1
|
Zhong LY, Xie C, Zhang LL, Yang YL, Liu YT, Zhao GX, Bu GL, Tian XS, Jiang ZY, Yuan BY, Li PL, Wu PH, Jia WH, Münz C, Gewurz BE, Zhong Q, Sun C, Zeng MS. Research landmarks on the 60th anniversary of Epstein-Barr virus. SCIENCE CHINA. LIFE SCIENCES 2025; 68:354-380. [PMID: 39505801 DOI: 10.1007/s11427-024-2766-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/15/2024] [Indexed: 11/08/2024]
Abstract
Epstein-Barr virus (EBV), the first human oncovirus discovered in 1964, has become a focal point in virology, immunology, and oncology because of its unique biological characteristics and significant role in human diseases. As we commemorate the 60th anniversary of EBV's discovery, it is an opportune moment to reflect on the major advancements in our understanding of this complex virus. In this review, we highlight key milestones in EBV research, including its virion structure and life cycle, interactions with the host immune system, association with EBV-associated diseases, and targeted intervention strategies.
Collapse
Affiliation(s)
- Lan-Yi Zhong
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Chu Xie
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Le-Le Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yan-Lin Yang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yuan-Tao Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Ge-Xin Zhao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Guo-Long Bu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xian-Shu Tian
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zi-Ying Jiang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Bo-Yu Yuan
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Peng-Lin Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Pei-Huang Wu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, 8092, Switzerland
| | - Benjamin E Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Program in Virology, Boston, MA, 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Cong Sun
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
2
|
Owens SM, Sifford JM, Li G, Murdock SJ, Salinas E, Oldenburg D, Ghosh D, Stumhofer JS, Nookaew I, Manzano M, Forrest JC. Intrinsic p53 activation restricts gammaherpesvirus driven germinal center B cell expansion during latency establishment. Nat Commun 2025; 16:951. [PMID: 39843898 PMCID: PMC11754798 DOI: 10.1038/s41467-025-56247-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/13/2025] [Indexed: 01/30/2025] Open
Abstract
Gammaherpesviruses are DNA tumor viruses that establish lifelong latent infections in lymphocytes. For viruses such as Epstein-Barr virus and murine gammaherpesvirus 68, this is accomplished through a viral gene-expression program that promotes cellular proliferation and differentiation, especially of germinal center B cells. Intrinsic host mechanisms that control virus-driven cellular expansion are incompletely defined. Using a small-animal model of gammaherpesvirus pathogenesis, we demonstrate in vivo that the tumor suppressor p53 is activated specifically in B cells latently infected by murine gammaherpesvirus 68. In the absence of p53, the early expansion of murine gammaherpesvirus 68 latency greatly increases, especially in germinal center B cells, a cell type whose proliferation is conversely restricted by p53. We identify the B cell-specific latency gene M2, a viral promoter of germinal center B cell differentiation, as a viral protein sufficient to elicit a p53-dependent anti-proliferative response caused by Src-family kinase activation. We further demonstrate that Epstein-Barr virus-encoded latent membrane protein 1 similarly triggers a p53 response in primary B cells. Our data highlight a model in which gammaherpesvirus latency gene-expression programs that promote B cell proliferation and differentiation to facilitate viral colonization of the host trigger aberrant cellular proliferation that is controlled by p53.
Collapse
Affiliation(s)
- Shana M Owens
- Dept. of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jeffrey M Sifford
- Dept. of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Gang Li
- Dept. of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Steven J Murdock
- Dept. of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Eduardo Salinas
- Dept. of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Debopam Ghosh
- Dept. of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jason S Stumhofer
- Dept. of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Intawat Nookaew
- Dept. of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Mark Manzano
- Dept. of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Inflammatory Responses, and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - J Craig Forrest
- Dept. of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Inflammatory Responses, and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
3
|
Zhu Q, Duan XB, Hu H, You R, Xia TL, Yu T, Xiang T, Chen MY. EBV-induced upregulation of CD55 reduces the efficacy of cetuximab treatment in nasopharyngeal carcinoma. J Transl Med 2024; 22:1111. [PMID: 39695702 DOI: 10.1186/s12967-024-05822-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 10/31/2024] [Indexed: 12/20/2024] Open
Abstract
Cetuximab, an anti-epidermal growth factor receptor (EGFR) antibody, has been shown to improve survival in nasopharyngeal carcinoma (NPC) patients. However, a correlation between the expression of EGFR and the response to cetuximab has not been observed, indicating that the mechanism underlying the effects of cetuximab needs to be further elucidated. The antitumour response involves immunotherapeutic mechanisms that target tumour-associated antigens, including complement-dependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity (ADCC), act either alone or, more often, in combination. However, EBV infected NPC cells often develop resistance mechanisms that allow them to evade immune surveillance. Here, we found that overexpression of the complement-regulated protein CD55 in EBV-associated NPC cells mainly suppresses ADCC activity thus reduces the efficacy of cetuximab. Mechanistically, EBV latent membrane protein 1 (LMP1) mediated upregulation of CD55 through the NF-κB signalling pathway. The present study provides a rationale for the development of CD55 inhibitors to improve the clinical efficacy of cetuximab in NPC.
Collapse
Affiliation(s)
- Qian Zhu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
- Department of Intensive Care Unit, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Bing Duan
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hao Hu
- General Hospital of Southern Theater Command, Department of Radiation Therapy, Guangzhou, China
| | - Rui You
- Nasopharyngeal Cancer Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Tian-Liang Xia
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Tao Yu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Tong Xiang
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Ming-Yuan Chen
- Nasopharyngeal Cancer Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China.
| |
Collapse
|
4
|
Heger JM, Mammadova L, Mattlener J, Sobesky S, Cirillo M, Altmüller J, Kirst E, Reinke S, Klapper W, Bröckelmann PJ, Ferdinandus J, Kaul H, Schneider G, Schneider J, Schleifenbaum JK, Ullrich RT, Freihammer M, Awerkiew S, Lohmann M, Klein F, Nürnberg P, Hallek M, Rossi D, Mauz-Körholz C, Gattenlöhner S, Bräuninger A, Borchmann P, von Tresckow B, Borchmann S. Circulating Tumor DNA Sequencing for Biologic Classification and Individualized Risk Stratification in Patients With Hodgkin Lymphoma. J Clin Oncol 2024; 42:4218-4230. [PMID: 39348625 DOI: 10.1200/jco.23.01867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 06/26/2024] [Accepted: 08/14/2024] [Indexed: 10/02/2024] Open
Abstract
PURPOSE Current clinical challenges in Hodgkin lymphoma (HL) include difficult-to-treat relapsed/refractory disease and considerable long-term toxicities of treatment. Since clinical risk factors lack discriminatory power, intensity of therapy is mainly based on tumor burden. Exploring HL genetics and tumor microenvironment (TME) might provide valuable insights for improved risk stratification. MATERIALS AND METHODS In this study, we applied circulating tumor DNA sequencing to 243 patients obtained from pivotal German Hodgkin Study Group trials to identify subtypes of HL. Independent validation of the subtypes was performed in 96 patients treated in the EuroNet-PHL-C2 study. Outcome differences of subtypes were assessed in an event-enriched clinical validation cohort comprising 72 patients from the HD21 trial, using a refined, validated, and clinically feasible assay. RESULTS We propose a biologic classification of HL consisting of three distinct subtypes: inflammatory immune escape HL is characterized by frequent copy-number variations including immune escape variants such as high-level amplifications of the PD-L1 locus and an inflammatory TME. Virally-driven HL is associated with Epstein-Barr virus and/or human herpesvirus 6 and an inflammatory TME with neutrophils and macrophages, while the tumor mutational burden (TMB) is low. Oncogene-driven HL is defined by a high TMB, recurrent mutations in oncogenic drivers such as TNFAIP3, ITPKB, and SOCS1, and a cold TME. A refined and validated assay version aiming at clinically feasible risk stratification showed significant progression-free survival differences between subtypes. In addition, assessment of minimal residual disease (MRD) allowed for the detection of patients at very high risk of relapse within the subtypes. CONCLUSION We propose a clinically feasible, noninvasive method for individualized risk stratification and MRD monitoring in patients with HL on the basis of circulating tumor DNA sequencing.
