1
|
Brüggemann Y, Klöhn M, Wedemeyer H, Steinmann E. Hepatitis E virus: from innate sensing to adaptive immune responses. Nat Rev Gastroenterol Hepatol 2024; 21:710-725. [PMID: 39039260 DOI: 10.1038/s41575-024-00950-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 07/24/2024]
Abstract
Hepatitis E virus (HEV) infections are a major cause of acute viral hepatitis in humans worldwide. In immunocompetent individuals, the majority of HEV infections remain asymptomatic and lead to spontaneous clearance of the virus, and only a minority of individuals with infection (5-16%) experience symptoms of acute viral hepatitis. However, HEV infections can cause up to 30% mortality in pregnant women, become chronic in immunocompromised patients and cause extrahepatic manifestations. A growing body of evidence suggests that the host immune response to infection with different HEV genotypes is a critical determinant of distinct HEV infection outcomes. In this Review, we summarize key components of the innate and adaptive immune responses to HEV, including the underlying immunological mechanisms of HEV associated with acute and chronic liver failure and interactions between T cell and B cell responses. In addition, we discuss the current status of vaccines against HEV and raise outstanding questions regarding the immune responses induced by HEV and treatment of the disease, highlighting areas for future investigation.
Collapse
Affiliation(s)
- Yannick Brüggemann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Mara Klöhn
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Sites Hannover-Braunschweig, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany.
- German Center for Infection Research (DZIF), External Partner Site, Bochum, Germany.
| |
Collapse
|
2
|
Kubo Y, Hans MB, Nakamura T, Hayashi H. The Furin Protease Dependence and Antiviral GBP2 Sensitivity of Murine Leukemia Virus Infection Are Determined by the Amino Acid Sequence at the Envelope Glycoprotein Cleavage Site. Int J Mol Sci 2024; 25:9987. [PMID: 39337476 PMCID: PMC11432233 DOI: 10.3390/ijms25189987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Host restriction factor GBP2 suppresses the replication of the ecotropic Moloney murine leukemia virus (E-MLV) by inhibiting furin protease, which cleaves the viral envelope glycoprotein (Env) into surface (SU) and transmembrane (TM) subunits. We analyzed the impacts of GBP2 on the infection efficiency mediated by MLV Envs of different strains of ecotropic Moloney, polytropic Friend, amphotropic, and xenotropic MLV-related (XMRV) viruses. Interestingly, the Envs of ecotropic Moloney and polytropic Friend MLV were sensitive to the antiviral activity of GBP2, while XMRV and amphotropic Envs showed resistance. Consistent with the sensitivity to GBP2, the amino acid sequences of the sensitive Envs at the SU-TM cleavage site were similar, as were the sequences of the resistant Envs. SU-TM cleavage of the GBP2-sensitive Env protein was inhibited by furin silencing, whereas that of GBP2-resistant Env was not. The substitution of the ecotropic Moloney cleavage site sequence with that of XMRV conferred resistance to both GBP2 and furin silencing. Reciprocally, the substitution of the XMRV cleavage site sequence with that of the ecotropic sequence conferred sensitivity to GBP2 and furin silencing. According to the SU-TM cleavage site sequence, there were sensitive and resistant variants among ecotropic, polytropic, and xenotropic MLVs. This study found that the dependence of MLV Env proteins on furin cleavage and GBP2-mediated restriction is determined by the amino acid sequences at the SU-TM cleavage site.
Collapse
Affiliation(s)
- Yoshinao Kubo
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (M.B.H.); (T.N.)
- Program for Nurturing Global Leaders in Tropical Medicine and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Manya Bakatumana Hans
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (M.B.H.); (T.N.)
- Program for Nurturing Global Leaders in Tropical Medicine and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Taisuke Nakamura
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (M.B.H.); (T.N.)
| | - Hideki Hayashi
- Medical University Research Administration, Nagasaki University School of Medicine, Nagasaki 852-8523, Japan;
| |
Collapse
|
3
|
Quan D, Wang P, Wu W, Li J. Investigating the role of GTPase in inhibiting HBV replication and enhancing interferon therapy efficacy in chronic hepatitis B patients. Microb Pathog 2024; 194:106821. [PMID: 39084309 DOI: 10.1016/j.micpath.2024.106821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Interferon-alpha (IFNα) is a common treatment for chronic hepatitis B virus (HBV) infection, but its efficacy varies widely among patients. GTPASE, an interferon-stimulated gene (ISG), has recently been identified as a factor in antiviral immunity, though its role in HBV infection is not fully understood. OBJECTIVE This study investigates the role of GTPASE in enhancing the antiviral effects of IFNα against HBV and elucidates its mechanism of action. METHODS We analyzed the impact of GTPASE overexpression and silencing on HBV replication and clearance in HBV-infected cells. Molecular docking studies assessed the interaction between GTPASE and HBV surface antigens (HBs). Clinical samples from HBV patients undergoing Peg-IFNα treatment were also evaluated for GTPASE expression and its correlation with treatment efficacy. RESULTS Overexpression of GTPASE led to significant inhibition of HBV replication, increased HBeAg seroconversion, and enhanced HBsAg clearance. GTPASE directly bound to HBs proteins, reducing their levels and affecting viral particle formation. Silencing GTPASE reduced these effects, while combined treatment with Peg-IFNα and GTPASE overexpression further improved antiviral outcomes. Mutational analysis revealed that specific sites in GTPASE are crucial for its antiviral activity. CONCLUSIONS GTPASE acts as a positive regulator in IFNα-induced antiviral immunity against HBV. It enhances the therapeutic efficacy of IFNα by targeting HBs and modulating viral replication. GTPASE levels may serve as a predictive biomarker for response to Peg-IFNα therapy, highlighting its potential for improving individualized treatment strategies for chronic HBV infection.
