1
|
Huang J, Zhao Y, Zhao K, Yin K, Wang S. Function of reactive oxygen species in myeloid-derived suppressor cells. Front Immunol 2023; 14:1226443. [PMID: 37646034 PMCID: PMC10461062 DOI: 10.3389/fimmu.2023.1226443] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/26/2023] [Indexed: 09/01/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous myeloid cell population and serve as a vital contributor to the tumor microenvironment. Reactive oxygen species (ROS) are byproducts of aerobic respiration and are involved in regulating normal biological activities and disease progression. MDSCs can produce ROS to fulfill their immunosuppressive activity and eliminate excessive ROS to survive comfily through the redox system. This review focuses on how MDSCs survive and function in high levels of ROS and summarizes immunotherapy targeting ROS in MDSCs. The distinctive role of ROS in MDSCs will inspire us to widely apply the blocked oxidative stress strategy in targeting MDSC therapy to future clinical therapeutics.
Collapse
Affiliation(s)
- Jiaojiao Huang
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
| | - Yue Zhao
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
| | - Kexin Zhao
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
| | - Kai Yin
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
Li Q, Mei A, Qian H, Min X, Yang H, Zhong J, Li C, Xu H, Chen J. The role of myeloid-derived immunosuppressive cells in cardiovascular disease. Int Immunopharmacol 2023; 117:109955. [PMID: 36878043 DOI: 10.1016/j.intimp.2023.109955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/13/2023] [Accepted: 02/25/2023] [Indexed: 03/07/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous cell population found in the bone marrow, peripheral blood, and tumor tissue. Their role is mainly to inhibit the monitoring function of innate and adaptive immune cells, which leads to the escape of tumor cells and promotes tumor development and metastasis. Moreover, recent studies have found that MDSCs are therapeutic in several autoimmune disorders due to their strong immunosuppressive ability. Additionally, studies have found that MDSCs have an important role in the formation and progression of other cardiovascular diseases, such as atherosclerosis, acute coronary syndrome, and hypertension. In this review, we will discuss the role of MDSCs in the pathogenesis and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Qingmei Li
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Aihua Mei
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Hang Qian
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Xinwen Min
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Handong Yang
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunlei Li
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China.
| | - Hao Xu
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China.
| | - Jun Chen
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China.
| |
Collapse
|
3
|
Angka L, Tanese de Souza C, Baxter KE, Khan ST, Market M, Martel AB, Tai LH, Kennedy MA, Bell JC, Auer RC. Perioperative arginine prevents metastases by accelerating natural killer cell recovery after surgery. Mol Ther 2022; 30:3270-3283. [PMID: 35619558 PMCID: PMC9552810 DOI: 10.1016/j.ymthe.2022.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 05/21/2022] [Accepted: 05/21/2022] [Indexed: 10/18/2022] Open
Abstract
Profound natural killer (NK) cell suppression after cancer surgery is a main driver of metastases and recurrence, for which there is no clinically approved intervention available. Surgical stress is known to cause systemic postoperative changes that negatively modulate NK cell function including the expansion of surgery-induced myeloid-derived suppressor cells (Sx-MDSCs) and a marked reduction in arginine bioavailability. In this study, we determine that Sx-MDSCs regulate systemic arginine levels in the postoperative period and that restoring arginine imbalance after surgery by dietary intake alone was sufficient to significantly reduce surgery-induced metastases in our preclinical murine models. Importantly, the effects of perioperative arginine were dependent upon NK cells. Although perioperative arginine did not prevent immediate NK cell immunoparalysis after surgery, it did accelerate their return to preoperative cytotoxicity, interferon gamma secretion, and activating receptor expression. Finally, in a cohort of patients with colorectal cancer, postoperative arginine levels were shown to correlate with their Sx-MDSC levels. Therefore, this study lends further support for the use of perioperative arginine supplementation by improving NK cell recovery after surgery.
Collapse
Affiliation(s)
- Leonard Angka
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | | | - Katherine E Baxter
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Sarwat T Khan
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Marisa Market
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Andre B Martel
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada; Division of General Surgery, Department of Surgery, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Lee-Hwa Tai
- Department of Immunology & Cell Biology, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Michael A Kennedy
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - John C Bell
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Rebecca C Auer
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada; Division of General Surgery, Department of Surgery, University of Ottawa, Ottawa, ON K1H 8L1, Canada; Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8L1, Canada.
| |
Collapse
|
4
|
Decision-Making Application of the Cloud-Fog Hybrid Model Based on the Improved Convolutional Neural Network in Financial Services in Smart Medical Care. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:5732379. [PMID: 35983154 PMCID: PMC9381239 DOI: 10.1155/2022/5732379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/02/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022]
Abstract
In order to alleviate the “difficulty in seeing a doctor” for the masses, continuously optimize the service process, and explore new financial service processes for admission and discharge, this study proposes a cloud-fog hybrid model UCNN-BN based on an improved convolutional neural network and applies it to financial services in smart medical care. Decision-making applications: this research improves and designs the UCNN network based on AlexNet and introduces small convolution layers to form convolution groups, making the network more adjustable. The network structure is simpler and more flexible, and it is easy to adjust the algorithm. The number of parameters is small, and it can be directly superimposed without having to add new network hidden layers. The experimental results show that the recognition rate of the UCNN network on the FER2013 and CK+ datasets is higher than that of other recognition methods, and the recognition rates on the FER2013 and CK+ datasets are 98% and 68.01%, due to other methods. This shows that the improved convolutional neural network used in this study for financial services in smart medical care has certain applicability, and small convolution kernels help to extract more subtle features, so as to identify more accurately.
Collapse
|
5
|
Lu X, Yang YM, Lu YQ. Immunosenescence: A Critical Factor Associated With Organ Injury After Sepsis. Front Immunol 2022; 13:917293. [PMID: 35924237 PMCID: PMC9339684 DOI: 10.3389/fimmu.2022.917293] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Progressive immune dysfunction associated with aging is known as immunosenescence. The age-related deterioration of immune function is accompanied by chronic inflammation and microenvironment changes. Immunosenescence can affect both innate and acquired immunity. Sepsis is a systemic inflammatory response that affects parenchymal organs, such as the respiratory system, cardiovascular system, liver, urinary system, and central nervous system, according to the sequential organ failure assessment (SOFA). The initial immune response is characterized by an excess release of inflammatory factors, followed by persistent immune paralysis. Moreover, immunosenescence was found to complement the severity of the immune disorder following sepsis. Furthermore, the immune characteristics associated with sepsis include lymphocytopenia, thymus degeneration, and immunosuppressive cell proliferation, which are very similar to the characteristics of immunosenescence. Therefore, an in-depth understanding of immunosenescence after sepsis and its subsequent effects on the organs may contribute to the development of promising therapeutic strategies. This paper focuses on the characteristics of immunosenescence after sepsis and rigorously analyzes the possible underlying mechanism of action. Based on several recent studies, we summarized the relationship between immunosenescence and sepsis-related organs. We believe that the association between immunosenescence and parenchymal organs might be able to explain the delayed consequences associated with sepsis.
Collapse
Affiliation(s)
- Xuan Lu
- Department of Geriatric and Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- The Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou, China
| | - Yun-Mei Yang
- Department of Geriatric and Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- The Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou, China
| | - Yuan-Qiang Lu
- Department of Geriatric and Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- The Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou, China
- *Correspondence: Yuan-Qiang Lu,
| |
Collapse
|
6
|
Du J, Li XK, Peng XF, Xu W, Zhang XA, Li H, Yang T, Yuan C, Chen WW, Li C, Lu QB, Liu W. Expansion of granulocytic myeloid-derived suppressor cells in patients with severe fever with thrombocytopenia syndrome. J Med Virol 2022; 94:4329-4337. [PMID: 35562326 DOI: 10.1002/jmv.27854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Severe fever with thrombocytopenia syndrome (SFTS), caused by novel bunyavirus (SFTSV) is a hemorrhagic fever with a high mortality rate of over 10%. We have previously shown that granulocytic myeloid-derived suppressor cell (gMDSC) might affect arginine metabolism which was associated with decreased platelet count and T lymphocyte dysfunction in this disease. OBJECTIVES The study was designed to investigate the expression of the gMDSCs subsets in SFTS patients, and to evaluate its association with disease severity. METHODS A prospective study was performed on 166 confirmed SFTSV infected patients. Sequential blood samples were collected during hospitalization and after recovery. SFTSV RNA was quantified by real-time RT-PCR. The gMDSCs and NK cells were determined by Flow cytometry analysis, which were associated with disease severity. RESULTS Elevation of the activated gMDSC was observed in SFTS patients at acute phase, with a significantly higher level of gMDSC attained in 79 severe and 29 fatal SFTS patients than in the mild patients. The NK cells were depleted at the early infection and not restored to normal level until four months after disease. The expansion of gMDSC was accompanied by the elevated expressions of CD3-ζ of NK and Arginase-1, in contrast with the decreased ROS in gMDSC. The levels of NK, CD3-ζ of NK, viral load and platelet count were significantly associated with the level of gMDSC. CONCLUSIONS Expansion of gMDSC was demonstrated in SFTS, which was associated with severe disease and suppressed antiviral NK cell via other mechanism than Arginase-1 or ROS. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Juan Du
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology, and Epidemiology, Beijing, P. R. China.,Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, P. R. China
| | - Xiao-Kun Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology, and Epidemiology, Beijing, P. R. China
| | - Xue-Fang Peng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology, and Epidemiology, Beijing, P. R. China
| | - Wen Xu
- Department of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, P. R. China
| | - Xiao-Ai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology, and Epidemiology, Beijing, P. R. China
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology, and Epidemiology, Beijing, P. R. China
| | - Tong Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology, and Epidemiology, Beijing, P. R. China
| | - Chun Yuan
- The 990th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Xinyang, Henan province, P. R. China
| | - Wei-Wei Chen
- Department of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, P. R. China
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Chuangchun, P. R. China
| | - Qing-Bin Lu
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, P. R. China
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology, and Epidemiology, Beijing, P. R. China.,School of Public Health, Anhui Medical University, Hefei, P. R. China
| |
Collapse
|
7
|
Neutrophil Functional Heterogeneity and Implications for Viral Infections and Treatments. Cells 2022; 11:cells11081322. [PMID: 35456003 PMCID: PMC9025666 DOI: 10.3390/cells11081322] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 12/15/2022] Open
Abstract
Evidence suggests that neutrophils exert specialized effector functions during infection and inflammation, and that these cells can affect the duration, severity, and outcome of the infection. These functions are related to variations in phenotypes that have implications in immunoregulation during viral infections. Although the complexity of the heterogeneity of neutrophils is still in the process of being uncovered, evidence indicates that they display phenotypes and functions that can assist in viral clearance or augment and amplify the immunopathology of viruses. Therefore, deciphering and understanding neutrophil subsets and their polarization in viral infections is of importance. In this review, the different phenotypes of neutrophils and the roles they play in viral infections are discussed. We also examine the possible ways to target neutrophil subsets during viral infections as potential anti-viral treatments.