Collapse
Affiliation(s)
- Jan-Michel Heger
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
- Cancer Center Cologne Essen-Partner Site Cologne, CIO Cologne, University of Cologne, Cologne, Germany
- Cologne Lymphoma Working Group (CLWG), Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Laman Mammadova
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
- Cancer Center Cologne Essen-Partner Site Cologne, CIO Cologne, University of Cologne, Cologne, Germany
- German Hodgkin Study Group (GHSG), Cologne, Germany
| | - Julia Mattlener
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
- Cancer Center Cologne Essen-Partner Site Cologne, CIO Cologne, University of Cologne, Cologne, Germany
- German Hodgkin Study Group (GHSG), Cologne, Germany
| | - Sophia Sobesky
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
- Cancer Center Cologne Essen-Partner Site Cologne, CIO Cologne, University of Cologne, Cologne, Germany
- German Hodgkin Study Group (GHSG), Cologne, Germany
| | - Melita Cirillo
- University of Western Australia and Royal Perth Hospital, Perth, Australia
| | - Janine Altmüller
- West German Genome Center (WGGC), University of Cologne, Cologne, Germany
- Technology Platform Genomics, Berlin Institute of Health at Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Elisabeth Kirst
- West German Genome Center (WGGC), University of Cologne, Cologne, Germany
- Hematopathology Section and Lymph Node Registry, Department of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Sarah Reinke
- Hematopathology Section and Lymph Node Registry, Department of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Wolfram Klapper
- Hematopathology Section and Lymph Node Registry, Department of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Paul J Bröckelmann
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
- Cancer Center Cologne Essen-Partner Site Cologne, CIO Cologne, University of Cologne, Cologne, Germany
- Cologne Lymphoma Working Group (CLWG), Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
- German Hodgkin Study Group (GHSG), Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Justin Ferdinandus
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
- Cancer Center Cologne Essen-Partner Site Cologne, CIO Cologne, University of Cologne, Cologne, Germany
- German Hodgkin Study Group (GHSG), Cologne, Germany
| | - Helen Kaul
- German Hodgkin Study Group (GHSG), Cologne, Germany
| | | | - Jessica Schneider
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
- Cancer Center Cologne Essen-Partner Site Cologne, CIO Cologne, University of Cologne, Cologne, Germany
| | - Julia Katharina Schleifenbaum
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
- Cancer Center Cologne Essen-Partner Site Cologne, CIO Cologne, University of Cologne, Cologne, Germany
- Cologne Lymphoma Working Group (CLWG), Cologne, Germany
| | - Roland T Ullrich
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
- Cancer Center Cologne Essen-Partner Site Cologne, CIO Cologne, University of Cologne, Cologne, Germany
| | - Max Freihammer
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
- Cancer Center Cologne Essen-Partner Site Cologne, CIO Cologne, University of Cologne, Cologne, Germany
| | - Sabine Awerkiew
- Institute for Virology, University of Cologne, Cologne, Germany
| | - Mia Lohmann
- German Hodgkin Study Group (GHSG), Cologne, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University Duisburg-Essen, German Cancer Consortium (DKTK Partner Site Essen), Essen, Germany
- Cancer Center Cologne Essen-Partner Site Essen, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Florian Klein
- Institute for Virology, University of Cologne, Cologne, Germany
| | - Peter Nürnberg
- West German Genome Center (WGGC), University of Cologne, Cologne, Germany
| | - Michael Hallek
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
- Cancer Center Cologne Essen-Partner Site Cologne, CIO Cologne, University of Cologne, Cologne, Germany
| | - Davide Rossi
- Division of Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | - Christine Mauz-Körholz
- Pediatric Hematology, Oncology and Immunodeficiencies, Justus-Liebig University of Giessen, Giessen, Germany
- Medical Faculty of the Martin-Luther-University of Halle, Wittenberg, Halle, Germany
| | | | - Andreas Bräuninger
- Institute for Pathology, Justus Liebig University Giessen, Giessen, Germany
| | - Peter Borchmann
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
- Cancer Center Cologne Essen-Partner Site Cologne, CIO Cologne, University of Cologne, Cologne, Germany
- Cologne Lymphoma Working Group (CLWG), Cologne, Germany
- German Hodgkin Study Group (GHSG), Cologne, Germany
| | - Bastian von Tresckow
- German Hodgkin Study Group (GHSG), Cologne, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University Duisburg-Essen, German Cancer Consortium (DKTK Partner Site Essen), Essen, Germany
- Cancer Center Cologne Essen-Partner Site Essen, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sven Borchmann
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
- Cancer Center Cologne Essen-Partner Site Cologne, CIO Cologne, University of Cologne, Cologne, Germany
- Cologne Lymphoma Working Group (CLWG), Cologne, Germany
- German Hodgkin Study Group (GHSG), Cologne, Germany
| |
Collapse
|
5
|
Lin Z, Assaraf YG, Kwok HF. Peptides for microbe-induced cancers: latest therapeutic strategies and their advanced technologies. Cancer Metastasis Rev 2024; 43:1315-1336. [PMID: 39008152 DOI: 10.1007/s10555-024-10197-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/14/2024] [Indexed: 07/16/2024]
Abstract
Cancer is a significant global health concern associated with multiple distinct factors, including microbial and viral infections. Numerous studies have elucidated the role of microorganisms, such as Helicobacter pylori (H. pylori), as well as viruses for example human papillomavirus (HPV), hepatitis B virus (HBV), and hepatitis C virus (HCV), in the development of human malignancies. Substantial attention has been focused on the treatment of these microorganism- and virus-associated cancers, with promising outcomes observed in studies employing peptide-based therapies. The current paper provides an overview of microbe- and virus-induced cancers and their underlying molecular mechanisms. We discuss an assortment of peptide-based therapies which are currently being developed, including tumor-targeting peptides and microbial/viral peptide-based vaccines. We describe the major technological advancements that have been made in the design, screening, and delivery of peptides as anticancer agents. The primary focus of the current review is to provide insight into the latest research and development in this field and to provide a realistic glimpse into the future of peptide-based therapies for microbe- and virus-induced neoplasms.
Collapse
Affiliation(s)
- Ziqi Lin
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Lab, Faculty of Biology, Technion-Israel Instituteof Technology, Haifa, 3200003, Israel
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR.
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau SAR.
| |
Collapse
|
6
|
He F, Gong Y, Tao G, Zhang J, Wu Q, Tan Y, Cheng Y, Wang C, Yang J, Han L, Wang Z, Gao Y, He J, Bai R, Sun P, Yu X, Zhou Y, Xie C. Targeting the LMP1-ALIX axis in EBV + nasopharyngeal carcinoma inhibits immunosuppressive small extracellular vesicle secretion and boosts anti-tumor immunity. Cancer Commun (Lond) 2024; 44:1391-1413. [PMID: 39402748 DOI: 10.1002/cac2.12619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Immunotherapy has revolutionized the therapeutical regimen for nasopharyngeal carcinoma (NPC), yet its response rate remains insufficient. Programmed death-ligand 1 (PD-L1) on small extracellular vesicles (sEVs) mediates local and peripheral immunosuppression in tumors, and the mechanism of PD-L1 loading into these vesicles is garnering increasing attention. Latent membrane protein 1 (LMP1), a key viral oncoprotein expressed in Epstein-Barr virus (EBV)-positive NPC, contributes to remodeling the tumor microenvironment. However, the precise mechanisms by which LMP1 modulates tumor immunity in NPC remain unclear. Here, we aimed to investigate the roles and regulatory mechanisms of LMP1 and sEV PD-L1 in NPC immune evasion. METHODS We analyzed the impact of LMP1 on tumor-infiltrating lymphocyte abundance in NPC tissues and humanized tumor-bearing mouse models using multiplex immunofluorescence (mIF) and flow cytometry, respectively. Transmission electron microscopy and nanoparticle tracking analysis were employed to characterize sEVs. Immunoprecipitation-mass spectrometry was utilized to identify proteins interacting with LMP1. The regulatory effects of sEVs on tumor microenvironment were assessed by monitoring CD8+ T cell proliferation and interferon-γ (IFN-γ) expression via flow cytometry. Furthermore, the expression patterns of LMP1 and downstream regulators in NPC were analyzed using mIF and survival analysis. RESULTS High LMP1 expression in NPC patient specimens and mouse models was associated with restricted infiltration of CD8+ T cells. Additionally, LMP1 promoted sEV PD-L1 secretion, leading to inhibition of CD8+ T cell viability and IFN-γ expression in vitro. Mechanistically, LMP1 recruited apoptosis-linked gene 2-interacting protein X (ALIX) through its intracellular domain and bound PD-L1 through its transmembrane domain, thereby facilitating the loading of PD-L1 into ALIX-dependent sEVs. Disruption of ALIX diminished LMP1-induced sEV PD-L1 secretion and enhanced the anti-tumor immunity of CD8+ T cells both in vitro and in vivo. Moreover, increased expression levels of LMP1 and ALIX were positively correlated with enhanced immunosuppressive features and worse prognostic outcomes in NPC patients. CONCLUSION Our findings uncovered the mechanism by which LMP1 interacts with ALIX and PD-L1 to form a trimolecular complex, facilitating PD-L1 loading into ALIX-dependent sEV secretion pathway, ultimately inhibiting the anti-tumor immune response in NPC. This highlights a novel target and prognostic marker for NPC immunotherapy.
