1
|
Wang XF, Zhang X, Ma W, Li J, Wang X. Host cell restriction factors of equine infectious anemia virus. Virol Sin 2023; 38:485-496. [PMID: 37419416 PMCID: PMC10436108 DOI: 10.1016/j.virs.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023] Open
Abstract
Equine infectious anemia virus (EIAV) is a member of the lentivirus genus in the Retroviridae family and is considered an animal model for HIV/AIDS research. An attenuated EIAV vaccine, which was successfully developed in the 1970s by classical serial passage techniques, is the first and only lentivirus vaccine that has been widely used to date. Restriction factors are cellular proteins that provide an early line of defense against viral replication and spread by interfering with various critical steps in the viral replication cycle. However, viruses have evolved specific mechanisms to overcome these host barriers through adaptation. The battle between the viruses and restriction factors is actually a natural part of the viral replication process, which has been well studied in human immunodeficiency virus type 1 (HIV-1). EIAV has the simplest genome composition of all lentiviruses, making it an intriguing subject for understanding how the virus employs its limited viral proteins to overcome restriction factors. In this review, we summarize the current literature on the interactions between equine restriction factors and EIAV. The features of equine restriction factors and the mechanisms by which the EIAV counteract the restriction suggest that lentiviruses employ diverse strategies to counteract innate immune restrictions. In addition, we present our insights on whether restriction factors induce alterations in the phenotype of the attenuated EIAV vaccine.
Collapse
Affiliation(s)
- Xue-Feng Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiangmin Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Weiwei Ma
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jiwei Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiaojun Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| |
Collapse
|
2
|
Ratcliff J, Simmonds P. The roles of nucleic acid editing in adaptation of zoonotic viruses to humans. Curr Opin Virol 2023; 60:101326. [PMID: 37031485 PMCID: PMC10155873 DOI: 10.1016/j.coviro.2023.101326] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023]
Abstract
Following spillover, viruses must adapt to new selection pressures exerted by antiviral responses in their new hosts. In mammals, cellular defense mechanisms often include viral nucleic acid editing pathways mediated through protein families apolipoprotein-B mRNA-editing complex (APOBEC) and Adenosine Deaminase Acting on ribonucleic acid (ADAR). APOBECs induce C→U transitions in viral genomes; the APOBEC locus is highly polymorphic with variable numbers of APOBEC3 paralogs and target preferences in humans and other mammals. APOBEC3 paralogs have shaped the evolutionary history of human immunodeficiency virus, with compelling bioinformatic evidence also for its mutagenic impact on monkeypox virus and severe acute respiratory syndrome coronavirus 2. ADAR-1 induces adenose-to-inosine (A→I) substitutions in double-stranded ribonucleic acid (RNA); its role in virus adaptation is less clear, as are epigenetic modifications to viral genomes, such as methylation. Nucleic acid editing restricts evolutionary space in which viruses can explore and may restrict viral-host range.
Collapse
Affiliation(s)
- Jeremy Ratcliff
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Peter Simmonds
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
3
|
Gaba A, Flath B, Chelico L. Examination of the APOBEC3 Barrier to Cross Species Transmission of Primate Lentiviruses. Viruses 2021; 13:1084. [PMID: 34200141 PMCID: PMC8228377 DOI: 10.3390/v13061084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
The transmission of viruses from animal hosts into humans have led to the emergence of several diseases. Usually these cross-species transmissions are blocked by host restriction factors, which are proteins that can block virus replication at a specific step. In the natural virus host, the restriction factor activity is usually suppressed by a viral antagonist protein, but this is not the case for restriction factors from an unnatural host. However, due to ongoing viral evolution, sometimes the viral antagonist can evolve to suppress restriction factors in a new host, enabling cross-species transmission. Here we examine the classical case of this paradigm by reviewing research on APOBEC3 restriction factors and how they can suppress human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV). APOBEC3 enzymes are single-stranded DNA cytidine deaminases that can induce mutagenesis of proviral DNA by catalyzing the conversion of cytidine to promutagenic uridine on single-stranded viral (-)DNA if they escape the HIV/SIV antagonist protein, Vif. APOBEC3 degradation is induced by Vif through the proteasome pathway. SIV has been transmitted between Old World Monkeys and to hominids. Here we examine the adaptations that enabled such events and the ongoing impact of the APOBEC3-Vif interface on HIV in humans.
Collapse
Affiliation(s)
- Amit Gaba
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SA S7H 0E5, Canada
| | - Ben Flath
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SA S7H 0E5, Canada
| | - Linda Chelico
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SA S7H 0E5, Canada
| |
Collapse
|
4
|
de Pablo-Maiso L, Doménech A, Echeverría I, Gómez-Arrebola C, de Andrés D, Rosati S, Gómez-Lucia E, Reina R. Prospects in Innate Immune Responses as Potential Control Strategies against Non-Primate Lentiviruses. Viruses 2018; 10:v10080435. [PMID: 30126090 PMCID: PMC6116218 DOI: 10.3390/v10080435] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 02/06/2023] Open
Abstract
Lentiviruses are infectious agents of a number of animal species, including sheep, goats, horses, monkeys, cows, and cats, in addition to humans. As in the human case, the host immune response fails to control the establishment of chronic persistent infection that finally leads to a specific disease development. Despite intensive research on the development of lentivirus vaccines, it is still not clear which immune responses can protect against infection. Viral mutations resulting in escape from T-cell or antibody-mediated responses are the basis of the immune failure to control the infection. The innate immune response provides the first line of defense against viral infections in an antigen-independent manner. Antiviral innate responses are conducted by dendritic cells, macrophages, and natural killer cells, often targeted by lentiviruses, and intrinsic antiviral mechanisms exerted by all cells. Intrinsic responses depend on the recognition of the viral pathogen-associated molecular patterns (PAMPs) by pathogen recognition receptors (PRRs), and the signaling cascades leading to an antiviral state by inducing the expression of antiviral proteins, including restriction factors. This review describes the latest advances on innate immunity related to the infection by animal lentiviruses, centered on small ruminant lentiviruses (SRLV), equine infectious anemia virus (EIAV), and feline (FIV) and bovine immunodeficiency viruses (BIV), specifically focusing on the antiviral role of the major restriction factors described thus far.
Collapse
MESH Headings
- Animals
- Cats
- Cattle
- Dendritic Cells/immunology
- Dendritic Cells/virology
- Gene Expression Regulation/immunology
- Goats
- Horses
- Immunity, Innate
- Immunodeficiency Virus, Bovine/immunology
- Immunodeficiency Virus, Bovine/pathogenicity
- Immunodeficiency Virus, Feline/immunology
- Immunodeficiency Virus, Feline/pathogenicity
- Infectious Anemia Virus, Equine/immunology
- Infectious Anemia Virus, Equine/pathogenicity
- Interferon Regulatory Factors/genetics
- Interferon Regulatory Factors/immunology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/virology
- Lentivirus Infections/genetics
- Lentivirus Infections/immunology
- Lentivirus Infections/virology
- Macrophages/immunology
- Macrophages/virology
- Pathogen-Associated Molecular Pattern Molecules/immunology
- Receptors, Pattern Recognition/genetics
- Receptors, Pattern Recognition/immunology
- Sheep
- T-Lymphocytes/immunology
- T-Lymphocytes/virology
Collapse
Affiliation(s)
- Lorena de Pablo-Maiso
- Instituto de Agrobiotecnología (IdAB), UPNA-CSIC-Gobierno de Navarra, Navarra 31192, Spain.
| | - Ana Doménech
- Dpto. Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain.
| | - Irache Echeverría
- Instituto de Agrobiotecnología (IdAB), UPNA-CSIC-Gobierno de Navarra, Navarra 31192, Spain.
| | - Carmen Gómez-Arrebola
- Instituto de Agrobiotecnología (IdAB), UPNA-CSIC-Gobierno de Navarra, Navarra 31192, Spain.
