZZ346). In this study, we observed the pathogenicity, immune characteristics, and cross-species infection potential ability of SW2783 and ZZ346 strains in tree shrew model with 50% tissue culture infective dose (TCID50), hematoxylin and eosin (HE) staining, immunohistochemistry (IHC), real-time quantitative PCR (qRT-PCR) and other experimental methods. Both animal-borne influenza viruses had a strong ability on tissue infection in the turbinate and the trachea of tree shrews in vitro, in which SW2783 showed stronger replication ability than in ZZ346. SW2783 and ZZ346 both showed pathogenic ability with infected tree shrews model in vivo without prior adaptive culture, which mainly happened in the upper respiratory tract. However, the infection ability was weak, the clinical symptoms were mild, and the histopathological changes in the respiratory tract were relatively light. Furthermore, innate immune responses and adaptive immunity were observed in the tree shrew model after the infection of SW2783 and ZZ346 strains. We observed that the unadapted SW2783 and ZZ346 virus could transmit among tree shrews by direct contact. We also observed that SW2783 virus could transmit from tree shrews to guinea pigs. These results indicated that both animal-borne influenza viruses could induce similar pathogenicity and immune response to those caused by human-common influenza viruses. Tree shrews may be an excellent animal model for studying the interaction between the influenza virus and the host and the cross-species infection mechanism of the animal influenza virus.
Collapse
Affiliation(s)
- Qihui Wang
- Department of Immunology, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Xia Zeng
- Department of Immunology, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Shen Tang
- Department of Immunology, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Li Lan
- Department of Immunology, Guangxi Medical University, Nanning 530021, China
| | - Xinhang Wang
- Department of Immunology, Guangxi Medical University, Nanning 530021, China
| | - Zhenping Lai
- Department of Microbiology, Guangxi Medical University, Nanning 530021, China
| | - Zihe Liu
- Department of Immunology, Guangxi Medical University, Nanning 530021, China
| | - Xiaoqiong Hou
- Department of Immunology, Guangxi Medical University, Nanning 530021, China
| | - Lingxi Gao
- Department of Microbiology, Guangxi Medical University, Nanning 530021, China
| | - Chenxia Yun
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Zengfeng Zhang
- Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China; Department of Microbiology, Guangxi Medical University, Nanning 530021, China.
| | - Jing Leng
- Department of Immunology, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Xiaohui Fan
- Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China; Department of Microbiology, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
10
|
Xu M, Xia S, Wang M, Liu X, Li X, Chen W, Wang Y, Li H, Xia C, Chen J, Wu J. Enzymatic independent role of sphingosine kinase 2 in regulating the expression of type I interferon during influenza A virus infection. PLoS Pathog 2022; 18:e1010794. [PMID: 36070294 PMCID: PMC9451060 DOI: 10.1371/journal.ppat.1010794] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 08/04/2022] [Indexed: 11/18/2022] Open
Abstract
Influenza virus has the ability to circumvent host innate immune system through regulating certain host factors for its effective propagation. However, the detailed mechanism is still not fully understood. Here, we report that a host sphingolipid metabolism-related factor, sphingosine kinase 2 (SPHK2), upregulated during influenza A virus (IAV) infection, promotes IAV infection in an enzymatic independent manner. The enhancement of the virus replication is not abolished in the catalytic-incompetent SPHK2 (G212E) overexpressing cells. Intriguingly, the sphingosine-1-phosphate (S1P) related factor HDAC1 also plays a crucial role in SPHK2-mediated IAV infection. We found that SPHK2 cannot facilitate IAV infection in HDAC1 deficient cells. More importantly, SPHK2 overexpression diminishes the IFN-β promoter activity upon IAV infection, resulting in the suppression of type I IFN signaling. Furthermore, ChIP-qPCR assay revealed that SPHK2 interacts with IFN-β promoter through the binding of demethylase TET3, but not with the other promoters regulated by TET3, such as TGF-β1 and IL6 promoters. The specific regulation of SPHK2 on IFN-β promoter through TET3 can in turn recruit HDAC1 to the IFN-β promoter, enhancing the deacetylation of IFN-β promoter, therefore leading to the inhibition of IFN-β transcription. These findings reveal an enzymatic independent mechanism on host SPHK2, which associates with TET3 and HDAC1 to negatively regulate type I IFN expression and thus facilitates IAV propagation.