Collapse
Affiliation(s)
- Dongmei Quan
- Hepatobiliary Surgery, The Sixth People's Hospital of Shenyang, Shenyang, China
| | - Pengfei Wang
- The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine/Medical Management Office, China
| | - Wei Wu
- Hepatobiliary Surgery, The Sixth People's Hospital of Shenyang, Shenyang, China
| | - Jing Li
- Teaching and Research Section of the Internal Medicine of Traditional Chinese Medicine, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, China.
| |
Collapse
|
4
|
Tessema MB, Feng S, Enosi Tuipulotu D, Farrukee R, Ngo C, Gago da Graça C, Yamomoto M, Utzschneider DT, Brooks AG, Londrigan SL, Man SM, Reading PC. Mouse guanylate-binding proteins of the chromosome 3 cluster do not mediate antiviral activity in vitro or in mouse models of infection. Commun Biol 2024; 7:1050. [PMID: 39183326 PMCID: PMC11345437 DOI: 10.1038/s42003-024-06748-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
Dynamin-like GTPase proteins, including myxoma (Mx) and guanylate-binding proteins (GBPs), are among the many interferon stimulated genes induced following viral infections. While studies report that human (h)GBPs inhibit different viruses in vitro, few have convincingly demonstrated that mouse (m)GBPs mediate antiviral activity, although mGBP-deficient mice have been used extensively to define their importance in immunity to diverse intracellular bacteria and protozoa. Herein, we demonstrate that individual (overexpression) or collective (knockout (KO) mice) mGBPs of the chromosome 3 cluster (mGBPchr3) do not inhibit replication of five viruses from different virus families in vitro, nor do we observe differences in virus titres recovered from wild type versus mGBPchr3 KO mice after infection with three of these viruses (influenza A virus, herpes simplex virus type 1 or lymphocytic choriomeningitis virus). These data indicate that mGBPchr3 do not appear to be a major component of cell-intrinsic antiviral immunity against the diverse viruses tested in our studies.
Collapse
Affiliation(s)
- Melkamu B Tessema
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
| | - Shouya Feng
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Daniel Enosi Tuipulotu
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, Australia
| | - Rubaiyea Farrukee
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
| | - Chinh Ngo
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Catarina Gago da Graça
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
| | - Masahiro Yamomoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daniel T Utzschneider
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
| | - Andrew G Brooks
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
| | - Sarah L Londrigan
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
| | - Si Ming Man
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Patrick C Reading
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia.
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia.
| |
Collapse
|
5
|
Schwickert KK, Glitscher M, Bender D, Benz NI, Murra R, Schwickert K, Pfalzgraf S, Schirmeister T, Hellmich UA, Hildt E. Zika virus replication is impaired by a selective agonist of the TRPML2 ion channel. Antiviral Res 2024; 228:105940. [PMID: 38901736 DOI: 10.1016/j.antiviral.2024.105940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
The flavivirus genus includes human pathogenic viruses such as Dengue (DENV), West Nile (WNV) and Zika virus (ZIKV) posing a global health threat due to limited treatment options. Host ion channels are crucial for various viral life cycle stages, but their potential as targets for antivirals is often not fully realized due to the lack of selective modulators. Here, we observe that treatment with ML2-SA1, an agonist for the human endolysosomal cation channel TRPML2, impairs ZIKV replication. Upon ML2-SA1 treatment, levels of intracellular genomes and number of released virus particles of two different ZIKV isolates were significantly reduced and cells displayed enlarged vesicular structures and multivesicular bodies with ZIKV envelope protein accumulation. However, no increased ZIKV degradation in lysosomal compartments was observed. Rather, the antiviral effect of ML2-SA1 seemed to manifest by the compound's negative impact on genome replication. Moreover, ML2-SA1 treatment also led to intracellular cholesterol accumulation. ZIKV and many other viruses including the Orthohepevirus Hepatitis E virus (HEV) rely on the endolysosomal system and are affected by intracellular cholesterol levels to complete their life cycle. Since we observed that ML2-SA1 also negatively impacted HEV infections in vitro, this compound may harbor a broader antiviral potential through perturbing the intracellular cholesterol distribution. Besides indicating that TRPML2 may be a promising target for combatting viral infections, we uncover a tentative connection between this protein and cholesterol distribution within the context of infectious diseases.
Collapse
Affiliation(s)
- Kerstin K Schwickert
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University, Jena, Germany; Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany; Department of Chemistry, Johannes Gutenberg-University, 55122, Mainz, Germany
| | - Mirco Glitscher
- Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Daniela Bender
- Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Nuka Ivalu Benz
- Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Robin Murra
- Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Kevin Schwickert
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, 55122, Mainz, Germany
| | - Steffen Pfalzgraf
- Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, 55122, Mainz, Germany
| | - Ute A Hellmich
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University, Jena, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt, Germany; Cluster of Excellence "Balance of the Microverse", Friedrich Schiller University, Jena, Germany.
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany.
| |
Collapse
|
6
|
Woytinek K, Glitscher M, Hildt E. Antagonism of epidermal growth factor receptor signaling favors hepatitis E virus life cycle. J Virol 2024; 98:e0058024. [PMID: 38856640 PMCID: PMC11265270 DOI: 10.1128/jvi.00580-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Hepatitis E virus (HEV) poses a global threat, which currently remains understudied in terms of host interactions. Epidermal growth factor receptor (EGFR) plays multifaceted roles in viral pathogenesis, impacting host-cell entry, viral replication, and host-defense modulation. On the one hand, EGFR signaling emerged as a major driver in innate immunity; on the other hand, a crosstalk between HEV and EGFR requires deeper analysis. We therefore aimed to dissect the receptor's involvement in the HEV life cycle. In persistently HEV-infected cells, the EGFR amount is decreased alongside with enhanced receptor internalization. As compared with the control ligand-induced EGFR, activation revealed an early receptor internalization and degradation in HEV-replicating cells, resulting in a notable EGFR signaling delay. Interestingly, inhibition or silencing of EGFR increased viral replication, extracellular and intracellular viral transcripts, and released infectious particles. The pro-viral impact of EGFR inhibition was attributed to (i) impaired expression of interferon-stimulated genes, (ii) activation of the autophagosomal system, (iii) virus-induced inhibition of lysosomal acidification, and (iv) a decrease of the cellular cholesterol level. IMPORTANCE This study identifies epidermal growth factor receptor (EGFR) as a novel host factor affecting hepatitis E virus (HEV): EGFR downregulation promotes viral replication, release, and evasion from the innate immune response. The discovery that EGFR inhibition favors viral spread is particularly concerning for HEV patients undergoing EGFR inhibitor treatment.