| | - Damián de Andrés
- Instituto de Agrobiotecnología (IdAB), UPNA-CSIC-Gobierno de Navarra, Navarra 31192, Spain.
| | - Sergio Rosati
- Malattie Infettive degli Animali Domestici, Dipartimento di Scienze Veterinarie, Università degli Studi di Torino, Torino 10095, Italy.
| | - Esperanza Gómez-Lucia
- Dpto. Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain.
| | - Ramsés Reina
- Instituto de Agrobiotecnología (IdAB), UPNA-CSIC-Gobierno de Navarra, Navarra 31192, Spain.
| |
Collapse
|
5
|
Luo MT, Fan Y, Mu D, Yao YG, Zheng YT. Molecular cloning and characterization of APOBEC3 family in tree shrew. Gene 2017; 646:143-152. [PMID: 29292195 DOI: 10.1016/j.gene.2017.12.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 12/27/2017] [Accepted: 12/28/2017] [Indexed: 11/17/2022]
Abstract
The APOBEC3 family is a series antiviral factors that inhibit the replication of many viruses, such as HIV-1 and HBV. Tree shrews (Tupaia belangeri) possess great potential as an animal model for human diseases and therapeutic responses. However, the APOBEC3 family is unknown in tree shrews. Recent work has showed the presence of the APOBEC3 family in tree shrews. In this work, the cDNA sequences of five APOBEC3 members were identified in tree shrews, namely, tsAPOBEC3A, -3C, -3F, -3G and -3H. The results showed that their sequences encoded a zinc (Z)-coordinating-domain as a characteristic of APOBEC3 proteins. Phylogenetic analysis revealed that the tree shrew APOBEC3 (tsAPOBEC3) genes have occurred independently and that they are clustered with other mammalian APOBEC3 members. Transcript expression analysis indicated that tsAPOBEC3 genes are constitutively expressed, and high in immune-related tissues. tsAPOBEC3 gene expression was up-regulated in hepatocytes and PBMCs by IFN-α stimulation. Finally, tsAPOBEC3 proteins could edit both sides of DNA by inserting G→A and C→T hypermutations. Overall, the results suggest that the tsAPOBEC3 family could play a key role in defense immunity through distinct editing mechanisms. Our results provided insights into the genetic basis for the development of a tree shrew model for studying viral infection. Future studies will focus on deepening our understanding on the antiviral functions of these editing enzymes in tree shrew.
Collapse
Affiliation(s)
- Meng-Ting Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Yu Fan
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Dan Mu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China; Kunming Primate Research Center of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China; Kunming Primate Research Center of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; KIZ-SU Joint Laboratory of Animal Models and Drug Development, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215006, China..
| |
Collapse
|
6
|
Roles of APOBEC3A and APOBEC3B in Human Papillomavirus Infection and Disease Progression. Viruses 2017; 9:v9080233. [PMID: 28825669 PMCID: PMC5580490 DOI: 10.3390/v9080233] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 02/06/2023] Open
Abstract
The apolipoprotein B messenger RNA-editing, enzyme-catalytic, polypeptide-like 3 (APOBEC3) family of cytidine deaminases plays an important role in the innate immune response to viral infections by editing viral genomes. However, the cytidine deaminase activity of APOBEC3 enzymes also induces somatic mutations in host genomes, which may drive cancer progression. Recent studies of human papillomavirus (HPV) infection and disease outcome highlight this duality. HPV infection is potently inhibited by one family member, APOBEC3A. Expression of APOBEC3A and APOBEC3B is highly elevated by the HPV oncoproteins E6 and E7 during persistent virus infection and disease progression. Furthermore, there is a high prevalence of APOBEC3A and APOBEC3B mutation signatures in HPV-associated cancers. These findings suggest that induction of an APOBEC3-mediated antiviral response during HPV infection may inadvertently contribute to cancer mutagenesis and virus evolution. Here, we discuss current understanding of APOBEC3A and APOBEC3B biology in HPV restriction, evolution, and associated cancer mutagenesis.
Collapse
|
7
|
Ai Y, Ma J, Wang X. Clues for two-step virion infectivity factor regulation by core binding factor beta. J Gen Virol 2017; 98:1113-1121. [PMID: 28516844 PMCID: PMC5656798 DOI: 10.1099/jgv.0.000749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Lentiviruses threaten human and animal health. Virion infectivity factor (Vif) is essential for the infectivity of most lentiviruses, except for the equine infectious anaemia virus (EIAV). Vif promotes viral infectivity by recruiting a Cullin-based E3 ligase to induce the degradation of a class of host restriction factors, named APOBEC3. Core binding factor beta (CBF-β) is necessary for several primate lentiviral Vif functions, including HIV-1 Vif. Although much progress has been made in understanding the contribution of CBF-β to Vif function, the precise mechanism has not yet been fully elucidated. In this study, we found that an interaction with CBF-β altered the oligomerization and subcellular distribution pattern and increased the stability of two primate lentiviral Vifs, HIV-1 Vif and Macaca simian immunodeficiency virus (SIVmac) Vif. Moreover, using a CBF-β loss-of-function mutant, we demonstrated that the interaction between CBF-β and Vif was not sufficient for Vif assistance; a region including F68 in CBF-β was also required for the stability and function of Vif. For the first time, this study separates the binding and regulating processes of CBF-β when it is promoting Vif function, which further extends our understanding of the biochemical regulation of Vif by CBF-β.
Collapse
Affiliation(s)
- Youwei Ai
- Present address: National Institute of Biological Sciences, Beijing, PR China.,College of Wildlife Resources, Northeast Forestry University, Hexing Road, Harbin 150040, PR China
| | - Jianzhang Ma
- College of Wildlife Resources, Northeast Forestry University, Hexing Road, Harbin 150040, PR China
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| |
Collapse
|
8
|
McLaughlin RN, Gable JT, Wittkopp CJ, Emerman M, Malik HS. Conservation and Innovation of APOBEC3A Restriction Functions during Primate Evolution. Mol Biol Evol 2016; 33:1889-901. [PMID: 27189538 DOI: 10.1093/molbev/msw070] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
LINE-1 (long interspersed element-1) retroelements are the only active autonomous endogenous retroelements in human genomes. Their retrotransposition activity has created close to 50% of the current human genome. Due to the apparent costs of this proliferation, host genomes have evolved multiple mechanisms to curb LINE-1 retrotransposition. Here, we investigate the evolution and function of the LINE-1 restriction factor APOBEC3A, a member of the APOBEC3 cytidine deaminase gene family. We find that APOBEC3A genes have evolved rapidly under diversifying selection in primates, suggesting changes in APOBEC3A have been recurrently selected in a host-pathogen "arms race." Nonetheless, in contrast to previous reports, we find that the LINE-1 restriction activity of APOBEC3A proteins has been strictly conserved throughout simian primate evolution in spite of its pervasive diversifying selection. Based on these results, we conclude that LINE-1s have not driven the rapid evolution of APOBEC3A in primates. In contrast to this conserved LINE-1 restriction, we find that a subset of primate APOBEC3A genes have enhanced antiviral restriction. We trace this gain of antiviral restriction in APOBEC3A to the common ancestor of a subset of Old World monkeys. Thus, APOBEC3A has not only maintained its LINE-1 restriction ability, but also evolved a gain of antiviral specificity against other pathogens. Our findings suggest that while APOBEC3A has evolved to restrict additional pathogens, only those adaptive amino acid changes that leave LINE-1 restriction unperturbed have been tolerated.
