1
|
Walker A, Schwarz T, Brinkmann-Paulukat J, Wisskirchen K, Menne C, Alizei ES, Kefalakes H, Theissen M, Hoffmann D, Schulze zur Wiesch J, Maini MK, Cornberg M, Kraft ARM, Keitel V, Bock HH, Horn PA, Thimme R, Wedemeyer H, Heinemann FM, Luedde T, Neumann-Haefelin C, Protzer U, Timm J. Immune escape pathways from the HBV core 18-27 CD8 T cell response are driven by individual HLA class I alleles. Front Immunol 2022; 13:1045498. [PMID: 36439181 PMCID: PMC9686862 DOI: 10.3389/fimmu.2022.1045498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Background and aims There is growing interest in T cell-based immune therapies for a functional cure of chronic HBV infection including check-point inhibition, T cell-targeted vaccines or TCR-grafted effector cells. All these approaches depend on recognition of HLA class I-presented viral peptides. The HBV core region 18-27 is an immunodominant target of CD8+ T cells and represents the prime target for T cell-based therapies. Here, a high-resolution analysis of the core18-27 specific CD8+ T cell and the selected escape pathways was performed. Methods HLA class I typing and viral sequence analyses were performed for 464 patients with chronic HBV infection. HBV-specific CD8+ T-cell responses against the prototype and epitope variants were characterized by flow cytometry. Results Consistent with promiscuous presentation of the core18-27 epitope, antigen-specific T cells were detected in patients carrying HLA-A*02:01, HLA-B*35:01, HLA-B*35:03 or HLA-B*51:01. Sequence analysis confirmed reproducible selection pressure on the core18-27 epitope in the context of these alleles. Interestingly, the selected immune escape pathways depend on the presenting HLA-class I-molecule. Although cross-reactive T cells were observed, some epitope variants achieved functional escape by impaired TCR-interaction or disturbed antigen processing. Of note, selection of epitope variants was exclusively observed in HBeAg negative HBV infection and here, detection of variants associated with significantly greater magnitude of the CD8 T cell response compared to absence of variants. Conclusion The core18-27 epitope is highly variable and under heavy selection pressure in the context of different HLA class I-molecules. Some epitope variants showed evidence for impaired antigen processing and reduced presentation. Viruses carrying such escape substitutions will be less susceptible to CD8+ T cell responses and should be considered for T cell-based therapy strategies.
Collapse
Affiliation(s)
- Andreas Walker
- Institute of Virology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tatjana Schwarz
- Institute of Virology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Janine Brinkmann-Paulukat
- Institute of Virology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karin Wisskirchen
- Institute of Virology, School of Medicine, Technical University of Munich, Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research (DZIF), Site Munich, Munich, Germany
| | - Christopher Menne
- Institute of Virology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Elahe Salimi Alizei
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Helenie Kefalakes
- Institute of Virology, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Martin Theissen
- Research Group Bioinformatics, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Daniel Hoffmann
- Research Group Bioinformatics, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Julian Schulze zur Wiesch
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Site Hamburg, Hamburg, Germany
| | - Mala K. Maini
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Site Hannover, Hannover, Germany
| | - Anke RM Kraft
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Site Hannover, Hannover, Germany
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hans H. Bock
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter A. Horn
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Robert Thimme
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Site Hannover, Hannover, Germany
| | - Falko M. Heinemann
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ulrike Protzer
- Institute of Virology, School of Medicine, Technical University of Munich, Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research (DZIF), Site Munich, Munich, Germany
| | - Jörg Timm
- Institute of Virology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
2
|
Wildner NH, Walker A, Brauneck F, Ditt V, Peine S, Huber S, Haag F, Beisel C, Timm J, Schulze zur Wiesch J. Transcriptional Pattern Analysis of Virus-Specific CD8+ T Cells in Hepatitis C Infection: Increased Expression of TOX and Eomesodermin During and After Persistent Antigen Recognition. Front Immunol 2022; 13:886646. [PMID: 35734162 PMCID: PMC9207347 DOI: 10.3389/fimmu.2022.886646] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/13/2022] [Indexed: 12/26/2022] Open
Abstract
Thymocyte selection-associated high mobility group box (TOX) has been described to be a key regulator in the formation of CD8+ T cell exhaustion. Hepatitis C virus (HCV) infection with different lengths of antigen exposure in acute, chronic, and after resolution of HCV infection is the ideal immunological model to study the expression of TOX in HCV-specific CD8+ T cells with different exposure to antigen. HCV-specific CD8+ T cells from 35 HLA-A*01:01, HLA-A*02:01, and HLA-A*24:02 positive patients were analyzed with a 16-color FACS-panel evaluating the surface expression of lineage markers (CD3, CD8), ectoenzymes (CD39, CD73), markers of differentiation (CD45RO, CCR7, CD127), and markers of exhaustion and activation (TIGIT, PD-1, KLRG1, CD226) and transcription factors (TOX, Eomesodermin, T-bet). Here, we defined on-target T cells as T cells against epitopes without escape mutations and off-target T cells as those against a "historical" antigen mutated in the autologous sequence. TOX+HCV-specific CD8+ T cells from patients with chronic HCV and on-target T cells displayed co-expression of Eomesodermin and were associated with the formation of terminally exhausted CD127-PD1hi, CD39hi, CD73low CD8+ T cells. In contrast, TOX+HCV-specific CD8+ T cells in patients with off-target T cells represented a progenitor memory Tex phenotype characterized by CD127hi expression and a CD39low and CD73hi phenotype. TOX+HCV-specified CD8+ T cells in patients with a sustained virologic response were characterized by a memory phenotype (CD127+, CD73hi) and co-expression of immune checkpoints and Eomesodermin, indicating a key structure in priming of HCV-specific CD8+ T cells in the chronic stage, which persisted as a residual after therapy. Overall, the occurrence of TOX+HCV-specific CD8+ T cells was revealed at each disease stage, which impacted the development of progenitor Tex, intermediate Tex, and terminally exhausted T cell through an individual molecular footprint. In sum, TOX is induced early during acute infection but is modulated by changes in viral sequence and antigen recognition. In the case of antigen persistence, the interaction with Eomesodermin leads to the formation of terminally exhausted virus-specific CD8+ T cells, and there was a direct correlation of the co-expression of TOX and Eomes and terminally exhausted phenotype of virus-specific CD8+ T cells.