Collapse
|
8
|
Huang W, Liu Y, Luz A, Berrong M, Meyer JN, Zou Y, Swann E, Sundaramoorthy P, Kang Y, Jauhari S, Lento W, Chao N, Racioppi L. Calcium/Calmodulin Dependent Protein Kinase Kinase 2 Regulates the Expansion of Tumor-Induced Myeloid-Derived Suppressor Cells. Front Immunol 2021; 12:754083. [PMID: 34712241 PMCID: PMC8546266 DOI: 10.3389/fimmu.2021.754083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a hetero geneous group of cells, which can suppress the immune response, promote tumor progression and impair the efficacy of immunotherapies. Consequently, the pharmacological targeting of MDSC is emerging as a new immunotherapeutic strategy to stimulate the natural anti-tumor immune response and potentiate the efficacy of immunotherapies. Herein, we leveraged genetically modified models and a small molecule inhibitor to validate Calcium-Calmodulin Kinase Kinase 2 (CaMKK2) as a druggable target to control MDSC accumulation in tumor-bearing mice. The results indicated that deletion of CaMKK2 in the host attenuated the growth of engrafted tumor cells, and this phenomenon was associated with increased antitumor T cell response and decreased accumulation of MDSC. The adoptive transfer of MDSC was sufficient to restore the ability of the tumor to grow in Camkk2-/- mice, confirming the key role of MDSC in the mechanism of tumor rejection. In vitro studies indicated that blocking of CaMKK2 is sufficient to impair the yield of MDSC. Surprisingly, MDSC generated from Camkk2-/- bone marrow cells also showed a higher ability to terminally differentiate toward more immunogenic cell types (e.g inflammatory macrophages and dendritic cells) compared to wild type (WT). Higher intracellular levels of reactive oxygen species (ROS) accumulated in Camkk2-/- MDSC, increasing their susceptibility to apoptosis and promoting their terminal differentiation toward more mature myeloid cells. Mechanistic studies indicated that AMP-activated protein kinase (AMPK), which is a known CaMKK2 proximal target controlling the oxidative stress response, fine-tunes ROS accumulation in MDSC. Accordingly, failure to activate the CaMKK2-AMPK axis can account for the elevated ROS levels in Camkk2-/- MDSC. These results highlight CaMKK2 as an important regulator of the MDSC lifecycle, identifying this kinase as a new druggable target to restrain MDSC expansion and enhance the efficacy of anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Wei Huang
- Division of Hematological Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Yaping Liu
- Division of Hematological Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Anthony Luz
- Duke University Nicholas School of the Environment, Durham, NC, United States
| | - Mark Berrong
- Duke Human Vaccine Institute, Durham, NC, United States
| | - Joel N. Meyer
- Duke University Nicholas School of the Environment, Durham, NC, United States
| | - Yujing Zou
- Division of Hematological Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Excel Swann
- Division of Hematological Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Pasupathi Sundaramoorthy
- Division of Hematological Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Yubin Kang
- Division of Hematological Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Shekeab Jauhari
- Division of Hematological Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - William Lento
- Division of Hematological Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Nelson Chao
- Division of Hematological Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Luigi Racioppi
- Division of Hematological Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
9
|
Liang W, He X, Bi J, Hu T, Sun Y. Role of reactive oxygen species in tumors based on the 'seed and soil' theory: A complex interaction (Review). Oncol Rep 2021; 46:208. [PMID: 34328200 PMCID: PMC8329912 DOI: 10.3892/or.2021.8159] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor microenvironment (TME) can serve as the 'soil' for the growth and survival of tumor cells and function synergically with tumor cells to mediate tumor progression and therapeutic resistance. Reactive oxygen species (ROS) is somewhat of a double‑edged sword for tumors. Accumulating evidence has reported that regulating ROS levels can serve an anti‑tumor role in the TME, including the promotion of cancer cell apoptosis, inhibition of angiogenesis, preventing immune escape, manipulating tumor metabolic reorganization and improving drug resistance. In the present review, the potential role of ROS in anti‑tumor therapy was summarized, including the possibility of directly or indirectly targeting the TME.
Collapse
Affiliation(s)
- Wei Liang
- Department of Radiation Oncology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Affiliated Hospital of Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Xinying He
- Department of Radiation Oncology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Affiliated Hospital of Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Jianqiang Bi
- Department of Radiation Oncology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Affiliated Hospital of Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Tingting Hu
- Department of Radiation Oncology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Affiliated Hospital of Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Yunchuan Sun
- Department of Radiation Oncology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Affiliated Hospital of Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| |
Collapse
|
10
|
Vanhaver C, van der Bruggen P, Bruger AM. MDSC in Mice and Men: Mechanisms of Immunosuppression in Cancer. J Clin Med 2021; 10:jcm10132872. [PMID: 34203451 PMCID: PMC8268873 DOI: 10.3390/jcm10132872] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) expand during pathological conditions in both humans and mice and their presence is linked to poor clinical outcomes for cancer patients. Studying MDSC immunosuppression is restricted by MDSCs’ rarity, short lifespan, heterogeneity, poor viability after freezing and the lack of MDSC-specific markers. In this review, we will compare identification and isolation strategies for human and murine MDSCs. We will also assess what direct and indirect immunosuppressive mechanisms have been attributed to MDSCs. While some immunosuppressive mechanisms are well-documented in mice, e.g., generation of ROS, direct evidence is still lacking in humans. In future, bulk or single-cell genomics could elucidate which phenotypic and functional phenotypes MDSCs adopt in particular microenvironments and help to identify potential targets for therapy.
Collapse
Affiliation(s)
- Christophe Vanhaver
- De Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 74, 1200 Brussels, Belgium;
- Correspondence: (C.V.); (A.M.B.)
| | - Pierre van der Bruggen
- De Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 74, 1200 Brussels, Belgium;
- WELBIO, Avenue Hippocrate 74, 1200 Brussels, Belgium
| | - Annika M. Bruger
- De Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 74, 1200 Brussels, Belgium;
- Correspondence: (C.V.); (A.M.B.)
| |
Collapse
|
11
|
Olivares-Hernández A, Figuero-Pérez L, Terán-Brage E, López-Gutiérrez Á, Velasco ÁT, Sarmiento RG, Cruz-Hernández JJ, Miramontes-González JP. Resistance to Immune Checkpoint Inhibitors Secondary to Myeloid-Derived Suppressor Cells: A New Therapeutic Targeting of Haematological Malignancies. J Clin Med 2021; 10:jcm10091919. [PMID: 33925214 PMCID: PMC8124332 DOI: 10.3390/jcm10091919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/17/2021] [Accepted: 04/23/2021] [Indexed: 01/11/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a set of immature myeloid lineage cells that include macrophages, granulocytes, and dendritic cell precursors. This subpopulation has been described in relation to the tumour processes at different levels, including resistance to immunotherapy, such as immune checkpoint inhibitors (ICIs). Currently, multiple studies at the preclinical and clinical levels seek to use this cell population for the treatment of different haematological neoplasms, together with ICIs. This review addresses the different points in ongoing studies of MDSCs and ICIs in haematological malignancies and their future significance in routine clinical practice.
Collapse
Affiliation(s)
- Alejandro Olivares-Hernández
- Department of Medical Oncology, University Hospital of Salamanca, 37007 Salamanca, Spain; (L.F.-P.); (E.T.-B.); (Á.L.-G.); (J.J.C.-H.)
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain;
- Correspondence: (A.O.-H.); (J.P.M.-G.); Tel.: +34-923-29-11-00 (A.O.-H.); +34-983-42-04-00 (J.P.M.-G.); Fax: +34-923-29-13-25 (A.O.-H.); +34-983-21-53-65 (J.P.M.-G.)
| | - Luis Figuero-Pérez
- Department of Medical Oncology, University Hospital of Salamanca, 37007 Salamanca, Spain; (L.F.-P.); (E.T.-B.); (Á.L.-G.); (J.J.C.-H.)
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Eduardo Terán-Brage
- Department of Medical Oncology, University Hospital of Salamanca, 37007 Salamanca, Spain; (L.F.-P.); (E.T.-B.); (Á.L.-G.); (J.J.C.-H.)
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Álvaro López-Gutiérrez
- Department of Medical Oncology, University Hospital of Salamanca, 37007 Salamanca, Spain; (L.F.-P.); (E.T.-B.); (Á.L.-G.); (J.J.C.-H.)
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Álvaro Tamayo Velasco
- Department of Haematology, University Hospital of Valladolid, 47003 Valladolid, Spain;
| | - Rogelio González Sarmiento
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain;
- Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
| | - Juan Jesús Cruz-Hernández
- Department of Medical Oncology, University Hospital of Salamanca, 37007 Salamanca, Spain; (L.F.-P.); (E.T.-B.); (Á.L.-G.); (J.J.C.-H.)
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain;
- Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
| | - José Pablo Miramontes-González
- Department of Internal Medicine, University Hospital Rio Hortega, 47012 Valladolid, Spain
- Department of Medicine, University of Valladolid, 45005 Valladolid, Spain
- Correspondence: (A.O.-H.); (J.P.M.-G.); Tel.: +34-923-29-11-00 (A.O.-H.); +34-983-42-04-00 (J.P.M.-G.); Fax: +34-923-29-13-25 (A.O.-H.); +34-983-21-53-65 (J.P.M.-G.)
| |
Collapse
|
12
|
Wang L, Kuang Z, Zhang D, Gao Y, Ying M, Wang T. Reactive oxygen species in immune cells: A new antitumor target. Biomed Pharmacother 2020; 133:110978. [PMID: 33176269 DOI: 10.1016/j.biopha.2020.110978] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/25/2022] Open
Abstract
Immune cells have the potential to control the growth of tumor. However, this effect could be offset by immunosuppression associated with an increased production of reactive oxygen species. Multiple studies indicate that the antitumor effect of immune cells is correlated with their antioxidant capacity. This review discusses the role of reactive oxygen species in the tumor microenvironment by describing their distinct effects on different immune cells, including myeloid-derived suppressor cells, regulatory T cells, tumor-associated macrophages, cytotoxic T lymphocytes, natural killer cells, and dendritic cells. In the end, we conclude with the prospect of treatment for cancer by targeting antioxidant defense in immune cells.