Collapse
Affiliation(s)
- Mengqiong Xu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Sisi Xia
- Department of Biological Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Mei Wang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Xiaolian Liu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Xin Li
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Weijie Chen
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Yaohao Wang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Hongjian Li
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
- * E-mail: (HL); (CX); (JC); (JW)
| | - Chuan Xia
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- * E-mail: (HL); (CX); (JC); (JW)
| | - Jun Chen
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, Guangdong, China
- * E-mail: (HL); (CX); (JC); (JW)
| | - Jianguo Wu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, Guangdong, China
- * E-mail: (HL); (CX); (JC); (JW)
| |
Collapse
|
11
|
Yang JR, Kuo CY, Yu IL, Kung FY, Wu FT, Lin JS, Liu MT. Human infection with a reassortant swine-origin influenza A(H1N2)v virus in Taiwan, 2021. Virol J 2022; 19:63. [PMID: 35392932 PMCID: PMC8988477 DOI: 10.1186/s12985-022-01794-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/16/2022] [Indexed: 11/25/2022] Open
Abstract
Background Influenza A virus infections occur in different species, causing mild-to-severe symptoms that lead to a heavy disease burden. H1N1, H1N2 and H3N2 are major subtypes of swine influenza A viruses in pigs and occasionally infect humans. Methods A case infected by novel influenza virus was found through laboratory surveillance system for influenza viruses. Clinical specimens were tested by virus culture and/or real-time RT–PCR. The virus was identified and characterized by gene sequencing and phylogenetic analysis. Results In 2021, for the first time in Taiwan, an influenza A(H1N2)v virus was isolated from a 5-year old girl who was suffering from fever, runny nose and cough. The isolated virus was designated A/Taiwan/1/2021(H1N2)v. Full-genome sequencing and phylogenetic analyses revealed that A/Taiwan/1/2021(H1N2)v is a novel reassortant virus containing hemagglutinin (HA) and neuraminidase (NA) gene segments derived from swine influenza A(H1N2) viruses that may have been circulating in Taiwan for decades, and the other 6 internal genes (PB2, PB2, PA, NP, M and NS) are from human A(H1N1)pdm09 viruses. Conclusion Notably, the HA and NA genes of A/Taiwan/1/2021(H1N2)v separately belong to specific clades that are unique for Taiwanese swine and were proposed to be introduced from humans in different time periods. Bidirectional transmission between humans and swine contributes to influenza virus diversity and poses the next pandemic threat. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-022-01794-2.
Collapse
Affiliation(s)
- Ji-Rong Yang
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, No. 161, Kun-Yang Street, Taipei, 11561, Taiwan, ROC
| | - Chuan-Yi Kuo
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, No. 161, Kun-Yang Street, Taipei, 11561, Taiwan, ROC
| | - I-Ling Yu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, No. 161, Kun-Yang Street, Taipei, 11561, Taiwan, ROC
| | - Fang-Yen Kung
- Department of Laboratory Medicine, Changhua Christian Hospital, Changhua, Taiwan, ROC
| | - Fang-Tzy Wu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, No. 161, Kun-Yang Street, Taipei, 11561, Taiwan, ROC
| | - Jen-Shiou Lin
- Department of Laboratory Medicine, Changhua Christian Hospital, Changhua, Taiwan, ROC
| | - Ming-Tsan Liu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, No. 161, Kun-Yang Street, Taipei, 11561, Taiwan, ROC.
| |
Collapse
|
12
|
Saito T, Sakuma S, Mine J, Uchida Y, Hangalapura BN. Genetic Diversity of the Hemagglutinin Genes of Influenza a Virus in Asian Swine Populations. Viruses 2022; 14:747. [PMID: 35458477 PMCID: PMC9032595 DOI: 10.3390/v14040747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 01/04/2023] Open
Abstract
Swine influenza (SI) is a major respiratory disease of swine; SI is due to the influenza A virus of swine (IAV-S), a highly contagious virus with zoonotic potential. The intensity of IAV-S surveillance varies among countries because it is not a reportable disease and causes limited mortality in swine. Although Asia accounts for half of all pig production worldwide, SI is not well managed in those countries. Rigorously managing SI on pig farms could markedly reduce the economic losses, the likelihood of novel reassortants among IAV-S, and the zoonotic IAV-S infections in humans. Vaccination of pigs is a key control measure for SI, but its efficacy relies on the optimal antigenic matching of vaccine strains with the viral strains circulating in the field. Here, we phylogenetically reviewed the genetic diversity of the hemagglutinin gene among IAVs-S that have circulated in Asia during the last decade. This analysis revealed the existence of country-specific clades in both the H1 and H3 subtypes and cross-border transmission of IAVs-S. Our findings underscore the importance of choosing vaccine antigens for each geographic region according to both genetic and antigenic analyses of the circulating IAV-S to effectively manage SI in Asia.
Collapse
Affiliation(s)
- Takehiko Saito
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba 305-0856, Japan; (S.S.); (J.M.); (Y.U.)
| | - Saki Sakuma
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba 305-0856, Japan; (S.S.); (J.M.); (Y.U.)
| | - Junki Mine
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba 305-0856, Japan; (S.S.); (J.M.); (Y.U.)
| | - Yuko Uchida
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba 305-0856, Japan; (S.S.); (J.M.); (Y.U.)
| | | |
Collapse
|
13
|
Abstract
Globally swine influenza is one of the most important diseases of the pig industry, with various subtypes of swine influenza virus co-circulating in the field. Swine influenza can not only cause large economic losses for the pig industry but can also lead to epidemics or pandemics in the human population. We provide an overview of the pathogenic characteristics of the disease, diagnosis, risk factors for the occurrence on pig farms, impact on pigs and humans and methods to control it. This review is designed to promote understanding of the epidemiology of swine influenza which will benefit the control of the disease in both pigs and humans.