Collapse
Affiliation(s)
- Nils H. Wildner
- I. Department of Medicine, Section of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Walker
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Franziska Brauneck
- II. Department of Medicine, Center for Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vanessa Ditt
- Department of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sven Peine
- Department of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- I. Department of Medicine, Section of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Friedrich Haag
- Institute of Immunology, Center for Diagnostics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Beisel
- I. Department of Medicine, Section of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Joerg Timm
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Julian Schulze zur Wiesch
- I. Department of Medicine, Section of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
3
|
Osuch S, Laskus T, Perlejewski K, Berak H, Bukowska-Ośko I, Pollak A, Zielenkiewicz M, Radkowski M, Caraballo Cortés K. CD8 + T-Cell Exhaustion Phenotype in Chronic Hepatitis C Virus Infection Is Associated With Epitope Sequence Variation. Front Immunol 2022; 13:832206. [PMID: 35386708 PMCID: PMC8977521 DOI: 10.3389/fimmu.2022.832206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/16/2022] [Indexed: 12/20/2022] Open
Abstract
Background and Aims During chronic hepatitis C virus (HCV) infection, CD8+ T-cells become functionally exhausted, undergoing progressive phenotypic changes, i.e., overexpression of “inhibitory” molecules such as PD-1 (programmed cell death protein 1) and/or Tim-3 (T-cell immunoglobulin and mucin domain-containing molecule-3). The extreme intrahost genetic diversity of HCV is a major mechanism of immune system evasion, facilitating epitope escape. The aim of the present study was to determine whether T-cell exhaustion phenotype in chronic HCV infection is related to the sequence repertoire of NS3 viral immunodominant epitopes. Methods The study population was ninety prospective patients with chronic HCV genotype 1b infection. Populations of peripheral blood CD8+ T-cells expressing PD-1/Tim-3 were assessed by multiparametric flow cytometry, including HCV-specific T-cells after magnetic-based enrichment using MHC-pentamer. Autologous epitope sequences were inferred from next-generation sequencing. The correction of sequencing errors and genetic variants reconstruction was performed using Quasirecomb. Results There was an interplay between the analyzed epitopes sequences and exhaustion phenotype of CD8+ T-cells. A predominance of NS31406 epitope sequence, representing neither prototype KLSGLGLNAV nor cross-reactive variants (KLSSLGLNAV, KLSGLGINAV or KLSALGLNAV), was associated with higher percentage of HCV-specific CD8+PD-1+Tim-3+ T-cells, P=0.0102. Variability (at least two variants) of NS31406 epitope sequence was associated with increased frequencies of global CD8+PD-1+Tim-3+ T-cells (P=0.0197) and lower frequencies of CD8+PD-1−Tim-3− T-cells (P=0.0079). In contrast, infection with NS31073 dominant variant epitope (other than prototype CVNGVCWTV) was associated with lower frequency of global CD8+PD-1+Tim-3+ T-cells (P=0.0054). Conclusions Our results indicate that PD-1/Tim-3 receptor expression is largely determined by viral epitope sequence and is evident for both HCV-specific and global CD8+ T-cells, pointing to the importance of evaluating autologous viral epitope sequences in the investigation of CD8+ T-cell exhaustion in HCV infection.