Collapse
Affiliation(s)
- Fajian He
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Yan Gong
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Gan Tao
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Jianguo Zhang
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Yushuang Tan
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Yajie Cheng
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Chunsheng Wang
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Jinru Yang
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Linzhi Han
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Zhihao Wang
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Yanping Gao
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Jingyi He
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Rui Bai
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Peikai Sun
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Xiaoyan Yu
- Department of Radiotherapy, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Yajuan Zhou
- Department of Radiotherapy, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, Hubei, P. R. China
| |
Collapse
|
7
|
Burton EM, Liang JH, Mitra B, Asara JM, Gewurz BE. Epstein-Barr Virus Latent Membrane Protein 1 Subverts IMPDH pathways to drive B-cell oncometabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622457. [PMID: 39574729 PMCID: PMC11581047 DOI: 10.1101/2024.11.07.622457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Epstein-Barr virus (EBV) is associated with multiple types of cancers, many of which express the key viral oncoprotein Latent Membrane Protein 1 (LMP1). LMP1 is the only EBV-encoded protein whose expression is sufficient to transform both epithelial and B-cells. Although metabolism reprogramming is a cancer hallmark, much remains to be learned about how LMP1 alters lymphocyte oncometabolism. To gain insights into key B-cell metabolic pathways subverted by LMP1, we performed systematic metabolomic analyses on B cells with conditional LMP1 expression. This approach highlighted that LMP highly induces de novo purine biosynthesis, with xanthosine-5-P (XMP) as one of the most highly LMP1-upregulated metabolites. Consequently, IMPDH inhibition by mycophenolic acid (MPA) triggered apoptosis of LMP1-expressing EBV-transformed lymphoblastoid cell lines (LCL), a key model for EBV-driven immunoblastic lymphomas. Whereas MPA instead caused growth arrest of Burkitt lymphoma cells with the EBV latency I program, conditional LMP1 expression triggered their apoptosis. Although both IMPDH isozymes are expressed in LCLs, only IMPDH2 was critical for LCL survival, whereas both contributed to proliferation of Burkitt cells with the EBV latency I program. Both LMP1 C-terminal cytoplasmic tail domains critical for primary human B-cell transformation were important for XMP production, and each contributed to LMP1-driven Burkitt cell sensitivity to MPA. MPA also de-repressed EBV lytic antigens including LMP1 in latency I Burkitt cells, highlighting crosstalk between the purine biosynthesis pathway and the EBV epigenome. These results suggest novel oncometabolism-based therapeutic approaches to LMP1-driven lymphomas. IMPORTANCE Altered metabolism is a hallmark of cancer, yet much remains to be learned about how EBV rewires host cell metabolism to support multiple malignancies. While the oncogene LMP1 is the only EBV-encoded gene that is sufficient to transform murine B-cells and rodent fibroblasts, knowledge has remained incomplete about how LMP1 alters host cell oncometabolism to aberrantly drive infected B-cell growth and survival. Likewise, it has remained unknown whether LMP1 expression creates metabolic vulnerabilities that can be targeted by small molecule approaches to trigger EBV-transformed B-cell programmed cell death. We therefore used metabolomic profiling to define how LMP1 signaling remodels the B-cell metabolome. We found that LMP1 upregulated purine nucleotide biosynthesis, likely to meet increased demand. Consequently, LMP1 expression sensitized Burkitt B-cells to growth arrest upon inosine monophosphate dehydrogenase blockade. Thus, while LMP1 itself may not be a therapeutic target, its signaling induces dependence on downstream druggable host cell nucleotide metabolism enzymes, suggesting rational therapeutic approaches.
Collapse
|
8
|
Li J, Shi D, Gong Z, Liu W, Zhang Y, Luo B. Aquaporin-3 is down-regulated by LMP1 in nasopharyngeal carcinoma cells to regulate cell migration and affect EBV latent infection. Virus Genes 2024; 60:488-500. [PMID: 39103702 DOI: 10.1007/s11262-024-02096-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
Abstract
Epstein-Barr virus (EBV) infection has a strong correlation with the development of nasopharyngeal carcinoma (NPC). Aquaporin 3 (AQP3), a member of the aquaporin family, plays an important role in tumor development, especially in epithelial-mesenchymal transition. In this study, the expression of AQP3 in EBV-positive NPC cells was significantly lower than that in EBV-negative NPC cells. Western blot and qRT-PCR analysis showed that LMP1 down-regulated the expression of AQP3 by activating the ERK pathway. Cell biology experiments have confirmed that AQP3 affects the development of tumor by promoting cell migration and proliferation in NPC cells. In addition, AQP3 can promote the lysis of EBV in EBV-positive NPC cells. The inhibition of AQP3 expression by EBV through LMP1 may be one of the mechanisms by which EBV maintains latent infection-induced tumor progression.
Collapse
Affiliation(s)
- Jing Li
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Duo Shi
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Zhiyuan Gong
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Yan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
- Department of Clinical Laboratory, Zibo Central Hospital, 54 Gongqingtuan Road, Zibo, 255036, China.
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
9
|
Lurain KA, Ramaswami R, Krug LT, Whitby D, Ziegelbauer JM, Wang HW, Yarchoan R. HIV-associated cancers and lymphoproliferative disorders caused by Kaposi sarcoma herpesvirus and Epstein-Barr virus. Clin Microbiol Rev 2024; 37:e0002223. [PMID: 38899877 PMCID: PMC11391709 DOI: 10.1128/cmr.00022-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
SUMMARYWithin weeks of the first report of acquired immunodeficiency syndrome (AIDS) in 1981, it was observed that these patients often had Kaposi sarcoma (KS), a hitherto rarely seen skin tumor in the USA. It soon became apparent that AIDS was also associated with an increased incidence of high-grade lymphomas caused by Epstein-Barr virus (EBV). The association of AIDS with KS remained a mystery for more than a decade until Kaposi sarcoma-associated herpesvirus (KSHV) was discovered and found to be the cause of KS. KSHV was subsequently found to cause several other diseases associated with AIDS and human immunodeficiency virus (HIV) infection. People living with HIV/AIDS continue to have an increased incidence of certain cancers, and many of these cancers are caused by EBV and/or KSHV. In this review, we discuss the epidemiology, virology, pathogenesis, clinical manifestations, and treatment of cancers caused by EBV and KSHV in persons living with HIV.
Collapse
Affiliation(s)
- Kathryn A Lurain
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Ramya Ramaswami
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Laurie T Krug
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Joseph M Ziegelbauer
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Hao-Wei Wang
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Robert Yarchoan
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| |
Collapse
|
10
|
Huang J, Zhang X, Nie X, Zhang X, Wang Y, Huang L, Geng X, Li D, Zhang L, Gao G, Gao P. Assembly and activation of EBV latent membrane protein 1. Cell 2024; 187:4996-5009.e14. [PMID: 38996527 DOI: 10.1016/j.cell.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/15/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024]
Abstract
Latent membrane protein 1 (LMP1) is the primary oncoprotein of Epstein-Barr virus (EBV) and plays versatile roles in the EBV life cycle and pathogenesis. Despite decades of extensive research, the molecular basis for LMP1 folding, assembly, and activation remains unclear. Here, we report cryo-electron microscopy structures of LMP1 in two unexpected assemblies: a symmetric homodimer and a higher-order filamentous oligomer. LMP1 adopts a non-canonical and unpredicted fold that supports the formation of a stable homodimer through tight and antiparallel intermolecular packing. LMP1 dimers further assemble side-by-side into higher-order filamentous oligomers, thereby allowing the accumulation and specific organization of the flexible cytoplasmic tails for efficient recruitment of downstream factors. Super-resolution microscopy and cellular functional assays demonstrate that mutations at both dimeric and oligomeric interfaces disrupt LMP1 higher-order assembly and block multiple LMP1-mediated signaling pathways. Our research provides a framework for understanding the mechanism of LMP1 and for developing potential therapies targeting EBV-associated diseases.
