1
|
Inoue Y, Kaku Y, Harada M, Ishijima K, Kuroda Y, Tatemoto K, Virhuez-Mendoza M, Nishino A, Yamamoto T, Park ES, Inoue S, Matsuu A, Maeda K. Establishment of serological neutralizing tests using pseudotyped viruses for comprehensive detection of antibodies against all 18 lyssaviruses. J Vet Med Sci 2024; 86:128-134. [PMID: 38092389 PMCID: PMC10849863 DOI: 10.1292/jvms.23-0463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 11/18/2023] [Indexed: 01/30/2024] Open
Abstract
Rabies is a fatal zoonotic, neurological disease caused by rabies lyssavirus (RABV) and other lyssaviruses. In this study, we established novel serological neutralizing tests (NT) based on vesicular stomatitis virus pseudotypes possessing all 18 known lyssavirus glycoproteins. Applying this system to comparative NT against rabbit sera immunized with current RABV vaccines, we showed that the current RABV vaccines fail to elicit sufficient neutralizing antibodies against lyssaviruses other than to those in phylogroup I. Furthermore, comparative NT against rabbit antisera for 18 lyssavirus glycoproteins showed glycoproteins of some lyssaviruses elicited neutralizing antibodies against a broad range of lyssaviruses. This novel testing system will be useful to comprehensively detect antibodies against lyssaviruses and evaluate their cross-reactivities for developing a future broad-protective vaccine.
Collapse
Affiliation(s)
- Yusuke Inoue
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshihiro Kaku
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Michiko Harada
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Keita Ishijima
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yudai Kuroda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kango Tatemoto
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Ayano Nishino
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tsukasa Yamamoto
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Eun-Sil Park
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Satoshi Inoue
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Aya Matsuu
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ken Maeda
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
2
|
Sabeta CT, Marston DA, McElhinney LM, Horton DL, Phahladira BMN, Fooks AR. Rabies in the African Civet: An Incidental Host for Lyssaviruses? Viruses 2020; 12:E368. [PMID: 32230744 PMCID: PMC7232503 DOI: 10.3390/v12040368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/16/2022] Open
Abstract
In South Africa, canid rabies virus (RABV) infection is maintained in domestic and wildlife species. The identification of rabies in African civets raised the question of whether this wildlife carnivore is a potential reservoir host of RABVs of direct and ancestral dog origin (dog-maintained and dog-derived origins) with an independent cycle of transmission. Genetic analyses of African civet nucleoprotein sequences for 23 African civet RABVs and historically published sequences demonstrated that RABVs from African civets have two origins related to dog and mongoose rabies enzootics. The data support observations of the interaction of civets with domestic dogs and wildlife mongooses, mostly in Northern South Africa and North-East Zimbabwe. Within each host species clade, African civet RABVs group exclusively together, implying intra-species virus transfer occurs readily. The canid RABV clade appears to support virus transfer more readily between hosts than mongoose RABVs. Furthermore, these data probably indicate short transmission chains with conspecifics that may be related to transient rabies maintenance in African civets. Hence, it is important to continue monitoring the emergence of lyssaviruses in this host. Observations from this study are supported by ongoing and independent similar cases, in which bat-eared foxes and black-backed jackal species maintain independent rabies cycles of what were once dog-maintained RABVs.
Collapse
Affiliation(s)
- Claude T. Sabeta
- Agricultural Research Council, Onderstepoort Veterinary Institute, OIE Rabies Reference Laboratory, Pretoria 0110, South Africa;
- Department of Veterinary Tropical Diseases, University of Pretoria, Faculty of Veterinary Sciences, Onderstepoort, Pretoria 0110, South Africa
| | - Denise A. Marston
- OIE Rabies Reference Laboratory, Wildlife Zoonoses and Vector Borne Diseases Research Group, Animal and Plant Health Agency (APHA, Weybridge), Surrey KT15 3NB, UK; (D.A.M.); (L.M.M.); (A.R.F.)
| | - Lorraine M. McElhinney
- OIE Rabies Reference Laboratory, Wildlife Zoonoses and Vector Borne Diseases Research Group, Animal and Plant Health Agency (APHA, Weybridge), Surrey KT15 3NB, UK; (D.A.M.); (L.M.M.); (A.R.F.)