Collapse
Affiliation(s)
- Sylwia Osuch
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Laskus
- Department of Adult Infectious Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Karol Perlejewski
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Hanna Berak
- Outpatient Clinic, Warsaw Hospital for Infectious Diseases, Warsaw, Poland
| | - Iwona Bukowska-Ośko
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Pollak
- Department of Human Genetics, Medical University of Warsaw, Warsaw, Poland
| | | | - Marek Radkowski
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Kamila Caraballo Cortés
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
4
|
Abstract
COVID-19 caused by SARS-CoV-2, an RNA coronavirus has impacted the health and economy of all the countries. The virus has wide host adaptability and causes severe diseases in humans and animals. The major structural proteins of SARS-CoV-2 include spike (S), envelop (E), membrane (M), and nucleocapsid (N). The current vaccines are based on the S protein. The emergence of variants of SARS-CoV-2 has renewed interest in the use of additional structural proteins for the development of diagnostics and vaccines. Knowledge of B cell epitopes and MHC-I binding regions of the structural proteins of SARS-CoV-2 is essential in the development of effective diagnostics and therapies. This chapter provides information on the epitopes of the structural proteins of SARS-CoV-2.
Collapse
Affiliation(s)
- Sunil Thomas
- Lankenau Institute for Medical Research, Wynnewood, PA, USA.
| |
Collapse
|
5
|
Iesa M, Osman M, Hassan M, Dirar A, Abuzeid N, Mancuso J, Pandey R, Mohammed A, Borad M, Babiker H, Konozy E. SARS-CoV-2 and Plasmodium falciparum common immunodominant regions may explain low COVID-19 incidence in the malaria-endemic belt. New Microbes New Infect 2020; 38:100817. [PMID: 33230417 PMCID: PMC7674012 DOI: 10.1016/j.nmni.2020.100817] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has caused significant morbidity and mortality and new cases are on the rise globally, yet malaria-endemic areas report statistically significant lower incidences. We identified potential shared targets for an immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by immune determinants' shared identities with P. falciparum using the Immune Epitope Database and Analysis Resource Immune 9.0 browser tool. Probable cross-reactivity is suggested through HLA-A∗02:01 and subsequent CD8+ T-cell activation. The apparent immunodominant epitope conservation between SARS-CoV-2 (N and open reading frame (ORF) 1ab) and P. falciparum thrombospondin-related anonymous protein (TRAP) may underlie the low COVID-19 incidence in the malaria-endemic zone by providing immunity against virus infection to those previously infected with Plasmodium. Additionally, we hypothesize that the shared epitopes which lie within antigens that aid in the establishment of the P. falciparum erythrocyte invasion may be an alternative route for SARS-CoV-2 via the erythrocyte CD147 receptor, although this remains to be proven.
Collapse
Affiliation(s)
- M.A.M. Iesa
- Department of Physiology, Al Qunfudah Medical College, Umm Al Qura University, Mecca, Saudi Arabia
| | - M.E.M. Osman
- Department of Zoology, Faculty of Science, University of Khartoum, Khartoum, Sudan
| | - M.A. Hassan
- Department of Translation Bioinformatics, DetaVax Biotech, Kayseri, Turkey
| | - A.I.A. Dirar
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto City, Japan
| | - N. Abuzeid
- Department of Medical Microbiology, Faculty of Medical Laboratory of Sciences, Omdurman University, Khartoum, Sudan
| | - J.J. Mancuso
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - R. Pandey
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, AZ, USA
| | - A.A. Mohammed
- Biotechnology Department, Africa City of Technology, Khartoum, Sudan
| | - M.J. Borad
- Department of Medicine, Division of Hematology-Oncology, Mayo Clinic, Scottsdale, AZ, USA
| | - H.M. Babiker
- Department of Medicine, Division of Hematology-Oncology, University of Arizona Cancer Center, AZ, USA
| | - E.H.E. Konozy
- Biotechnology Department, Africa City of Technology, Khartoum, Sudan
| |
Collapse
|
6
|
Balz K, Trassl L, Härtel V, Nelson PP, Skevaki C. Virus-Induced T Cell-Mediated Heterologous Immunity and Vaccine Development. Front Immunol 2020; 11:513. [PMID: 32296430 PMCID: PMC7137989 DOI: 10.3389/fimmu.2020.00513] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/06/2020] [Indexed: 12/15/2022] Open
Abstract
Heterologous immunity (H.I.) is a consequence of an encounter with a specific antigen, which can alter the subsequent immune response to a different antigen. This can happen at the innate immune system level—often called trained immunity or innate immune memory—and/or at the adaptive immune system level involving T memory cells and antibodies. Viruses may also induce T cell-mediated H.I., which can confer protection or drive immunopathology against other virus subtypes, related or unrelated viruses, other pathogens, auto- or allo-antigens. It is important to understand the underlying mechanisms for the development of antiviral “universal” vaccines and broader T cell responses rather than just subtype-specific antibody responses as in the case of influenza. Furthermore, knowledge about determinants of vaccine-mediated H.I. may inform public health policies and provide suggestions for repurposing existing vaccines. Here, we introduce H.I. and provide an overview of evidence on virus- and antiviral vaccine-induced T cell-mediated cross-reactive responses. We also discuss the factors influencing final clinical outcome of virus-mediated H.I. as well as non-specific beneficial effects of live attenuated antiviral vaccines such as measles and vaccinia. Available epidemiological and mechanistic data have implications both for the development of new vaccines and for personalized vaccinology, which are presented. Finally, we formulate future research priorities and opportunities.