Collapse
Affiliation(s)
- Ling Wang
- Department of Stem Cells and Regenerative Medicine, Center for Translational Medicine, Naval Medical University, Shanghai 200433, PR China
| | - Zheng Kuang
- School of Basic Medical Sciences, Naval Medical University, Shanghai 200433, PR China
| | - Duo Zhang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Yifan Gao
- Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mingzhen Ying
- Department of Oncology, Changhai Hospital, Naval Medical University, Shanghai 200433, PR China.
| | - Tengjiao Wang
- Department of Bioinformatics, Center for Translational Medicine, Naval Medical University, Shanghai 200433, PR China.
| |
Collapse
|
13
|
Salminen A, Kaarniranta K, Kauppinen A. Immunosenescence: the potential role of myeloid-derived suppressor cells (MDSC) in age-related immune deficiency. Cell Mol Life Sci 2019; 76:1901-1918. [PMID: 30788516 PMCID: PMC6478639 DOI: 10.1007/s00018-019-03048-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/25/2019] [Accepted: 02/14/2019] [Indexed: 12/17/2022]
Abstract
The aging process is associated with chronic low-grade inflammation in both humans and rodents, commonly called inflammaging. At the same time, there is a gradual decline in the functional capacity of adaptive and innate immune systems, i.e., immunosenescence, a process not only linked to the aging process, but also encountered in several pathological conditions involving chronic inflammation. The hallmarks of immunosenescence include a decline in the numbers of naïve CD4+ and CD8+ T cells, an imbalance in the T cell subsets, and a decrease in T cell receptor (TCR) repertoire and signaling. Correspondingly, there is a decline in B cell lymphopoiesis and a reduction in antibody production. The age-related changes are not as profound in innate immunity as they are in adaptive immunity. However, there are distinct functional deficiencies in dendritic cells, natural killer cells, and monocytes/macrophages with aging. Interestingly, the immunosuppression induced by myeloid-derived suppressor cells (MDSC) in diverse inflammatory conditions also targets mainly the T and B cell compartments, i.e., inducing very similar alterations to those present in immunosenescence. Here, we will compare the immune profiles induced by immunosenescence and the MDSC-driven immunosuppression. Given that the appearance of MDSCs significantly increases with aging and MDSCs are the enhancers of other immunosuppressive cells, e.g., regulatory T cells (Tregs) and B cells (Bregs), it seems likely that MDSCs might remodel the immune system, thus preventing excessive inflammation with aging. We propose that MDSCs are potent inducers of immunosenescence.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, KYS, P.O. Box 100, 70029, Kuopio, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| |
Collapse
|
14
|
Schrijver IT, Théroude C, Roger T. Myeloid-Derived Suppressor Cells in Sepsis. Front Immunol 2019; 10:327. [PMID: 30873175 PMCID: PMC6400980 DOI: 10.3389/fimmu.2019.00327] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/08/2019] [Indexed: 12/16/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells characterized by their immunosuppressive functions. MDSCs expand during chronic and acute inflammatory conditions, the best described being cancer. Recent studies uncovered an important role of MDSCs in the pathogenesis of infectious diseases along with sepsis. Here we discuss the mechanisms underlying the expansion and immunosuppressive functions of MDSCs, and the results of preclinical and clinical studies linking MDSCs to sepsis pathogenesis. Strikingly, all clinical studies to date suggest that high proportions of blood MDSCs are associated with clinical worsening, the incidence of nosocomial infections and/or mortality. Hence, MDSCs are attractive biomarkers and therapeutic targets for sepsis, especially because these cells are barely detectable in healthy subjects. Blocking MDSC-mediated immunosuppression and trafficking or depleting MDSCs might all improve sepsis outcome. While some key aspects of MDSCs biology need in depth investigations, exploring these avenues may participate to pave the way toward the implementation of personalized medicine and precision immunotherapy for patients suffering from sepsis.
Collapse
Affiliation(s)
- Irene T Schrijver
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Epalinges, Switzerland
| | - Charlotte Théroude
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Epalinges, Switzerland
| | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Epalinges, Switzerland
| |
Collapse
|
15
|
Ohl K, Tenbrock K. Reactive Oxygen Species as Regulators of MDSC-Mediated Immune Suppression. Front Immunol 2018; 9:2499. [PMID: 30425715 PMCID: PMC6218613 DOI: 10.3389/fimmu.2018.02499] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/10/2018] [Indexed: 01/10/2023] Open
Abstract
Reactive oxygen species (ROS) molecules are implicated in signal transduction pathways and thereby control a range of biological activities. Immune cells are constantly confronted with ROS molecules under both physiologic and pathogenic conditions. Myeloid-derived suppressor cells (MDSCs) are immunosuppressive, immature myeloid cells and serve as major regulators of pathogenic and inflammatory immune responses. In addition to their own release of ROS, MDSCs often arise in oxidative-stress prone environments such as in tumors or during inflammation and infection. This evidently close relationship between MDSCs and ROS prompted us to summarize what is currently known about ROS signaling within MDSCs and to elucidate how MDSCs use ROS to modulate other immune cells. ROS not only activate anti-oxidative pathways but also induce transcriptional programs that regulate the fate and function of MDSCs. Furthermore, MDSCs release ROS molecules as part of a major mechanism to suppress T cell responses. Targeting redox-regulation of MDSCs thus presents a promising approach to cancer therapy and the role of redox-signaling in MDSCs in other disease states such as infection, inflammation and autoimmunity would appear to be well worth investigating.
Collapse
Affiliation(s)
- Kim Ohl
- Department of Pediatrics, Medical Faculty, RWTH Aachen, Aachen, Germany
| | - Klaus Tenbrock
- Department of Pediatrics, Medical Faculty, RWTH Aachen, Aachen, Germany
| |
Collapse
|
16
|
Alissafi T, Hatzioannou A, Mintzas K, Barouni RM, Banos A, Sormendi S, Polyzos A, Xilouri M, Wielockx B, Gogas H, Verginis P. Autophagy orchestrates the regulatory program of tumor-associated myeloid-derived suppressor cells. J Clin Invest 2018; 128:3840-3852. [PMID: 29920188 DOI: 10.1172/jci120888] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/14/2018] [Indexed: 02/03/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) densely accumulate into tumors and potently suppress antitumor immune responses, promoting tumor development. Targeting MDSCs in tumor immunotherapy has been hampered by lack of understanding of the molecular pathways that govern MDSC differentiation and function. Herein, we identify autophagy as a crucial pathway for MDSC-mediated suppression of antitumor immunity. Specifically, MDSCs in patients with melanoma and mouse melanoma exhibited increased levels of functional autophagy. Ablation of autophagy in myeloid cells markedly delayed tumor growth and endowed antitumor immune responses. Notably, tumor-infiltrating autophagy-deficient monocytic MDSCs (M-MDSCs) demonstrated impaired suppressive activity in vitro and in vivo, whereas transcriptome analysis revealed substantial differences in genes related to lysosomal function. Accordingly, autophagy-deficient M-MDSCs exhibited impaired lysosomal degradation, thereby enhancing surface expression of MHC class II molecules, resulting in efficient activation of tumor-specific CD4+ T cells. Finally, targeting of the membrane-associated RING-CH1 (MARCH1) E3 ubiquitin ligase that mediates the lysosomal degradation of MHC II in M-MDSCs attenuated their suppressive function, and resulted in markedly decreased tumor volume followed by development of a robust antitumor immunity. Collectively, these findings depict autophagy as a molecular target of MDSC-mediated suppression of antitumor immunity.
Collapse
Affiliation(s)
- Themis Alissafi
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | | | | | - Aggelos Banos
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Sundary Sormendi
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine and Department of Internal Medicine, University Dresden, Dresden, Germany
| | | | - Maria Xilouri
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Ben Wielockx
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine and Department of Internal Medicine, University Dresden, Dresden, Germany
| | - Helen Gogas
- First Department of Medicine, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | | |
Collapse
|
17
|
Tai LH, Alkayyal AA, Leslie AL, Sahi S, Bennett S, Tanese de Souza C, Baxter K, Angka L, Xu R, Kennedy MA, Auer RC. Phosphodiesterase-5 inhibition reduces postoperative metastatic disease by targeting surgery-induced myeloid derived suppressor cell-dependent inhibition of Natural Killer cell cytotoxicity. Oncoimmunology 2018; 7:e1431082. [PMID: 29872554 DOI: 10.1080/2162402x.2018.1431082] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 01/13/2018] [Accepted: 01/18/2018] [Indexed: 12/27/2022] Open
Abstract
Cancer surgery while necessary for primary tumor removal, has been shown to induce immune suppression and promote metastases in preclinical models and human cancer surgery patients. Activating the immune system and reversing immunosuppression have emerged as promising ways to treat cancer and they can be safely employed in the perioperative period. In this study, we evaluated the immunotherapeutic potential of phosphodiesterase-5 (PDE-5) inhibitors to target surgery-induced myeloid-derived suppressor cells (MDSC) and restore natural killer (NK) cell function in the clinically relevant perioperative period. Immunocompetent murine tumor models of major surgery were used to characterize the functional suppression of surgery-induced MDSC and to assess the in vivo efficacy of perioperative PDE5 inhibition. In cancer surgery patients with abdominal malignancies, we assessed postoperative NK cell function following co-culture with MDSC and PDE5 inhibition. Perioperative PDE5 inhibition reverses surgery-induced immunosuppression. In particular, sildenafil reduces surgery-derived granulocytic-MDSC (gMDSC) function through downregulation of arginase 1 (ARG1), IL4Ra and reactive oxygen species (ROS) expression, enabling NK cell antitumor cytotoxicity and reducing postoperative disease recurrence. By removing surgery-derived immunosuppressive mechanisms of MDSCs, sildenafil can be combined with the administration of perioperative influenza vaccination which targets NK cells to reduce postoperative metastasis. Importantly, sildenafil reverses MDSC suppression in cancer surgery patients. These findings demonstrate that PDE5 inhibitors reduce postoperative metastasis by their ability to inhibit surgery-induced MDSC. Further clinical studies are warranted to investigate the immunotherapeutic role of PDE5 inhibitors in combination with cancer surgery.
Collapse
Affiliation(s)
- Lee-Hwa Tai
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Almohanad A Alkayyal
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada.,Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Tabuk, Saudi Arabia
| | - Amanda L Leslie
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Shalini Sahi
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Sean Bennett
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Surgery, University of Ottawa, Ottawa, ON, Canada
| | | | - Katherine Baxter
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Leonard Angka
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Rebecca Xu
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Michael A Kennedy
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Rebecca C Auer
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada.,Department of Surgery, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
18
|
The complex interplay between neutrophils and cancer. Cell Tissue Res 2018; 371:517-529. [DOI: 10.1007/s00441-017-2777-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/12/2017] [Indexed: 12/12/2022]
|
19
|
MiRNAs at the Crossroads between Innate Immunity and Cancer: Focus on Macrophages. Cells 2018; 7:cells7020012. [PMID: 29419779 PMCID: PMC5850100 DOI: 10.3390/cells7020012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/01/2018] [Accepted: 02/06/2018] [Indexed: 12/12/2022] Open
Abstract
Innate immune cells form an integrative component of the tumor microenvironment (TME), which can control or prevent tumor initiation and progression, due to the simultaneous processing of both anti- and pro-growth signals. This decision-making process is a consequence of gene expression changes, which are in part dependent on post-transcriptional regulatory mechanisms. In this context, microRNAs have been shown to regulate both recruitment and activation of specific tumor-associated immune cells in the TME. This review aims to describe the most important microRNAs that target cancer-related innate immune pathways. The role of exosomal microRNAs in tumor progression and microRNA-based therapeutic strategies are also discussed.
Collapse
|
20
|
Neutrophils and PMN-MDSC: Their biological role and interaction with stromal cells. Semin Immunol 2017; 35:19-28. [PMID: 29254756 DOI: 10.1016/j.smim.2017.12.004] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/08/2017] [Indexed: 02/06/2023]
Abstract
Neutrophils and polymorphonucler myeloid-derived suppressor cells (PMN-MDSC) share origin and many morphological and phenotypic features. However, they have different biological role. Neutrophils are one of the major mechanisms of protection against invading pathogens, whereas PMN-MDSC have immune suppressive activity and restrict immune responses in cancer, chronic infectious disease, trauma, sepsis, and many other pathological conditions. Although in healthy adult individuals, PMN-MDSC are not or barely detectable, in patients with cancer and many other diseases they accumulate at various degree and co-exist with neutrophils. Recent advances allow for better distinction of these cells and better understanding of their biological role. Accumulating evidence indicates PMN-MDSC as pathologically activated neutrophils, with important role in regulation of immune responses. In this review, we provide an overview on the definition and characterization of PMN-MDSC and neutrophils, their pathological significance in a variety of diseases, and their interaction with other stromal components.