Collapse
Affiliation(s)
- Yin Li
- School of Veterinary Medicine, Murdoch University, Perth, WA Australia.,Commonwealth Scientific and Industrial Research Organisation, St. Lucia, QLD Australia
| | - Ian Robertson
- School of Veterinary Medicine, Murdoch University, Perth, WA Australia.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 China.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
14
|
Yu Y, Wu M, Cui X, Xu F, Wen F, Pan L, Li S, Sun H, Zhu X, Lin J, Feng Y, Li M, Liu Y, Yuan S, Liao M, Sun H. Pathogenicity and transmissibility of current H3N2 swine influenza virus in Southern China: A zoonotic potential. Transbound Emerg Dis 2021; 69:2052-2064. [PMID: 34132051 DOI: 10.1111/tbed.14190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/12/2021] [Accepted: 06/12/2021] [Indexed: 11/27/2022]
Abstract
Swine are considered as 'mixing vessels' of influenza A viruses and play an important role in the generation of novel influenza pandemics. In this study, we described that the H3N2 swine influenza (swH3N2) viruses currently circulating in pigs in Guangdong province carried six internal genes from 2009 pandemic H1N1 virus (pmd09), and their antigenicity was obviously different from that of current human H3N2 influenza viruses or recommended vaccine strains (A/Guangdong/1194/2019, A/Hong Kong/4801/2014). These swH3N2 viruses preferentially bonded to the human-like receptors, and efficiently replicated in human, canine and swine cells. In addition, the virus replicated in turbinate and trachea of guinea pigs, and efficiently transmitted among guinea pigs, and virus shedding last for 6 days post-infection (dpi). The virus replicated in the respiratory tract of pigs, effectively transmitted among pigs, and virus shedding last until 9 dpi. Taken together, these current swH3N2 viruses might have the zoonotic potential. Strengthening surveillance and monitoring the pathogenicity of such swH3N2 viruses are urgently needed.
Collapse
Affiliation(s)
- Yanan Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Meihua Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Xinxin Cui
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Fengxiang Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Feng Wen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Liangqi Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Shuo Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Huapeng Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Xuhui Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Jiate Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Yaling Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Mingliang Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Yang Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Shaohua Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Hailiang Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| |
Collapse
|
15
|
Anderson TK, Chang J, Arendsee ZW, Venkatesh D, Souza CK, Kimble JB, Lewis NS, Davis CT, Vincent AL. Swine Influenza A Viruses and the Tangled Relationship with Humans. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a038737. [PMID: 31988203 PMCID: PMC7919397 DOI: 10.1101/cshperspect.a038737] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Influenza A viruses (IAVs) are the causative agents of one of the most important viral respiratory diseases in pigs and humans. Human and swine IAV are prone to interspecies transmission, leading to regular incursions from human to pig and vice versa. This bidirectional transmission of IAV has heavily influenced the evolutionary history of IAV in both species. Transmission of distinct human seasonal lineages to pigs, followed by sustained within-host transmission and rapid adaptation and evolution, represent a considerable challenge for pig health and production. Consequently, although only subtypes of H1N1, H1N2, and H3N2 are endemic in swine around the world, extensive diversity can be found in the hemagglutinin (HA) and neuraminidase (NA) genes, as well as the remaining six genes. We review the complicated global epidemiology of IAV in swine and the inextricably entangled implications for public health and influenza pandemic planning.
Collapse
Affiliation(s)
- Tavis K. Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa 50010, USA
| | - Jennifer Chang
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa 50010, USA
| | - Zebulun W. Arendsee
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa 50010, USA
| | - Divya Venkatesh
- Department of Pathology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire AL9 7TA, United Kingdom
| | - Carine K. Souza
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa 50010, USA
| | - J. Brian Kimble
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa 50010, USA
| | - Nicola S. Lewis
- Department of Pathology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire AL9 7TA, United Kingdom
| | - C. Todd Davis
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | - Amy L. Vincent
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa 50010, USA
| |
Collapse
|
16
|
A Single Amino Acid at Position 431 of the PB2 Protein Determines the Virulence of H1N1 Swine Influenza Viruses in Mice. J Virol 2020; 94:JVI.01930-19. [PMID: 31996432 PMCID: PMC7108842 DOI: 10.1128/jvi.01930-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/20/2020] [Indexed: 11/20/2022] Open
Abstract
The frequent reassortment among different influenza viruses in pigs adds complexity to the epidemiology of swine influenza. The diverse viral virulence phenotypes underline the need to investigate the possible genetic determinants for evaluating the pandemic potential to human public health. Here, we found that multiple genotypes of influenza viruses cocirculate in the swine population in Liaoning Province, China. Furthermore, we pinpointed a single amino acid at position 431 in the PB2 protein which plays a critical role in the virulence of H1N1 viruses in mice and found that the alteration of viral polymerase activities is the cause of the different virulence. Our study further indicated that the virulence of influenza virus is a polygenic trait, and the newly identified virulence-related residue in the PB2 provides important information for broadening knowledge on the genetic basis of viral virulence of influenza viruses. Genetic reassortments occurred continuously among multiple subtypes or genotypes of influenza viruses prevalent in pigs. Of note, some reassortant viruses bearing the internal genes of the 2009 pandemic H1N1 (2009/H1N1) virus sporadically caused human infection, which highlights their potential threats to human public health. In this study, we performed