- Institute of Infection and Global Health, University of Liverpool, Liverpool L7 3EA, UK
| | - Daniel L. Horton
- School of Veterinary Medicine, University of Surrey, Guildford GU2 7XH, UK;
| | - Baby M. N. Phahladira
- Agricultural Research Council, Onderstepoort Veterinary Institute, OIE Rabies Reference Laboratory, Pretoria 0110, South Africa;
| | - Anthony R. Fooks
- OIE Rabies Reference Laboratory, Wildlife Zoonoses and Vector Borne Diseases Research Group, Animal and Plant Health Agency (APHA, Weybridge), Surrey KT15 3NB, UK; (D.A.M.); (L.M.M.); (A.R.F.)
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3GB, UK
- Institute for Infection and Immunity, St. George’s University of London, London SW17 0RE, UK
| |
Collapse
|
3
|
Identification and genetic characterization of a novel Orthobunyavirus species by a straightforward high-throughput sequencing-based approach. Sci Rep 2019; 9:3398. [PMID: 30833612 PMCID: PMC6399452 DOI: 10.1038/s41598-019-40036-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/07/2019] [Indexed: 12/04/2022] Open
Abstract
Identification and characterization of novel unknown viruses is of great importance. The introduction of high-throughput sequencing (HTS)-based methods has paved the way for genomics-based detection of pathogens without any prior assumptions about the characteristics of the organisms. However, the use of HTS for the characterization of viral pathogens from clinical samples remains limited. Here, we report the identification of a novel Orthobunyavirus species isolated from horse plasma. The identification was based on a straightforward HTS approach. Following enrichment in cell culture, RNA was extracted from the growth medium and rapid library preparation, HTS and primary bioinformatic analyses were performed in less than 12 hours. Taxonomical profiling of the sequencing reads did not reveal sequence similarities to any known virus. Subsequent application of de novo assembly tools to the sequencing reads produced contigs, of which three showed some similarity to the L, M, and S segments of viruses belonging to the Orthobunyavirus genus. Further refinement of these contigs resulted in high-quality, full-length genomic sequences of the three genomic segments (L, M and S) of a novel Orthobunyavirus. Characterization of the genomic sequence, including the prediction of open reading frames and the inspection of consensus genomic termini and phylogenetic analysis, further confirmed that the novel virus is indeed a new species, which we named Ness Ziona virus.
Collapse
|
4
|
Khan AS, Benetti L, Blumel J, Deforce D, Egan WM, Knezevic I, Krause PR, Mallet L, Mayer D, Minor PD, Neels P, Wang G. Report of the international conference on next generation sequencing for adventitious virus detection in biologicals. Biologicals 2018; 55:1-16. [DOI: 10.1016/j.biologicals.2018.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/02/2018] [Indexed: 01/06/2023] Open
|
5
|
Hayman DTS, Fooks AR, Marston DA, Garcia-R JC. The Global Phylogeography of Lyssaviruses - Challenging the 'Out of Africa' Hypothesis. PLoS Negl Trop Dis 2016; 10:e0005266. [PMID: 28036390 PMCID: PMC5231386 DOI: 10.1371/journal.pntd.0005266] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 01/12/2017] [Accepted: 12/15/2016] [Indexed: 12/18/2022] Open
Abstract
Rabies virus kills tens of thousands of people globally each year, especially in resource-limited countries. Yet, there are genetically- and antigenically-related lyssaviruses, all capable of causing the disease rabies, circulating globally among bats without causing conspicuous disease outbreaks. The species richness and greater genetic diversity of African lyssaviruses, along with the lack of antibody cross-reactivity among them, has led to the hypothesis that Africa is the origin of lyssaviruses. This hypothesis was tested using a probabilistic phylogeographical approach. The nucleoprotein gene sequences from 153 representatives of 16 lyssavirus species, collected between 1956 and 2015, were used to develop a phylogenetic tree which incorporated relevant geographic and temporal data relating to the viruses. In addition, complete genome sequences from all 16 (putative) species were analysed. The most probable ancestral distribution for the internal nodes was inferred using three different approaches and was confirmed by analysis of complete genomes. These results support a Palearctic origin for lyssaviruses (posterior probability = 0.85), challenging the ‘out of Africa’ hypothesis, and suggest three independent transmission events to the Afrotropical region, representing the three phylogroups that form the three major lyssavirus clades. Rabies virus kills tens of thousands of people globally each year and causes indescribable misery and family disturbance, especially in developing countries. Yet in much of the world there are related viruses, called lyssaviruses, which circulate among bats without causing conspicuous outbreaks. The greater diversity of African lyssaviruses has led to the hypothesis that Africa is the origin of these viruses. To test this hypothesis, the genetic data from 153 representative viruses from 16 available lyssavirus species from across the world dated between 1956 and 2015 were analysed. Statistical models were used to reconstruct the historical processes that lead to the contemporary distribution of these viruses. Our results support a Palearctic origin for lyssaviruses, not Afrotropic, and suggest three independent transmission events to Africa from the Palearctic region.