Collapse
|
21
|
Wang C, Zhang N, Qi L, Yuan J, Wang K, Wang K, Ma S, Wang H, Lou W, Hu P, Awais M, Cao S, Fu ZF, Cui M. Myeloid-Derived Suppressor Cells Inhibit T Follicular Helper Cell Immune Response in Japanese Encephalitis Virus Infection. THE JOURNAL OF IMMUNOLOGY 2017; 199:3094-3105. [DOI: 10.4049/jimmunol.1700671] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/17/2017] [Indexed: 12/23/2022]
|
22
|
Angka L, Khan ST, Kilgour MK, Xu R, Kennedy MA, Auer RC. Dysfunctional Natural Killer Cells in the Aftermath of Cancer Surgery. Int J Mol Sci 2017; 18:ijms18081787. [PMID: 28817109 PMCID: PMC5578175 DOI: 10.3390/ijms18081787] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/13/2017] [Accepted: 08/14/2017] [Indexed: 02/06/2023] Open
Abstract
The physiological changes that occur immediately following cancer surgeries initiate a chain of events that ultimately result in a short pro-, followed by a prolonged anti-, inflammatory period. Natural Killer (NK) cells are severely affected during this period in the recovering cancer patient. NK cells play a crucial role in anti-tumour immunity because of their innate ability to differentiate between malignant versus normal cells. Therefore, an opportunity arises in the aftermath of cancer surgery for residual cancer cells, including distant metastases, to gain a foothold in the absence of NK cell surveillance. Here, we describe the post-operative environment and how the release of sympathetic stress-related factors (e.g., cortisol, prostaglandins, catecholamines), anti-inflammatory cytokines (e.g., IL-6, TGF-β), and myeloid derived suppressor cells, mediate NK cell dysfunction. A snapshot of current and recently completed clinical trials specifically addressing NK cell dysfunction post-surgery is also discussed. In collecting and summarizing results from these different aspects of the surgical stress response, a comprehensive view of the NK cell suppressive effects of surgery is presented. Peri-operative therapies to mitigate NK cell suppression in the post-operative period could improve curative outcomes following cancer surgery.
Collapse
Affiliation(s)
- Leonard Angka
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - Sarwat T Khan
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - Marisa K Kilgour
- Deeley Research Centre, BC Cancer Agency, Victoria, BC V8R 6V5, Canada.
| | - Rebecca Xu
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.
| | - Michael A Kennedy
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.
| | - Rebecca C Auer
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.
- Department of Surgery, University of Ottawa, Ottawa, ON K1H 8L6, Canada.
| |
Collapse
|
23
|
Phenotype and Function of Myeloid-Derived Suppressor Cells Induced by Porphyromonas gingivalis Infection. Infect Immun 2017; 85:IAI.00213-17. [PMID: 28533469 DOI: 10.1128/iai.00213-17] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/12/2017] [Indexed: 01/04/2023] Open
Abstract
Porphyromonas gingivalis, a major etiologic agent of periodontitis, has been reported to induce the expansion of myeloid-derived suppressor cells (MDSC); however, little is known regarding the subpopulations of MDSC expanded by P. gingivalis infection. Flow cytometry was used to evaluate bone marrow and spleen cells from mice infected with P. gingivalis and controls for surface expression of CD11b, Ly6G, and Ly6C. To characterize the phenotype of MDSC subpopulations induced by infection, cells were sorted based on the differential expression of Ly6G and Ly6C. Moreover, since MDSC are suppressors of T cell immune activity, we determined the effect of the induced subpopulations of MDSC on the proliferative response of OVA-specific CD4+ T cells. Lastly, the plasticity of MDSC to differentiate into osteoclasts was assessed by staining for tartrate-resistant acid phosphatase activity. P. gingivalis infection induced the expansion of three subpopulations of MDSC (Ly6G++ Ly6C+, Ly6G+ Ly6C++, and Ly6G+ Ly6C+); however, only CD11b+ Ly6G+ Ly6C++-expressing cells exerted a significant suppressive effect on T cell proliferation. Inhibition of proliferative responses required T cell-MDSC contact and was mediated by inducible nitric oxide synthase and cationic amino acid transporter 2 via gamma interferon. Furthermore, only the CD11b+ Ly6G+ Ly6C++ subpopulation of MDSC induced by P. gingivalis infection was able to differentiate into osteoclasts. Thus, the inflammatory response induced by P. gingivalis infection promotes the expansion of immune-suppressive cells and consequently the development of regulatory inhibitors that curtail the host response. Moreover, monocytic MDSC have the plasticity to differentiate into OC, thus perhaps contributing to the OC pool in states of periodontal disease.
Collapse
|
24
|
Sepsis Pathophysiology, Chronic Critical Illness, and Persistent Inflammation-Immunosuppression and Catabolism Syndrome. Crit Care Med 2017; 45:253-262. [PMID: 27632674 DOI: 10.1097/ccm.0000000000002074] [Citation(s) in RCA: 324] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To provide an appraisal of the evolving paradigms in the pathophysiology of sepsis and propose the evolution of a new phenotype of critically ill patients, its potential underlying mechanism, and its implications for the future of sepsis management and research. DESIGN Literature search using PubMed, MEDLINE, EMBASE, and Google Scholar. MEASUREMENTS AND MAIN RESULTS Sepsis remains one of the most debilitating and expensive illnesses, and its prevalence is not declining. What is changing is our definition(s), its clinical course, and how we manage the septic patient. Once thought to be predominantly a syndrome of over exuberant inflammation, sepsis is now recognized as a syndrome of aberrant host protective immunity. Earlier recognition and compliance with treatment bundles has fortunately led to a decline in multiple organ failure and in-hospital mortality. Unfortunately, more and more sepsis patients, especially the aged, are suffering chronic critical illness, rarely fully recover, and often experience an indolent death. Patients with chronic critical illness often exhibit "a persistent inflammation-immunosuppression and catabolism syndrome," and it is proposed here that this state of persisting inflammation, immunosuppression and catabolism contributes to many of these adverse clinical outcomes. The underlying cause of inflammation-immunosuppression and catabolism syndrome is currently unknown, but there is increasing evidence that altered myelopoiesis, reduced effector T-cell function, and expansion of immature myeloid-derived suppressor cells are all contributory. CONCLUSIONS Although newer therapeutic interventions are targeting the inflammatory, the immunosuppressive, and the protein catabolic responses individually, successful treatment of the septic patient with chronic critical illness and persistent inflammation-immunosuppression and catabolism syndrome may require a more complementary approach.
Collapse
|
25
|
Sui Y, Frey B, Wang Y, Billeskov R, Kulkarni S, McKinnon K, Rourke T, Fritts L, Miller CJ, Berzofsky JA. Paradoxical myeloid-derived suppressor cell reduction in the bone marrow of SIV chronically infected macaques. PLoS Pathog 2017; 13:e1006395. [PMID: 28498847 PMCID: PMC5448820 DOI: 10.1371/journal.ppat.1006395] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/30/2017] [Accepted: 05/03/2017] [Indexed: 02/06/2023] Open
Abstract
Myeloid derived suppressor cells (MDSCs), which suppress anti-tumor or anti-viral immune responses, are expanded in the peripheral blood and tissues of patients/animals with cancer or viral infectious diseases. We here show that in chronic SIV infection of Indian rhesus macaques, the frequency of MDSCs in the bone marrow (BM) was paradoxically and unexpectedly decreased, but increased in peripheral blood. Reduction of BM MDSCs was found in both CD14+MDSC and Lin-CD15+MDSC subsets. The reduction of MDSCs correlated with high plasma viral loads and low CD4+ T cell counts, suggesting that depletion of BM MDSCs was associated with SIV/AIDS disease progression. Of note, in SHIVSF162P4-infected macaques, which naturally control viral replication within a few months of infection, the frequency of MDSCs in the bone marrow was unchanged. To investigate the mechanisms by which BM MDSCs were reduced during chronic SIV infection, we tested several hypotheses: depletion due to viral infection, alterations in MDSC trafficking, and/or poor MDSC replenishment. We found that the possible mobilization of MDSCs from BM to peripheral tissues and the slow self-replenishment of MDSCs in the BM, along with the viral infection-induced depletion, all contribute to the observed BM MDSC reduction. We first demonstrate MDSC SIV infection in vivo. Correlation between BM CD14+MDSC reduction and CD8+ T cell activation in tissues is consistent with decreased immune suppression by MDSCs. Thus, depletion of BM MDSCs may contribute to the pathologic immune activation during chronic SIV infection and by extension HIV infection. Both cancer and infectious diseases including HIV/AIDS lead to the accumulation of myeloid-derived suppressor cells (MDSCs), which can effectively suppress anti-tumor and anti-viral T cell responses to dampen protective immunity. Using a macaque model, we found unexpectedly that the MDSCs in bone marrow (BM) decreased after chronic simian immunodeficiency virus (SIV) infection compared with healthy controls. This was in sharp contrast to the general increase of MDSCs observed in BM during cancer and other infectious/inflammatory diseases, and also contrary to the MDSC expansion in HIV/SIV-infected PBMCs. We further demonstrated that the loss of MDSCs in the bone marrow was associated with the progression to AIDS disease. Investigating the mechanisms by which the MDSCs were decreased in the SIV-infected bone marrow, we found that the possible mobilization of MDSCs from bone marrow to peripheral tissues and the slow self-replenishment of MDSCs in the bone marrow, along with the viral infection-induced depletion, all contribute to the observed bone marrow MDSC reduction. Indeed, this is the first demonstration to our knowledge of SIV infection of MDSCs in vivo. Because of the suppressive nature of the MDSCs, the CD8+ T cells might not be effective in killing the virally infected MDSCs. It is tempting to speculate that MDSCs may constitute latent reservoirs. Overall, our data showed that MDSCs act as a double-edged sword in HIV/SIV-infection, and the decrease of MDSCs in bone marrow after SIV infection could serve as an indicator of immune regulatory exhaustion and also contribute to the observed immune hyperactivation seen in HIV/AIDS.
Collapse
Affiliation(s)
- Yongjun Sui
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail: (YS); (JAB)
| | - Blake Frey
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Yichuan Wang
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Rolf Billeskov
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Shweta Kulkarni
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Katherine McKinnon
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Tracy Rourke
- Center for Comparative Medicine, University of California Davis, Davis, CA, United States of America
| | - Linda Fritts
- Center for Comparative Medicine, University of California Davis, Davis, CA, United States of America
| | - Christopher J. Miller
- Center for Comparative Medicine, University of California Davis, Davis, CA, United States of America
| | - Jay A. Berzofsky
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail: (YS); (JAB)
| |
Collapse
|
26
|
Fortin C, Yang Y, Huang X. Monocytic myeloid-derived suppressor cells regulate T-cell responses against vaccinia virus. Eur J Immunol 2017; 47:1022-1031. [PMID: 28383204 DOI: 10.1002/eji.201646797] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/20/2017] [Accepted: 03/29/2017] [Indexed: 01/07/2023]
Abstract
Vaccinia virus (VV) can potently activate NK- and T-cell responses, leading to efficient viral control and generation of long-lasting protective immunity. However, immune responses against viral infections are often tightly controlled to avoid collateral damage and systemic inflammation. We have previously shown that granulocytic myeloid-derived suppressor cells (g-MDSCs) can suppress the NK-cell response to VV infection. It remains unknown what regulates T-cell responses to VV infection in vivo. In this study, we first showed that monocytic MDSCs (m-MDSCs), but not g-MDSCs, from VV-infected mice could directly suppress CD4+ and CD8+ T-cell activation in vitro. We then demonstrated that defective recruitment of m-MDSCs to the site of VV infection in CCR2-/- mice enhanced VV-specific CD8+ T-cell response and that adoptive transfer of m-MDSCs into VV-infected mice suppressed VV-specific CD8+ T-cell activation, leading to a delay in viral clearance. Mechanistically, we further showed that T-cell suppression by m-MDSCs is mediated by indication of iNOS and production of NO upon VV infection, and that IFN-γ is required for activation of m-MDSCs. Collectively, our results highlight a critical role for m-MDSCs in regulating T-cell responses against VV infection and may suggest potential strategies using m-MDSCs to modulate T-cell responses during viral infections.