Collapse
Affiliation(s)
| | - Jacob T Gable
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Cristina J Wittkopp
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA Department of Microbiology, University of Washington, Seattle
| | - Michael Emerman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
9
|
Knisbacher BA, Levanon EY. DNA Editing of LTR Retrotransposons Reveals the Impact of APOBECs on Vertebrate Genomes. Mol Biol Evol 2015; 33:554-67. [PMID: 26541172 PMCID: PMC4866542 DOI: 10.1093/molbev/msv239] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Long terminal repeat retrotransposons (LTR) are widespread in vertebrates and their dynamism facilitates genome evolution. However, these endogenous retroviruses (ERVs) must be restricted to maintain genomic stability. The APOBECs, a protein family that can edit C-to-U in DNA, do so by interfering with reverse transcription and hypermutating retrotransposon DNA. In some cases, a retrotransposon may integrate into the genome despite being hypermutated. Such an event introduces a unique sequence into the genome, increasing retrotransposon diversity and the probability of developing new function at the locus of insertion. The prevalence of this phenomenon and its effects on vertebrate genomes are still unclear. In this study, we screened ERV sequences in the genomes of 123 diverse species and identified hundreds of thousands of edited sites in multiple vertebrate lineages, including placental mammals, marsupials, and birds. Numerous edited ERVs carry high mutation loads, some with greater than 350 edited sites, profoundly damaging their open-reading frames. For many of the species studied, this is the first evidence that APOBECs are active players in their innate immune system. Unexpectedly, some birds and especially zebra finch and medium ground-finch (one of Darwin’s finches) are exceptionally enriched in DNA editing. We demonstrate that edited retrotransposons may be preferentially retained in active genomic regions, as reflected from their enrichment in genes, exons, promoters, and transcription start sites, thereby raising the probability of their exaptation for novel function. In conclusion, DNA editing of retrotransposons by APOBECs has a substantial role in vertebrate innate immunity and may boost genome evolution.
Collapse
Affiliation(s)
- Binyamin A Knisbacher
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900, Israel
| | - Erez Y Levanon
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900, Israel
| |
Collapse
|
10
|
Kane JR, Stanley DJ, Hultquist JF, Johnson JR, Mietrach N, Binning JM, Jónsson SR, Barelier S, Newton BW, Johnson TL, Franks-Skiba KE, Li M, Brown WL, Gunnarsson HI, Adalbjornsdóttir A, Fraser JS, Harris RS, Andrésdóttir V, Gross JD, Krogan NJ. Lineage-Specific Viral Hijacking of Non-canonical E3 Ubiquitin Ligase Cofactors in the Evolution of Vif Anti-APOBEC3 Activity. Cell Rep 2015; 11:1236-50. [PMID: 25981045 PMCID: PMC4613747 DOI: 10.1016/j.celrep.2015.04.038] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 03/13/2015] [Accepted: 04/18/2015] [Indexed: 11/29/2022] Open
Abstract
HIV-1 encodes the accessory protein Vif, which hijacks a host Cullin-RING ubiquitin ligase (CRL) complex as well as the non-canonical cofactor CBFβ, to antagonize APOBEC3 antiviral proteins. Non-canonical cofactor recruitment to CRL complexes by viral factors, to date, has only been attributed to HIV-1 Vif. To further study this phenomenon, we employed a comparative approach combining proteomic, biochemical, structural, and virological techniques to investigate Vif complexes across the lentivirus genus, including primate (HIV-1 and simian immunodeficiency virus macaque [SIVmac]) and non-primate (FIV, BIV, and MVV) viruses. We find that CBFβ is completely dispensable for the activity of non-primate lentiviral Vif proteins. Furthermore, we find that BIV Vif requires no cofactor and that MVV Vif requires a novel cofactor, cyclophilin A (CYPA), for stable CRL complex formation and anti-APOBEC3 activity. We propose modular conservation of Vif complexes allows for potential exaptation of functions through the acquisition of non-CRL-associated host cofactors while preserving anti-APOBEC3 activity.
Collapse
Affiliation(s)
- Joshua R Kane
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - David J Stanley
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Judd F Hultquist
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Jeffrey R Johnson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Nicole Mietrach
- Institute for Experimental Pathology, University of Iceland, Keldur, 112 Reykjavík, Iceland
| | - Jennifer M Binning
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stefán R Jónsson
- Institute for Experimental Pathology, University of Iceland, Keldur, 112 Reykjavík, Iceland
| | - Sarah Barelier
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Billy W Newton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Tasha L Johnson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Kathleen E Franks-Skiba
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ming Li
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| | - William L Brown
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hörður I Gunnarsson
- Institute for Experimental Pathology, University of Iceland, Keldur, 112 Reykjavík, Iceland
| | | | - James S Fraser
- California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Valgerður Andrésdóttir
- Institute for Experimental Pathology, University of Iceland, Keldur, 112 Reykjavík, Iceland
| | - John D Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA.
| |
Collapse
|
11
|
Issel CJ, Cook RF, Mealey RH, Horohov DW. Equine infectious anemia in 2014: live with it or eradicate it? Vet Clin North Am Equine Pract 2014; 30:561-77. [PMID: 25441114 DOI: 10.1016/j.cveq.2014.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
In the absence of an effective vaccine, the success of the test and removal approach for the control of equine infectious anemia (EIA) cannot be overstated, at least in those areas where testing has been traditionally routine. This article addresses 4 main aspects: what has been learned about EIA virus, host control of its replication, and inapparent carriers; international status regarding the control of EIA; diagnostic and laboratory investigation; and reducing the spread of blood-borne infections by veterinarians. An attempt is made to put these issues into practical contemporary perspectives for the equine practitioner.
Collapse
Affiliation(s)
- Charles J Issel
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA.
| | - R Frank Cook
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA
| | - Robert H Mealey
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, PO Box 647040, Pullman, WA 99164-7040, USA
| | - David W Horohov
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
12
|
Minkah N, Chavez K, Shah P, Maccarthy T, Chen H, Landau N, Krug LT. Host restriction of murine gammaherpesvirus 68 replication by human APOBEC3 cytidine deaminases but not murine APOBEC3. Virology 2014; 454-455:215-26. [PMID: 24725948 PMCID: PMC4036618 DOI: 10.1016/j.virol.2014.02.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 11/27/2013] [Accepted: 02/20/2014] [Indexed: 11/28/2022]
Abstract
Humans encode seven APOBEC3 (A3A-A3H) cytidine deaminase proteins that differ in their expression profiles, preferred nucleotide recognition sequence and capacity for restriction of RNA and DNA viruses. We identified APOBEC3 hotspots in numerous herpesvirus genomes. To determine the impact of host APOBEC3 on herpesvirus biology in vivo, we examined whether murine APOBEC3 (mA3) restricts murine gammaherpesvirus 68 (MHV68). Viral replication was impaired by several human APOBEC3 proteins, but not mA3, upon transfection of the viral genome. The restriction was abrogated upon mutation of the A3A and A3B active sites. Interestingly, virus restriction by A3A, A3B, A3C, and A3DE was lost if the infectious DNA was delivered by the virion. MHV68 pathogenesis, including lung replication and splenic latency, was not altered in mice lacking mA3. We infer that mA3 does not restrict wild type MHV68 and restriction by human A3s may be limited in the herpesvirus replication process.