phylogenetic analysis on swine influenza viruses (SIVs) circulating in Liaoning Province, China. A total of 22 viruses, including 18 H1N1 and 4 H1N2 viruses, were isolated from 5,750 nasal swabs collected from pigs in slaughterhouses from 2014 to 2016. H1N1 viruses formed four genotypes, which included Eurasian avian-like H1N1 (EA H1N1) and double/triple reassortant H1N1 derived from EA H1N1, 2009/H1N1, and triple reassortant H1N2 (TR H1N2) viruses. H1N1 SIVs with different genotypes and even those within the same genotypes represented different pathogenicities in mice. We further characterized two naturally isolated H1N1 SIVs that had similar viral genomes but differed substantially in their virulence in mice and found that a single amino acid at position 431 in the basic polymerase 2 (PB2) protein significantly affected the viral replication capacity and virulence of these two viruses. Taken together, our findings revealed the diverse genomic origins and virulence of the SIVs prevalent in Liaoning Province during 2014 to 2016, which highlights that continuous surveillance is essential to monitor the evolution of SIVs. We identified a naturally occurring amino acid mutation in the PB2 protein of H1N1 SIVs that impacts the viral replication and virulence in mice by altering the viral polymerase activity. IMPORTANCE The frequent reassortment among different influenza viruses in pigs adds complexity to the epidemiology of swine influenza. The diverse viral virulence phenotypes underline the need to investigate the possible genetic determinants for evaluating the pandemic potential to human public health. Here, we found that multiple genotypes of influenza viruses cocirculate in the swine population in Liaoning Province, China. Furthermore, we pinpointed a single amino acid at position 431 in the PB2 protein which plays a critical role in the virulence of H1N1 viruses in mice and found that the alteration of viral polymerase activities is the cause of the different virulence. Our study further indicated that the virulence of influenza virus is a polygenic trait, and the newly identified virulence-related residue in the PB2 provides important information for broadening knowledge on the genetic basis of viral virulence of influenza viruses.
Collapse
|
17
|
Baudon E, Peyre M, Tung DD, Thi Nga P, Khong NV, Cowling BJ, Peiris M. Surveillance of swine influenza viruses in sentinel familial farms in Hung Yen province in Northern Vietnam in 2013-2014. Zoonoses Public Health 2019; 67:213-221. [PMID: 31855326 DOI: 10.1111/zph.12671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/05/2019] [Accepted: 11/19/2019] [Indexed: 11/30/2022]
Abstract
From May 2013 to April 2014, 15 swine family-run farms (17 pig litters) in two districts in Hung Yen province, near Hanoi, were virologically and epizootiologically monitored for swine influenza viruses (SIV) monthly. No SIV was isolated from nasal swabs. Maternal antibodies were detected in 10 litters, and seroconversion against SIV was detected in six litters. There was a marked difference in patterns of SIV transmission in the two districts. Van Lam district which has low density of swine with mainly smallholder farms had low intensity of SIV, with much of the infection caused by H1N1 2009 pandemic-like viruses A(H1N1)pdm09, likely originated from humans. In contrast, Van Giang district, which has high swine density and larger farms, had high levels of typical SIV (triple reassortants H3N2 and H3N2 Binh Duong lineage viruses) circulating within swine. With one exception, the SIV lineages detected were those we concurrently isolated from studies in a large central abattoir in Hanoi. Influenza-like illness symptoms reported by farmers were poorly correlated with serological evidence of SIV infection.
Collapse
Affiliation(s)
- Eugénie Baudon
- The University of Hong Kong, Hong Kong, China.,French Agricultural Research Center for International Development (CIRAD), Montpellier, France
| | - Marisa Peyre
- French Agricultural Research Center for International Development (CIRAD), Montpellier, France
| | - Dao Duy Tung
- National Institute of Veterinary Research, Hanoi, Vietnam
| | - Pham Thi Nga
- National Institute of Veterinary Research, Hanoi, Vietnam
| | | | | | | |
Collapse
|
18
|
Adeola OA, Olugasa BO, Emikpe BO, Folitse RD. Syndromic survey and molecular analysis of influenza viruses at the human-swine interface in two West African cosmopolitan cities suggest the possibility of bidirectional interspecies transmission. Zoonoses Public Health 2019; 66:232-247. [PMID: 30680936 DOI: 10.1111/zph.12559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 12/24/2022]
Abstract
Influenza viruses are frequently transmitted between pigs and their handlers, and among pig handlers. However, reports on socio-environmental variables as potential risk factors associated with transmission of influenza in West African swine production facilities are very scarce. Syndromic survey for influenza was therefore conducted in Ibadan, Nigeria, and Kumasi, Ghana, in order to identify and elucidate selected socio-environmental variables that may contribute to the occurrence and distribution of influenza-like illness (ILI) among swine industry workers. In addition, molecular analyses were conducted to elucidate the nature of influenza viruses circulating at the human-swine interface in these cities and better understand the dynamics of their transmission. Influenza viruses were detected by type-specific and subtype-specific RT-PCR. Sequencing and phylogenetic analyses were carried out. Socio-environmental variables were tested by both univariable and multivariable regression methods for significance at p < 0.05. Three risk factors for ILI were identified in each city. These included "frequency of visit of pig handler to pig pen or lairage" (Ibadan: risk ratio [RR] = 1.54, 95% confidence interval [CI] = 1.36-1.79, p = 0.02; Kumasi: RR = 1.28, 95% CI = 1.11-1.71, p = 0.01) and "pig handler's awareness about biosecurity measures" (Ibadan: RR = 7.09, 95% CI = 2.36-21.32, p < 0.001; Kumasi: RR = 4.84, 95% CI = 1.98-11.80, p < 0.001). Influenza A(H1N1)pdm09 viruses, with M genes closely related to those which circulated among pigs in the two cities during the same period, were detected among Nigerian and Ghanaian pig industry workers. These findings suggest the possibility of bidirectional transmission of influenza at the human-swine interface in these cities and underscore the need for more extensive molecular studies. Risk factors identified may assist in the control of human-to-human and human-to-swine transmission of influenza in the West African swine industry.