Collapse
Affiliation(s)
| | - Mirco Glitscher
- Division of Virology, Paul Ehrlich Institute, Langen, Germany
| | - Eberhard Hildt
- Division of Virology, Paul Ehrlich Institute, Langen, Germany
| |
Collapse
|
7
|
Jiang Y, Cai L, Jia S, Xie W, Wang X, Li J, Cui W, Li G, Xia X, Tang L. Guanylate-binding protein 1 inhibits inflammatory factors produced by H5N1 virus through Its GTPase activity. Poult Sci 2024; 103:103800. [PMID: 38743966 PMCID: PMC11108968 DOI: 10.1016/j.psj.2024.103800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Abstract
The combination of inflammatory factors resulting from an influenza A virus infection is one of the main causes of death in host animals. Studies have shown that guinea pig guanosine monophosphate binding protein 1 (guanylate-binding protein 1, gGBP1) can downregulate cytokine production induced by the influenza virus. Therefore, exploring the innate immune defense mechanism of GBP1 in the process of H5N1 influenza virus infection has important implications for understanding the pathogenic mechanism, disease prevention, and the control of influenza A virus infections. We found that, in addition to inhibiting the early replication of influenza virus, gGBP1 also inhibited the production of CCL2 and CXCL10 cytokines induced by the influenza virus as well as the proliferation of mononuclear macrophages induced by these cytokines. These findings further confirmed that gGBP1 inhibited the production of cytokines through its GTPase activity and cell proliferation through its C-terminal α-helix structure. This study revealed the effect of gGBP1 on the production of cellular inflammatory factors during influenza virus infection and determined the key amino acid residues that assist in the inhibitory processes mediated by gGBP1.
Collapse
Affiliation(s)
- Yanping Jiang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China; College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Limeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Shuo Jia
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China; College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Weichun Xie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xueying Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiaxuan Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China; College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Wen Cui
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China; College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Guiwei Li
- Institute of Rural Revitalization Science and Technology, Heilongjiang Academy of Agricultural Science, Harbin 150023, China
| | - Xianzhu Xia
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130000, China
| | - Lijie Tang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China; College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
8
|
Lin YC, Lu M, Cai W, Hu WS. Comparative transcriptomic and proteomic kinetic analysis of adeno-associated virus production systems. Appl Microbiol Biotechnol 2024; 108:385. [PMID: 38896252 PMCID: PMC11186941 DOI: 10.1007/s00253-024-13203-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Recombinant adeno-associated virus (rAAV) is a major gene delivery vehicle. We have constructed a stable rAAV producer cell line by integrating essential rAAV genome, viral and helper genes into the genome of HEK293 cell under the control of inducible promoters. Upon induction, the cell line produces transducing rAAV. To gain insight into enhancing rAAV productivity and vector quality, we performed a comparative transcriptomic and proteomic analysis of our synthetic cell line GX2 and two wild-type AAV (wtAAV) production systems, one by virus co-infection and the other by multi-plasmid transfection. The three systems had different kinetics in viral component synthesis but generated comparable copies of AAV genomes; however, the capsid titer of GX2 was an order of magnitude lower compared to those two wtAAV systems, indicating that its capsid production may be insufficient. The genome packaging efficiency was also lower in GX2 despite it produced higher levels of Rep52 proteins than either wtAAV systems, suggesting that Rep52 protein expression may not limit genome packaging. In the two wtAAV systems, VP were the most abundant AAV proteins and their levels continued to increase, while GX2 had high level of wasteful cargo gene expression. Furthermore, upregulated inflammation, innate immune responses, and MAPK signaling, as well as downregulated mitochondrial functions, were commonly observed in either rAAV or wtAAV systems. Overall, this comparative multi-omics study provided rich insights into host cell and viral factors that are potential targets for genetic and process intervention to enhance the productivity of synthetic rAAV producer cell lines. KEY POINTS: • wtAAV infection was more efficient in producing full viral particles than the synthetic cell GX2. • Capsid protein synthesis, genome replication, and packaging may limit rAAV production in GX2. • wtAAV infection and rAAV production in GX2 elicited similar host cell responses.
Collapse
Affiliation(s)
- Yu-Chieh Lin
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue S.E, Minneapolis, MN, 55455-0132, USA
| | - Min Lu
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue S.E, Minneapolis, MN, 55455-0132, USA
| | - Wen Cai
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue S.E, Minneapolis, MN, 55455-0132, USA
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue S.E, Minneapolis, MN, 55455-0132, USA.
| |
Collapse
|
9
|
Glitscher M, Benz NI, Sabino C, Murra RO, Hein S, Zahn T, Mhedhbi I, Stefanova D, Bender D, Werner S, Hildt E. Inhibition of Pim kinases triggers a broad antiviral activity by affecting innate immunity and via the PI3K-Akt-mTOR axis the endolysosomal system. Antiviral Res 2024; 226:105891. [PMID: 38649071 DOI: 10.1016/j.antiviral.2024.105891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Zoonoses such as ZIKV and SARS-CoV-2 pose a severe risk to global health. There is urgent need for broad antiviral strategies based on host-targets filling gaps between pathogen emergence and availability of therapeutic or preventive strategies. Significant reduction of pathogen titers decreases spread of infections and thereby ensures health systems not being overloaded and public life to continue. Based on previously observed interference with FGFR1/2-signaling dependent impact on interferon stimulated gene (ISG)-expression, we identified Pim kinases as promising druggable cellular target. We therefore focused on analyzing the potential of pan-Pim kinase inhibition to trigger a broad antiviral response. The pan-Pim kinase inhibitor AZD1208 exerted an extraordinarily high antiviral effect against various ZIKV isolates, SARS-CoV-2 and HBV. This was reflected by strong reduction in viral RNA, proteins and released infectious particles. Especially in case of SARS-CoV-2, AZD1208 led to a complete removal of viral traces in cells. Kinome-analysis revealed vast changes in kinase landscape upon AZD1208 treatment, especially for inflammation and the PI3K/Akt-pathway. For ZIKV, a clear correlation between antiviral effect and increase in ISG-expression was observed. Based on a cell culture model with impaired ISG-induction, activation of the PI3K-Akt-mTOR axis, leading to major changes in the endolysosomal equilibrium, was identified as second pillar of the antiviral effect triggered by AZD1208-dependent Pim kinase inhibition, also against HBV. We identified Pim-kinases as cellular target for a broad antiviral activity. The antiviral effect exerted by inhibition of Pim kinases is based on at least two pillars: innate immunity and modulation of the endolysosomal system.