Collapse
Affiliation(s)
- Jiafeng Huang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaolin Zhang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaohua Nie
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuyuan Zhang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Wang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Linlong Huang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaohan Geng
- Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Li
- Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liguo Zhang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guangxia Gao
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Pu Gao
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan 250000, China.
| |
Collapse
|
11
|
Furuta S. Microbiome-Stealth Regulator of Breast Homeostasis and Cancer Metastasis. Cancers (Basel) 2024; 16:3040. [PMID: 39272898 PMCID: PMC11394247 DOI: 10.3390/cancers16173040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Cumulative evidence attests to the essential roles of commensal microbes in the physiology of hosts. Although the microbiome has been a major research subject since the time of Luis Pasteur and William Russell over 140 years ago, recent findings that certain intracellular bacteria contribute to the pathophysiology of healthy vs. diseased tissues have brought the field of the microbiome to a new era of investigation. Particularly, in the field of breast cancer research, breast-tumor-resident bacteria are now deemed to be essential players in tumor initiation and progression. This is a resurrection of Russel's bacterial cause of cancer theory, which was in fact abandoned over 100 years ago. This review will introduce some of the recent findings that exemplify the roles of breast-tumor-resident microbes in breast carcinogenesis and metastasis and provide mechanistic explanations for these phenomena. Such information would be able to justify the utility of breast-tumor-resident microbes as biomarkers for disease progression and therapeutic targets.
Collapse
Affiliation(s)
- Saori Furuta
- MetroHealth Medical Center, Case Western Reserve University School of Medicine, 2500 MetroHealth Drive, Cleveland, OH 44109, USA;
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
12
|
Wang J, Liang Y, Liang X, Peng H, Wang Y, Xu M, Liang X, Yao H, Liu X, Zeng L, Yao P, Xiang D. Evodiamine suppresses endometriosis development induced by early EBV exposure through inhibition of ERβ. Front Pharmacol 2024; 15:1426660. [PMID: 39148548 PMCID: PMC11324466 DOI: 10.3389/fphar.2024.1426660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024] Open
Abstract
Introduction: Endometriosis (EMS) is characterized as a prevalent gynecological inflammatory disorder marked by the existence of endometrial tissues situated beyond the uterus. This condition leads to persistent pelvic pain and may contribute to infertility. In this investigation, we explored the potential mechanism underlying the development of endometriosis (EMS) triggered by transient exposure to either latent membrane protein 1 (LMP1) or Epstein-Barr virus (EBV) in a mouse model. Additionally, we examined the potential inhibitory effect of evodiamine (EDM) on EMS. Methods: Immortalized human endometrial stromal cells (HESC) or epithelial cells (HEEC) were transiently exposed to either EBV or LMP1. The presence of evodiamine (EDM) was assessed for its impact on estrogen receptor β (ERβ) expression, as well as on cell metabolism parameters such as redox balance, mitochondrial function, inflammation, and proliferation. Additionally, a mixture of LMP1-treated HESC and HEEC was administered intraperitoneally to generate an EMS mouse model. Different dosages of EDM were employed for treatment to evaluate its potential suppressive effect on EMS development. Results: Transient exposure to either EBV or LMP1 triggers persistent ERβ expression through epigenetic modifications, subsequently modulating related cell metabolism for EMS development. Furthermore, 4.0 µM of EDM can efficiently reverse this effect in in vitro cell culture studies. Additionally, 20 mg/kg body weight of EDM treatment can partly suppress EMS development in the in vivo EMS mouse model. Conclusion: Transient EBV/LMP1 exposure triggers permanent ERβ expression, favoring later EMS development, EDM inhibits EMS development through ERβ suppression. This presents a novel mechanism for the development of endometriosis (EMS) in adulthood stemming from early Epstein-Barr virus (EBV) exposure during childhood. Moreover, evodiamine (EDM) stands out as a prospective candidate for treating EMS.
Collapse
Affiliation(s)
- Junling Wang
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanqi Liang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoru Liang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huijuan Peng
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongxia Wang
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mingtao Xu
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuefang Liang
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Helen Yao
- University of California at Riverside, Riverside, CA, United States
| | - Xiaohan Liu
- Department of Gynecology, Sun Yat-Sen University Affiliated No. 8 Hospital, Shenzhen, China
| | - Liqin Zeng
- Department of Gynecology, Sun Yat-Sen University Affiliated No. 8 Hospital, Shenzhen, China
| | - Paul Yao
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dongfang Xiang
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
13
|
Chen Y, Zhang Y, Duo S, Liu W, Luo B. Study on the regulatory mechanism of latent membrane protein 2A on GCNT3 expression in nasopharyngeal carcinoma. Virus Genes 2024; 60:347-356. [PMID: 38739247 DOI: 10.1007/s11262-024-02071-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/06/2024] [Indexed: 05/14/2024]
Abstract
O-Glycan synthesis enzyme glucosaminyl (N-acetyl) transferase 3 (GCNT3) is closely related to the occurrence and development of various cancers. However, the regulatory mechanism and function of GCNT3 in nasopharyngeal carcinoma (NPC) are still poorly understood. This study aims to explore the regulatory mechanism of EBV-encoded latent membrane protein 2A (LMP2A) on GCNT3 and the biological role of GCNT3 in NPC. The results show that LMP2A can activate GCNT3 through the mTORC1 pathway, and there is a positive feedback between the mTORC1 and GCNT3. GCNT3 regulates EMT progression by forming a complex with ZEB1 to promote cell migration. GCNT3 can also promote cell proliferation. These findings indicate that targeting the LMP2A-mTORC1-GCNT3 axis may represent a novel therapeutic target in NPC.
Collapse
Affiliation(s)
- Yijing Chen
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
- Department of Clinical Laboratory, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Yan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
- Department of Clinical Laboratory, Central Hospital of Zibo, Zibo, China
| | - Shi Duo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China.
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
14
|
Chen G, Zhang L, Wang R, Xie Z. Histone methylation in Epstein-Barr virus-associated diseases. Epigenomics 2024; 16:865-877. [PMID: 38869454 PMCID: PMC11370928 DOI: 10.1080/17501911.2024.2345040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/15/2024] [Indexed: 06/14/2024] Open
Abstract
Epstein-Barr virus (EBV) infection is linked to various human diseases, including both noncancerous conditions like infectious mononucleosis and cancerous diseases such as lymphoma and nasopharyngeal carcinoma. After the initial infection, EBV establishes a lifelong presence and remains latent in specific cells. This latent infection causes changes in the epigenetic marks known as histone methylation. Many studies have examined the role of histone methylation in different EBV-associated diseases, and understanding how EBV affects histone methylation can help us identify potential targets for epigenetic therapies. This review focuses on the research progress made in understanding histone methylation in well-studied EBV-associated diseases, intending to provide insights into potential strategies based on histone methylation to combat EBV-related ailments.