Collapse
Affiliation(s)
- Oluwagbenga A Adeola
- Centre for Control and Prevention of Zoonoses (CCPZ), University of Ibadan, Ibadan, Nigeria.,Department of Medical Microbiology and Parasitology, College of Medicine and Health Sciences, Bingham University, Karu, Abuja, Nigeria
| | - Babasola O Olugasa
- Centre for Control and Prevention of Zoonoses (CCPZ), University of Ibadan, Ibadan, Nigeria.,Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Benjamin O Emikpe
- Centre for Control and Prevention of Zoonoses (CCPZ), University of Ibadan, Ibadan, Nigeria.,Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria.,Department of Pathobiology, School of Veterinary Medicine, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Raphael D Folitse
- Department of Pathobiology, School of Veterinary Medicine, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
19
|
Baudon E, Chu DKW, Tung DD, Thi Nga P, Vu Mai Phuong H, Le Khanh Hang N, Thanh LT, Thuy NT, Khanh NC, Mai LQ, Khong NV, Cowling BJ, Peyre M, Peiris M. Swine influenza viruses in Northern Vietnam in 2013-2014. Emerg Microbes Infect 2018; 7:123. [PMID: 29967457 PMCID: PMC6028489 DOI: 10.1038/s41426-018-0109-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/13/2018] [Accepted: 05/16/2018] [Indexed: 12/31/2022]
Abstract
Swine are an important intermediate host for emergence of pandemic influenza. Vietnam is the largest swine producer in South East Asia. Systematic virological and serological surveillance of swine influenza viruses was carried out in Northern Vietnam from May 2013 to June 2014 with monthly sampling of pigs in local and large collective slaughterhouses and in a live pig market. Influenza A seroprevalence in the local slaughterhouses and in the large collective slaughterhouse was 48.7% and 29.1%, respectively. Seventy-seven influenza A viruses were isolated, all from the large collective slaughterhouse. Genetic analysis revealed six virus genotypes including H1N1 2009 pandemic (H1N1pdm09) viruses, H1N2 with H1 of human origin, H3N2 and H1N1pdm09 reassortants, and triple-reassortant H3N2 viruses. Phylogenetic analysis of swine and human H1N1pdm09 viruses showed evidence of repeated spill-over from humans to swine rather than the establishment of H1N1pdm09 as long-term distinct lineage in swine. Surveillance at the large collective slaughterhouse proved to be the most efficient, cost-effective, and sustainable method of surveillance for swine influenza viruses in Vietnam.
Collapse
Affiliation(s)
- Eugénie Baudon
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong-Hong Kong Special Administrative Region, Hong Kong, China
- Animal and Integrated Risk Management Research Unit (AGIRs), French Agricultural Research Center for International Development (CIRAD), Montpellier, France
| | - Daniel K W Chu
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong-Hong Kong Special Administrative Region, Hong Kong, China
| | - Dao Duy Tung
- National Institute of Veterinary Research, Hanoi, Vietnam
| | - Pham Thi Nga
- National Institute of Veterinary Research, Hanoi, Vietnam
| | | | | | - Le Thi Thanh
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | | | | | - Lê Quynh Mai
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | | | - Benjamin J Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong-Hong Kong Special Administrative Region, Hong Kong, China
| | - Marisa Peyre
- Animal and Integrated Risk Management Research Unit (AGIRs), French Agricultural Research Center for International Development (CIRAD), Montpellier, France
| | - Malik Peiris
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong-Hong Kong Special Administrative Region, Hong Kong, China.
| |
Collapse
|
20
|
Takemae N, Tsunekuni R, Uchida Y, Ito T, Saito T. Experimental infection of pigs with H1 and H3 influenza A viruses of swine by using intranasal nebulization. BMC Vet Res 2018; 14:115. [PMID: 29587842 PMCID: PMC5870511 DOI: 10.1186/s12917-018-1434-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 03/16/2018] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Experimental infection of pigs via direct intranasal or intratracheal inoculation has been mainly used to study the infectious process of influenza A viruses of swine (IAVs-S). Nebulization is known to be an alternative method for inoculating pigs with IAVs-S, because larger quantities of virus potentially can be delivered throughout the respiratory tract. However, there is very little data on the experimental infection of pigs by inhalation using nebulizer. In the current study, we used intranasal nebulization to inoculate pigs with 9 different IAVs-S-3 H1N1, 2 H1N2, and 4 H3N2 strains. We then assessed the process of infection by evaluating the clinical signs, nasal and oral viral shedding, and seroconversion rates of the pigs inoculated. RESULTS Lethargy and sneezing were the predominant clinical signs among pigs inoculated with 7 of the 9 strains evaluated; the remaining 2 strains (1 H1N1 and 1 H1N2 isolate) failed to induce any clinical signs throughout the experiments. Significantly increased rectal temperatures were observed with an H1N1 or H3N2 strains between 1 and 3 days post-inoculation (dpi). In addition, patterns of nasal viral shedding differed among the strains: nasal viral shedding began on 1 dpi for 6 strains, with all 9 viruses being shed from 2 to 5 dpi. The detection of viral shedding was less sensitive from oral samples than nasal secretions. Viral shedding was not detected in either nasal or oral swabs after 10 dpi. According to hemagglutination-inhibition assays, all inoculated pigs had seroconverted to the inoculating virus by 14 dpi, with titers ranging from 10 to 320. CONCLUSIONS Our current findings show that intranasal nebulization successfully established IAV-S infections in pigs and demonstrate that clinical signs, viral shedding, and host immune responses varied among the strains inoculated.