Collapse
Affiliation(s)
- Mirco Glitscher
- Department of Virology, Paul-Ehrlich-Institute, Paul-Ehrlich-Straße 51-59, D63225, Langen, Germany
| | - Nuka Ivalu Benz
- Department of Virology, Paul-Ehrlich-Institute, Paul-Ehrlich-Straße 51-59, D63225, Langen, Germany
| | - Catarina Sabino
- Department of Virology, Paul-Ehrlich-Institute, Paul-Ehrlich-Straße 51-59, D63225, Langen, Germany
| | - Robin Oliver Murra
- Department of Virology, Paul-Ehrlich-Institute, Paul-Ehrlich-Straße 51-59, D63225, Langen, Germany
| | - Sascha Hein
- Department of Virology, Paul-Ehrlich-Institute, Paul-Ehrlich-Straße 51-59, D63225, Langen, Germany
| | - Tobias Zahn
- Department of Virology, Paul-Ehrlich-Institute, Paul-Ehrlich-Straße 51-59, D63225, Langen, Germany
| | - Ines Mhedhbi
- Department of Virology, Paul-Ehrlich-Institute, Paul-Ehrlich-Straße 51-59, D63225, Langen, Germany
| | - Debora Stefanova
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093, Zurich, Switzerland
| | - Daniela Bender
- Department of Virology, Paul-Ehrlich-Institute, Paul-Ehrlich-Straße 51-59, D63225, Langen, Germany
| | - Sabine Werner
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093, Zurich, Switzerland
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institute, Paul-Ehrlich-Straße 51-59, D63225, Langen, Germany.
| |
Collapse
|
10
|
Gu T, Qu S, Zhang J, Ying Q, Zhang X, Lv Y, Liu R, Feng Y, Wang F, Wu X. Guanylate-binding protein 1 inhibits Hantaan virus infection by restricting virus entry. J Med Virol 2024; 96:e29730. [PMID: 38860570 DOI: 10.1002/jmv.29730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/08/2024] [Accepted: 06/01/2024] [Indexed: 06/12/2024]
Abstract
Hantaan virus (HTNV) infection can cause hemorrhagic fever with renal syndrome (HFRS) in humans, and currently, there are no long-standing protective vaccines or specific antivirals available. Guanylate-binding protein 1 (GBP1) is an interferon-stimulated gene that defends against various pathogen infections. However, the function of GBP1 in HTNV infection remains unknown. Here, we describe how GBP1 prevents HTNV infection by obstructing virus entry. We found that HTNV infection induced GBP1 expression and that overexpression of GBP1 inhibited HTNV infection, while knockout of GBP1 had the opposite effect. Interestingly, GBP1 did not affect interferon (IFN) signaling during HTNV infection. Instead, GBP1 prevented HTNV from entering cells through clathrin-mediated endocytosis (CME). We also discovered that GBP1 specifically interacted with actin but not dynamin 2 (DNM2) and made it difficult for DNM2 to be recruited by actin, which may account for the suppression of CME during HTNV infection. These findings establish an antiviral role for GBP1 in inhibiting HTNV infection and help us better understand how GBP1 regulates HTNV entry and could potentially aid in developing treatments for this virus.
Collapse
Affiliation(s)
- Tianle Gu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Sirui Qu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- College of Life Sciences, Yan'an University, Yan'an, China
| | - Junmei Zhang
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- College of Life Sciences, Yan'an University, Yan'an, China
| | - Qikang Ying
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Xiaoxiao Zhang
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Xi'an, China
| | - Yunhua Lv
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Rongrong Liu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yunan Feng
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Fang Wang
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Xingan Wu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
11
|
Li Y, Luo H, Hu X, Gong J, Tan G, Luo H, Wang R, Pang H, Yu R, Qin B. Guanylate-Binding Protein 1 (GBP1) Enhances IFN-α Mediated Antiviral Activity against Hepatitis B Virus Infection. Pol J Microbiol 2024; 73:217-235. [PMID: 38905278 PMCID: PMC11192456 DOI: 10.33073/pjm-2024-021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/08/2024] [Indexed: 06/23/2024] Open
Abstract
Interferon-alpha (IFN-α) is a first-line drug for treating chronic hepatitis B (CHB). Guanylate-binding protein 1 (GBP1) is one of the interferon-stimulating factors, which participates in the innate immunity of the host and plays an antiviral and antibacterial role. In this study, we explored how GBP1 is involved in IFN-α antiviral activity against HBV. Before being gathered, HepG2-NTCP and HepG2 2.15 cells were transfected with the wild-type hGBP1 plasmid or si-GBP1, respectively, and followed by stimulation with Peg-IFNα-2b. We systematically explored the role of GBP1 in regulating HBV infection in cell models. Additionally, we also examined GBP1 levels in CHB patients. GBP1 activity increased, and its half-life was prolonged after HBV infection. Overexpression of GBP1 inhibited the production of HBsAg and HBeAg, as well as HBs protein and HBV total RNA levels, whereas silencing of GBP1 inhibited its ability to block viral infections. Interestingly, overexpressing GBP1 co-treatment with Peg-IFNα-2b further increased the antiviral effect of IFN-α, while GBP1 silencing co-treatment with Peg-IFNα-2b partly restored its inhibitory effect on HBV. Mechanistically, GBP1 mediates the anti-HBV response of Peg-IFNα-2b by targeting HBs. Analysis of clinical samples revealed that GBP1 was elevated in CHB patients and increased with Peg-IFNα-2b treatment, while GBP1 showed good stability in the interferon response group. Our study demonstrates that GBP1 inhibits HBV replication and promotes HBsAg clearance. It is possible to achieve antiviral effects through the regulation of IFN-α induced immune responses in response to HBV.
Collapse
Affiliation(s)
- Yadi Li
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haiying Luo
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoxia Hu
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiaojiao Gong
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Central Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guili Tan
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Central Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huating Luo
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Wang
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Pang
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Central Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Renjie Yu
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Qin
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Glitscher M, Spannaus IM, Behr F, Murra RO, Woytinek K, Bender D, Hildt E. The Protease Domain in HEV pORF1 Mediates the Replicase's Localization to Multivesicular Bodies and Its Exosomal Release. Cell Mol Gastroenterol Hepatol 2024; 17:589-605. [PMID: 38190941 PMCID: PMC10900777 DOI: 10.1016/j.jcmgh.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
BACKGROUND A peculiar feature of the hepatitis E virus (HEV) is its reliance on the exosomal route for viral release. Genomic replication is mediated via the viral polyprotein pORF1, yet little is known about its subcellular localization. METHODS Subcellular localization of pORF1 and its subdomains, generated and cloned based on a structural prediciton of the viral replicase, was analyzed via confocal laser scanning microscopy. Exosomes released from cells were isolated via ultracentrifugation and analyzed by isopycnic density gradient centrifugation. This was followed by fluorimetry or Western blot analyses or reverse transcriptase-polymerase chain reaction to analyze separated particles in more detail. RESULTS We found pORF1 to be accumulating within the endosomal system, most dominantly to multivesicular bodies (MVBs). Expression of the polyprotein's 7 subdomains revealed that the papain-like cysteine-protease (PCP) is the only domain localizing like the full-length protein. A PCP-deficient pORF1 mutant lost its association to MVBs. Strikingly, both pORF1 and PCP can be released via exosomes. Similarly, genomic RNA still is released via exosomes in the absence of pORF2/3. CONCLUSIONS Taken together, we found that pORF1 localizes to MVBs in a PCP-dependent manner, which is followed by exosomal release. This reveals new aspects of HEV life cycle, because replication and release could be coupled at the endosomal interface. In addition, this may mediate capsid-independent spread or may facilitate the spread of viral infection, because genomes entering the cell during de novo infection readily encounter exosomally transferred pORF1.