Collapse
Affiliation(s)
- Carl Fortin
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Yiping Yang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, USA.,Division of Hematologic Malignancies and Cellular Therapy, Department of Immunology, Duke University Medical Center, Durham, NC, USA
| | - Xiaopei Huang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
27
|
O'Connor MA, Rastad JL, Green WR. The Role of Myeloid-Derived Suppressor Cells in Viral Infection. Viral Immunol 2017; 30:82-97. [PMID: 28051364 DOI: 10.1089/vim.2016.0125] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are heterogeneous immature myeloid cells that are well described as potent immune regulatory cells during human cancer and murine tumor models. Reports of MDSCs during viral infections remain limited, and their association with immunomodulation of viral diseases is still being defined. Here, we provide an overview of MDSCs or MDSC-like cells identified during viral infections, including murine viral models and human viral diseases. Understanding the similarities and/or differences of virally induced versus tumor-derived MDSCs will be important for designing future immunotherapeutic approaches.
Collapse
Affiliation(s)
- Megan A O'Connor
- 1 Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Lebanon , New Hampshire
| | - Jessica L Rastad
- 1 Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Lebanon , New Hampshire
| | - William R Green
- 1 Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Lebanon , New Hampshire.,2 Norris Cotton Cancer Center , Geisel School of Medicine at Dartmouth, Lebanon , New Hampshire
| |
Collapse
|
28
|
Kilinc MO, Ehrig K, Pessian M, Minev BR, Szalay AA. Colonization of xenograft tumors by oncolytic vaccinia virus (VACV) results in enhanced tumor killing due to the involvement of myeloid cells. J Transl Med 2016; 14:340. [PMID: 27993141 PMCID: PMC5168712 DOI: 10.1186/s12967-016-1096-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/24/2016] [Indexed: 12/25/2022] Open
Abstract
Background The mechanisms by which vaccinia virus (VACV) interacts with the innate immune components are complex and involve different mechanisms. iNOS-mediated NO production by myeloid cells is one of the central antiviral mechanisms and this study aims to investigate specifically whether iNOS-mediated NO production by myeloid cells, is involved in tumor eradication following the virus treatment. Methods Human colon adenocarcinoma (HCT-116) xenograft tumors were infected by VACV. Infiltration of iNOS+ myeloid cell population into the tumor, and virus titer was monitored following the treatment. Single-cell suspensions were stained for qualitative and quantitative flow analysis. The effect of different myeloid cell subsets on tumor growth and colonization were investigated by depletion studies. Finally, in vitro culture experiments were carried out to study NO production and tumor cell killing. Student’s t test was used for comparison between groups in all of the experiments. Results Infection of human colon adenocarcinoma (HCT-116) xenograft tumors by VACV has led to recruitment of many CD11b+ ly6G+ myeloid-derived suppressor cells (MDSCs), with enhanced iNOS expression in the tumors, and to an increased intratumoral virus titer between days 7 and 10 post-VACV therapy. In parallel, both single and multiple rounds of iNOS-producing cell depletions caused very rapid tumor growth within the same period after virus injection, indicating that VACV-induced iNOS+ MDSCs could be an important antitumor effector component. A continuous blockade of iNOS by its specific inhibitor, L-NIL, showed similar tumor growth enhancement 7–10 days post-infection. Finally, spleen-derived iNOS+ MDSCs isolated from virus-injected tumor bearing mice produced higher amounts of NO and effectively killed HCT-116 cells in in vitro transwell experiments. Conclusions We initially hypothesized that NO could be one of the factors that limits active spreading of the virus in the cancerous tissue. In contrast to our initial hypothesis, we observed that PMN-MDSCs were the main producer of NO through iNOS and NO provided a beneficial antitumor effect, The results strongly support an important novel role for VACV infection in the tumor microenvironment. VACV convert tumor-promoting MDSCs into tumor-killing cells by inducing higher NO production.
Collapse
Affiliation(s)
- Mehmet Okyay Kilinc
- Department of Biochemistry, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.,San Diego Science Center, Genelux Corporation, San Diego, CA, USA
| | - Klaas Ehrig
- Department of Biochemistry, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Maysam Pessian
- San Diego Science Center, Genelux Corporation, San Diego, CA, USA
| | - Boris R Minev
- San Diego Science Center, Genelux Corporation, San Diego, CA, USA.,Department of Radiation Medicine and Applied Sciences, Rebecca & John Moores Comprehensive Cancer Center, University of California, San Diego, CA, USA
| | - Aladar A Szalay
- Department of Biochemistry, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany. .,San Diego Science Center, Genelux Corporation, San Diego, CA, USA. .,Department of Radiation Medicine and Applied Sciences, Rebecca & John Moores Comprehensive Cancer Center, University of California, San Diego, CA, USA.
| |
Collapse
|
29
|
Zhu J, Chen H, Huang X, Jiang S, Yang Y. Ly6C hi monocytes regulate T cell responses in viral hepatitis. JCI Insight 2016; 1:e89880. [PMID: 27777980 DOI: 10.1172/jci.insight.89880] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Viral hepatitis remains a global health challenge despite recent progress in the development of more effective therapies. Although virus-specific CD8+ and CD4+ T cell responses are essential for viral clearance, it remains largely unknown what regulates T cell-mediated viral clearance. Thus, a better understanding of the regulation of anti-viral T cell immunity would be critical for the design of more effective therapies for viral hepatitis. Using a model of adenovirus-induced hepatitis, here we showed that adenoviral infection induced recruitment of Ly6Chi monocytes to the liver in a CCR2-dependent manner. These recruited Ly6Chi monocytes suppressed CD8+ and CD4+ T cell responses to adenoviral infection, leading to a delay in viral clearance. In vivo depletion of Ly6Chi monocytes markedly enhanced anti-viral T cell responses and promoted viral clearance. Mechanistically, we showed that induction of iNOS and the production of NO by Ly6Chi monocytes are critical for the suppression of T cell responses. In addition, a contact-dependent mechanism mediated by PD-1 and PD-L1 interaction is also required for T cell suppression by Ly6Chi monocytes. These findings suggest a critical role for Ly6Chi monocytes in the regulation of T cell immunity in viral hepatitis and may provide new insights into development of more effective therapies for treating viral hepatitis based on targeting the immunosuppressing monocytes.
Collapse
Affiliation(s)
- Jiangao Zhu
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, and
| | - Huiyao Chen
- Department of Hematology,First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaopei Huang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, and
| | - Songfu Jiang
- Department of Hematology,First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiping Yang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, and.,Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
30
|
Fang WY, Chen YW, Hsiao JR, Liu CS, Kuo YZ, Wang YC, Chang KC, Tsai ST, Chang MZ, Lin SH, Wu LW. Elevated S100A9 expression in tumor stroma functions as an early recurrence marker for early-stage oral cancer patients through increased tumor cell invasion, angiogenesis, macrophage recruitment and interleukin-6 production. Oncotarget 2016; 6:28401-24. [PMID: 26315114 PMCID: PMC4695068 DOI: 10.18632/oncotarget.4951] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/02/2015] [Indexed: 11/30/2022] Open
Abstract
S100A9 is a calcium-binding protein with two EF-hands and frequently deregulated in several cancer types, however, with no clear role in oral cancer. In this report, the expression of S100A9 in cancer and adjacent tissues from 79 early-stage oral cancer patients was detected by immunohistochemical staining. Although S100A9 protein was present in both tumor and stromal cells, only the early-stage oral cancer patients with high stromal expression had reduced recurrence-free survival. High stromal S100A9 expression was also significantly associated with non-well differentiation and recurrence. In addition to increasing cell migration and invasion, ectopic S100A9 expression in tumor cells promoted xenograft tumorigenesis as well as the dominant expression of myeloid cell markers and pro-inflammatory IL-6. The expression of S100A9 in one stromal component, monocytes, stimulated the aggressiveness of co-cultured oral cancer cells. We also detected the elevation of serum S100A9 levels in early-stage oral cancer patients of a separate cohort of 73 oral cancer patients. The release of S100A9 protein into extracellular milieu enhanced tumor cell invasion, transendothelial monocyte migration and angiogenic activity. S100A9-mediated release of IL-6 requires the crosstalk of tumor cells with monocytes through the activation of NF-κB and STAT-3. Early-stage oral cancer patients with both high S100A9 expression and high CD68+ immune infiltrates in stroma had shortest recurrence-free survival, suggesting the use of both S100A9 and CD68 as poor prognostic markers for oral cancer. Together, both intracellular and extracellular S100A9 exerts a tumor-promoting action through the activation of oral cancer cells and their associated stroma in oral carcinogenesis.
Collapse
Affiliation(s)
- Wei-Yu Fang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
| | - Yi-Wen Chen
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
| | - Jenn-Ren Hsiao
- Department of Otolaryngology, National Cheng Kung University Hospital, Tainan, Taiwan, R.O.C
| | - Chiang-Shin Liu
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan, R.O.C
| | - Yi-Zih Kuo
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
| | - Kung-Chao Chang
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan, R.O.C
| | - Sen-Tien Tsai
- Department of Otolaryngology, National Cheng Kung University Hospital, Tainan, Taiwan, R.O.C.,Department of Radiation Oncology, National Cheng Kung University Hospital, Tainan, Taiwan, R.O.C
| | - Mei-Zhu Chang
- Department of Otolaryngology, National Cheng Kung University Hospital, Tainan, Taiwan, R.O.C
| | - Siao-Han Lin
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
| | - Li-Wha Wu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
| |
Collapse
|
31
|
Mesenchymal Stem Cells and Myeloid Derived Suppressor Cells: Common Traits in Immune Regulation. J Immunol Res 2016; 2016:7121580. [PMID: 27529074 PMCID: PMC4978836 DOI: 10.1155/2016/7121580] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/08/2016] [Indexed: 02/08/2023] Open
Abstract
To protect host against immune-mediated damage, immune responses are tightly regulated. The regulation of immune responses is mediated by various populations of mature immune cells, such as T regulatory cells and B regulatory cells, but also by immature cells of different origins. In this review, we discuss regulatory properties and mechanisms whereby two distinct populations of immature cells, mesenchymal stem cells, and myeloid derived suppressor cells mediate immune regulation, focusing on their similarities, discrepancies, and potential clinical applications.