Collapse
Affiliation(s)
- David T. S. Hayman
- Molecular Epidemiology and Public Health Laboratory, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
- * E-mail: ,
| | - Anthony R. Fooks
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), Weybridge-London, United Kingdom
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Denise A. Marston
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), Weybridge-London, United Kingdom
| | - Juan C. Garcia-R
- Molecular Epidemiology and Public Health Laboratory, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
6
|
Medeiros R, Jusot V, Houillon G, Rasuli A, Martorelli L, Kataoka AP, Mechlia MB, Le Guern AS, Rodrigues L, Assef R, Maestri A, Lima R, Rotivel Y, Bosch-Castells V, Tordo N. Persistence of Rabies Virus-Neutralizing Antibodies after Vaccination of Rural Population following Vampire Bat Rabies Outbreak in Brazil. PLoS Negl Trop Dis 2016; 10:e0004920. [PMID: 27653947 PMCID: PMC5031405 DOI: 10.1371/journal.pntd.0004920] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 07/22/2016] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Animal control measures in Latin America have decreased the incidence of urban human rabies transmitted by dogs and cats; currently most cases of human rabies are transmitted by bats. In 2004-2005, rabies outbreaks in populations living in rural Brazil prompted widespread vaccination of exposed and at-risk populations. More than 3,500 inhabitants of Augusto Correa (Pará State) received either post-exposure (PEP) or pre-exposure (PrEP) prophylaxis. This study evaluated the persistence of rabies virus-neutralizing antibodies (RVNA) annually for 4 years post-vaccination. The aim was to evaluate the impact of rabies PrEP and PEP in a population at risk living in a rural setting to help improve management of vampire bat exposure and provide additional data on the need for booster vaccination against rabies. METHODOLOGY/PRINCIPAL FINDINGS This prospective study was conducted in 2007 through 2009 in a population previously vaccinated in 2005; study participants were followed-up annually. An RVNA titer >0.5 International Units (IU)/mL was chosen as the threshold of seroconversion. Participants with titers ≤0.5 IU/mL or Equivalent Units (EU)/mL at enrollment or at subsequent annual visits received booster doses of purified Vero cell rabies vaccine (PVRV). Adherence of the participants from this Amazonian community to the study protocol was excellent, with 428 of the 509 (84%) who attended the first interview in 2007 returning for the final visit in 2009. The long-term RVNA persistence was good, with 85-88.0% of the non-boosted participants evaluated at each yearly follow-up visit remaining seroconverted. Similar RVNA persistence profiles were observed in participants originally given PEP or PrEP in 2005, and the GMT of the study population remained >1 IU/mL 4 years after vaccination. At the end of the study, 51 subjects (11.9% of the interviewed population) had received at least one dose of booster since their vaccination in 2005. CONCLUSIONS/SIGNIFICANCE This study and the events preceding it underscore the need for the health authorities in rabies enzootic countries to decide on the best strategies and timing for the introduction of routine rabies PrEP vaccination in affected areas.
Collapse
Affiliation(s)
- Rita Medeiros
- Universidade Federal do Pará e Instituto Evandro Chagas, Belém-Pará, Brasil
| | | | | | | | | | | | | | | | - Liliam Rodrigues
- Universidade Federal do Pará e Instituto Evandro Chagas, Belém-Pará, Brasil
| | - Rhomero Assef
- Universidade Federal do Pará e Instituto Evandro Chagas, Belém-Pará, Brasil
| | - Alvino Maestri
- Universidade Federal do Pará e Instituto Evandro Chagas, Belém-Pará, Brasil
| | | | | | | | - Noël Tordo
- Institut Pasteur, Paris, France
- Secretaria de Saude do Estado do Pará, Brasil
- Institut Pasteur de Guinée, Gamal Abdel Nasser University, Conakry, Guinea
| |
Collapse
|
7
|
Abstract
Issyk-Kul virus (ISKV) is an ungrouped virus tentatively assigned to the Bunyaviridae family and is associated with an acute febrile illness in several central Asian countries. Using next-generation sequencing technologies, we report here the full-genome sequence for this novel unclassified arboviral pathogen circulating in central Asia.