Collapse
Affiliation(s)
- Mirco Glitscher
- Department of Virology, Paul-Ehrlich-Institute, Langen, Germany
| | | | - Fabiane Behr
- Department of Virology, Paul-Ehrlich-Institute, Langen, Germany
| | | | | | - Daniela Bender
- Department of Virology, Paul-Ehrlich-Institute, Langen, Germany
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institute, Langen, Germany.
| |
Collapse
|
13
|
Wang S, Zhang Y, Ma X, Feng Y. Function and mechanism of GBP1 in the development and progression of cervical cancer. J Transl Med 2024; 22:11. [PMID: 38167153 PMCID: PMC10763113 DOI: 10.1186/s12967-023-04837-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
Guanylate binding protein 1 (GBP1) is the most concerned member of the GBP family, which has a series of effects such as anti-infection and anti-angiogenesis. Its role in malignant tumors including cervical cancer is still controversial. We aim to explore the effects of GBP1 on cervical cancer through bioinformatics and related experiments. In this study, we first found that GBP1 was generally expressed in cervical cancer in various online databases and was closely related to immune invasion. Secondly, we used multicolor immunofluorescence technology to verify the expression of GBP1 in cervical cancer tissues and its relationship with immune invasion, and explored its relationship with the prognosis of patients with cervical cancer. Knockdown and overexpression assays of GBP1 in vitro were used to prove GBP1 as a potential oncogene of cervical cancer, and its carcinogenicity was verified by in vivo experiment. In order to explore the potential mechanism of GBP1 in promoting cancer, RNA-seq was performed on GBP1 overexpression and knockdown expression cell lines, and GBP1 knockdown and overexpression were found to be associated with many RNA alternative splicing events, suggesting that GBP1 maybe a RNA binding protein (RBP) which affect the biological characteristics of cervical cancer cells through the alternative splicing pathway. However, the later RNA binding protein immunoprecipitation (RIP) assay proved that GBP1 was not a direct alternative splicing factor, while the co-immunoprecipitation (CoIP)-mass spectroscopy (MS) assay combined with protein protein interaction (PPI) analysis proved that 8 alternative splicing factors including Heterogeneous Nuclear Ribonucleoprotein K (HNRNPK) were interacting proteins of GBP1. Combined with the existing reports and the results of RNA-seq alternative splicing analysis, it is speculated that GBP1 may regulate the alternative splicing of CD44 protein by binding to interacting protein-HNRNPK, and thus play a role in promoting cancer in cervical cancer.
Collapse
Affiliation(s)
- Senyu Wang
- Clinical Laboratory Center, Cancer Hospital Affiliated to Xinjiang Medical University, Xinjiang, China
| | - Yajing Zhang
- Clinical Laboratory Center, Cancer Hospital Affiliated to Xinjiang Medical University, Xinjiang, China
| | - Xiumin Ma
- Clinical Laboratory Center, Cancer Hospital Affiliated to Xinjiang Medical University, Xinjiang, China.
| | - Yangchun Feng
- Clinical Laboratory Center, Cancer Hospital Affiliated to Xinjiang Medical University, Xinjiang, China.
| |
Collapse
|
14
|
Meyer L, Duquénois I, Gellenoncourt S, Pellerin M, Marcadet-Hauss A, Pavio N, Doceul V. Identification of interferon-stimulated genes with modulated expression during hepatitis E virus infection in pig liver tissues and human HepaRG cells. Front Immunol 2023; 14:1291186. [PMID: 38058490 PMCID: PMC10696647 DOI: 10.3389/fimmu.2023.1291186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/31/2023] [Indexed: 12/08/2023] Open
Abstract
Introduction Hepatitis E virus (HEV) is a common cause of enterically transmitted acute hepatitis worldwide. The virus is transmitted by the fecal-oral route via the consumption of contaminated water supplies and is also a zoonotic foodborne pathogen. Swine are the main reservoir of zoonotic HEV. In humans, HEV infection is usually asymptomatic or causes acute hepatitis that is self-limited. However, fulminant hepatic failure and chronic cases of HEV infection can occur in some patients. In contrast, HEV infection in pigs remains asymptomatic, although the virus replicates efficiently, suggesting that swine are able to control the virus pathogenesis. Upon viral infection, IFN is secreted and activates cellular pathways leading to the expression of many IFN-stimulated genes (ISGs). ISGs can restrict the replication of specific viruses and establish an antiviral state within infected and neighboring cells. Methods In this study, we used PCR arrays to determine the expression level of up to 168 ISGs and other IFN-related genes in the liver tissues of pigs infected with zoonotic HEV-3c and HEV-3f and in human bipotent liver HepaRG cells persistently infected with HEV-3f. Results and discussion The expression of 12 and 25 ISGs was found to be up-regulated in infected swine livers and HepaRG cells, respectively. The expression of CXCL10, IFIT2, MX2, OASL and OAS2 was up-regulated in both species. Increased expression of IFI16 mRNA was also found in swine liver tissues. This study contributes to the identification of potential ISGs that could play a role in the control or persistence of HEV infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Virginie Doceul
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail (ANSES), École Nationale Vétérinaire d'Alfort (ENVA), UMR Virology, Maisons-Alfort, France
| |
Collapse
|
15
|
Gao Z, Meng Z, He X, Chen G, Fang Y, Tian H, Zhang H, Jing Z. Guanylate-Binding Protein 2 Exerts GTPase-Dependent Anti-Ectromelia Virus Effect. Microorganisms 2023; 11:2258. [PMID: 37764102 PMCID: PMC10534507 DOI: 10.3390/microorganisms11092258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Guanylate-binding proteins (GBPs) are highly expressed interferon-stimulated genes (ISGs) that play significant roles in protecting against invading pathogens. Although their functions in response to RNA viruses have been extensively investigated, there is limited information available regarding their role in DNA viruses, particularly poxviruses. Ectromelia virus (ECTV), a member of the orthopoxvirus genus, is a large double-stranded DNA virus closely related to the monkeypox virus and variola virus. It has been intensively studied as a highly effective model virus. According to the study, GBP2 overexpression suppresses ECTV replication in a dose-dependent manner, while GBP2 knockdown promotes ECTV infection. Additionally, it was discovered that GBP2 primarily functions through its N-terminal GTPase activity, and the inhibitory effect of GBP2 was disrupted in the GTP-binding-impaired mutant GBP2K51A. This study is the first to demonstrate the inhibitory effect of GBP2 on ECTV, and it offers insights into innovative antiviral strategies.