Collapse
|
32
|
Vila-Leahey A, Oldford SA, Marignani PA, Wang J, Haidl ID, Marshall JS. Ranitidine modifies myeloid cell populations and inhibits breast tumor development and spread in mice. Oncoimmunology 2016; 5:e1151591. [PMID: 27622015 PMCID: PMC5006904 DOI: 10.1080/2162402x.2016.1151591] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 12/21/2015] [Accepted: 02/02/2016] [Indexed: 02/08/2023] Open
Abstract
Histamine receptor 2 (H2) antagonists are widely used clinically for the control of gastrointestinal symptoms, but also impact immune function. They have been reported to reduce tumor growth in established colon and lung cancer models. Histamine has also been reported to modify populations of myeloid-derived suppressor cells (MDSCs). We have examined the impact of the widely used H2 antagonist ranitidine, on both myeloid cell populations and tumor development and spread, in three distinct models of breast cancer that highlight different stages of cancer progression. Oral ranitidine treatment significantly decreased the monocytic MDSC population in the spleen and bone marrow both alone and in the context of an orthotopic breast tumor model. H2 antagonists ranitidine and famotidine, but not H1 or H4 antagonists, significantly inhibited lung metastasis in the 4T1 model. In the E0771 model, ranitidine decreased primary tumor growth while omeprazole treatment had no impact on tumor development. Gemcitabine treatment prevented the tumor growth inhibition associated with ranitidine treatment. In keeping with ranitidine-induced changes in myeloid cell populations in non-tumor-bearing mice, ranitidine also delayed the onset of spontaneous tumor development, and decreased the number of tumors that developed in LKB1−/−/NIC mice. These results indicate that ranitidine alters monocyte populations associated with MDSC activity, and subsequently impacts breast tumor development and outcome. Ranitidine has potential as an adjuvant therapy or preventative agent in breast cancer and provides a novel and safe approach to the long-term reduction of tumor-associated immune suppression.
Collapse
Affiliation(s)
- Ava Vila-Leahey
- Dalhousie Inflammation Group, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sharon A Oldford
- Dalhousie Inflammation Group, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Paola A Marignani
- Department of Biochemistry and Molecular Biology, Dalhousie University , Halifax, Nova Scotia, Canada
| | - Jun Wang
- Dalhousie Inflammation Group, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada; Canadian Center for Vaccinology, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada; IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Ian D Haidl
- Dalhousie Inflammation Group, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jean S Marshall
- Dalhousie Inflammation Group, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
33
|
Magnusson LU, Hagberg Thulin M, Plas P, Olsson A, Damber JE, Welén K. Tasquinimod inhibits prostate cancer growth in bone through alterations in the bone microenvironment. Prostate 2016; 76:383-93. [PMID: 26660725 DOI: 10.1002/pros.23133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 11/13/2015] [Indexed: 11/06/2022]
Abstract
BACKGROUND Tasquinimod (ABR-215050) is an orally active quinoline-3-carboxamide analog that inhibits occurrence of experimental metastasis and delays disease progression of castration resistant prostate cancer in humans. Its mechanism of action is not fully elucidated, but previous studies show immunomodulatory and anti-angiogenic effects. The aim of the present study was to investigate the tumor inhibiting effect of tasquinimod in bone of castrated mice as well as to elucidate its working mechanism related to bone microenvironment. METHODS Effects of tasquinimod on prostate cancer metastasis to bone was studied in an intratibial xenograft model. Animals were treated with tasquinimod and tumor establishment and growth, immunological status, as well as markers for bone remodeling were analyzed. Direct effects of tasquinimod on osteoblasts were studied in vitro. RESULTS Establishment and growth of tumors in the bone after intratibial implantation in castrated mice was suppressed by tasquinimod treatment. The treatment effect was linked to decreased potential for immunosuppression in the pre-metastatic niche in bone (lower levels of CD206 and Arg1 expression in combination with increased iNOS expression) as well as in the tumor microenvironment (less Gr1 and CD206 staining). The shift to a pro-inflammatory, anti-tumorigenic milieu was also reflected in serum by increased levels of IFN-γ, CCL4, IL-5, LIX, IP-10, and MCP-1 as well as decreased TGF-β. Tasquinimod treatment also affected expression of factors involved in the pre-metastatic niche in the bone microenvironment (Lox, Cdh2, Cdh11, and Cxcl12). In addition, tasquinimod treatment caused a decreased osteogenic response indicated by decreased expression of Ocn, Runx2, and Col1a2 and increased expression of osteoclast stimulating CSF2. In vitro studies on mouse osteoblasts showed impaired osteoblast mineralization upon tasquinimod treatment. CONCLUSIONS The present study shows that tasquinimod reduces establishment and progression of tumor growth in bone likely through a combination of effects on the pre-metastatic niche, homing, immunological status, and osteogenesis. It was concluded that tasquinimod interferes with the metastatic process, presumably by inhibition of tumor establishment. Hence, our data suggest that tasquinimod might be most effective in inhibiting the occurrence of new metastatic lesions.
Collapse
Affiliation(s)
- Lisa U Magnusson
- Sahlgrenska Cancer Center, Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Malin Hagberg Thulin
- Sahlgrenska Cancer Center, Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | | | | | - Jan-Erik Damber
- Sahlgrenska Cancer Center, Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Karin Welén
- Sahlgrenska Cancer Center, Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
34
|
Ishikawa H, Ino S, Sasaki H, Fukui T, Kohda C, Tanaka K. The protective effects of intranasal administration of IL-12 given before influenza virus infection and the negative effects of IL-12 treatment given after viral infection. J Med Virol 2016; 88:1487-96. [DOI: 10.1002/jmv.24494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Hiroki Ishikawa
- Department of Microbiology; Tokyo Medical University; Shinjuku-ku Tokyo Japan
| | - Satoshi Ino
- Department of Microbiology and Immunology; Showa University School of Medicine; Shinagawa-ku Tokyo Japan
| | - Hiraku Sasaki
- Department of Health Science; School of Health and Sports Science; Juntendo University; Inzai Chiba Japan
| | - Toshie Fukui
- Department of Microbiology; Tokyo Medical University; Shinjuku-ku Tokyo Japan
| | - Chikara Kohda
- Department of Microbiology and Immunology; Showa University School of Medicine; Shinagawa-ku Tokyo Japan
| | - Kazuo Tanaka
- Department of Microbiology and Immunology; Showa University School of Medicine; Shinagawa-ku Tokyo Japan
| |
Collapse
|
35
|
Miao W, Roohi Ahangarani R, Carlier V, Vander Elst L, Saint-Remy JM. Suppression of Immune Response to Adenovirus Serotype 5 Vector by Immunization with Peptides Containing an MHC Class II Epitope and a Thio-Oxidoreductase Motif. Hum Gene Ther 2016; 27:230-43. [PMID: 26711172 DOI: 10.1089/hum.2015.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The main obstacle to viral vector-mediated gene therapy remains the elicitation of an immune response to the vector, resulting in clearance of transgene and resistance to further transgenesis. Specific antibody production contributes to such immune responses. A single class II-restricted epitope of adenovirus serotype 5 (Ad5) vector hexon-6 capsid protein containing a thiol-oxidoreductase motif was used in an attempt to prevent specific antibody production in response to Ad5 vectors. We demonstrate here that such immunization carried out before intravenous administration of Ad5 vectors prevents antibody production to the ensemble of Ad5 vector proteins in both BALB/c and C57BL/6 mice. The antibody response to Ad5 is dependent on innate immune activation, seemingly involving natural killer T (NKT) cells. We observed that immunization with a class II-restricted Ad5 peptide prevents such NKT cell activation. Increased transgenesis and prolonged transgene expression result from such immunization, providing a simple protocol for improving gene therapy.
Collapse
Affiliation(s)
- Wei Miao
- 1 Center for Molecular and Vascular Biology, University of Leuven , Leuven, Belgium.,2 Imcyse SA, Leuven, Belgium
| | | | | | | | - Jean-Marie Saint-Remy
- 1 Center for Molecular and Vascular Biology, University of Leuven , Leuven, Belgium.,2 Imcyse SA, Leuven, Belgium
| |
Collapse
|
36
|
Kennedy DE, Knight KL. Inhibition of B Lymphopoiesis by Adipocytes and IL-1-Producing Myeloid-Derived Suppressor Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:2666-74. [PMID: 26268654 PMCID: PMC4561202 DOI: 10.4049/jimmunol.1500957] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/20/2015] [Indexed: 12/12/2022]
Abstract
B lymphopoiesis declines with age, and this decline correlates with increased adipose tissue in the bone marrow (BM). Also, adipocyte-derived factors are known to inhibit B lymphopoiesis. Using cocultures of mouse BM cells with OP9 stromal cells, we found that adipocyte-conditioned medium induces the generation of CD11b(+)Gr1(+) myeloid cells, which inhibit B cell development in vitro. Adipocyte-conditioned medium-induced CD11b(+)Gr1(+) cells express Arg1 (arginase) and Nos2 (inducible NO synthase) and suppress CD4(+) T cell proliferation, indicating that these cells are myeloid-derived suppressor cells (MDSCs). Blocking arginase and inducible NO synthase did not restore B lymphopoiesis, indicating that inhibition is not mediated by these molecules. Transwell and conditioned-medium experiments showed that MDSCs inhibit B lymphopoiesis via soluble factors, and by cytokine array we identified IL-1 as an important factor. Addition of anti-IL-1 Abs restored B lymphopoiesis in BM cultures containing MDSCs, showing that MDSC inhibition of B lymphopoiesis is mediated by IL-1. By treating hematopoietic precursors with IL-1, we found that multipotent progenitors are targets of IL-1. This study uncovers a novel function for MDSCs to inhibit B lymphopoiesis through IL-1. We suggest that inflammaging contributes to a decline of B lymphopoiesis in aged individuals, and furthermore, that MDSCs and IL-1 provide therapeutic targets for restoration of B lymphopoiesis in aged and obese individuals.
Collapse
Affiliation(s)
- Domenick E Kennedy
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153
| | - Katherine L Knight
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153
| |
Collapse
|
37
|
Kwak Y, Kim HE, Park SG. Insights into Myeloid-Derived Suppressor Cells in Inflammatory Diseases. Arch Immunol Ther Exp (Warsz) 2015; 63:269-85. [PMID: 25990434 DOI: 10.1007/s00005-015-0342-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 05/14/2015] [Indexed: 02/06/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells involved in immune regulation. This population subdivides into granulocytic MDSCs and monocytic MDSCs, which regulate immune responses via the production of various molecules including reactive oxygen species, nitric oxide, arginase-1, interleukin-10, and transforming growth factor-β. Most studies of MDSCs focused on their role in tumors. MDSCs protect tumor cells from immune responses, and thus the frequency of MDSCs associates with poor prognosis. Many recent studies reported an important role for MDSCs in inflammatory diseases via the regulation of immune cells. In addition, the utilization of MDSCs by infectious pathogens suggests an immune evasion mechanism. Thus, MDSCs are important immune regulators in inflammatory diseases, as well as in tumors. This review focuses on the role of MDSCs in the regulation of inflammation in non-tumor settings.