Collapse
|
8
|
Lyssaviruses and bats: emergence and zoonotic threat. Viruses 2014; 6:2974-90. [PMID: 25093425 PMCID: PMC4147683 DOI: 10.3390/v6082974] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 12/25/2022] Open
Abstract
The continued detection of zoonotic viral infections in bats has led to the microbial fauna of these mammals being studied at a greater level than ever before. Whilst numerous pathogens have been discovered in bat species, infection with lyssaviruses is of particular significance from a zoonotic perspective as, where human infection has been reported, it is invariably fatal. Here we review the detection of lyssaviruses within different bat species and overview what is understood regarding their maintenance and transmission following both experimental and natural infection. We discuss the relevance of these pathogens as zoonotic agents and the threat of newly discovered viruses to human populations.
Collapse
|
9
|
Horton DL, Banyard AC, Marston DA, Wise E, Selden D, Nunez A, Hicks D, Lembo T, Cleaveland S, Peel AJ, Kuzmin IV, Rupprecht CE, Fooks AR. Antigenic and genetic characterization of a divergent African virus, Ikoma lyssavirus. J Gen Virol 2014; 95:1025-1032. [PMID: 24496827 PMCID: PMC3983756 DOI: 10.1099/vir.0.061952-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In 2009, a novel lyssavirus (subsequently named Ikoma lyssavirus, IKOV) was detected in the brain of an African civet (Civettictis civetta) with clinical rabies in the Serengeti National Park of Tanzania. The degree of nucleotide divergence between the genome of IKOV and those of other lyssaviruses predicted antigenic distinction from, and lack of protection provided by, available rabies vaccines. In addition, the index case was considered likely to be an incidental spillover event, and therefore the true reservoir of IKOV remained to be identified. The advent of sensitive molecular techniques has led to a rapid increase in the discovery of novel viruses. Detecting viral sequence alone, however, only allows for prediction of phenotypic characteristics and not their measurement. In the present study we describe the in vitro and in vivo characterization of IKOV, demonstrating that it is (1) pathogenic by peripheral inoculation in an animal model, (2) antigenically distinct from current rabies vaccine strains and (3) poorly neutralized by sera from humans and animals immunized against rabies. In a laboratory mouse model, no protection was elicited by a licensed rabies vaccine. We also investigated the role of bats as reservoirs of IKOV. We found no evidence for infection among 483 individuals of at least 13 bat species sampled across sites in the Serengeti and Southern Kenya.
Collapse
Affiliation(s)
- Daniel L Horton
- Animal Health and Veterinary Laboratories Agency (AHVLA), Weybridge, UK
| | - Ashley C Banyard
- Animal Health and Veterinary Laboratories Agency (AHVLA), Weybridge, UK
| | - Denise A Marston
- Animal Health and Veterinary Laboratories Agency (AHVLA), Weybridge, UK
| | - Emma Wise
- Animal Health and Veterinary Laboratories Agency (AHVLA), Weybridge, UK
| | - David Selden
- Animal Health and Veterinary Laboratories Agency (AHVLA), Weybridge, UK
| | - Alejandro Nunez
- Animal Health and Veterinary Laboratories Agency (AHVLA), Weybridge, UK
| | - Daniel Hicks
- Animal Health and Veterinary Laboratories Agency (AHVLA), Weybridge, UK
| | - Tiziana Lembo
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Sarah Cleaveland
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Alison J Peel
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, UK
| | - Ivan V Kuzmin
- Global Alliance for Rabies Control, Manhattan, KS, USA
| | - Charles E Rupprecht
- Ross University School of Veterinary Medicine, St Kitts.,Global Alliance for Rabies Control, Manhattan, KS, USA
| | - Anthony R Fooks
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK.,Animal Health and Veterinary Laboratories Agency (AHVLA), Weybridge, UK
| |
Collapse
|
10
|
Marston DA, McElhinney LM, Ellis RJ, Horton DL, Wise EL, Leech SL, David D, de Lamballerie X, Fooks AR. Next generation sequencing of viral RNA genomes. BMC Genomics 2013; 14:444. [PMID: 23822119 PMCID: PMC3708773 DOI: 10.1186/1471-2164-14-444] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/25/2013] [Indexed: 12/16/2022] Open
Abstract
Background With the advent of Next Generation Sequencing (NGS) technologies, the ability to generate large amounts of sequence data has revolutionized the genomics field. Most RNA viruses have relatively small genomes in comparison to other organisms and as such, would appear to be an obvious success story for the use of NGS technologies. However, due to the relatively low abundance of viral RNA in relation to host RNA, RNA viruses have proved relatively difficult to sequence using NGS technologies. Here we detail a simple, robust methodology, without the use of ultra-centrifugation, filtration or viral enrichment protocols, to prepare RNA from diagnostic clinical tissue samples, cell monolayers and tissue culture supernatant, for subsequent sequencing on the Roche 454 platform. Results As representative RNA viruses, full genome sequence was successfully obtained from known lyssaviruses belonging to recognized species and a novel lyssavirus species using these protocols and assembling the reads using de novo algorithms. Furthermore, genome sequences were generated from considerably less than 200 ng RNA, indicating that manufacturers’ minimum template guidance is conservative. In addition to obtaining genome consensus sequence, a high proportion of SNPs (Single Nucleotide Polymorphisms) were identified in the majority of samples analyzed. Conclusions The approaches reported clearly facilitate successful full genome lyssavirus sequencing and can be universally applied to discovering and obtaining consensus genome sequences of RNA viruses from a variety of sources.