Collapse
Affiliation(s)
- Zhenzhen Gao
- State Key Laboratory for Animal Disease Control and Prevention, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (Z.G.); (X.H.); (G.C.); (Y.F.); (H.T.); (H.Z.)
- Ministry of Agriculture Key Laboratory of Veterinary Public Health, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Zejing Meng
- School of Public Health, Lanzhou University, Lanzhou 730000, China;
| | - Xiaobing He
- State Key Laboratory for Animal Disease Control and Prevention, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (Z.G.); (X.H.); (G.C.); (Y.F.); (H.T.); (H.Z.)
- Ministry of Agriculture Key Laboratory of Veterinary Public Health, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Guohua Chen
- State Key Laboratory for Animal Disease Control and Prevention, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (Z.G.); (X.H.); (G.C.); (Y.F.); (H.T.); (H.Z.)
- Ministry of Agriculture Key Laboratory of Veterinary Public Health, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Yongxiang Fang
- State Key Laboratory for Animal Disease Control and Prevention, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (Z.G.); (X.H.); (G.C.); (Y.F.); (H.T.); (H.Z.)
- Ministry of Agriculture Key Laboratory of Veterinary Public Health, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Huihui Tian
- State Key Laboratory for Animal Disease Control and Prevention, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (Z.G.); (X.H.); (G.C.); (Y.F.); (H.T.); (H.Z.)
- Ministry of Agriculture Key Laboratory of Veterinary Public Health, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Hui Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (Z.G.); (X.H.); (G.C.); (Y.F.); (H.T.); (H.Z.)
- Ministry of Agriculture Key Laboratory of Veterinary Public Health, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Zhizhong Jing
- State Key Laboratory for Animal Disease Control and Prevention, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (Z.G.); (X.H.); (G.C.); (Y.F.); (H.T.); (H.Z.)
- Ministry of Agriculture Key Laboratory of Veterinary Public Health, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- School of Public Health, Lanzhou University, Lanzhou 730000, China;
| |
Collapse
|
16
|
Tian Z, Zhang H, Yu R, Du J, Gao S, Wang Q, Guan G, Yin H. The GTPase activity and isoprenylation of Swine GBP1 are critical for inhibiting the production of Japanese Encephalitis Virus. Vet Microbiol 2023; 284:109843. [PMID: 37540998 DOI: 10.1016/j.vetmic.2023.109843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023]
Abstract
Japanese encephalitis virus (JEV) is a flavivirus that cause severe neurological deficits. The guanylate-binding protein 1 (GBP1) gene is an interferon-stimulated gene and exerts antiviral functions on many RNA and DNA viruses via diverse mechanisms, however, the roles and the action modes of GBP1 in the antiviral effect on the production of JEV RNA and infectious virions remain to be clarified. In this study, we found that the RNA levels of swine GBP1 (sGBP1) in PK15 cells were up-regulated at the late stage of JEV infection. The overexpression of sGBP1 significantly inhibited the production of JEV while the knockdown of sGBP1 promoted the production of JEV. The GTPase activity and isoprenylation of sGBP1 both are critical for anti-JEV activity. The GTPase activity of sGBP1 is responsible for inhibiting the production of JEV genomic RNA. The isoprenylation of sGBP1 inhibited the expression and cleavage of JEV prM to decrease the yields of infectious virions, which may be associated with the interaction between sGBP1 and cellular proprotein convertase furin. Taken together, the study dissected the action modes of sGBP1with potent anti-JEV activity in more details.
Collapse
Affiliation(s)
- Zhancheng Tian
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China.
| | - Hongge Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Ruiming Yu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Junzheng Du
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Shandian Gao
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Qiongjie Wang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Guiquan Guan
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Hong Yin
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| |
Collapse
|
17
|
Schelle L, Côrte-Real JV, Esteves PJ, Abrantes J, Baldauf HM. Functional cross-species conservation of guanylate-binding proteins in innate immunity. Med Microbiol Immunol 2023; 212:141-152. [PMID: 35416510 PMCID: PMC9005921 DOI: 10.1007/s00430-022-00736-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/25/2022] [Indexed: 11/29/2022]
Abstract
Guanylate binding proteins (GBPs) represent an evolutionary ancient protein family widely distributed among eukaryotes. They are interferon (IFN)-inducible guanosine triphosphatases that belong to the dynamin superfamily. GBPs are known to have a major role in the cell-autonomous innate immune response against bacterial, parasitic and viral infections and are also involved in inflammasome activation. Evolutionary studies depicted that GBPs present a pattern of gain and loss of genes in each family with several genes pseudogenized and some genes more divergent, indicative for the birth-and-death evolution process. Most species harbor large GBP gene clusters encoding multiple paralogs. Previous functional studies mainly focused on mouse and human GBPs, but more data are becoming available, broadening the understanding of this multifunctional protein family. In this review, we will provide new insights and give a broad overview about GBP evolution, conservation and their roles in all studied species, including plants, invertebrates and vertebrates, revealing how far the described features of GBPs can be transferred to other species.
Collapse
Affiliation(s)
- Luca Schelle
- Faculty of Medicine, Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Feodor-Lynen-Str. 23, 81377, Munich, Germany
| | - João Vasco Côrte-Real
- Faculty of Medicine, Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Feodor-Lynen-Str. 23, 81377, Munich, Germany
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, 4485-661, Vairão, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Pedro José Esteves
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, 4485-661, Vairão, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
- CITS-Center of Investigation in Health Technologies, CESPU, 4585-116, Gandra, Portugal
| | - Joana Abrantes
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, 4485-661, Vairão, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Hanna-Mari Baldauf
- Faculty of Medicine, Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Feodor-Lynen-Str. 23, 81377, Munich, Germany.
| |
Collapse
|
18
|
Zhang X, Du Q, Chen G, Jiang Y, Huang K, Li L, Tong D, Huang Y. Guanylate-binding protein 1 inhibits nuclear delivery of pseudorabies virus by disrupting structure of actin filaments. Vet Res 2023; 54:21. [PMID: 36918936 PMCID: PMC10015811 DOI: 10.1186/s13567-023-01154-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/23/2022] [Indexed: 03/16/2023] Open
Abstract
The alphaherpesvirus pseudorabies virus (PRV) is the causative agent of pseudorabies, responsible for severe economic losses to the swine industry worldwide. The interferon-inducible GTPase guanylate-binding protein 1 (GBP1) exhibits antiviral immunity. Our findings show that there is a robust upregulation in the expression of porcine GBP1 during PRV infection. GBP1 knockout promotes PRV infection, while GBP1 overexpression restricts it. Importantly, we found that GBP1 impeded the normal structure of actin filaments in a GTPase-dependent manner, preventing PRV virions from reaching the nucleus. We also discovered that viral US3 protein bound GBP1 to interfere with its GTPase activity. Finally, the interaction between US3 and GBP1 requires US3 serine/threonine kinase activity sites and the GTPase domain (aa 1 to 308) of GBP1. Taken together, this study offers fresh perspectives on how PRV manipulates the host's antiviral immune system.