Collapse
Affiliation(s)
- Yewon Kwak
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 500-712, Republic of Korea
| | | | | |
Collapse
|
38
|
Clements DR, Sterea AM, Kim Y, Helson E, Dean CA, Nunokawa A, Coyle KM, Sharif T, Marcato P, Gujar SA, Lee PWK. Newly recruited CD11b+, GR-1+, Ly6C(high) myeloid cells augment tumor-associated immunosuppression immediately following the therapeutic administration of oncolytic reovirus. THE JOURNAL OF IMMUNOLOGY 2015; 194:4397-412. [PMID: 25825443 DOI: 10.4049/jimmunol.1402132] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 03/04/2015] [Indexed: 12/31/2022]
Abstract
Tumor-associated immunosuppression aids cancer cells to escape immune-mediated attack and subsequent elimination. Recently, however, many oncolytic viruses, including reovirus, have been reported to overturn such immunosuppression and promote the development of a clinically desired antitumor immunity, which is known to promote favorable patient outcomes. Contrary to this existing paradigm, in this article we demonstrate that reovirus augments tumor-associated immunosuppression immediately following its therapeutic administration. Our data show that reovirus induces preferential differentiation of highly suppressive CD11b(+), Gr-1(+), Ly6C(high) myeloid cells from bone marrow hematopoietic progenitor cells. Furthermore, reovirus administration in tumor-bearing hosts drives time-dependent recruitment of CD11b(+), Gr-1(+), Ly6C(high) myeloid cells in the tumor milieu, which is further supported by virus-induced increased expression of numerous immune factors involved in myeloid-derived suppressor cell survival and trafficking. Most importantly, CD11b(+), Gr-1(+), Ly6C(high) myeloid cells specifically potentiate the suppression of T cell proliferation and are associated with the absence of IFN-γ response in the tumor microenvironment early during oncotherapy. Considering that the qualitative traits of a specific antitumor immunity are largely dictated by the immunological events that precede its development, our findings are of critical importance and must be considered while devising complementary interventions aimed at promoting the optimum efficacy of oncolytic virus-based anticancer immunotherapies.
Collapse
Affiliation(s)
- Derek R Clements
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | - Andra M Sterea
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | - Youra Kim
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | - Erin Helson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2; and
| | - Cheryl A Dean
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2; and
| | - Anna Nunokawa
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2; and
| | - Krysta Mila Coyle
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | - Tanveer Sharif
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2; and
| | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | - Shashi A Gujar
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2; and Strategy and Organizational Performance, Izaak Walton Killiam Health Centre, Halifax, Nova Scotia, Canada B3K 6R8
| | - Patrick W K Lee
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2; Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2; and
| |
Collapse
|
39
|
Lee HJ, Ko JH, Jeong HJ, Ko AY, Kim MK, Wee WR, Yoon SO, Oh JY. Mesenchymal stem/stromal cells protect against autoimmunity via CCL2-dependent recruitment of myeloid-derived suppressor cells. THE JOURNAL OF IMMUNOLOGY 2015; 194:3634-45. [PMID: 25769927 DOI: 10.4049/jimmunol.1402139] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 02/13/2015] [Indexed: 02/06/2023]
Abstract
Exogenously administered mesenchymal stem/stromal cells (MSCs) suppress autoimmunity despite transient engraftment. However, the mechanism is unclear. In this study, we report a novel mechanism by which MSCs modulate the immune system by recruiting myeloid-derived suppressor cells in a mouse model of experimental autoimmune uveitis (EAU). Intravenous infusion of MSCs blocked EAU development and reduced Th1 and Th17 responses. Time course analysis revealed an increase of MHC class II(lo)Ly6G(-)Ly6C(hi)CD11b(+) cells in draining lymph nodes by MSCs. These Ly6C(hi)CD11b(+) cells suppressed CD4(+) cell proliferation and Th1/Th17 differentiation and induced CD4(+) cell apoptosis. Adoptive transfer of Ly6C(hi)CD11b(+) cells ameliorated EAU, whereas depletion of Ly6C(hi)CD11b(+) cells abrogated the effects of MSCs. 1.8% of MSCs were present in draining lymph nodes 1 d after infusion, and MSCs with CCL2 knockdown did not increase MHC class II(lo)Ly6G(-)Ly6C(hi)CD11b(+) cells and failed to attenuate EAU. Therefore, our findings demonstrate that MSCs suppress autoimmunity by recruiting myeloid-derived suppressor cells into sites of inflammation in a CCL2-dependent manner.
Collapse
Affiliation(s)
- Hyun Ju Lee
- Department of Ophthalmology, Seoul National University Hospital, Seoul 110-744, Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, Seoul 110-744, Korea; and
| | - Jung Hwa Ko
- Department of Ophthalmology, Seoul National University Hospital, Seoul 110-744, Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, Seoul 110-744, Korea; and
| | - Hyun Jeong Jeong
- Department of Ophthalmology, Seoul National University Hospital, Seoul 110-744, Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, Seoul 110-744, Korea; and
| | - Ah Young Ko
- Department of Ophthalmology, Seoul National University Hospital, Seoul 110-744, Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, Seoul 110-744, Korea; and
| | - Mee Kum Kim
- Department of Ophthalmology, Seoul National University Hospital, Seoul 110-744, Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, Seoul 110-744, Korea; and
| | - Won Ryang Wee
- Department of Ophthalmology, Seoul National University Hospital, Seoul 110-744, Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, Seoul 110-744, Korea; and
| | - Sun-Ok Yoon
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul 110-744, Korea
| | - Joo Youn Oh
- Department of Ophthalmology, Seoul National University Hospital, Seoul 110-744, Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, Seoul 110-744, Korea; and
| |
Collapse
|
40
|
Christiansson L, Söderlund S, Mangsbo S, Hjorth-Hansen H, Höglund M, Markevärn B, Richter J, Stenke L, Mustjoki S, Loskog A, Olsson-Strömberg U. The tyrosine kinase inhibitors imatinib and dasatinib reduce myeloid suppressor cells and release effector lymphocyte responses. Mol Cancer Ther 2015; 14:1181-91. [PMID: 25761894 DOI: 10.1158/1535-7163.mct-14-0849] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 02/17/2015] [Indexed: 11/16/2022]
Abstract
Immune escape mechanisms promote tumor progression and are hurdles of cancer immunotherapy. Removing immunosuppressive cells before treatment can enhance efficacy. Tyrosine kinase inhibitors (TKI) may be of interest to combine with immunotherapy, as it has been shown that the inhibitor sunitinib reduces myeloid suppressor cells in patients with renal cell carcinoma and dasatinib promotes expansion of natural killer-like lymphocytes in chronic myeloid leukemia (CML). In this study, the capacity of dasatinib and imatinib to reduce myeloid suppressor cells and to induce immunomodulation in vivo was investigated ex vivo. Samples from CML patients treated with imatinib (n = 18) or dasatinib (n = 14) within a Nordic clinical trial (clinicalTrials.gov identifier: NCT00852566) were investigated for the presence of CD11b(+)CD14(-)CD33(+) myeloid cells and inhibitory molecules (arginase I, myeloperoxidase, IL10) as well as the presence of natural killer cells, T cells (naïve/memory), and stimulatory cytokines (IL12, IFNγ, MIG, IP10). Both imatinib and dasatinib decreased the presence of CD11b(+)CD14(-)CD33(+) myeloid cells as well as the inhibitory molecules and the remaining myeloid suppressor cells had an increased CD40 expression. Monocytes also increased CD40 after therapy. Moreover, increased levels of CD40, IL12, natural killer cells, and experienced T cells were noted after TKI initiation. The presence of experienced T cells was correlated to a higher IFNγ and MIG plasma concentration. Taken together, the results demonstrate that both imatinib and dasatinib tilted the immunosuppressive CML tumor milieu towards promoting immune stimulation. Hence, imatinib and dasatinib may be of interest to combine with cancer immunotherapy.
Collapse
Affiliation(s)
- Lisa Christiansson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Stina Söderlund
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden. Section of Hematology, Uppsala University Hospital, Uppsala, Sweden
| | - Sara Mangsbo
- Department of Immunology, Genetics and Pathology, Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Henrik Hjorth-Hansen
- Department of Hematology, St. Olav's Hospital, Trondheim, Norway. Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU) Trondheim, Norway
| | - Martin Höglund
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden. Section of Hematology, Uppsala University Hospital, Uppsala, Sweden
| | - Berit Markevärn
- Department of Hematology, Norrland University Hospital, Umeå, Sweden
| | - Johan Richter
- Department of Hematology and Coagulation, Skåne University Hospital, Lund, Sweden
| | - Leif Stenke
- Department of Hematology, Karolinska University Hospital and Karolinska Institute, Stockholm, Sweden
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, Department of Medicine, Division of Hematology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Angelica Loskog
- Department of Immunology, Genetics and Pathology, Science for Life Laboratories, Uppsala University, Uppsala, Sweden.
| | - Ulla Olsson-Strömberg
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden. Section of Hematology, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
41
|
OuYang LY, Wu XJ, Ye SB, Zhang RX, Li ZL, Liao W, Pan ZZ, Zheng LM, Zhang XS, Wang Z, Li Q, Ma G, Li J. Tumor-induced myeloid-derived suppressor cells promote tumor progression through oxidative metabolism in human colorectal cancer. J Transl Med 2015; 13:47. [PMID: 25638150 PMCID: PMC4357065 DOI: 10.1186/s12967-015-0410-7] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 01/17/2015] [Indexed: 12/22/2022] Open
Abstract
Background Expansions of myeloid-derived suppressor cells (MDSCs) have been identified in human solid tumors, including colorectal cancer (CRC). However, the nature of these tumor-associated MDSCs and their interactions with tumor cells in CRC are still poorly understood. Methods The percentages and phenotype of MDSCs in peripheral blood and tumorous and paraneoplastic tissues from CRC patients, as well as the clinical relevance of these MDSCs, were assessed. Age-matched healthy donors were included as controls. The interaction between MDSCs and T cells or tumor cells was investigated in a coculture system in vitro, and the molecular mechanism of the effect of MDSCs on T cells or tumor cells was evaluated. Results We discovered that CRC patients had elevated levels of CD33+CD11b+HLA-DR− MDSCs in primary tumor tissues and in peripheral blood, and the elevated circulating MDSCs were correlated with advanced TNM stages and lymph node metastases. Radical resection significantly decreases the proportions of circulating MDSCs and CD4+CD25highFOXP3+ regulatory T cells. In vitro, CRC cells mediate the promotion of MDSC induction. Moreover, these tumor-induced MDSCs could suppress T cell proliferation and promote CRC cell growth via cell-to-cell contact. Such effects could be abolished by the inhibition of oxidative metabolism, including the production of nitric oxide (NO), and reactive oxygen species (ROS). Conclusions Our results reveal the functional interdependence between MDSCs, T cells and cancer cells in CRC pathogenesis. Understanding the impact of MDSCs on T cells and tumor cells will be helpful to establish an immunotherapeutic strategy in CRC patients. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0410-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li-Ying OuYang
- State Key Laboratory of Oncology in South China, 651 Dongfeng East Road, Guangzhou, 510060, China. .,Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng East Road, Guangzhou, 510060, China. .,Intensive Care Unit Department, 651 Dongfeng East Road, Guangzhou, 510060, China.
| | - Xiao-Jun Wu
- State Key Laboratory of Oncology in South China, 651 Dongfeng East Road, Guangzhou, 510060, China. .,Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng East Road, Guangzhou, 510060, China. .,Department of Colorectal Surgery, 651 Dongfeng East Road, Guangzhou, 510060, China.
| | - Shu-Biao Ye
- State Key Laboratory of Oncology in South China, 651 Dongfeng East Road, Guangzhou, 510060, China. .,Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng East Road, Guangzhou, 510060, China. .,Department of Biotherapy, 651 Dongfeng East Road, Guangzhou, 510060, China.
| | - Rong-Xin Zhang
- State Key Laboratory of Oncology in South China, 651 Dongfeng East Road, Guangzhou, 510060, China. .,Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng East Road, Guangzhou, 510060, China. .,Department of Colorectal Surgery, 651 Dongfeng East Road, Guangzhou, 510060, China.
| | - Ze-Lei Li
- State Key Laboratory of Oncology in South China, 651 Dongfeng East Road, Guangzhou, 510060, China. .,Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng East Road, Guangzhou, 510060, China. .,Department of Biotherapy, 651 Dongfeng East Road, Guangzhou, 510060, China.