Collapse
Affiliation(s)
- Nobuhiro Takemae
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.,Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok, 10900, Thailand
| | - Ryota Tsunekuni
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.,Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok, 10900, Thailand
| | - Yuko Uchida
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.,Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok, 10900, Thailand
| | - Toshihiro Ito
- The Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori, Tottori, 680-8550, Japan
| | - Takehiko Saito
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan. .,Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok, 10900, Thailand. .,United Graduate School of Veterinary Sciences, Gifu University, 1-1, Yanagito, Gifu, Gifu, 501-1112, Japan.
| |
Collapse
|
21
|
Takemae N, Nguyen PT, Le VT, Nguyen TN, To TL, Nguyen TD, Pham VP, Vo HV, Le QVT, Do HT, Nguyen DT, Uchida Y, Saito T. Appearance of reassortant European avian-origin H1 influenza A viruses of swine in Vietnam. Transbound Emerg Dis 2018; 65:1110-1116. [PMID: 29512309 DOI: 10.1111/tbed.12849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Indexed: 11/26/2022]
Abstract
Three subtypes-H1N1, H1N2 and H3N2-of influenza A viruses of swine (IAVs-S) are currently endemic in swine worldwide, but there is considerable genotypic diversity among each subtype and limited geographical distribution. Through IAVs-S monitoring in Vietnam, two H1N2 influenza A viruses were isolated from healthy pigs in Ba Ria-Vung Tau Province, Southern Vietnam, on 2 December 2016. BLAST and phylogenetic analyses revealed that their HA and NA genes were derived from those of European avian-like H1N2 IAVs-S that contained avian-origin H1 and human-like N2 genes, and were particularly closely related to those of IAVs-S circulating in the Netherlands, Germany or Denmark. In addition, the internal genes of these Vietnamese isolates were derived from human A(H1N1)pdm09 viruses, suggesting that the Vietnamese H1N2 IAVs-S are reassortants between European H1N2 IAVs-S and human A(H1N1)pdm09v. The appearance of European avian-like H1N2 IAVs-S in Vietnam marks their first transmission outside Europe. Our results and statistical analyses of the number of live pigs imported into Vietnam suggest that the European avian-like H1N2 IAVs-S may have been introduced into Vietnam with their hosts through international trade. These findings highlight the importance of quarantining imported pigs to impede the introduction of new IAVs-S.
Collapse
Affiliation(s)
- N Takemae
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, Tsukuba, Japan
- Thailand-Japan Zoonotic Diseases Collaboration Center, Bangkok, Thailand
| | - P T Nguyen
- Regional Animal Health Office No. 6, Department of Animal Health, Ho Chi Minh City, Vietnam
| | - V T Le
- Regional Animal Health Office No. 6, Department of Animal Health, Ho Chi Minh City, Vietnam
| | - T N Nguyen
- Epidemiology Division, Department of Animal Health, Hanoi, Vietnam
| | - T L To
- National Centre for Veterinary Diagnostics, Department of Animal Health, Hanoi, Vietnam
| | - T D Nguyen
- National Centre for Veterinary Diagnostics, Department of Animal Health, Hanoi, Vietnam
| | - V P Pham
- Regional Animal Health Office No. 6, Department of Animal Health, Ho Chi Minh City, Vietnam
| | - H V Vo
- Regional Animal Health Office No. 6, Department of Animal Health, Ho Chi Minh City, Vietnam
| | - Q V T Le
- Regional Animal Health Office No. 6, Department of Animal Health, Ho Chi Minh City, Vietnam
| | - H T Do
- National Centre for Veterinary Diagnostics, Department of Animal Health, Hanoi, Vietnam
| | - D T Nguyen
- Epidemiology Division, Department of Animal Health, Hanoi, Vietnam
| | - Y Uchida
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, Tsukuba, Japan
- Thailand-Japan Zoonotic Diseases Collaboration Center, Bangkok, Thailand
| | - T Saito
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, Tsukuba, Japan
- Thailand-Japan Zoonotic Diseases Collaboration Center, Bangkok, Thailand
- United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
22
|
Molecular detection of influenza A(H1N1)pdm09 viruses with M genes from human pandemic strains among Nigerian pigs, 2013-2015: implications and associated risk factors. Epidemiol Infect 2017; 145:3345-3360. [PMID: 29166978 DOI: 10.1017/s0950268817002503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