Collapse
Affiliation(s)
- Xiaohua Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qian Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Guiyuan Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yiyuan Jiang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Kai Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Linghao Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.
| |
Collapse
|
19
|
Ma P, Gu K, Wen R, Li C, Zhou C, Zhao Y, Li H, Lei C, Yang X, Wang H. Guanylate-binding protein 1 restricts avian coronavirus infectious bronchitis virus-infected HD11 cells. Poult Sci 2023; 102:102398. [PMID: 36580763 PMCID: PMC9731647 DOI: 10.1016/j.psj.2022.102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/23/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The Infectious Bronchitis Virus (IBV), a coronavirus, is a key avian pathogen that causes acute and highly infectious viral respiratory diseases. IBV is an enveloped, positive-sense RNA virus, and the host factors that restrict infection and replication of the virus remain poorly understood. Guanylate-binding protein 1 (GBP1), an interferon-gamma (IFN-γ)-inducible guanosine triphosphatase (GTPase), is a major player in host immunity and provides defense against viral replication. However, the role of chicken GBP1 (chGBP1) in the IBV-life cycle is not well understood. Therefore, this study aimed to reveal the potential role of IFN-γ-induced chGBP1 in mediating host anti-IBV infection responses. We identified the host restriction factor, chGBP1, in IBV-infected chicken macrophages HD11 cell lines. We showed that chGBP1 was upregulated by treatment with both IFN-γ and IBV in HD11 cells. chGBP1 inhibited IBV replication in a dose-dependent manner and enhanced IFN-γ anti-IBV activity. Importantly, the GTPase domain of chGBP1 played a pivotal role in its anti-IBV activity. Furthermore, chGBP1 interacts with IBV Nucleocapsids protein to degrade IBV-N protein through the autophagy pathway. Taken together, our results demonstrate a critical role of chGBP1 in anti-IBV in macrophages HD11 cells.
Collapse
Affiliation(s)
- Peng Ma
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Kui Gu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Renqiao Wen
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Chao Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Changyu Zhou
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Yu Zhao
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Hao Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Changwei Lei
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Xin Yang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Hongning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
20
|
Yang YY, Zheng SY, Fang H, Wu XM, Zhang J, Chang MX. Immunoprotective Effects of Two Histone H2A Variants in the Grass Carp Against Flavobacterium columnare Infection. Front Immunol 2022; 13:939464. [PMID: 35898515 PMCID: PMC9310644 DOI: 10.3389/fimmu.2022.939464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
In teleost fish, the nucleotide polymorphisms of histone H2A significantly affect the resistance or susceptibility of zebrafish to Edwardsiella piscicida infection. Whether histone H2A variants can enhance the resistance of grass carp to Flavobacterium columnare infection remains unclear. Here, the effects of 7 previously obtained variants (gcH2A-1~gcH2A-7) and 5 novel histone H2A variants (gcH2A-11, gcH2A-13~gcH2A-16) in response to F. columnare infection were investigated. It was found that these histone H2A variants could be divided into type I and II. Among them, 5 histone H2A variants had no any effects on the F. columnare infection, however 7 histone H2A variants had antibacterial activity against F. columnare infection. The gcH2A-4 and gcH2A-11, whose antibacterial activity was the strongest in type I and II histone H2A variants respectively, were picked out for yeast expression. Transcriptome data for the samples from the intestines of grass carp immunized with the engineered Saccharomyces cerevisiae expressing PYD1, gcH2A-4 or gcH2A-11 revealed that 5 and 12 immune-related signaling pathways were significantly enriched by gcH2A-4 or gcH2A-11, respectively. For the engineered S. cerevisiae expressing gcH2A-4, NOD-like receptor and Toll-like receptor signaling pathways were enriched for up-regulated DEGs. Besides NOD-like receptor and Toll-like receptor signaling pathways, the engineered S. cerevisiae expressing gcH2A-11 also activated Cytosolic DNA-sensing pathway, RIG-I-like receptor signaling pathway and C-type lectin receptor signaling pathway. Furthermore, grass carp were immunized with the engineered S. cerevisiae expressing PYD1, gcH2A-4 or gcH2A-11 for 1 month and challenged with F. columnare. These grass carp immunized with gcH2A-4 or gcH2A-11 showed lower mortality and fewer numbers of F. columnare than did the control group. All these results suggest that gcH2A-4 and gcH2A-11 play important roles in evoking the innate immune responses and enhancing disease resistance of grass carp against F. columnare infection.
Collapse
Affiliation(s)
- Yuan Yuan Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Si Yao Zheng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hong Fang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Man Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jie Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Ming Xian Chang,
| |
Collapse
|
21
|
Chhabra S, Sharma KB, Kalia M. Human Guanylate-Binding Protein 1 Positively Regulates Japanese Encephalitis Virus Replication in an Interferon Gamma Primed Environment. Front Cell Infect Microbiol 2022; 12:832057. [PMID: 35663470 PMCID: PMC9160567 DOI: 10.3389/fcimb.2022.832057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/19/2022] [Indexed: 12/03/2022] Open
Abstract
RNA virus infection triggers interferon (IFN) receptor signaling, leading to the activation of hundreds of interferon-stimulated genes (ISGs). Guanylate-binding proteins (GBPs) belong to one such IFN inducible subfamily of guanosine triphosphatases (GTPases) that have been reported to exert broad anti-microbial activity and regulate host defenses against several intracellular pathogens. Here, we investigated the role of human GBP1 (hGBP1) in Japanese encephalitis virus (JEV) infection of HeLa cells in both an IFNγ unprimed and primed environment. We observed enhanced expression of GBP1 both at transcript and protein levels upon JEV infection, and GBP1 association with the virus replication membranes. Depletion of hGBP1 through siRNA had no effect on JEV replication or virus induced cell death in the IFNγ unprimed environment. IFNγ stimulation provided robust protection against JEV infection. Knockdown of GBP1 in the primed environment upregulated expression and phosphorylation of signal transducer and activator of transcription 1 (STAT1) and significantly reduced JEV replication. Depletion of GBP1 in an IFNγ primed environment also inhibited virus replication in human neuroblastoma SH-SH5Y cells. Our data suggests that in the presence of IFNγ, GBP1 displays a proviral role by inhibiting innate immune responses to JEV infection.