Collapse
Affiliation(s)
- Kathrin Balz
- German Center for Lung Research (DZL), Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| | - Lilith Trassl
- German Center for Lung Research (DZL), Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| | - Valerie Härtel
- German Center for Lung Research (DZL), Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| | - Philipp P Nelson
- German Center for Lung Research (DZL), Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| | - Chrysanthi Skevaki
- German Center for Lung Research (DZL), Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| |
Collapse
|
7
|
Dewi SK, Ali S, Prasasty VD. Broad Spectrum Peptide Vaccine Design Against Hepatitis C Virus. Curr Comput Aided Drug Des 2019; 15:120-135. [PMID: 30280672 DOI: 10.2174/1573409914666181003151222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 08/12/2018] [Accepted: 09/28/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hepatitis C virus (HCV) infection is a global burden. There is no peptide vaccine found as modality to cure the disease is available due to the weak cellular immune response and the limitation to induce humoral immune response. METHODS Five predominated HCV subtypes in Indonesia (1a, 1b, 1c, 3a, and 3k) were aligned and the conserved regions were selected. Twenty alleles of class I MHC including HLA-A, HLA-B, and HLAC types were used to predict the potential epitopes by using NetMHCPan and IEDB. Eight alleles of HLA-DRB1, together with a combination of 3 alleles of HLA-DQA1 and 5 alleles of HLA-DQB1 were utilized for Class II MHC epitopes prediction using NetMHCIIPan and IEDB. LBtope and Ig- Pred were used to predict B cells epitopes. Moreover, proteasome analysis was performed by NetCTL and the stability of the epitopes in HLA was calculated using NetMHCStabPan for Class I. All predicted epitopes were analyzed for its antigenicity, toxicity, and stability. Population coverage, molecular docking and molecular dynamics were performed for several best epitopes. RESULTS The results showed that two best epitopes from envelop protein, GHRMAWDMMMNWSP (E1) and PALSTGLIHLHQN (E2) were selected as promising B cell and CD8+ T cell inducers. Other two peptides, LGIGTVLDQAETAG and VLVLNPSVAATLGF, taken from NS3 protein were selected as CD4+ T cell inducer. CONCLUSION This study suggested the utilization of all four peptides to make a combinational peptide vaccine for in vivo study to prove its ability in inducing secondary response toward HCV.
Collapse
Affiliation(s)
- Sherly Kurnia Dewi
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Soegianto Ali
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia.,Faculty of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Vivitri Dewi Prasasty
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| |
Collapse
|
8
|
Xia Y, Pan W, Ke X, Skibbe K, Walker A, Hoffmann D, Lu Y, Yang X, Feng X, Tong Q, Timm J, Yang D. Differential escape of HCV from CD8 + T cell selection pressure between China and Germany depends on the presenting HLA class I molecule. J Viral Hepat 2019; 26:73-82. [PMID: 30260541 PMCID: PMC7379502 DOI: 10.1111/jvh.13011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 09/07/2018] [Indexed: 12/16/2022]
Abstract
Adaptation of hepatitis C virus (HCV) to CD8+ T cell selection pressure is well described; however, it is unclear if HCV differentially adapts in different populations. Here, we studied HLA class I-associated viral sequence polymorphisms in HCV 1b isolates in a Chinese population and compared viral substitution patterns between Chinese and German populations. We identified three HLA class I-restricted epitopes in HCV NS3 with statistical support for selection pressure and found evidence for differential escape pathways between isolates from China and Germany depending on the HLA class I molecule. The substitution patterns particularly differed in the epitope VTLTHPITK1635-1643 , which was presented by HLA-A*03 as well as HLA-A*11, two alleles with highly different frequencies in the two populations. In Germany, a substitution in position seven of the epitope was the most frequent substitution in the presence of HLA-A*03, functionally associated with immune escape and nearly absent in Chinese isolates. In contrast, the most frequent substitution in China was located at position two of the epitope and became the predominant consensus residue. Moreover, substitutions in position one of the epitope were significantly enriched in HLA-A*11-positive individuals in China and associated with different patterns of CD8+ T cell reactivity. Our study confirms the differential escape pathways selected by HCV that depended on different HLA class I alleles in Chinese and German populations, indicating that HCV differentially adapts to distinct HLA class I alleles in these populations. This result has important implications for vaccine design against highly variable and globally distributed pathogens, which may require matching antigen sequences to geographic regions for T cell-based vaccine strategies.