In the post-pandemic period, influenza A(H1N1)pdm09 virus has been detected in swine populations in different parts of the world. This study was conducted to determine the presence and spatial patterns of this human pandemic virus among Nigerian pigs and identify associated risk factors. Using a two-stage stratified random sampling method, nasal swab specimens were obtained from pigs in Ibadan, Nigeria during the 2013-2014 and 2014-2015 influenza seasons, and the virus was detected by reverse transcriptase-polymerase chain reaction (RT-PCR). Purified RT-PCR products were sequenced in both directions, and sequences were aligned using MUSCLE. Phylogenetic analysis was conducted in MEGA6. Purely spatial scan statistics and a spatial lag regression model were used to identify spatial clusters and associated risk factors. The virus was detected in both seasons, with an overall prevalence of 8·7%. Phylogenetic analyses revealed that the M genes were similar to those of pandemic strains which circulated in humans prior to and during the study. Cluster analysis revealed a significant primary spatial cluster (RR = 4·71, LLR = 5·66, P = 0·0046), while 'hours spent with pigs (R 2 = 0·90, P = 0·0018)' and 'hours spent with pigs from different farms (R 2 = 0·91, P = 0·0001)' were identified as significant risk factors (P < 0·05). These findings reveal that there is considerable risk of transmission of the pandemic virus, either directly from pig handlers or through fomites, to swine herds in Ibadan, Nigeria. Active circulation of the virus among Nigerian pigs could enhance its reassortment with endemic swine influenza viruses. Campaigns for adoption of biosecurity measures in West African piggeries and abattoirs should be introduced and sustained in order to prevent the emergence of a new influenza epicentre in the sub-region.
Collapse
|
23
|
Takemae N, Tsunekuni R, Sharshov K, Tanikawa T, Uchida Y, Ito H, Soda K, Usui T, Sobolev I, Shestopalov A, Yamaguchi T, Mine J, Ito T, Saito T. Five distinct reassortants of H5N6 highly pathogenic avian influenza A viruses affected Japan during the winter of 2016-2017. Virology 2017; 512:8-20. [PMID: 28892736 DOI: 10.1016/j.virol.2017.08.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 01/05/2023]
Abstract
To elucidate the evolutionary pathway, we sequenced the entire genomes of 89 H5N6 highly pathogenic avian influenza viruses (HPAIVs) isolated in Japan during winter 2016-2017 and 117 AIV/HPAIVs isolated in Japan and Russia. Phylogenetic analysis showed that at least 5 distinct genotypes of H5N6 HPAIVs affected poultry and wild birds during that period. Japanese H5N6 isolates shared a common genetic ancestor in 6 of 8 genomic segments, and the PA and NS genes demonstrated 4 and 2 genetic origins, respectively. Six gene segments originated from a putative ancestral clade 2.3.4.4 H5N6 virus that was a possible genetic reassortant among Chinese clade 2.3.4.4 H5N6 HPAIVs. In addition, 2 NS clusters and a PA cluster in Japanese H5N6 HPAIVs originated from Chinese HPAIVs, whereas 3 distinct AIV-derived PA clusters were evident. These results suggest that migratory birds were important in the spread and genetic diversification of clade 2.3.4.4 H5 HPAIVs.
Collapse
Affiliation(s)
- Nobuhiro Takemae
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok 10900, Thailand
| | - Ryota Tsunekuni
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok 10900, Thailand
| | - Kirill Sharshov
- Research Institute of Experimental and Clinical Medicine, 2, Timakova street, Novosibirsk 630117, Russia
| | - Taichiro Tanikawa
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok 10900, Thailand
| | - Yuko Uchida
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok 10900, Thailand
| | - Hiroshi Ito
- The Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori, Tottori 680-8550, Japan
| | - Kosuke Soda
- The Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori, Tottori 680-8550, Japan
| | - Tatsufumi Usui
- The Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori, Tottori 680-8550, Japan
| | - Ivan Sobolev
- Research Institute of Experimental and Clinical Medicine, 2, Timakova street, Novosibirsk 630117, Russia
| | - Alexander Shestopalov
- Research Institute of Experimental and Clinical Medicine, 2, Timakova street, Novosibirsk 630117, Russia
| | - Tsuyoshi Yamaguchi
- The Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori, Tottori 680-8550, Japan
| | - Junki Mine
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok 10900, Thailand
| | - Toshihiro Ito
- The Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori, Tottori 680-8550, Japan
| | - Takehiko Saito
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok 10900, Thailand; United Graduate School of Veterinary Sciences, Gifu University, 1-1, Yanagito, Gifu, Gifu 501-1112, Japan.