Collapse
Affiliation(s)
- Nana Minkah
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Kevin Chavez
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Parth Shah
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Thomas Maccarthy
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Hui Chen
- Department of Microbiology, NYU Langone Medical Center, New York, NY 10016, USA; Infectious Disease Laboratory, Salk Institute, La Jolla, CA 92037, USA
| | - Nathaniel Landau
- Department of Microbiology, NYU Langone Medical Center, New York, NY 10016, USA; Infectious Disease Laboratory, Salk Institute, La Jolla, CA 92037, USA
| | - Laurie T Krug
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
13
|
Li J, Chen Y, Li M, Carpenter MA, McDougle RM, Luengas EM, Macdonald PJ, Harris RS, Mueller JD. APOBEC3 multimerization correlates with HIV-1 packaging and restriction activity in living cells. J Mol Biol 2014; 426:1296-307. [PMID: 24361275 PMCID: PMC3977201 DOI: 10.1016/j.jmb.2013.12.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 12/10/2013] [Accepted: 12/10/2013] [Indexed: 12/30/2022]
Abstract
APOBEC3G belongs to a family of DNA cytosine deaminases that are involved in the restriction of a broad number of retroviruses including human immunodeficiency virus type 1 (HIV-1). Prior studies have identified two distinct mechanistic steps in Vif-deficient HIV-1 restriction: packaging into virions and deaminating viral cDNA. APOBEC3A, for example, although highly active, is not packaged and is therefore not restrictive. APOBEC3G, on the other hand, although having weaker enzymatic activity, is packaged into virions and is strongly restrictive. Although a number of studies have described the propensity for APOBEC3 oligomerization, its relevance to HIV-1 restriction remains unclear. Here, we address this problem by examining APOBEC3 oligomerization in living cells using molecular brightness analysis. We find that APOBEC3G forms high-order multimers as a function of protein concentration. In contrast, APOBEC3A, APOBEC3C and APOBEC2 are monomers at all tested concentrations. Among other members of the APOBEC3 family, we show that the multimerization propensities of APOBEC3B, APOBEC3D, APOBEC3F and APOBEC3H (haplotype II) bear more resemblance to APOBEC3G than to APOBEC3A/3C/2. Prior studies have shown that all of these multimerizing APOBEC3 proteins, but not the monomeric family members, have the capacity to package into HIV-1 particles and restrict viral infectivity. This correlation between oligomerization and restriction is further evidenced by two different APOBEC3G mutants, which are each compromised for multimerization, packaging and HIV-1 restriction. Overall, our results imply that multimerization of APOBEC3 proteins may be related to the packaging mechanism and ultimately to virus restriction.
Collapse
Affiliation(s)
- Jinhui Li
- School of Physics and Astronomy, University of Minnesota, 116 Church Street Southeast, Minneapolis, MN 55455, USA; Institute for Molecular Virology, University of Minnesota, 515 Delaware Street Southeast, Minneapolis, MN 55455, USA
| | - Yan Chen
- School of Physics and Astronomy, University of Minnesota, 116 Church Street Southeast, Minneapolis, MN 55455, USA; Institute for Molecular Virology, University of Minnesota, 515 Delaware Street Southeast, Minneapolis, MN 55455, USA
| | - Ming Li
- Institute for Molecular Virology, University of Minnesota, 515 Delaware Street Southeast, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology and Biophysics, 321 Church Street Southeast, Minneapolis, MN 55455, USA
| | - Michael A Carpenter
- Institute for Molecular Virology, University of Minnesota, 515 Delaware Street Southeast, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology and Biophysics, 321 Church Street Southeast, Minneapolis, MN 55455, USA
| | - Rebecca M McDougle
- Institute for Molecular Virology, University of Minnesota, 515 Delaware Street Southeast, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology and Biophysics, 321 Church Street Southeast, Minneapolis, MN 55455, USA
| | - Elizabeth M Luengas
- Institute for Molecular Virology, University of Minnesota, 515 Delaware Street Southeast, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology and Biophysics, 321 Church Street Southeast, Minneapolis, MN 55455, USA
| | - Patrick J Macdonald
- Department of Biomedical Engineering, University of Minnesota, 312 Church Street Southeast, Minneapolis, MN 55455, USA
| | - Reuben S Harris
- Institute for Molecular Virology, University of Minnesota, 515 Delaware Street Southeast, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology and Biophysics, 321 Church Street Southeast, Minneapolis, MN 55455, USA
| | - Joachim D Mueller
- School of Physics and Astronomy, University of Minnesota, 116 Church Street Southeast, Minneapolis, MN 55455, USA; Institute for Molecular Virology, University of Minnesota, 515 Delaware Street Southeast, Minneapolis, MN 55455, USA; Department of Biomedical Engineering, University of Minnesota, 312 Church Street Southeast, Minneapolis, MN 55455, USA.
| |
Collapse
|
14
|
Yin X, Lin Y, Cai W, Wei P, Wang X. Comprehensive analysis of the overall codon usage patterns in equine infectious anemia virus. Virol J 2013; 10:356. [PMID: 24359511 PMCID: PMC3878193 DOI: 10.1186/1743-422x-10-356] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 12/11/2013] [Indexed: 01/02/2023] Open
Abstract
Background Equine infectious anemia virus (EIAV) is an important animal model for understanding the relationship between viral persistence and the host immune response during lentiviral infections. Comparison and analysis of the codon usage model between EIAV and its hosts is important for the comprehension of viral evolution. In our study, the codon usage pattern of EIAV was analyzed from the available 29 full-length EIAV genomes through multivariate statistical methods. Finding Effective number of codons (ENC) suggests that the codon usage among EIAV strains is slightly biased. The ENC-plot analysis demonstrates that mutation pressure plays a substantial role in the codon usage pattern of EIAV, whereas other factors such as geographic distribution and host translation selection also take part in the process of EIAV evolution. Comparative analysis of codon adaptation index (CAI) values among EIAV and its hosts suggests that EIAV utilize the translational resources of horse more efficiently than that of donkey. Conclusion The codon usage bias in EIAV is slight and mutation pressure is the main factor that affects codon usage variation in EIAV. These results suggest that EIAV genomic biases are the result of the co-evolution of genome composition and the ability to evade the host’s immune response.
Collapse
Affiliation(s)
| | | | | | - Ping Wei
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China.
| | | |
Collapse
|
15
|
Equine tetherin blocks retrovirus release and its activity is antagonized by equine infectious anemia virus envelope protein. J Virol 2013; 88:1259-70. [PMID: 24227834 DOI: 10.1128/jvi.03148-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human tetherin is a host restriction factor that inhibits replication of enveloped viruses by blocking viral release. Tetherin has an unusual topology that includes an N-terminal cytoplasmic tail, a single transmembrane domain, an extracellular domain, and a C-terminal glycosylphosphatidylinositol anchor. Tetherin is not well conserved across species, so it inhibits viral replication in a species-specific manner. Thus, studies of tetherin activities from different species provide an important tool for understanding its antiviral mechanism. Here, we report cloning of equine tetherin and characterization of its antiviral activity. Equine tetherin shares 53%, 40%, 36%, and 34% amino acid sequence identity with feline, human, simian, and murine tetherins, respectively. Like the feline tetherin, equine tetherin has a shorter N-terminal domain than human tetherin. Equine tetherin is localized on the cell surface and strongly blocks human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency virus (SIV), and equine infectious anemia virus (EIAV) release from virus-producing cells. The antiviral activity of equine tetherin is neutralized by EIAV envelope protein, but not by the HIV-1 accessory protein Vpu, which is a human tetherin antagonist, and EIAV envelope protein does not counteract human tetherin. These results shed new light on our understanding of the species-specific tetherin antiviral mechanism.