Collapse
Affiliation(s)
- Youchen Xia
- Department of Infectious DiseasesUnion Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Department of Gastroenterology and HepatologyShanghai General HospitalShanghai Jiao Tong University School of Medicine (originally named “Shanghai First People's Hospital”)ShanghaiChina
| | - Wen Pan
- Department of Infectious DiseasesUnion Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoyu Ke
- Department of Infectious DiseasesUnion Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Department of EmergencyTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Kathrin Skibbe
- Institute of VirologyUniversity Hospital DüsseldorfHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Andreas Walker
- Institute of VirologyUniversity Hospital DüsseldorfHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Daniel Hoffmann
- Bioinformatics and Computational BiophysicsFaculty of BiologyUniversity of Duisburg‐EssenEssenGermany
| | - Yinping Lu
- Department of Infectious DiseasesUnion Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xuecheng Yang
- Department of Infectious DiseasesUnion Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xuemei Feng
- Department of Infectious DiseasesUnion Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qiaoxia Tong
- Department of Infectious DiseasesUnion Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jörg Timm
- Institute of VirologyUniversity Hospital DüsseldorfHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Dongliang Yang
- Department of Infectious DiseasesUnion Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
9
|
Alves da Silva R, de Souza Todão J, Kamitani FL, Silva AEB, de Carvalho-Filho RJ, Ferraz MLCG, de Carvalho IMVG. Molecular characterization of hepatitis C virus in end-stage renal disease patients under hemodialysis. J Med Virol 2017; 90:537-544. [PMID: 29064576 DOI: 10.1002/jmv.24976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 10/12/2017] [Indexed: 12/09/2022]
Abstract
New direct-acting antiviral (DAA) agents are in development or already approved for the treatment of chronic hepatitis C virus (HCV) infection. The effectiveness of these drugs is related to the previous existence of resistant variants. Certain clinical conditions can allow changes in immunological characteristics of the host and even modify genetic features of viral populations. The aim of this study was to perform HCV molecular characterization from samples of end-stage renal disease patients on hemodialysis (ESRD-HD). Nested PCR and Sanger sequencing were used to obtain genetic information from the NS5B partial region of a cohort composed by 86 treatment-naïve patients. Genomic sequences from the Los Alamos databank were employed for comparative analysis. Bioinformatics methodologies such as phylogenetic reconstructions, informational entropy, and mutation analysis were used to analyze datasets separated by geographical location, HCV genotype, and renal function status. ESRD-HD patients presented HCV genotypes 1a (n = 18), 1b (n = 16), 2a (n = 2), 2b (n = 2), and 3a (n = 4). Control subjects were infected with genotypes 1a (n = 11), 1b (n = 21), 2b (n = 4), and 3a (n = 8). Dataset phylogenetic reconstruction separated HCV subtype 1a into two distinct clades. The entropy analysis from the ESRD-HD group revealed two amino acid positions related to an epitope for cytotoxic T lymphocytes and T helper cells. Genotype 1a was found to be more diverse than subtype 1b. Also, genotype 1a ERSD-HD patients had a higher mean of amino acids changes in comparison to control group patients. The identification of specific mutations on epitopes and high genetic diversity within the NS5B HCV partial protein in hemodialysis patients can relate to host immunological features and geographical distribution patterns. This genetic diversity can affect directly the new DAA's resistance mechanisms.
Collapse
Affiliation(s)
- Rafael Alves da Silva
- Laboratório de Hepatologia Molecular Aplicada (LHeMA), Departamento de Gastroenterologia, Unidade de Hepatologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil.,Instituto Butantan, Laboratório de Parasitologia, São Paulo, Brazil
| | - Jardelina de Souza Todão
- Laboratório de Hepatologia Molecular Aplicada (LHeMA), Departamento de Gastroenterologia, Unidade de Hepatologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | | | - Antonio Eduardo Benedito Silva
- Laboratório de Hepatologia Molecular Aplicada (LHeMA), Departamento de Gastroenterologia, Unidade de Hepatologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil.,Departamento de Gastroenterologia, Unidade de Hepatologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | - Roberto José de Carvalho-Filho
- Laboratório de Hepatologia Molecular Aplicada (LHeMA), Departamento de Gastroenterologia, Unidade de Hepatologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil.,Departamento de Gastroenterologia, Unidade de Hepatologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | - Maria Lucia Cardoso Gomes Ferraz
- Laboratório de Hepatologia Molecular Aplicada (LHeMA), Departamento de Gastroenterologia, Unidade de Hepatologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil.,Departamento de Gastroenterologia, Unidade de Hepatologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | - Isabel Maria Vicente Guedes de Carvalho
- Laboratório de Hepatologia Molecular Aplicada (LHeMA), Departamento de Gastroenterologia, Unidade de Hepatologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil.,Instituto Butantan, Laboratório de Parasitologia, São Paulo, Brazil
| |
Collapse
|
10
|