Collapse
|
11
|
Genome sequences published outside of Standards in Genomic Sciences, October - November 2012. Stand Genomic Sci 2012. [PMCID: PMC3569392 DOI: 10.4056/sigs.3597227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The purpose of this table is to provide the community with a citable record of publications of ongoing genome sequencing projects that have led to a publication in the scientific literature. While our goal is to make the list complete, there is no guarantee that we may have omitted one or more publications appearing in this time frame. Readers and authors who wish to have publications added to subsequent versions of this list are invited to provide the bibliographic data for such references to the SIGS editorial office.
Collapse
|
12
|
Evans JS, Horton DL, Easton AJ, Fooks AR, Banyard AC. Rabies virus vaccines: is there a need for a pan-lyssavirus vaccine? Vaccine 2012; 30:7447-54. [PMID: 23084854 DOI: 10.1016/j.vaccine.2012.10.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/05/2012] [Accepted: 10/07/2012] [Indexed: 12/25/2022]
Abstract
All members of the lyssavirus genus are capable of causing disease that invariably results in death following the development of clinical symptoms. The recent detection of several novel lyssavirus species across the globe, in different animal species, has demonstrated that the lyssavirus genus contains a greater degree of genetic and antigenic variation than previously suspected. The divergence of species within the genus has led to a differentiation of lyssavirus isolates based on both antigenic and genetic data into two, and potentially a third phylogroup. Critically, from both a human and animal health perspective, current rabies vaccines appear able to protect against lyssaviruses classified within phylogroup I. However no protection is afforded against phylogroup II viruses or other more divergent viruses. Here we review current knowledge regarding the diversity and antigenicity of the lyssavirus glycoprotein. We review the degree of cross protection afforded by rabies vaccines, the genetic and antigenic divergence of the lyssaviruses and potential mechanisms for the development of novel lyssavirus vaccines for use in areas where divergent lyssaviruses are known to circulate, as well as for use by those at occupational risk from these pathogens.
Collapse
Affiliation(s)
- Jennifer S Evans
- Animal Health and Veterinary Laboratories Agency, Weybridge, Surrey, KT15 3NB, United Kingdom
| | | | | | | | | |
Collapse
|
13
|
Abstract
The purpose of this table is to provide the community with a citable record of publications of ongoing genome sequencing projects that have led to a publication in the scientific literature. While our goal is to make the list complete, there is no guarantee that we may have omitted one or more publications appearing in this time frame. Readers and authors who wish to have publications added to subsequent versions of this list are invited to provide the bibliographic data for such references to the SIGS editorial office.
Collapse
|
14
|
Abstract
The family Rhabdoviridae has a non-segmented single stranded negative-sense RNA and its genome ranges in size from approximately 11 kb to almost 16 kb. It is one of the most ecologically diverse families of RNA viruses with members infecting a wide range of organisms. The five structural protein genes are arranged in the same linear order (3'-N-P-M-G-L-5') and may be interspersed with one more additional accessory gene. For many years, a full of knowledge of the rhabdoviridae has been established on extensive studies of two kinds of prototype viruses; vesicular stomatitis virus (VSV) and rabies virus (RABV). Among them, the genus Lyssavirus includes RABV and rabies-related viruses naturally infect mammals and chiropterans via bite-exposure by rabid animals and finally cause fatal encephalitis. In this review, we describe the sketch of the various virological features of the Rhabdoviridae, especially focusing on VSV and RABV.
Collapse
|