| |
Collapse
|
24
|
Hoa LNM, Tuan NA, My PH, Huong TTK, Chi NTY, Hau Thu TT, Carrique-Mas J, Duong MT, Tho ND, Hoang ND, Thanh TL, Diep NT, van Duong N, Toan TK, Tung TS, Mai LQ, Iqbal M, Wertheim H, van Doorn HR, Bryant JE. Assessing evidence for avian-to-human transmission of influenza A/H9N2 virus in rural farming communities in northern Vietnam. J Gen Virol 2017; 98:2011-2016. [PMID: 28771136 PMCID: PMC5656782 DOI: 10.1099/jgv.0.000877] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/28/2017] [Indexed: 12/22/2022] Open
Abstract
Rural farming communities in northern Vietnam do not routinely practice vaccination for influenza A viruses (IAV) for either humans or poultry, which enables us to study transmission intensity via seroepidemiology. Using samples from a longitudinal cohort of farming households, we determined the number of symptomatic and asymptomatic human infections for seasonal IAV and avian A/H9 over 2 years. As expected, we detected virologically confirmed acute cases of seasonal IAV in humans, as well as large numbers of subclinical seroconversions to A/H1pdm [55/265 (21 %)], A/H3 [95/265 (36 %)] and A/H9 [24/265 (9 %)]. Five of the A/H9 human seroconverters likely represented true infections rather than heterosubtypic immunity, because the individuals seroconverted solely to A/H9. Among co-located poultry, we found significantly higher seroprevalance for A/H5 compared to A/H9 in both chickens and ducks [for northern study sites overall, 337/1105 (30.5 %) seropositive for A/H5 and 123/1105 (11.1 %) seropositive for A/H9].
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Agriculture
- Animals
- Antibodies, Viral/blood
- Chickens
- Child
- Child, Preschool
- Ducks
- Female
- Humans
- Infant
- Influenza A Virus, H9N2 Subtype/classification
- Influenza A Virus, H9N2 Subtype/genetics
- Influenza A Virus, H9N2 Subtype/immunology
- Influenza A Virus, H9N2 Subtype/isolation & purification
- Influenza in Birds/blood
- Influenza in Birds/epidemiology
- Influenza in Birds/transmission
- Influenza in Birds/virology
- Influenza, Human/blood
- Influenza, Human/epidemiology
- Influenza, Human/transmission
- Influenza, Human/virology
- Male
- Middle Aged
- Poultry Diseases/blood
- Poultry Diseases/epidemiology
- Poultry Diseases/transmission
- Poultry Diseases/virology
- Rural Population/statistics & numerical data
- Seroepidemiologic Studies
- Vietnam
- Young Adult
Collapse
Affiliation(s)
- Le Nguyen Minh Hoa
- Oxford University
Clinical Research Unit, Hospital for Tropical Diseases,
Vietnam
| | - Nguyen Anh Tuan
- Oxford University
Clinical Research Unit, Hospital for Tropical Diseases,
Vietnam
| | - Pham Ha My
- Oxford University
Clinical Research Unit, Hospital for Tropical Diseases,
Vietnam
| | - Tran Thi Kieu Huong
- Oxford University
Clinical Research Unit, Hospital for Tropical Diseases,
Vietnam
| | - Nguyen Thi Yen Chi
- Oxford University
Clinical Research Unit, Hospital for Tropical Diseases,
Vietnam
| | - Trang Thi Hau Thu
- Oxford University
Clinical Research Unit, Hospital for Tropical Diseases,
Vietnam
| | - Juan Carrique-Mas
- Oxford University
Clinical Research Unit, Hospital for Tropical Diseases,
Vietnam
| | - Mai Thuy Duong
- National Center for
Veterinary Diagnostics, Hanoi,
Vietnam
| | | | | | - To Long Thanh
- National Center for
Veterinary Diagnostics, Hanoi,
Vietnam
| | - Nguyen Thi Diep
- Department of Animal
Health, Epidemiology Division, Hanoi,
Vietnam
| | - Nguyen van Duong
- District Veterinary
Services, BaVi District, Subdepartment of Animal Health,
Hanoi province, Vietnam
| | | | - Trinh Son Tung
- Oxford University
Clinical Research Unit, Hospital for Tropical Diseases,
Vietnam
- National Institute
Hygiene and Epidemiology, Hanoi,
Vietnam
| | - Le Quynh Mai
- National Institute
Hygiene and Epidemiology, Hanoi,
Vietnam
| | | | - Heiman Wertheim
- Oxford University
Clinical Research Unit, Hospital for Tropical Diseases,
Vietnam
- Radboud
University, Nijmegen,
Netherlands
| | - H. Rogier van Doorn
- Oxford University
Clinical Research Unit, Hospital for Tropical Diseases,
Vietnam
- Nuffield Department
of Medicine, Centre for Tropical Medicine, University of
Oxford, Oxford,
UK
| | - Juliet E. Bryant
- Oxford University
Clinical Research Unit, Hospital for Tropical Diseases,
Vietnam
- Nuffield Department
of Medicine, Centre for Tropical Medicine, University of
Oxford, Oxford,
UK
| | - the VIZIONS consortium
- Oxford University
Clinical Research Unit, Hospital for Tropical Diseases,
Vietnam
- National Center for
Veterinary Diagnostics, Hanoi,
Vietnam
- Department of Animal
Health, Epidemiology Division, Hanoi,
Vietnam
- District Veterinary
Services, BaVi District, Subdepartment of Animal Health,
Hanoi province, Vietnam
- Hanoi Medical
University, Hanoi,
Vietnam
- National Institute
Hygiene and Epidemiology, Hanoi,
Vietnam
- The Pirbright
Insitute, UK
- Radboud
University, Nijmegen,
Netherlands
- Nuffield Department
of Medicine, Centre for Tropical Medicine, University of
Oxford, Oxford,
UK
| |
Collapse
|