Hiramatsu K, Matsuda H, Nemoto T, Nosaka T, Saito Y, Naito T, Takahashi K, Ofuji K, Ohtani M, Suto H, Yasuda T, Hida Y, Kimura H, Soya Y, Nakamoto Y. Identification of novel variants in HLA class II region related to HLA DPB1 expression and disease progression in patients with chronic hepatitis C. J Med Virol 2017; 89:1574-1583. [PMID: 28332201 DOI: 10.1002/jmv.24814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 03/01/2017] [Indexed: 02/06/2023]
Abstract
Recent genome-wide studies have demonstrated that HLA class II gene may play an important role in viral hepatitis. We studied genetic polymorphism and RNA expression of HLA class II genes in HCV-related liver diseases. The study was performed in groups consisting of 24 patients with HCV-related liver disease (12 of persistent normal ALT: PNALT group and 12 of advanced liver disease: ALD group) and 26 patients without HCV infection (control group). In PBMC samples, RNA expression of HLA class II genes (HLA-DPA1, DPB1, DQA1, DQB1, and DRB1) was analyzed by real-time RT-PCR. Furthermore, 22 single nucleotide polymorphisms (SNPs) in HLA class II gene and two SNPs in IL28B gene were genotyped by genetic analyzer (GENECUBE®). In expression analysis, only DPB1 level was significantly different. Mean expression level of DPB1gene in control group was 160.0, PNALT group 233.8, and ALD group 465.0 (P < 0.01). Of 24 SNPs, allele frequencies were statistically different in two SNPs (rs2071025 and rs3116996) between PNALT groups and ALD group (P < 0.01). In rs2071025, TT genotype was frequently detected in ALD group and expression level was significantly higher than the other genotypes (449.2 vs 312.9, P < 0.01). In rs3116996, TA or TT (non AA) genotype was frequently detected in ALD group and expression level was significantly higher than genotype AA (457.1 vs 220.9, P < 0.01). Genotyping and expression analysis in HLA class II gene revealed that two SNPs of HLA-DPB1 (rs2071025 and rs3116996) were significantly correlated to RNA expression and progression of HCV-related liver diseases.
Collapse
Affiliation(s)
- Katsushi Hiramatsu
- Faculty of Medical Sciences, Second Department of Internal Medicine, University of Fukui, Fukui, Japan
| | - Hidetaka Matsuda
- Faculty of Medical Sciences, Second Department of Internal Medicine, University of Fukui, Fukui, Japan
| | - Tomoyuki Nemoto
- Faculty of Medical Sciences, Second Department of Internal Medicine, University of Fukui, Fukui, Japan
| | - Takuto Nosaka
- Faculty of Medical Sciences, Second Department of Internal Medicine, University of Fukui, Fukui, Japan
| | - Yasushi Saito
- Faculty of Medical Sciences, Second Department of Internal Medicine, University of Fukui, Fukui, Japan
| | - Tatsushi Naito
- Faculty of Medical Sciences, Second Department of Internal Medicine, University of Fukui, Fukui, Japan
| | - Kazuto Takahashi
- Faculty of Medical Sciences, Second Department of Internal Medicine, University of Fukui, Fukui, Japan
| | - Kazuya Ofuji
- Faculty of Medical Sciences, Second Department of Internal Medicine, University of Fukui, Fukui, Japan
| | - Masahiro Ohtani
- Faculty of Medical Sciences, Second Department of Internal Medicine, University of Fukui, Fukui, Japan
| | - Hiroyuki Suto
- Faculty of Medical Sciences, Second Department of Internal Medicine, University of Fukui, Fukui, Japan
| | - Toshihiro Yasuda
- Faculty of Medical Sciences, Division of Medical Genetics and Biochemistry, University of Fukui, Fukui, Japan
| | - Yukio Hida
- Faculty of Medical Sciences, Department of Clinical Laboratories, University of Fukui, Fukui, Japan
| | - Hideki Kimura
- Faculty of Medical Sciences, Department of Clinical Laboratories, University of Fukui, Fukui, Japan
| | - Yoshihiro Soya
- Tsuruga Institute of Biotechnology, Toyobo Co., Ltd., Osaka, Japan
| | - Yasunari Nakamoto
- Faculty of Medical Sciences, Second Department of Internal Medicine, University of Fukui, Fukui, Japan
| |
Collapse
|
11
|
Zhang H, Zhang J, Chen L, Weng Z, Tian Y, Zhao H, Li Y, Chen L, Liang Z, Zheng H, Zhao W, Zhong S, Li Y. Targeting naturally occurring epitope variants of hepatitis C virus with high-affinity T-cell receptors. J Gen Virol 2017; 98:374-384. [PMID: 27902325 PMCID: PMC5797947 DOI: 10.1099/jgv.0.000656] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) readily establishes chronic infection, which is characterized by failure of virus-specific CD8+ T cells. HCV uses epitope mutation and T-cell exhaustion to escape from the host immune response. Previously, we engineered high-affinity T-cell receptors (HATs) targeting human immunodeficiency virus escape mutants. In this study, the affinity of a T-cell receptor specific for the HLA-A2-restricted HCV immunodominant epitope NS3 1406–1415 (KLVALGINAV) was improved from a KD of 6.6 µM to 40 pM. These HATs could also target HCV NS3 naturally occurring variants, including an escape variant vrt1 (KLVVLGINAV), with high affinities. The HATs can be used as high-affinity targeting molecules at the centre of the immune synapse for the HLA-restricted NS3 antigen. By fusing the HAT with a T-cell activation molecule, an anti-CD3 single-chain variable fragment, we constructed a molecule called high-affinity T-cell activation core (HATac), which can redirect functional CTLs possessing any specificity to recognize and kill cells presenting HCV NS3 antigens. This capability was verified with T2 cells loaded with prototype or variant peptides and HepG2 cells expressing the truncated NS3 prototype or variant proteins. The results indicate that HATac targeting the HLA-restricted NS3 antigen may provide a useful tool for circumventing immune escape mutants and T-cell exhaustion caused by HCV infection.