Collapse
Affiliation(s)
- Guanglian Chen
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, 100045, China
| | - Linlin Zhang
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, 100045, China
| | - Ran Wang
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, 100045, China
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, 100045, China
| |
Collapse
|
15
|
Chavoshpour-Mamaghani S, Shoja Z, Jalilvand S. The Prevalence of Epstein-Barr Virus in Normal, Premalignant, and Malignant Uterine Cervical Samples in Iran. Intervirology 2024; 67:64-71. [PMID: 38621370 PMCID: PMC11251647 DOI: 10.1159/000538734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/26/2024] [Indexed: 04/17/2024] Open
Abstract
INTRODUCTION It is suggested that Epstein-Barr virus (EBV) may play an important role in cervical cancer development. Most studies found a higher rate of EBV in cervical cancer samples in comparison to premalignant and normal groups. In this regard, this study aimed to investigate the prevalence of EBV in cervical samples. METHODS In total, 364 samples from 179 healthy subjects, 124 women with premalignant lesions, and 61 patients with cervical cancer were investigated using nested-PCR. RESULTS The mean age ± SE was 54.1 ± 13.4 in women with cervical cancer, 36.1 ± 9.4 among women with premalignant lesions, and 36.6 ± 11.5 in healthy individuals. In total, 290 out of 364 samples were human papillomavirus (HPV) positive and the following HPV genotypes were detected among them: HPV 16/18 was found in 43.1%, 23.9%, and 65.5% of normal, premalignant, and malignant samples, respectively, and other high-risk types were detected in 56.9% of normal, 76.1% of premalignant, and 34.5% of malignant samples. The prevalence of EBV was found to be 9.8%, 2.4%, and 2.8% in cervical cancer, premalignant lesions, and normal specimens, respectively, and the difference was statistically significant (p = 0.028). The overall frequency of coinfection between EBV and HPV was shown to be 3.6%. The coinfection was more prevalent among HPV 16/18-infected samples than other high-risk HPVs (6.6 vs. 2.9%) although the difference was not reached a statistically significant difference (p = 0.23). CONCLUSION Our findings indicated that EBV could play an important role as a cofactor in the progression of cervical cancer. However, future studies with larger sample sizes and the expression analysis of EBV transcripts or proteins are mandatory.
Collapse
Affiliation(s)
| | | | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Carbone A, Chadburn A, Gloghini A, Vaccher E, Bower M. Immune deficiency/dysregulation -associated lymphoproliferative disorders. Revised classification and management. Blood Rev 2024; 64:101167. [PMID: 38195294 DOI: 10.1016/j.blre.2023.101167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/13/2023] [Accepted: 12/30/2023] [Indexed: 01/11/2024]
Abstract
Significant advances in the field of lymphoma have resulted in two recent classification proposals, the International Consensus Classification (ICC) and the 5th edition WHO. A few entities are categorized differently in the ICC compared to the WHO. Nowhere is this more apparent than the immunodeficiency lymphoproliferative disorders. The three previous versions of the WHO classification (3rd, 4th and revised 4th editions) and the ICC focused on four clinical settings in which these lesions arise for primary categorization. In contrast the 2023 WHO 5th edition includes pathologic characteristics including morphology and viral status, in addition to clinical setting, as important information for lesion classification. In addition, the 2023 WHO recognizes a broader number of clinical scenarios in which these lesions arise, including not only traditional types of immune deficiency but also immune dysregulation. With this classification it is hoped that new treatment strategies will be developed leading to better patient outcomes.
Collapse
Affiliation(s)
- Antonino Carbone
- Centro di Riferimento Oncologico, Istituto di Ricovero e Cura a Carattere Scientifico, National Cancer Institute, Aviano, Italy.
| | - Amy Chadburn
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States of America.
| | - Annunziata Gloghini
- Department of Advanced Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - Emanuela Vaccher
- Infectious Diseases and Tumors Unit, Department of Medical Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, National Cancer Institute, Aviano, Italy.
| | - Mark Bower
- Department of Oncology and National Centre for HIV Malignancy, Chelsea & Westminster Hospital, London SW109NH, UK.
| |
Collapse
|
17
|
Ebrahimi N, Abdulwahid AHRR, Mansouri A, Karimi N, Bostani RJ, Beiranvand S, Adelian S, Khorram R, Vafadar R, Hamblin MR, Aref AR. Targeting the NF-κB pathway as a potential regulator of immune checkpoints in cancer immunotherapy. Cell Mol Life Sci 2024; 81:106. [PMID: 38418707 PMCID: PMC10902086 DOI: 10.1007/s00018-023-05098-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/01/2023] [Accepted: 10/29/2023] [Indexed: 03/02/2024]
Abstract
Advances in cancer immunotherapy over the last decade have led to the development of several agents that affect immune checkpoints. Inhibitory receptors expressed on T cells that negatively regulate the immune response include cytotoxic T‑lymphocyte antigen 4 (CTLA4) and programmed cell death protein 1 (PD1), which have been studied more than similar receptors. Inhibition of these proteins and other immune checkpoints can stimulate the immune system to attack cancer cells, and prevent the tumor from escaping the immune response. However, the administration of anti-PD1 and anti-CTLA4 antibodies has been associated with adverse inflammatory responses similar to autoimmune diseases. The current review discussed the role of the NF-κB pathway as a tumor promoter, and how it can govern inflammatory responses and affect various immune checkpoints. More precise knowledge about the communication between immune checkpoints and NF-κB pathways could increase the effectiveness of immunotherapy and reduce the adverse effects of checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Atena Mansouri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nasrin Karimi
- Department of Biology, Faculty of Basic Science, Islamic Azad University Damghan Branch, Damghan, Iran
| | | | - Sheida Beiranvand
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Samaneh Adelian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Roya Khorram
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Vafadar
- Department of Orthopeadic Surgery, Kerman University of Medical Sciences, Kerman, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Amir Reza Aref
- Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
18
|
Giehler F, Ostertag MS, Sommermann T, Weidl D, Sterz KR, Kutz H, Moosmann A, Feller SM, Geerlof A, Biesinger B, Popowicz GM, Kirchmair J, Kieser A. Epstein-Barr virus-driven B cell lymphoma mediated by a direct LMP1-TRAF6 complex. Nat Commun 2024; 15:414. [PMID: 38195569 PMCID: PMC10776578 DOI: 10.1038/s41467-023-44455-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 12/14/2023] [Indexed: 01/11/2024] Open
Abstract
Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) drives viral B cell transformation and oncogenesis. LMP1's transforming activity depends on its C-terminal activation region 2 (CTAR2), which induces NF-κB and JNK by engaging TNF receptor-associated factor 6 (TRAF6). The mechanism of TRAF6 recruitment to LMP1 and its role in LMP1 signalling remains elusive. Here we demonstrate that TRAF6 interacts directly with a viral TRAF6 binding motif within CTAR2. Functional and NMR studies supported by molecular modeling provide insight into the architecture of the LMP1-TRAF6 complex, which differs from that of CD40-TRAF6. The direct recruitment of TRAF6 to LMP1 is essential for NF-κB activation by CTAR2 and the survival of LMP1-driven lymphoma. Disruption of the LMP1-TRAF6 complex by inhibitory peptides interferes with the survival of EBV-transformed B cells. In this work, we identify LMP1-TRAF6 as a critical virus-host interface and validate this interaction as a potential therapeutic target in EBV-associated cancer.
Collapse
Affiliation(s)
- Fabian Giehler
- Research Unit Signaling and Translation, Helmholtz Center Munich - German Research Center for Environmental Health, 85764, Neuherberg, Germany
- Research Unit Gene Vectors, Helmholtz Center Munich - German Research Center for Environmental Health, 81377, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Michael S Ostertag
- Institute of Structural Biology, Helmholtz Center Munich - German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Thomas Sommermann
- Immune Regulation and Cancer, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Daniel Weidl
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, 91054, Erlangen, Germany
| | - Kai R Sterz
- Research Unit Gene Vectors, Helmholtz Center Munich - German Research Center for Environmental Health, 81377, Munich, Germany
| | - Helmut Kutz
- Research Unit Gene Vectors, Helmholtz Center Munich - German Research Center for Environmental Health, 81377, Munich, Germany
| | - Andreas Moosmann
- Research Unit Gene Vectors, Helmholtz Center Munich - German Research Center for Environmental Health, 81377, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Department of Medicine III, University Hospital, Ludwig-Maximilians-University Munich, 81377, Munich, Germany
| | - Stephan M Feller
- Institute of Molecular Medicine, Martin-Luther-University Halle-Wittenberg, 06120, Halle, Germany
| | - Arie Geerlof
- Institute of Structural Biology, Helmholtz Center Munich - German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Brigitte Biesinger
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, 91054, Erlangen, Germany
| | - Grzegorz M Popowicz
- Institute of Structural Biology, Helmholtz Center Munich - German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Johannes Kirchmair
- Universität Hamburg, Department of Informatics, Center for Bioinformatics (ZBH), 20146, Hamburg, Germany
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, 1090, Vienna, Austria
| | - Arnd Kieser
- Research Unit Signaling and Translation, Helmholtz Center Munich - German Research Center for Environmental Health, 85764, Neuherberg, Germany.