Collapse
|
16
|
Cook R, Leroux C, Issel C. Equine infectious anemia and equine infectious anemia virus in 2013: A review. Vet Microbiol 2013; 167:181-204. [DOI: 10.1016/j.vetmic.2013.09.031] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 09/16/2013] [Accepted: 09/21/2013] [Indexed: 10/26/2022]
|
17
|
Murine leukemia virus glycosylated Gag blocks apolipoprotein B editing complex 3 and cytosolic sensor access to the reverse transcription complex. Proc Natl Acad Sci U S A 2013; 110:9078-83. [PMID: 23671100 DOI: 10.1073/pnas.1217399110] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pathogenic retroviruses have evolved multiple means for evading host restriction factors such as apolipoprotein B editing complex (APOBEC3) proteins. Here, we show that murine leukemia virus (MLV) has a unique means of counteracting APOBEC3 and other cytosolic sensors of viral nucleic acid. Using virus isolated from infected WT and APOBEC3 KO mice, we demonstrate that the MLV glycosylated Gag protein (glyco-Gag) enhances viral core stability. Moreover, in vitro endogenous reverse transcription reactions of the glyco-Gag mutant virus were substantially inhibited compared with WT virus, but only in the presence of APOBEC3. Thus, glyco-Gag rendered the reverse transcription complex in the viral core resistant to APOBEC3. Glyco-Gag in the virion also rendered MLV resistant to other cytosolic sensors of viral reverse transcription products in newly infected cells. Strikingly, glyco-Gag mutant virus reverted to glyco-Gag-containing virus only in WT and not APOBEC3 KO mice, indicating that counteracting APOBEC3 is the major function of glyco-Gag. Thus, in contrast to the HIV viral infectivity factor protein, which prevents APOBEC3 packaging in the virion, the MLV glyco-Gag protein uses a unique mechanism to counteract the antiviral action of APOBEC3 in vivo--namely, protecting the reverse transcription complex in viral cores from APOBEC3. These data suggest that capsid integrity may play a critical role in virus resistance to intrinsic cellular antiviral resistance factors that act at the early stages of infection.
Collapse
|
18
|
Detection and characterization of endogenous retroviruses in the horse genome by in silico analysis. Virology 2012; 434:59-67. [DOI: 10.1016/j.virol.2012.08.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 08/28/2012] [Accepted: 08/29/2012] [Indexed: 11/22/2022]
|
19
|
Abstract
Host restriction factors are potent, widely expressed intracellular blocks to viral replication that are an important component of the innate immune response to viral infection. However, viruses have evolved mechanisms that antagonize restriction factors. Through evolutionary pressure for both host survival and virus replication, an evolutionary 'arms race' has developed that drives continuous rounds of selection for beneficial mutations in the genes encoding restriction factors and their viral antagonists. Because viruses can evolve faster than their hosts, the innate immune system of modern-day vertebrates is for the most part optimized to defend against ancient viruses, rather than newer viral threats. Thus, the evolutionary history of restriction factors might, in part, explain why humans are susceptible or resistant to the viruses present in the modern world.
Collapse
|
20
|
Arias JF, Koyama T, Kinomoto M, Tokunaga K. Retroelements versus APOBEC3 family members: No great escape from the magnificent seven. Front Microbiol 2012; 3:275. [PMID: 22912627 PMCID: PMC3418512 DOI: 10.3389/fmicb.2012.00275] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 07/13/2012] [Indexed: 12/28/2022] Open
Abstract
Retroelements comprise a large and successful family of transposable genetic elements that, through intensive infiltration, have shaped the genomes of humans and other mammals over millions of years. In fact, retrotransposons now account for approximately 45% of the human genome. Because of their genomic mobility called retrotransposition, some retroelements can cause genetic diseases; such retrotransposition events occur not only in germ cells but also in somatic cells, posing a threat to genomic stability throughout all cellular populations. In response, mammals have developed intrinsic immunity mechanisms that provide resistance against the deleterious effects of retrotransposition. Among these, seven members of the APOBEC3 (A3) family of cytidine deaminases serve as highly active, intrinsic, antiretroviral host factors. Certain A3 proteins effectively counteract infections of retroviruses such as HIV-1, as well as those of other virus families, while also blocking the transposition of retroelements. Based on their preferential expression in the germ cells, in which retrotransposons may be active, it is likely that A3 proteins were acquired through mammalian evolution primarily to inhibit retrotransposition and thereby maintain genomic stability in these cells. This review summarizes the recent advances in our understanding of the interplay between the retroelements currently active in the human genome and the anti-retroelement A3 proteins.
Collapse
Affiliation(s)
- Juan F Arias
- Department of Pathology, National Institute of Infectious Diseases Tokyo, Japan
| | | | | | | |
Collapse
|
21
|
Wijesinghe P, Bhagwat AS. Efficient deamination of 5-methylcytosines in DNA by human APOBEC3A, but not by AID or APOBEC3G. Nucleic Acids Res 2012; 40:9206-17. [PMID: 22798497 PMCID: PMC3467078 DOI: 10.1093/nar/gks685] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The AID/APOBEC family of enzymes in higher vertebrates converts cytosines in DNA or RNA to uracil. They play a role in antibody maturation and innate immunity against viruses, and have also been implicated in the demethylation of DNA during early embryogenesis. This is based in part on reported ability of activation-induced deaminase (AID) to deaminate 5-methylcytosines (5mC) to thymine. We have reexamined this possibility for AID and two members of human APOBEC3 family using a novel genetic system in Escherichia coli. Our results show that while all three genes show strong ability to convert C to U, only APOBEC3A is an efficient deaminator of 5mC. To confirm this, APOBEC3A was purified partially and used in an in vitro deamination assay. We found that APOBEC3A can deaminate 5mC efficiently and this activity is comparable to its C to U deamination activity. When the DNA-binding segment of AID was replaced with the corresponding segment from APOBEC3A, the resulting hybrid had much higher ability to convert 5mC to T in the genetic assay. These and other results suggest that the human AID deaminates 5mC’s only weakly because the 5-methyl group fits poorly in its DNA-binding pocket.
Collapse
|
22
|
Miyazawa M. [Molecular evolution of physiologically functioning anti-retroviral APOBEC3 deaminases]. Uirusu 2012; 62:27-38. [PMID: 23189822 DOI: 10.2222/jsv.62.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Recent in vivo findings clearly indicate that mammalian cytidine deaminase APOBEC3 can function as a physiological restriction factor to retrotransposons and infectious retroviruses. However, some retroviruses, including primate lentiviruses, have evolved to counter their natural host's APOBEC3. To survive this arms race, primates seem to have acquired multiple copies of APOBEC3 genes. Surprisingly, however, during the process of the diversification of rodent species, as well as the human race, some ancestral individuals acquired genetic variants that reduced the protein levels of APOBEC3 expression, and these variants currently show unexpectedly wide geographic distributions. These data suggest that in the absence of a heavy burden of infectious retroviruses, high-level expression of APOBEC3 cytidine deaminase might be costly to the integrity of the host genome.
Collapse
Affiliation(s)
- Masaaki Miyazawa
- Department of Immunology, Kinki University School of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan.
| |
Collapse
|
23
|
Münk C, Willemsen A, Bravo IG. An ancient history of gene duplications, fusions and losses in the evolution of APOBEC3 mutators in mammals. BMC Evol Biol 2012; 12:71. [PMID: 22640020 PMCID: PMC3495650 DOI: 10.1186/1471-2148-12-71] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 05/01/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The APOBEC3 (A3) genes play a key role in innate antiviral defense in mammals by introducing directed mutations in the DNA. The human genome encodes for seven A3 genes, with multiple splice alternatives. Different A3 proteins display different substrate specificity, but the very basic question on how discerning self from non-self still remains unresolved. Further, the expression of A3 activity/ies shapes the way both viral and host genomes evolve. RESULTS We present here a detailed temporal analysis of the origin and expansion of the A3 repertoire in mammals. Our data support an evolutionary scenario where the genome of the mammalian ancestor encoded for at least one ancestral A3 gene, and where the genome of the ancestor of placental mammals (and possibly of the ancestor of all mammals) already encoded for an A3Z1-A3Z2-A3Z3 arrangement. Duplication events of the A3 genes have occurred independently in different lineages: humans, cats and horses. In all of them, gene duplication has resulted in changes in enzyme activity and/or substrate specificity, in a paradigmatic example of convergent adaptive evolution at the genomic level. Finally, our results show that evolutionary rates for the three A3Z1, A3Z2 and A3Z3 motifs have significantly decreased in the last 100 Mya. The analysis constitutes a textbook example of the evolution of a gene locus by duplication and sub/neofunctionalization in the context of virus-host arms race. CONCLUSIONS Our results provide a time framework for identifying ancestral and derived genomic arrangements in the APOBEC loci, and to date the expansion of this gene family for different lineages through time, as a response to changes in viral/retroviral/retrotransposon pressure.