Collapse
Affiliation(s)
- Huajun Zhang
- State Key Lab of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, PR China.,Present address: Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Jianbing Zhang
- XiangXue Life Sciences Research Center, XiangXue Pharmaceutical Co. Ltd, Guangzhou, PR China
| | - Lei Chen
- XiangXue Life Sciences Research Center, XiangXue Pharmaceutical Co. Ltd, Guangzhou, PR China
| | - Zhiming Weng
- XiangXue Life Sciences Research Center, XiangXue Pharmaceutical Co. Ltd, Guangzhou, PR China
| | - Ye Tian
- State Key Lab of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, PR China
| | - Haifeng Zhao
- XiangXue Life Sciences Research Center, XiangXue Pharmaceutical Co. Ltd, Guangzhou, PR China
| | - Youjia Li
- State Key Lab of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, PR China
| | - Lin Chen
- State Key Lab of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, PR China
| | - Zhaoduan Liang
- State Key Lab of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, PR China
| | - Hongjun Zheng
- XiangXue Life Sciences Research Center, XiangXue Pharmaceutical Co. Ltd, Guangzhou, PR China
| | - Wenzhuo Zhao
- XiangXue Life Sciences Research Center, XiangXue Pharmaceutical Co. Ltd, Guangzhou, PR China
| | - Shi Zhong
- XiangXue Life Sciences Research Center, XiangXue Pharmaceutical Co. Ltd, Guangzhou, PR China
| | - Yi Li
- State Key Lab of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, PR China.,XiangXue Life Sciences Research Center, XiangXue Pharmaceutical Co. Ltd, Guangzhou, PR China
| |
Collapse
|
12
|
Servín-Blanco R, Zamora-Alvarado R, Gevorkian G, Manoutcharian K. Antigenic variability: Obstacles on the road to vaccines against traditionally difficult targets. Hum Vaccin Immunother 2016; 12:2640-2648. [PMID: 27295540 DOI: 10.1080/21645515.2016.1191718] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Despite the impressive impact of vaccines on public health, the success of vaccines targeting many important pathogens and cancers has to date been limited. The burden of infectious diseases today is mainly caused by antigenically variable pathogens (AVPs), which escape immune responses induced by prior infection or vaccination through changes in molecular structures recognized by antibodies or T cells. Extensive genetic and antigenic variability is the major obstacle for the development of new or improved vaccines against "difficult" targets. Alternative, qualitatively new approaches leading to the generation of disease- and patient-specific vaccine immunogens that incorporate complex permanently changing epitope landscapes of intended targets accompanied by appropriate immunomodulators are urgently needed. In this review, we highlight some of the most critical common issues related to the development of vaccines against many pathogens and cancers that escape protective immune responses owing to antigenic variation, and discuss recent efforts to overcome the obstacles by applying alternative approaches for the rational design of new types of immunogens.
Collapse
Affiliation(s)
- R Servín-Blanco
- a Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Cuidad Universitaria , México DF , México
| | - R Zamora-Alvarado
- a Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Cuidad Universitaria , México DF , México
| | - G Gevorkian
- a Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Cuidad Universitaria , México DF , México
| | - K Manoutcharian
- a Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Cuidad Universitaria , México DF , México
| |
Collapse
|
13
|
Hepatitis C virus infection from the perspective of heterologous immunity. Curr Opin Virol 2016; 16:41-48. [DOI: 10.1016/j.coviro.2016.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 01/08/2016] [Indexed: 01/14/2023]
|
14
|
Abstract
Despite advances in therapy, hepatitis C virus infection remains a major global health issue with 3 to 4 million incident cases and 170 million prevalent chronic infections. Complex, partially understood, host-virus interactions determine whether an acute infection with hepatitis C resolves, as occurs in approximately 30% of cases, or generates a persistent hepatic infection, as occurs in the remainder. Once chronic infection is established, the velocity of hepatocyte injury and resultant fibrosis is significantly modulated by immunologic as well as environmental factors. Immunomodulation has been the backbone of antiviral therapy despite poor understanding of its mechanism of action.