- Research Unit Gene Vectors, Helmholtz Center Munich - German Research Center for Environmental Health, 81377, Munich, Germany.
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
| |
Collapse
|
19
|
Cao Y, Xia H, Tan X, Shi C, Ma Y, Meng D, Zhou M, Lv Z, Wang S, Jin Y. Intratumoural microbiota: a new frontier in cancer development and therapy. Signal Transduct Target Ther 2024; 9:15. [PMID: 38195689 PMCID: PMC10776793 DOI: 10.1038/s41392-023-01693-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/20/2023] [Accepted: 10/24/2023] [Indexed: 01/11/2024] Open
Abstract
Human microorganisms, including bacteria, fungi, and viruses, play key roles in several physiological and pathological processes. Some studies discovered that tumour tissues once considered sterile actually host a variety of microorganisms, which have been confirmed to be closely related to oncogenesis. The concept of intratumoural microbiota was subsequently proposed. Microbiota could colonise tumour tissues through mucosal destruction, adjacent tissue migration, and hematogenic invasion and affect the biological behaviour of tumours as an important part of the tumour microenvironment. Mechanistic studies have demonstrated that intratumoural microbiota potentially promote the initiation and progression of tumours by inducing genomic instability and mutations, affecting epigenetic modifications, promoting inflammation response, avoiding immune destruction, regulating metabolism, and activating invasion and metastasis. Since more comprehensive and profound insights about intratumoral microbiota are continuously emerging, new methods for the early diagnosis and prognostic assessment of cancer patients have been under examination. In addition, interventions based on intratumoural microbiota show great potential to open a new chapter in antitumour therapy, especially immunotherapy, although there are some inevitable challenges. Here, we aim to provide an extensive review of the concept, development history, potential sources, heterogeneity, and carcinogenic mechanisms of intratumoural microorganisms, explore the potential role of microorganisms in tumour prognosis, and discuss current antitumour treatment regimens that target intratumoural microorganisms and the research prospects and limitations in this field.
Collapse
Affiliation(s)
- Yaqi Cao
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Hui Xia
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Xueyun Tan
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Chunwei Shi
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yanling Ma
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Daquan Meng
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Mengmeng Zhou
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Zhilei Lv
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Sufei Wang
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| |
Collapse
|
20
|
Qu S, Gong M, Deng Y, Xiang Y, Ye D. Research progress and application of single-cell sequencing in head and neck malignant tumors. Cancer Gene Ther 2024; 31:18-27. [PMID: 37968342 PMCID: PMC10794142 DOI: 10.1038/s41417-023-00691-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/17/2023]
Abstract
Single-cell sequencing (SCS) is a technology that separates thousands of cells from the organism and accurately analyzes the genetic material expressed in each cell using high-throughput sequencing technology. Unlike the traditional bulk sequencing approach, which can only provide the average value of a cell population and cannot obtain specific single-cell data, single-cell sequencing can identify the gene sequence and expression changes of a single cell, and reflects the differences between genetic material and protein between cells, and ultimately the role played by the tumor microenvironment. single-cell sequencing can further explore the pathogenesis of head and neck malignancies from the single-cell biological level and provides a theoretical basis for the clinical diagnosis and treatment of head and neck malignancies. This article will systematically introduce the latest progress and application of single-cell sequencing in malignant head and neck tumors.
Collapse
Affiliation(s)
- Siyuan Qu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Mengdan Gong
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Yongqin Deng
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Yizhen Xiang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Dong Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China.
| |
Collapse
|
21
|
Huang X, Zhang M, Zhang Z. The Role of LMP1 in Epstein-Barr Virus-associated Gastric Cancer. Curr Cancer Drug Targets 2024; 24:127-141. [PMID: 37183458 DOI: 10.2174/1568009623666230512153741] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023]
Abstract
EBV promotes many cancers such as lymphoma, nasopharyngeal carcinoma, and gastric; Latent Membrane Protein 1 (LMP1) is considered to be a major oncogenic protein encoded by Epstein- Barr virus (EBV). LMP1 functions as a carcinogen in lymphoma and nasopharyngeal carcinoma, and LMP1 may also promote gastric cancer. The expression level of LMP1 in host cells is a key determinant in tumorigenesis and maintenance of virus specificity. By promoting cell immortalization and cell transformation, promoting cell proliferation, affecting immunity, and regulating cell apoptosis, LMP1 plays a crucial tumorigenic role in epithelial cancers. However, very little is currently known about LMP1 in Epstein-Barr virus-associated gastric cancer (EBVaGC); the main reason is that the expression level of LMP1 in EBVaGC is comparatively lower than other EBV-encoded proteins, such as The Latent Membrane Protein 2A (LMP2A), Epstein-Barr nuclear antigen 1 (EBNA1) and BamHI-A rightward frame 1 (BARF1), to date, there are few studies related to LMP1 in EBVaGC. Recent studies have demonstrated that LMP1 promotes EBVaGC by affecting The phosphatidylinositol 3-kinase- Akt (PI3K-Akt), Nuclear factor-kappa B (NF-κB), and other signaling pathways to regulate many downstream targets such as Forkhead box class O (FOXO), C-X-C-motif chemokine receptor (CXCR), COX-2 (Cyclooxygenase-2); moreover, the gene methylation induced by LMP1 in EBVaGC has become one of the characteristics that distinguish this gastric cancer (GC) from other types of gastric cancer and LMP1 also promotes the formation of the tumor microenvironment (TME) of EBVaGC in several ways. This review synthesizes previous relevant literature, aiming to highlight the latest findings on the mechanism of action of LMP1 in EBVaGC, summarize the function of LMP1 in EBVaGC, lay the theoretical foundation for subsequent new research on LMP1 in EBVaGC, and contribute to the development of novel LMP1-targeted drugs.
Collapse
Affiliation(s)
- Xinqi Huang
- Department of Clinical Medicine, Grade 20, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Meilan Zhang
- Cancer Research Institute of Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Zhiwei Zhang
- Cancer Research Institute of Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
22
|
Sausen DG, Poirier MC, Spiers LM, Smith EN. Mechanisms of T cell evasion by Epstein-Barr virus and implications for tumor survival. Front Immunol 2023; 14:1289313. [PMID: 38179040 PMCID: PMC10764432 DOI: 10.3389/fimmu.2023.1289313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Epstein-Barr virus (EBV) is a prevalent oncogenic virus estimated to infect greater than 90% of the world's population. Following initial infection, it establishes latency in host B cells. EBV has developed a multitude of techniques to avoid detection by the host immune system and establish lifelong infection. T cells, as important contributors to cell-mediated immunity, make an attractive target for these immunoevasive strategies. Indeed, EBV has evolved numerous mechanisms to modulate T cell responses. For example, it can augment expression of programmed cell death ligand-1 (PD-L1), which inhibits T cell function, and downregulates the interferon response, which has a strong impact on T cell regulation. It also modulates interleukin secretion and can influence major histocompatibility complex (MHC) expression and presentation. In addition to facilitating persistent EBV infection, these immunoregulatory mechanisms have significant implications for evasion of the immune response by tumor cells. This review dissects the mechanisms through which EBV avoids detection by host T cells and discusses how these mechanisms play into tumor survival. It concludes with an overview of cancer treatments targeting T cells in the setting of EBV-associated malignancy.