Collapse
|
22
|
Catch me if you can - the crosstalk of ZIKV and the restriction factor Tetherin. J Virol 2021; 96:e0211721. [PMID: 34935441 DOI: 10.1128/jvi.02117-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Zika virus (ZIKV) is a flavivirus that is mainly transmitted by Aedes mosquitos and normally causes mild symptoms. During the outbreak in the Americas in 2015, it was associated with more severe implications, like microcephaly in new-borns and the Gullain-Barré syndrome. The lack of specific vaccines and cures strengthen the need for a deeper understanding of the virus life cycle and virus-host interactions. The restriction factor tetherin (THN) is an interferon-inducible cellular protein with broad antiviral properties. It is known to inhibit the release of various enveloped viruses by tethering them to each other and to the cell membrane, thereby preventing their further spread. On the other hand, different viruses have developed various escape strategies against THN. Analysis of the crosstalk between ZIKV and THN revealed that in spite of a strong induction of THN mRNA expression in ZIKV-infected cells, this is not reflected by an elevated protein level of THN. Contrariwise, the THN protein level is decreased due to a reduced half-life. The increased degradation of THN in ZIKV infected cells involves the endo-lysosomal system, but does not depend on the early steps of autophagy. Enrichment of THN by depletion of the ESCRT-0 protein HRS diminishes ZIKV release and spread, which points out the capacity of THN to restrict ZIKV and explains the enhanced THN degradation in infected cells as an effective viral escape strategy. Importance Although tetherin expression is strongly induced by ZIKV infection there is a reduction in the amount of tetherin protein. This is due to an enhanced lysosomal degradation. However, if tetherin level is rescued release of ZIKV is impaired. This shows that tetherin is a restriction factor for ZIKV and the induction of an efficient degradation represents a viral escape strategy. To our knowledge this is the first study that describes and characterizes tetherin as an restriction factor for ZIKV life cycle.
Collapse
|
23
|
Interplay between Hepatitis E Virus and Host Cell Pattern Recognition Receptors. Int J Mol Sci 2021; 22:ijms22179259. [PMID: 34502167 PMCID: PMC8431321 DOI: 10.3390/ijms22179259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 11/23/2022] Open
Abstract
Hepatitis E virus (HEV) usually causes self-limiting acute hepatitis, but the disease can become chronic in immunocompromised individuals. HEV infection in pregnant women is reported to cause up to 30% mortality, especially in the third trimester. Additionally, extrahepatic manifestations like neuronal and renal diseases and pancreatitis are also reported during the course of HEV infection. The mechanism of HEV pathogenesis remains poorly understood. Innate immunity is the first line of defense triggered within minutes to hours after the first pathogenic insult. Growing evidence based on reverse genetics systems, in vitro cell culture models, and representative studies in animal models including non-human primates, has implicated the role of the host’s innate immune response during HEV infection. HEV persists in presence of interferons (IFNs) plausibly by evading cellular antiviral defense. This review summarizes our current understanding of recognizing HEV-associated molecular patterns by host cell Pattern Recognition Receptors (PRRs) in eliciting innate immune response during HEV infection as well as mechanisms of virus-mediated immune evasion.
Collapse
|
24
|
Scholz J, Falkenhagen A, Johne R. The Translated Amino Acid Sequence of an Insertion in the Hepatitis E Virus Strain 47832c Genome, But Not the RNA Sequence, Is Essential for Efficient Cell Culture Replication. Viruses 2021; 13:v13050762. [PMID: 33926134 PMCID: PMC8145396 DOI: 10.3390/v13050762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 12/19/2022] Open
Abstract
The hepatitis E virus (HEV) can cause hepatitis E in humans. Recently, the occurrence of HEV strains carrying insertions in their hypervariable genome region has been described in chronically infected patients. The insertions originate from human genes or from the HEV genome itself. Although their distinct functions are largely unknown, an involvement in efficient cell culture replication was shown for some strains. The HEV strain 47832c, originally isolated from a chronically infected transplant patient, carries a bipartite insertion composed of HEV genome duplications. Here, several mutants with deletions and substitutions of the insertion were generated and tested in cell culture. Complete deletion of the insertion abolished virus replication and even a single glycine to arginine substitution led to reduced cell culture growth. A mutant encoding a frameshift of the inserted sequence was not infectious, whereas a mutant carrying synonymous codons in this region replicated similar like the wild type. Substitution of the insertion with the S17 insertion from HEV strain Kernow C1-p6 did not result in viable virus, which might indicate strain- or cell type-specificity of the insertions. Generally, the translated amino acid sequence of the insertion, but not the RNA sequence, seems to be responsible for the observed effect.
Collapse
|
25
|
Zhang R, Li Z, Tang YD, Su C, Zheng C. When human guanylate-binding proteins meet viral infections. J Biomed Sci 2021; 28:17. [PMID: 33673837 PMCID: PMC7934404 DOI: 10.1186/s12929-021-00716-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/01/2021] [Indexed: 12/23/2022] Open
Abstract
Innate immunity is the first line of host defense against viral infection. After invading into the cells, pathogen-associated-molecular-patterns derived from viruses are recognized by pattern recognition receptors to activate the downstream signaling pathways to induce the production of type I interferons (IFN-I) and inflammatory cytokines, which play critical functions in the host antiviral innate immune responses. Guanylate-binding proteins (GBPs) are IFN-inducible antiviral effectors belonging to the guanosine triphosphatases family. In addition to exerting direct antiviral functions against certain viruses, a few GBPs also exhibit regulatory roles on the host antiviral innate immunity. However, our understanding of the underlying molecular mechanisms of GBPs' roles in viral infection and host antiviral innate immune signaling is still very limited. Therefore, here we present an updated overview of the functions of GBPs during viral infection and in antiviral innate immunity, and highlight discrepancies in reported findings and current challenges for future studies, which will advance our understanding of the functions of GBPs and provide a scientific and theoretical basis for the regulation of antiviral innate immunity.
Collapse
Affiliation(s)
- Rongzhao Zhang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Zhixin Li
- Fuzhou Medical College of Nanchang University, Fuzhou, Jiangxi, China
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Chenhe Su
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China.
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China.
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|