Collapse
Affiliation(s)
- David E. Kaplan
- Medicine and Research Services, Philadelphia VA Medical Center, Philadelphia PA,Division of Gastroenterology, Department of Medicine, University of Pennsylvania
| |
Collapse
|
15
|
Distinct Escape Pathway by Hepatitis C Virus Genotype 1a from a Dominant CD8+ T Cell Response by Selection of Altered Epitope Processing. J Virol 2015; 90:33-42. [PMID: 26446603 DOI: 10.1128/jvi.01993-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/01/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Antiviral CD8(+) T cells are a key component of the adaptive immune response against HCV, but their impact on viral control is influenced by preexisting viral variants in important target epitopes and the development of viral escape mutations. Immunodominant epitopes highly conserved across genotypes therefore are attractive for T cell based prophylactic vaccines. Here, we characterized the CD8(+) T cell response against the highly conserved HLA-B*51-restricted epitope IPFYGKAI1373-1380 located in the helicase domain of NS3 in people who inject drugs (PWID) exposed predominantly to HCV genotypes 1a and 3a. Despite this epitope being conserved in both genotypes, the corresponding CD8(+) T cell response was detected only in PWID infected with genotype 3a and HCV-RNA negative PWID, but not in PWID infected with genotype 1a. In genotype 3a, the detection of strong CD8(+) T cell responses was associated with epitope variants in the autologous virus consistent with immune escape. Analysis of viral sequences from multiple cohorts confirmed HLA-B*51-associated escape mutations inside the epitope in genotype 3a, but not in genotype 1a. Here, a distinct substitution in the N-terminal flanking region located 5 residues upstream of the epitope (S1368P; P = 0.00002) was selected in HLA-B*51-positive individuals. Functional assays revealed that the S1368P substitution impaired recognition of target cells presenting the endogenously processed epitope. The results highlight that, despite an epitope being highly conserved between two genotypes, there are major differences in the selected viral escape pathways and the corresponding T cell responses. IMPORTANCE HCV is able to evolutionary adapt to CD8(+) T cell immune pressure in multiple ways. Beyond selection of mutations inside targeted epitopes, this study demonstrates that HCV inhibits epitope processing by modification of the epitope flanking region under T cell immune pressure. Selection of a substitution five amino acids upstream of the epitope underlines that efficient antigen presentation strongly depends on its larger sequence context and that blocking of the multistep process of antigen processing by mutation is exploited also by HCV. The pathways to mutational escape of HCV are to some extent predictable but are distinct in different genotypes. Importantly, the selected escape pathway of HCV may have consequences for the destiny of antigen-specific CD8(+) T cells.
Collapse
|
16
|
Frequency, Private Specificity, and Cross-Reactivity of Preexisting Hepatitis C Virus (HCV)-Specific CD8+ T Cells in HCV-Seronegative Individuals: Implications for Vaccine Responses. J Virol 2015; 89:8304-17. [PMID: 26041301 DOI: 10.1128/jvi.00539-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/22/2015] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED T cell responses play a critical role in controlling or clearing viruses. Therefore, strategies to prevent or treat infections include boosting T cell responses. T cells specific for various pathogens have been reported in unexposed individuals and an influence of such cells on the response toward vaccines is conceivable. However, little is known about their frequency, repertoire, and impact on vaccination. We performed a detailed characterization of CD8(+) T cells specific to a hepatitis C virus (HCV) epitope (NS3-1073) in 121 HCV-seronegative individuals. We show that in vitro HCV NS3-1073-specific CD8(+) T cell responses were rather abundantly detectable in one-third of HCV-seronegative individuals irrespective of risk factors for HCV exposure. Ex vivo, these NS3-1073-specific CD8(+) T cells were found to be both naive and memory cells. Importantly, recognition of various peptides derived from unrelated viruses by NS3-1073-specific CD8(+) T cells showed a considerable degree of T cell cross-reactivity, suggesting that they might in part originate from previous heterologous infections. Finally, we further provide evidence that preexisting NS3-1073-specific CD8(+) T cells can impact the T cell response toward peptide vaccination. Healthy, vaccinated individuals who showed an in vitro response toward NS3-1073 already before vaccination displayed a more vigorous and earlier response toward the vaccine. IMPORTANCE Preventive and therapeutic vaccines are being developed for many viral infections and often aim on inducing T cell responses. Despite effective antiviral drugs against HCV, there is still a need for a preventive vaccine. However, the responses to vaccines can be highly variable among different individuals. Preexisting T cells in unexposed individuals could be one reason that helps to explain the variable T cell responses to vaccines. Based on our findings, we suggest that HCV CD8(+) T cells are abundant in HCV-seronegative individuals but that their repertoire is highly diverse due to the involvement of both naive precursors and cross-reactive memory cells of different specificities, which can influence the response to vaccines. The data may emphasize the need to personalize immune-based therapies based on the individual's T cell repertoire that is present before the immune intervention.
Collapse
|