Collapse
Affiliation(s)
- D. G. Sausen
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | | | | | | |
Collapse
|
23
|
Mitra B, Beri NR, Guo R, Burton EM, Murray-Nerger LA, Gewurz BE. Characterization of target gene regulation by the two Epstein-Barr virus oncogene LMP1 domains essential for B-cell transformation. mBio 2023; 14:e0233823. [PMID: 38009935 PMCID: PMC10746160 DOI: 10.1128/mbio.02338-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/09/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Epstein-Barr virus (EBV) causes multiple human cancers, including B-cell lymphomas. In cell culture, EBV converts healthy human B-cells into immortalized ones that grow continuously, which model post-transplant lymphomas. Constitutive signaling from two cytoplasmic tail domains of the EBV oncogene latent membrane protein 1 (LMP1) is required for this transformation, yet there has not been systematic analysis of their host gene targets. We identified that only signaling from the membrane proximal domain is required for survival of these EBV-immortalized cells and that its loss triggers apoptosis. We identified key LMP1 target genes, whose abundance changed significantly with loss of LMP1 signals, or that were instead upregulated in response to switching on signaling by one or both LMP1 domains in an EBV-uninfected human B-cell model. These included major anti-apoptotic factors necessary for EBV-infected B-cell survival. Bioinformatics analyses identified clusters of B-cell genes that respond differently to signaling by either or both domains.
Collapse
Affiliation(s)
- Bidisha Mitra
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Integrated Solutions for Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Nina Rose Beri
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Integrated Solutions for Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Rui Guo
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Integrated Solutions for Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Eric M. Burton
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Integrated Solutions for Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Laura A. Murray-Nerger
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Integrated Solutions for Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin E. Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Integrated Solutions for Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Rambold U, Sperling S, Chew Z, Wang Y, Steer B, Zeller K, Strobl LJ, Zimber-Strobl U, Adler H. A Mouse Model to Study the Pathogenesis of γ-herpesviral Infections in Germinal Center B Cells. Cells 2023; 12:2780. [PMID: 38132100 PMCID: PMC10741729 DOI: 10.3390/cells12242780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
CD30-positive germinal center (GC)-derived B cell lymphomas are frequently linked to Epstein-Barr Virus (EBV) infection. However, a suitable animal model for the investigation of the interplay between γ-herpesvirus and host cells in B cell pathogenesis is currently lacking. Here, we present a novel in vivo model enabling the analysis of genetically modified viruses in combination with genetically modified GC B cells. As a murine γ-herpesvirus, we used MHV-68 closely mirroring the biology of EBV. Our key finding was that Cre-mediated recombination can be successfully induced by an MHV-68 infection in GC B cells from Cγ1-Cre mice allowing for deletion or activation of loxP-flanked cellular genes. The implementation of PrimeFlow RNA assay for MHV-68 demonstrated the enrichment of MHV-68 in GC and isotype-switched B cells. As illustrations of virus and cellular modifications, we inserted the EBV gene LMP2A into the MHV-68 genome and induced constitutively active CD30-signaling in GC B cells through MHV-68 infections, respectively. While the LMP2A-expressing MHV-68 behaved similarly to wildtype MHV-68, virally induced constitutively active CD30-signaling in GC B cells led to the expansion of a pre-plasmablastic population. The findings underscore the potential of our novel tools to address crucial questions about the interaction between herpesviral infections and deregulated cellular gene-expression in future studies.
Collapse
Affiliation(s)
- Ursula Rambold
- Institute of Asthma and Allergy Prevention, Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), 85764 Neuherberg, Germany; (U.R.); (B.S.)
| | - Stefanie Sperling
- Research Unit Gene Vectors, Research Group B Cell Development and Activation, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 81377 Munich, Germany (Y.W.); (K.Z.); (L.J.S.)
| | - Zakir Chew
- Research Unit Gene Vectors, Research Group B Cell Development and Activation, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 81377 Munich, Germany (Y.W.); (K.Z.); (L.J.S.)
| | - Yan Wang
- Research Unit Gene Vectors, Research Group B Cell Development and Activation, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 81377 Munich, Germany (Y.W.); (K.Z.); (L.J.S.)
| | - Beatrix Steer
- Institute of Asthma and Allergy Prevention, Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), 85764 Neuherberg, Germany; (U.R.); (B.S.)
| | - Krisztina Zeller
- Research Unit Gene Vectors, Research Group B Cell Development and Activation, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 81377 Munich, Germany (Y.W.); (K.Z.); (L.J.S.)
| | - Lothar J. Strobl
- Research Unit Gene Vectors, Research Group B Cell Development and Activation, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 81377 Munich, Germany (Y.W.); (K.Z.); (L.J.S.)
- Institute of Lung Health and Immunity, Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), 85764 Neuherberg, Germany
| | - Ursula Zimber-Strobl
- Research Unit Gene Vectors, Research Group B Cell Development and Activation, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 81377 Munich, Germany (Y.W.); (K.Z.); (L.J.S.)
- Institute of Lung Health and Immunity, Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), 85764 Neuherberg, Germany
| | - Heiko Adler
- Institute of Asthma and Allergy Prevention, Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), 85764 Neuherberg, Germany; (U.R.); (B.S.)
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, Member of the German Center of Lung Research (DZL), 80336 Munich, Germany
| |
Collapse
|
25
|
Guan J, Fan Y, Wang S, Zhou F. Functions of MAP3Ks in antiviral immunity. Immunol Res 2023; 71:814-832. [PMID: 37286768 PMCID: PMC10247270 DOI: 10.1007/s12026-023-09401-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
Immune signal transduction is crucial to the body's defense against viral infection. Recognition of pathogen-associated molecular patterns by pattern recognition receptors (PRRs) activates the transcription of interferon regulators and nuclear factor-κB (NF-κB); this promotes the release of interferons and inflammatory factors. Efficient regulation of type I interferon and NF-κB signaling by members of the mitogen-activated protein (MAP) kinase kinase kinase (MAP3K) family plays an important role in antiviral immunity. Elucidating the specific roles of MAP3K activation during viral infection is essential to develop effective antiviral therapies. In this review, we outline the specific regulatory mechanisms of MAP3Ks in antiviral immunity and discuss the feasibility of targeting MAP3Ks for the treatment of virus-induced diseases.
Collapse
Affiliation(s)
- Jizhong Guan
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, China
| | - Yao Fan
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Shuai Wang
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, China
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
26
|
Owens SM, Sifford JM, Li G, Murdock SJ, Salinas E, Manzano M, Ghosh D, Stumhofer JS, Forrest JC. Intrinsic p53 Activation Restricts Gammaherpesvirus-Driven Germinal Center B Cell Expansion during Latency Establishment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.563188. [PMID: 37961505 PMCID: PMC10634957 DOI: 10.1101/2023.10.31.563188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Gammaherpesviruses (GHV) are DNA tumor viruses that establish lifelong latent infections in lymphocytes. For viruses such as Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 (MHV68), this is accomplished through a viral gene-expression program that promotes cellular proliferation and differentiation, especially of germinal center (GC) B cells. Intrinsic host mechanisms that control virus-driven cellular expansion are incompletely defined. Using a small-animal model of GHV pathogenesis, we demonstrate in vivo that tumor suppressor p53 is activated specifically in B cells that are latently infected by MHV68. In the absence of p53, the early expansion of MHV68 latency was greatly increased, especially in GC B cells, a cell-type whose proliferation was conversely restricted by p53. We identify the B cell-specific latency gene M2, a viral promoter of GC B cell differentiation, as a viral protein sufficient to elicit a p53-dependent anti-proliferative response caused by Src-family kinase activation. We further demonstrate that EBV-encoded latent membrane protein 1 (LMP1) similarly triggers a p53 response in primary B cells. Our data highlight a model in which GHV latency gene-expression programs that promote B cell proliferation and differentiation to facilitate viral colonization of the host trigger aberrant cellular proliferation that is controlled by p53. IMPORTANCE Gammaherpesviruses cause lifelong infections of their hosts, commonly referred to as latency, that can lead to cancer. Latency establishment benefits from the functions of viral proteins that augment and amplify B cell activation, proliferation, and differentiation signals. In uninfected cells, off-schedule cellular differentiation would typically trigger anti-proliferative responses by effector proteins known as tumor suppressors. However, tumor suppressor responses to gammaherpesvirus manipulation of cellular processes remain understudied, especially those that occur during latency establishment in a living organism. Here we identify p53, a tumor suppressor commonly mutated in cancer, as a host factor that limits virus-driven B cell proliferation and differentiation, and thus, viral colonization of a host. We demonstrate that p53 activation occurs in response to viral latency proteins that induce B cell activation. This work informs a gap in our understanding of intrinsic cellular defense mechanisms that restrict lifelong GHV infection.