Collapse
Affiliation(s)
- Carsten Münk
- Clinic for Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Anouk Willemsen
- Genomics and Health, Centre for Public Health Research (CSISP), Valencia, Spain
| | - Ignacio G Bravo
- Genomics and Health, Centre for Public Health Research (CSISP), Valencia, Spain
- Infections and Cancer, Catalan Institute of Oncology (ICO) | Bellvitge Institute of Biomedical Research (IDIBELL), Barcelona, Spain
- Infections and Cancer, Catalan Institute of Oncology (ICO), Avda. Gran Via, 199-203, L’Hospitalet de Llobregat, Barcelona, 08908, Spain
| |
Collapse
|
24
|
Denner J, Tönjes RR. Infection barriers to successful xenotransplantation focusing on porcine endogenous retroviruses. Clin Microbiol Rev 2012; 25:318-43. [PMID: 22491774 PMCID: PMC3346299 DOI: 10.1128/cmr.05011-11] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Xenotransplantation may be a solution to overcome the shortage of organs for the treatment of patients with organ failure, but it may be associated with the transmission of porcine microorganisms and the development of xenozoonoses. Whereas most microorganisms may be eliminated by pathogen-free breeding of the donor animals, porcine endogenous retroviruses (PERVs) cannot be eliminated, since these are integrated into the genomes of all pigs. Human-tropic PERV-A and -B are present in all pigs and are able to infect human cells. Infection of ecotropic PERV-C is limited to pig cells. PERVs may adapt to host cells by varying the number of LTR-binding transcription factor binding sites. Like all retroviruses, they may induce tumors and/or immunodeficiencies. To date, all experimental, preclinical, and clinical xenotransplantations using pig cells, tissues, and organs have not shown transmission of PERV. Highly sensitive and specific methods have been developed to analyze the PERV status of donor pigs and to monitor recipients for PERV infection. Strategies have been developed to prevent PERV transmission, including selection of PERV-C-negative, low-producer pigs, generation of an effective vaccine, selection of effective antiretrovirals, and generation of animals transgenic for a PERV-specific short hairpin RNA inhibiting PERV expression by RNA interference.
Collapse
|
25
|
Li M, Shandilya SMD, Carpenter MA, Rathore A, Brown WL, Perkins AL, Harki DA, Solberg J, Hook DJ, Pandey KK, Parniak MA, Johnson JR, Krogan NJ, Somasundaran M, Ali A, Schiffer CA, Harris RS. First-in-class small molecule inhibitors of the single-strand DNA cytosine deaminase APOBEC3G. ACS Chem Biol 2012; 7:506-17. [PMID: 22181350 DOI: 10.1021/cb200440y] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
APOBEC3G is a single-stranded DNA cytosine deaminase that comprises part of the innate immune response to viruses and transposons. Although APOBEC3G is the prototype for understanding the larger mammalian polynucleotide deaminase family, no specific chemical inhibitors exist to modulate its activity. High-throughput screening identified 34 compounds that inhibit APOBEC3G catalytic activity. Twenty of 34 small molecules contained catechol moieties, which are known to be sulfhydryl reactive following oxidation to the orthoquinone. Located proximal to the active site, C321 was identified as the binding site for the inhibitors by a combination of mutational screening, structural analysis, and mass spectrometry. Bulkier substitutions C321-to-L, F, Y, or W mimicked chemical inhibition. A strong specificity for APOBEC3G was evident, as most compounds failed to inhibit the related APOBEC3A enzyme or the unrelated enzymes E. coli uracil DNA glycosylase, HIV-1 RNase H, or HIV-1 integrase. Partial, but not complete, sensitivity could be conferred to APOBEC3A by introducing the entire C321 loop from APOBEC3G. Thus, a structural model is presented in which the mechanism of inhibition is both specific and competitive, by binding a pocket adjacent to the APOBEC3G active site, reacting with C321, and blocking access to substrate DNA cytosines.
Collapse
Affiliation(s)
- Ming Li
- Department of Biochemistry, Molecular Biology & Biophysics, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, 321 Church Street S.E., Minneapolis, Minnesota 55455, United States
| | | | - Michael A. Carpenter
- Department of Biochemistry, Molecular Biology & Biophysics, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, 321 Church Street S.E., Minneapolis, Minnesota 55455, United States
| | - Anurag Rathore
- Department of Biochemistry, Molecular Biology & Biophysics, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, 321 Church Street S.E., Minneapolis, Minnesota 55455, United States
| | - William L. Brown
- Department of Biochemistry, Molecular Biology & Biophysics, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, 321 Church Street S.E., Minneapolis, Minnesota 55455, United States
| | | | | | | | | | - Krishan K. Pandey
- Institute for Molecular Virology, Saint Louis University Health Sciences Center, 1100
South Grand Boulevard, St. Louis, Missouri 63104, United States
| | - Michael A. Parniak
- Department of Microbiology and Molecular
Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, Pennsylvania 15219, United States
| | - Jeffrey R. Johnson
- Department of Cellular & Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California−San Francisco, 600 16th Street, San Francisco, California 94107, United States
| | - Nevan J. Krogan
- Department of Cellular & Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California−San Francisco, 600 16th Street, San Francisco, California 94107, United States
| | | | | | | | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology & Biophysics, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, 321 Church Street S.E., Minneapolis, Minnesota 55455, United States
| |
Collapse
|
26
|
Berger G, Durand S, Fargier G, Nguyen XN, Cordeil S, Bouaziz S, Muriaux D, Darlix JL, Cimarelli A. APOBEC3A is a specific inhibitor of the early phases of HIV-1 infection in myeloid cells. PLoS Pathog 2011; 7:e1002221. [PMID: 21966267 PMCID: PMC3178557 DOI: 10.1371/journal.ppat.1002221] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 06/30/2011] [Indexed: 11/19/2022] Open
Abstract
Myeloid cells play numerous roles in HIV-1 pathogenesis serving as a vehicle for viral spread and as a viral reservoir. Yet, cells of this lineage generally resist HIV-1 infection when compared to cells of other lineages, a phenomenon particularly acute during the early phases of infection. Here, we explore the role of APOBEC3A on these steps. APOBEC3A is a member of the APOBEC3 family that is highly expressed in myeloid cells, but so far lacks a known antiviral effect against retroviruses. Using ectopic expression of APOBEC3A in established cell lines and specific silencing in primary macrophages and dendritic cells, we demonstrate that the pool of APOBEC3A in target cells inhibits the early phases of HIV-1 infection and the spread of replication-competent R5-tropic HIV-1, specifically in cells of myeloid origins. In these cells, APOBEC3A affects the amount of vDNA synthesized over the course of infection. The susceptibility to the antiviral effect of APOBEC3A is conserved among primate lentiviruses, although the viral protein Vpx coded by members of the SIV(SM)/HIV-2 lineage provides partial protection from APOBEC3A during infection. Our results indicate that APOBEC3A is a previously unrecognized antiviral factor that targets primate lentiviruses specifically in myeloid cells and that acts during the early phases of infection directly in target cells. The findings presented here open up new venues on the role of APOBEC3A during HIV infection and pathogenesis, on the role of the cellular context in the regulation of the antiviral activities of members of the APOBEC3 family and more generally on the natural functions of APOBEC3A.