| | - Wei Liao
- State Key Laboratory of Oncology in South China, 651 Dongfeng East Road, Guangzhou, 510060, China. .,Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng East Road, Guangzhou, 510060, China. .,Intensive Care Unit Department, 651 Dongfeng East Road, Guangzhou, 510060, China.
| | - Zhi-Zhong Pan
- State Key Laboratory of Oncology in South China, 651 Dongfeng East Road, Guangzhou, 510060, China. .,Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng East Road, Guangzhou, 510060, China. .,Department of Colorectal Surgery, 651 Dongfeng East Road, Guangzhou, 510060, China.
| | - Li-Min Zheng
- State Key Laboratory of Oncology in South China, 651 Dongfeng East Road, Guangzhou, 510060, China. .,Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng East Road, Guangzhou, 510060, China. .,Department of Biotherapy, 651 Dongfeng East Road, Guangzhou, 510060, China.
| | - Xiao-Shi Zhang
- State Key Laboratory of Oncology in South China, 651 Dongfeng East Road, Guangzhou, 510060, China. .,Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng East Road, Guangzhou, 510060, China. .,Department of Biotherapy, 651 Dongfeng East Road, Guangzhou, 510060, China.
| | - Zhong Wang
- School of Pharmaceutical Sciences, 651 Dongfeng East Road, Guangzhou, 510060, China. .,Center for Cellular and Structural Biology, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China.
| | - Qing Li
- School of Pharmaceutical Sciences, 651 Dongfeng East Road, Guangzhou, 510060, China. .,Center for Cellular and Structural Biology, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China.
| | - Gang Ma
- State Key Laboratory of Oncology in South China, 651 Dongfeng East Road, Guangzhou, 510060, China. .,Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng East Road, Guangzhou, 510060, China. .,Intensive Care Unit Department, 651 Dongfeng East Road, Guangzhou, 510060, China.
| | - Jiang Li
- State Key Laboratory of Oncology in South China, 651 Dongfeng East Road, Guangzhou, 510060, China. .,Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng East Road, Guangzhou, 510060, China. .,Department of Biotherapy, 651 Dongfeng East Road, Guangzhou, 510060, China.
| |
Collapse
|
42
|
Abstract
It is rapidly becoming evident that the formation of tumor-promoting pre-metastatic niches in secondary organs adds a previously unrecognized degree of complexity to the challenge of curing metastatic disease. Primary tumor cells orchestrate pre-metastatic niche formation through secretion of a variety of cytokines and growth factors that promote mobilization and recruitment of bone marrow-derived cells to future metastatic sites. Hypoxia within the primary tumor, and secretion of specific microvesicles termed exosomes, are emerging as important processes and vehicles for tumor-derived factors to modulate pre-metastatic sites. It has also come to light that reduced immune surveillance is a novel mechanism through which primary tumors create favorable niches in secondary organs. This review provides an overview of our current understanding of underlying mechanisms of pre-metastatic niche formation and highlights the common links as well as discrepancies between independent studies. Furthermore, the possible clinical implications, links to metastatic persistence and dormancy, and novel approaches for treatment of metastatic disease through reversal of pre-metastatic niche formation are identified and explored.
Collapse
|
43
|
Goh C, Narayanan S, Hahn YS. Myeloid-derived suppressor cells: the dark knight or the joker in viral infections? Immunol Rev 2014; 255:210-21. [PMID: 23947357 DOI: 10.1111/imr.12084] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Myeloid derived suppressor cells (MDSCs) are immature cells of myeloid origin, frequently found in tumor microenvironments and in the blood of cancer patients. In recent years, MDSCs have also been found in non-cancer settings, including a number of viral infections. The evasion of host immunity employed by viruses to establish viral persistence strikingly parallels mechanisms of tumor escape, prompting investigations into the generation and function of MDSCs in chronic viral infections. Importantly, analogous to the tumor microenvironment, MDSCs effectively suppress antiviral host immunity by limiting the function of several immune cells including T cells, natural killer cells, and antigen-presenting cells. In this article, we review studies on the mechanisms of MDSC generation, accumulation, and survival in an effort to understand their emergent importance in viral infections. We include a growing list of viral infections in which MDSCs have been reported. Finally, we discuss how MDSCs might play a role in establishing chronic viral infections and identify potential therapeutics that target MDSCs.
Collapse
Affiliation(s)
- Celeste Goh
- Department of Microbiology, Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
44
|
Sunthamala N, Pientong C, Ohno T, Zhang C, Bhingare A, Kondo Y, Azuma M, Ekalaksananan T. HPV16 E2 protein promotes innate immunity by modulating immunosuppressive status. Biochem Biophys Res Commun 2014; 446:977-82. [DOI: 10.1016/j.bbrc.2014.03.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 03/11/2014] [Indexed: 12/19/2022]
|
45
|
Spallanzani RG, Dalotto-Moreno T, Raffo Iraolagoitia XL, Ziblat A, Domaica CI, Avila DE, Rossi LE, Fuertes MB, Battistone MA, Rabinovich GA, Salatino M, Zwirner NW. Expansion of CD11b(+)Ly6G (+)Ly6C (int) cells driven by medroxyprogesterone acetate in mice bearing breast tumors restrains NK cell effector functions. Cancer Immunol Immunother 2013; 62:1781-95. [PMID: 24114144 PMCID: PMC11028897 DOI: 10.1007/s00262-013-1483-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 10/01/2013] [Indexed: 12/13/2022]
Abstract
The progesterone analog medroxyprogesterone acetate (MPA) is widely used as a hormone replacement therapy in postmenopausal women and as contraceptive. However, prolonged administration of MPA is associated with increased incidence of breast cancer through ill-defined mechanisms. Here, we explored whether exposure to MPA during mammary tumor growth affects myeloid-derived suppressor cells (MDSCs; CD11b(+)Gr-1(+), mostly CD11b(+)Ly6G(+)Ly6C(int) and CD11b(+)Ly6G(-)Ly6C(high) cells) and natural killer (NK) cells, potentially restraining tumor immunosurveillance. We used the highly metastatic 4T1 breast tumor (which does not express the classical progesterone receptor and expands MDSCs) to challenge BALB/c mice in the absence or in the presence of MPA. We observed that MPA promoted the accumulation of NK cells in spleens of tumor-bearing mice, but with reduced degranulation ability and in vivo cytotoxic activity. Simultaneously, MPA induced a preferential expansion of CD11b(+)Ly6G(+)Ly6C(int) cells in spleen and bone marrow of 4T1 tumor-bearing mice. In vitro, MPA promoted nuclear mobilization of the glucocorticoid receptor (GR) in 4T1 cells and endowed these cells with the ability to promote a preferential differentiation of bone marrow cells into CD11b(+)Ly6G(+)Ly6C(int) cells that displayed suppressive activity on NK cell degranulation. Sorted CD11b(+)Gr-1(+) cells from MPA-treated tumor-bearing mice exhibited higher suppressive activity on NK cell degranulation than CD11b(+)Gr-1(+) cells from vehicle-treated tumor-bearing mice. Thus, MPA, acting through the GR, endows tumor cells with an enhanced capacity to expand CD11b(+)Ly6G(+)Ly6C(int) cells that subsequently display a stronger suppression of NK cell-mediated anti-tumor immunity. Our results describe an alternative mechanism by which MPA may affect immunosurveillance and have potential implication in breast cancer incidence.
Collapse
MESH Headings
- Animals
- Antigens, Ly/immunology
- Antigens, Ly/metabolism
- Antineoplastic Agents, Hormonal/pharmacology
- Blotting, Western
- Breast Neoplasms/drug therapy
- Breast Neoplasms/immunology
- Breast Neoplasms/pathology
- CD11b Antigen/immunology
- CD11b Antigen/metabolism
- Cell Differentiation
- Cell Proliferation
- Cytotoxicity, Immunologic
- Female
- Flow Cytometry
- Fluorescent Antibody Technique
- Humans
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Medroxyprogesterone Acetate/pharmacology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Myeloid Cells/drug effects
- Myeloid Cells/immunology
- Myeloid Cells/metabolism
- Receptors, Glucocorticoid/metabolism
- STAT3 Transcription Factor/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Raúl Germán Spallanzani
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN Ciudad de Buenos Aires, Argentina
| | | | - Ximena Lucía Raffo Iraolagoitia
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN Ciudad de Buenos Aires, Argentina
| | - Andrea Ziblat
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN Ciudad de Buenos Aires, Argentina
| | - Carolina Inés Domaica
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN Ciudad de Buenos Aires, Argentina
| | - Damián Ezequiel Avila
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN Ciudad de Buenos Aires, Argentina
- Cátedra de Inmunología, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Lucas Ezequiel Rossi
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN Ciudad de Buenos Aires, Argentina
| | - Mercedes Beatriz Fuertes
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN Ciudad de Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | | | - Gabriel Adrián Rabinovich
- Laboratorio de Inmunopatología, IBYME, CONICET, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Mariana Salatino
- Laboratorio de Inmunopatología, IBYME, CONICET, Buenos Aires, Argentina
| | - Norberto Walter Zwirner
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN Ciudad de Buenos Aires, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, UBA, Buenos Aires, Argentina
| |
Collapse
|
46
|
Gujar SA, Clements D, Dielschneider R, Helson E, Marcato P, Lee PWK. Gemcitabine enhances the efficacy of reovirus-based oncotherapy through anti-tumour immunological mechanisms. Br J Cancer 2013; 110:83-93. [PMID: 24281006 PMCID: PMC3887295 DOI: 10.1038/bjc.2013.695] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/08/2013] [Accepted: 10/09/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Reovirus preferentially infects and kills cancer cells and is currently undergoing clinical trials internationally. While oncolysis is the primary mode of tumour elimination, increasing evidence illustrates that reovirus additionally stimulates anti-tumour immunity with a capacity to target existing and possibly relapsing cancer cells. These virus-induced anti-tumour immune activities largely determine the efficacy of oncotherapy. On the other hand, anti-viral immune responses can negatively affect oncotherapy. Hence, the strategic management of anti-tumour and anti-viral immune responses through complementary therapeutics is crucial to achieve the maximum anti-cancer benefits of oncotherapy. METHODS Intra-peritoneal injection of mouse ovarian surface epithelial cells (ID8 cells) into wild-type C57BL/6 mice was treated with a therapeutic regimen of reovirus and/or gemcitabine and then analysed for prolonged survival, disease pathology, and various immunological parameters. Furthermore, in vitro analyses were conducted to assess apoptosis, viral spread, and viral production during reovirus and/or gemcitabine treatment. RESULTS We demonstrate that reovirus and gemcitabine combination treatment postpones peritoneal carcinomatosis development and prolongs the survival of cancer-bearing hosts. Importantly, these anti-cancer benefits are generated through various immunological mechanisms, including: (1) inhibition of myeloid-derived suppressor cells recruitment to the tumour microenvironment, (2) downmodulation of pro-MDSC factors, and (3) accelerated development of anti-tumour T-cell responses. CONCLUSION The complementation of reovirus with gemcitabine further potentiates virus-initiated anti-cancer immunity and enhances the efficacy of oncotherapy. In the context of ongoing clinical trials, our findings represent clinically relevant information capable of enhancing cancer outcomes.
Collapse
Affiliation(s)
- S A Gujar
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - D Clements
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - R Dielschneider
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - E Helson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - P Marcato
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - P W K Lee
- 1] Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada [2] Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|