Collapse
Affiliation(s)
- Gregory Berger
- Department of Human Virology, ENS-L, Lyon, France
- INSERM, U758, Lyon, France
- University of Lyon, Lyon I, IFR128, Lyon, France
| | - Stéphanie Durand
- Department of Human Virology, ENS-L, Lyon, France
- INSERM, U758, Lyon, France
- University of Lyon, Lyon I, IFR128, Lyon, France
| | - Guillaume Fargier
- Department of Human Virology, ENS-L, Lyon, France
- INSERM, U758, Lyon, France
- University of Lyon, Lyon I, IFR128, Lyon, France
| | - Xuan-Nhi Nguyen
- Department of Human Virology, ENS-L, Lyon, France
- INSERM, U758, Lyon, France
- University of Lyon, Lyon I, IFR128, Lyon, France
| | - Stéphanie Cordeil
- Department of Human Virology, ENS-L, Lyon, France
- INSERM, U758, Lyon, France
- University of Lyon, Lyon I, IFR128, Lyon, France
| | - Serge Bouaziz
- UMR 8015 CNRS, University Paris Descartes, Paris, France
| | - Delphine Muriaux
- Department of Human Virology, ENS-L, Lyon, France
- INSERM, U758, Lyon, France
- University of Lyon, Lyon I, IFR128, Lyon, France
| | - Jean-Luc Darlix
- Department of Human Virology, ENS-L, Lyon, France
- INSERM, U758, Lyon, France
- University of Lyon, Lyon I, IFR128, Lyon, France
| | - Andrea Cimarelli
- Department of Human Virology, ENS-L, Lyon, France
- INSERM, U758, Lyon, France
- University of Lyon, Lyon I, IFR128, Lyon, France
- * E-mail:
| |
Collapse
|
27
|
Restriction of porcine endogenous retrovirus by porcine APOBEC3 cytidine deaminases. J Virol 2011; 85:3842-57. [PMID: 21307203 DOI: 10.1128/jvi.01880-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xenotransplantation of porcine cells, tissues, and organs shows promise to surmount the shortage of human donor materials. Among the barriers to pig-to-human xenotransplantation are porcine endogenous retroviruses (PERV) since functional representatives of the two polytropic classes, PERV-A and PERV-B, are able to infect human embryonic kidney cells in vitro, suggesting that a xenozoonosis in vivo could occur. To assess the capacity of human and porcine cells to counteract PERV infections, we analyzed human and porcine APOBEC3 (A3) proteins. This multigene family of cytidine deaminases contributes to the cellular intrinsic immunity and act as potent inhibitors of retroviruses and retrotransposons. Our data show that the porcine A3 gene locus on chromosome 5 consists of the two single-domain genes A3Z2 and A3Z3. The evolutionary relationships of the A3Z3 genes reflect the evolutionary history of mammals. The two A3 genes encode at least four different mRNAs: A3Z2, A3Z3, A3Z2-Z3, and A3Z2-Z3 splice variant A (SVA). Porcine and human A3s have been tested toward their antiretroviral activity against PERV and murine leukemia virus (MuLV) using novel single-round reporter viruses. The porcine A3Z2, A3Z3 and A3Z2-Z3 were packaged into PERV particles and inhibited PERV replication in a dose-dependent manner. The antiretroviral effect correlated with editing by the porcine A3s with a trinucleotide preference for 5' TGC for A3Z2 and A3Z2-Z3 and 5' CAC for A3Z3. These results strongly imply that human and porcine A3s could inhibit PERV replication in vivo, thereby reducing the risk of infection of human cells by PERV in the context of pig-to-human xenotransplantation.
Collapse
|
28
|
Long-term restriction by APOBEC3F selects human immunodeficiency virus type 1 variants with restored Vif function. J Virol 2010; 84:10209-19. [PMID: 20686027 DOI: 10.1128/jvi.00632-10] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tandem stop mutations K26X and H27X in human immunodeficiency virus type 1 (HIV-1) vif compromise virus replication in human T-cell lines that stably express APOBEC3F (A3F) or APOBEC3G (A3G). We previously reported that partial resistance to A3G could develop in these Vif-deficient viruses through a nucleotide A200-to-T/C transversion and a vpr null mutation, but these isolates were still susceptible to restriction by A3F. Here, long-term selection experiments were done to determine how these A3G-selected isolates might evolve to spread in the presence of A3F. We found that A3F, like A3G, is capable of potent, long-term restriction that eventually selects for heritable resistance. In all 7 instances, the selected isolates had restored Vif function to cope with A3F activity. In two isolates, Vif Q26-Q27 and Y26-Q27, the resistance phenotype recapitulated in molecular clones, but when the selected vif alleles were analyzed in the context of an otherwise wild-type viral background, a different outcome emerged. Although HIV-1 clones with Vif Q26-Q27 or Y26-Q27 were fully capable of overcoming A3F, they were now susceptible to restriction by A3G. Concordant with prior studies, a lysine at position 26 proved essential for A3G neutralization. These data combine to indicate that A3F and A3G exert at least partly distinct selective pressures and that Vif function may be essential for the virus to replicate in the presence of A3F.
Collapse
|
29
|
Lentiviral Vif degrades the APOBEC3Z3/APOBEC3H protein of its mammalian host and is capable of cross-species activity. J Virol 2010; 84:8193-201. [PMID: 20519393 DOI: 10.1128/jvi.00685-10] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All lentiviruses except equine infectious anemia virus (EIAV) use the small accessory protein Vif to counteract the restriction activity of the relevant APOBEC3 (A3) proteins of their host species. Prior studies have suggested that the Vif-A3 interaction is species specific. Here, using the APOBEC3H (Z3)-type proteins from five distinct mammals, we report that this is generally not the case: some lentiviral Vif proteins are capable of triggering the degradation of both the A3Z3-type protein of their normal host species and those of several other mammals. For instance, SIV(mac) Vif can mediate the degradation of the human, macaque, and cow A3Z3-type proteins but not of the sheep or cat A3Z3-type proteins. Maedi-visna virus (MVV) Vif is similarly promiscuous, degrading not only sheep A3Z3 but also the A3Z3-type proteins of humans, macaques, cows, and cats. In contrast to the neutralization capacity of these Vif proteins, human immunodeficiency virus (HIV), bovine immunodeficiency virus (BIV), and feline immunodeficiency virus (FIV) Vif appear specific to the A3Z3-type protein of their hosts. We conclude, first, that the Vif-A3Z3 interaction can be promiscuous and, second, despite this tendency, that each lentiviral Vif protein is optimized to degrade the A3Z3 protein of its mammalian host. Our results thereby suggest that the Vif-A3Z3 interaction is relevant to lentivirus biology.
Collapse
|
30
|
Vif of feline immunodeficiency virus from domestic cats protects against APOBEC3 restriction factors from many felids. J Virol 2010; 84:7312-24. [PMID: 20444897 DOI: 10.1128/jvi.00209-10] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
To get more insight into the role of APOBEC3 (A3) cytidine deaminases in the species-specific restriction of feline immunodeficiency virus (FIV) of the domestic cat, we tested the A3 proteins present in big cats (puma, lion, tiger, and lynx). These A3 proteins were analyzed for expression and sensitivity to the Vif protein of FIV. While A3Z3s and A3Z2-Z3s inhibited Deltavif FIV, felid A3Z2s did not show any antiviral activity against Deltavif FIV or wild-type (wt) FIV. All felid A3Z3s and A3Z2-Z3s were sensitive to Vif of the domestic cat FIV. Vif also induced depletion of felid A3Z2s. Tiger A3s showed a moderate degree of resistance against the Vif-mediated counter defense. These findings may imply that the A3 restriction system does not play a major role to prevent domestic cat FIV transmission to other Felidae. In contrast to the sensitive felid A3s, many nonfelid A3s actively restricted wt FIV replication. To test whether Vif(FIV) can protect also the distantly related human immunodeficiency virus type 1 (HIV-1), a chimeric HIV-1.Vif(FIV) was constructed. This HIV-1.Vif(FIV) was replication competent in nonpermissive feline cells expressing human CD4/CCR5 that did not support the replication of wt HIV-1. We conclude that the replication of HIV-1 in some feline cells is inhibited only by feline A3 restriction factors and the absence of the appropriate receptor or coreceptor.
Collapse
|
31
|
Albin JS, Harris RS. Interactions of host APOBEC3 restriction factors with HIV-1 in vivo: implications for therapeutics. Expert Rev Mol Med 2010; 12:e4. [PMID: 20096141 PMCID: PMC2860793 DOI: 10.1017/s1462399409001343] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Restriction factors are natural cellular proteins that defend individual cells from viral infection. These factors include the APOBEC3 family of DNA cytidine deaminases, which restrict the infectivity of HIV-1 by hypermutating viral cDNA and inhibiting reverse transcription and integration. HIV-1 thwarts this restriction activity through its accessory protein virion infectivity factor (Vif), which uses multiple mechanisms to prevent APOBEC3 proteins such as APOBEC3G and APOBEC3F from entering viral particles. Here, we review the basic biology of the interactions between human APOBEC3 proteins and HIV-1 Vif. We also summarise, for the first time, current clinical data on the in vivo effects of APOBEC3 proteins, and survey strategies and progress towards developing therapeutics aimed at the APOBEC3-Vif axis.
Collapse
Affiliation(s)
- John S. Albin
- Department of Biochemistry, Molecular Biology & Biophysics, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA 55455, Phone: +1 612-624-0457; Fax: +1 612-625-2163
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology & Biophysics, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA 55455, Phone: +1 612-624-0457; Fax: +1 612-625-2163
| |
Collapse
|
32
|
Abstract
The APOBEC3H gene is polymorphic in humans, with four major population-dependent haplotypes that encode proteins with different levels of antiviral activity. Haplotype II, present most frequently in African populations, encodes the most stable protein and is most active against human immunodeficiency virus type 1 (HIV-1). In contrast to human APOBEC3G, which can be completely counteracted by HIV-1 Vif, the protein encoded by APOBEC3H haplotype II is only partially sensitive to Vif, while the protein encoded by APOBEC3H haplotype I is completely resistant to HIV-1 Vif. We mapped a residue on APOBEC3H that determines this partial Vif sensitivity. However, it is unclear how HIV-1 can replicate in vivo without the ability to neutralize APOBEC3H antiviral activity. In order to directly address this question, we cloned vif genes from HIV-1-infected individuals with different APOBEC3H genotypes and tested them for their ability to inhibit human APOBEC3H. We found that while the APOBEC3H genotype of infected individuals significantly influences the activity of Vif encoded by their virus, none of the Vif variants tested can completely neutralize APOBEC3H as well as they neutralize APOBEC3G. Consistent with this genetic result, APOBEC3H protein expression in human peripheral blood mononuclear cells was below our limit of detection using newly developed antibodies against the endogenous protein. These results demonstrate that human APOBEC3H is not as strong of a selective force for current HIV-1 infections as human APOBEC3G.
Collapse
|
33
|
Zielonka J, Bravo IG, Marino D, Conrad E, Perković M, Battenberg M, Cichutek K, Münk C. Restriction of equine infectious anemia virus by equine APOBEC3 cytidine deaminases. J Virol 2009; 83:7547-59. [PMID: 19458006 PMCID: PMC2708611 DOI: 10.1128/jvi.00015-09] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 05/11/2009] [Indexed: 11/20/2022] Open
Abstract
The mammalian APOBEC3 (A3) proteins comprise a multigene family of cytidine deaminases that act as potent inhibitors of retroviruses and retrotransposons. The A3 locus on the chromosome 28 of the horse genome contains multiple A3 genes: two copies of A3Z1, five copies of A3Z2, and a single copy of A3Z3, indicating a complex evolution of multiple gene duplications. We have cloned and analyzed for expression the different equine A3 genes and examined as well the subcellular distribution of the corresponding proteins. Additionally, we have tested the functional antiretroviral activity of the equine and of several of the human and nonprimate A3 proteins against the Equine infectious anemia virus (EIAV), the Simian immunodeficiency virus (SIV), and the Adeno-associated virus type 2 (AAV-2). Hematopoietic cells of horses express at least five different A3s: A3Z1b, A3Z2a-Z2b, A3Z2c-Z2d, A3Z2e, and A3Z3, whereas circulating macrophages, the natural target of EIAV, express only part of the A3 repertoire. The five A3Z2 tandem copies arose after three consecutive, recent duplication events in the horse lineage, after the split between Equidae and Carnivora. The duplicated genes show different antiviral activities against different viruses: equine A3Z3 and A3Z2c-Z2d are potent inhibitors of EIAV while equine A3Z1b, A3Z2a-Z2b, A3Z2e showed only weak anti-EIAV activity. Equine A3Z1b and A3Z3 restricted AAV and all equine A3s, except A3Z1b, inhibited SIV. We hypothesize that the horse A3 genes are undergoing a process of subfunctionalization in their respective viral specificities, which might provide the evolutionary advantage for keeping five copies of the original gene.
Collapse
Affiliation(s)
- Jörg Zielonka
- Division of Medical Biotechnology, Paul Ehrlich Institut, Langen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Affiliation(s)
- Susan R Ross
- Department of Microbiology and Abramson Family Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.
| |
Collapse
|
35
|
Petit V, Vartanian JP, Wain-Hobson S. Powerful mutators lurking in the genome. Philos Trans R Soc Lond B Biol Sci 2009; 364:705-15. [PMID: 19042181 PMCID: PMC2660927 DOI: 10.1098/rstb.2008.0272] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The human genome encodes numerous enzymes capable of deaminating polynucleotides. While they are capable of exquisite specificity, occasionally they result in hypermutation where up to 90 per cent of cytidine or adenosine residues may be edited. As such, they constitute a formidable anti-viral barrier, for no virus can survive such a high mutation rate. As the APOBEC3 group of cytidine deaminases edit single-stranded viral DNA, the crucial question is can they hyperedit chromosomal DNA? Everything points to a positive answer. Nonetheless, hypermutants per se have not yet been described, probably being countered by highly efficient mismatch repair. For the APOBEC3 genes, not only is their physiological function unknown, but also their role in the induction of cancer remains to be determined. Yet given the pace of research, all this is certain to change in the next few years.
Collapse
Affiliation(s)
| | | | - Simon Wain-Hobson
- Molecular Retrovirology Unit, CNRS URA 3015, Institut Pasteur28 rue du Docteur Roux, 75724 Paris cedex 15, France
| |
Collapse
|
36
|
MacDuff DA, Demorest ZL, Harris RS. AID can restrict L1 retrotransposition suggesting a dual role in innate and adaptive immunity. Nucleic Acids Res 2009; 37:1854-67. [PMID: 19188259 PMCID: PMC2665220 DOI: 10.1093/nar/gkp030] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Retrotransposons make up over 40% of the mammalian genome. Some copies are still capable of mobilizing and new insertions promote genetic variation. Several members of the APOBEC3 family of DNA cytosine deaminases function to limit the replication of a variety of retroelements, such as the long-terminal repeat (LTR)-containing MusD and Ty1 elements, and that of the non-LTR retrotransposons, L1 and Alu. However, the APOBEC3 genes are limited to mammalian lineages, whereas retrotransposons are far more widespread. This raises the question of what cellular factors control retroelement transposition in species that lack APOBEC3 genes. A strong phylogenetic case can be made that an ancestral activation-induced deaminase (AID)-like gene duplicated and diverged to root the APOBEC3 lineage in mammals. Therefore, we tested the hypothesis that present-day AID proteins possess anti-retroelement activity. We found that AID can inhibit the retrotransposition of L1 through a DNA deamination-independent mechanism. This mechanism may manifest in the cytoplasmic compartment co- or posttranslationally. Together with evidence for AID expression in the ovary, our data combined to suggest that AID has innate immune functions in addition to its integral roles in creating antibody diversity.
Collapse
Affiliation(s)
- Donna A MacDuff
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
37
|
|