Collapse
|
27
|
Mitra B, Beri NR, Guo R, Burton EM, Murray-Nerger LA, Gewurz BE. Characterization of Target Gene Regulation by the Two Epstein-Barr Virus Oncogene LMP1 Domains Essential for B-cell Transformation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536234. [PMID: 37090591 PMCID: PMC10120669 DOI: 10.1101/2023.04.10.536234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The Epstein-Barr virus (EBV) oncogene latent membrane protein 1 (LMP1) mimics CD40 signaling and is expressed by multiple malignancies. Two LMP1 C-terminal cytoplasmic tail regions, termed transformation essential sites (TES) 1 and 2, are critical for EBV transformation of B lymphocytes into immortalized lymphoblastoid cell lines (LCL). However, TES1 versus TES2 B-cell target genes have remained incompletely characterized, and whether both are required for LCL survival has remained unknown. To define LCL LMP1 target genes, we profiled transcriptome-wide effects of acute LMP1 CRISPR knockout (KO) prior to cell death. To then characterize specific LCL TES1 and TES2 roles, we conditionally expressed wildtype, TES1 null, TES2 null or double TES1/TES2 null LMP1 alleles upon endogenous LMP1 KO. Unexpectedly, TES1 but not TES2 signaling was critical for LCL survival. The LCL dependency factor cFLIP, which plays obligatory roles in blockade of LCL apoptosis, was highly downmodulated by loss of TES1 signaling. To further characterize TES1 vs TES2 roles, we conditionally expressed wildtype, TES1 and/or TES2 null LMP1 alleles in two Burkitt models. Systematic RNAseq analyses revealed gene clusters that responded more strongly to TES1 versus TES2, that respond strongly to both or that are oppositely regulated. Robust TES1 effects on cFLIP induction were again noted. TES1 and 2 effects on expression of additional LCL dependency factors, including BATF and IRF4, and on EBV super-enhancers were identified. Collectively, these studies suggest a model by which LMP1 TES1 and TES2 jointly remodel the B-cell transcriptome and highlight TES1 as a key therapeutic target.
Collapse
Affiliation(s)
- Bidisha Mitra
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston MA 02115, USA
- Center for Integrated Solutions in Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Nina Rose Beri
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston MA 02115, USA
- Center for Integrated Solutions in Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Rui Guo
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston MA 02115, USA
- Center for Integrated Solutions in Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Eric M. Burton
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston MA 02115, USA
- Center for Integrated Solutions in Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Laura A. Murray-Nerger
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston MA 02115, USA
- Center for Integrated Solutions in Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Benjamin E. Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston MA 02115, USA
- Center for Integrated Solutions in Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
28
|
Low YH, Loh CJL, Peh DYY, Chu AJM, Han S, Toh HC. Pathogenesis and therapeutic implications of EBV-associated epithelial cancers. Front Oncol 2023; 13:1202117. [PMID: 37901329 PMCID: PMC10600384 DOI: 10.3389/fonc.2023.1202117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/07/2023] [Indexed: 10/31/2023] Open
Abstract
Epstein-Barr virus (EBV), one of the most common human viruses, has been associated with both lymphoid and epithelial cancers. Undifferentiated nasopharyngeal carcinoma (NPC), EBV associated gastric cancer (EBVaGC) and lymphoepithelioma-like carcinoma (LELC) are amongst the few common epithelial cancers that EBV has been associated with. The pathogenesis of EBV-associated NPC has been well described, however, the same cannot be said for primary pulmonary LELC (PPLELC) owing to the rarity of the cancer. In this review, we outline the pathogenesis of EBV-associated NPC and EBVaGCs and their recent advances. By drawing on similarities between NPC and PPLELC, we then also postulated the pathogenesis of PPLELC. A deeper understanding about the pathogenesis of EBV enables us to postulate the pathogenesis of other EBV associated cancers such as PPLELC.
Collapse
Affiliation(s)
- Yi Hua Low
- Duke-NUS Medical School, Singapore, Singapore
| | | | - Daniel Yang Yao Peh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Axel Jun Ming Chu
- Singapore Health Services Internal Medicine Residency Programme, Singapore, Singapore
| | - Shuting Han
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| |
Collapse
|
29
|
Zidovec-Lepej S, Batovic M, Rozman M, Bodulić K, Prtorić L, Šokota A, Nikcevic A, Simicic P, Tešović G. Distribution of Epstein-Barr Virus LMP1 Variants in Patients with Infectious Mononucleosis and Association with Selected Biochemical and Hematological Parameters. Pathogens 2023; 12:915. [PMID: 37513762 PMCID: PMC10384830 DOI: 10.3390/pathogens12070915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
The molecular diversity of Epstein-Barr virus (EBV) is exceptionally complex and based on the characterization of sequences coding for several viral genes. The aim of this study was to analyze the distribution of EBV types 1 and 2 and to characterize LMP1 variants in a cohort of 73 patients with infectious mononucleosis (IM), as well as to investigate a possible association between viral diversity and relevant clinical parameters. Population-based sequencing of EBNA-2 gene showed the presence of EBV type 1 in all IM patients. Analysis of LMP1 gene found a restricted repertoire of LMP1 variants with the predominance of wild-type B95-8, China1, Mediterranean and North Carolina variants with the presence of more than one LMP1 variant in 16.4% of patients. Co-infections with different LMP1 variants were associated with significantly higher levels of C-reactive protein and lower levels of maximal neutrophil counts and minimal platelet count. The results of this study have shown a narrow repertoire of LMP1 variants and an exclusive presence of EBV type 1 in a cohort of IM from Croatia, suggesting a characteristic local molecular pattern of this virus. The clinical importance of distinct immunobiological features of IM patients with LMP1 variant co-infections needs to be investigated further.
Collapse
Affiliation(s)
- Snjezana Zidovec-Lepej
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases, 10 000 Zagreb, Croatia
| | - Margarita Batovic
- Department of Medical and Laboratory Genetics, Children's Hospital Zagreb, 10 000 Zagreb, Croatia
| | - Marija Rozman
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases, 10 000 Zagreb, Croatia
| | - Kristian Bodulić
- Research Department, University Hospital for Infectious Diseases, 10 000 Zagreb, Croatia
| | - Laura Prtorić
- Pediatric Infectious Diseases Department, University Hospital for Infectious Diseases, 10 000 Zagreb, Croatia
| | - Ante Šokota
- Pediatric Infectious Diseases Department, University Hospital for Infectious Diseases, 10 000 Zagreb, Croatia
| | - Andrea Nikcevic
- Pediatric Infectious Diseases Department, University Hospital for Infectious Diseases, 10 000 Zagreb, Croatia
| | - Petra Simicic
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases, 10 000 Zagreb, Croatia
| | - Goran Tešović
- Department of Infectious Diseases, University of Zagreb School of Medicine, 10 000 Zagreb, Croatia
| |
Collapse
|
30
|
Gong Z, Yan Z, Liu W, Luo B. Oncogenic viruses and host lipid metabolism: a new perspective. J Gen Virol 2023; 104. [PMID: 37279154 DOI: 10.1099/jgv.0.001861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
As noncellular organisms, viruses do not have their own metabolism and rely on the metabolism of host cells to provide energy and metabolic substances for their life cycles. Increasing evidence suggests that host cells infected with oncogenic viruses have dramatically altered metabolic requirements and that oncogenic viruses produce substances used for viral replication and virion production by altering host cell metabolism. We focused on the processes by which oncogenic viruses manipulate host lipid metabolism and the lipid metabolism disorders that occur in oncogenic virus-associated diseases. A deeper understanding of viral infections that cause changes in host lipid metabolism could help with the development of new antiviral agents as well as potential new therapeutic targets.
Collapse
Affiliation(s)
- Zhiyuan Gong
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, PR China
| | - Zhiyong Yan
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, PR China
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, PR China
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, PR China
| |
Collapse
|
31
|
Singh DR, Nelson SE, Pawelski AS, Kansra AS, Fogarty SA, Bristol JA, Ohashi M, Johannsen EC, Kenney SC. Epstein-Barr virus LMP1 protein promotes proliferation and inhibits differentiation of epithelial cells via activation of YAP and TAZ. Proc Natl Acad Sci U S A 2023; 120:e2219755120. [PMID: 37155846 PMCID: PMC10193989 DOI: 10.1073/pnas.2219755120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/28/2023] [Indexed: 05/10/2023] Open
Abstract
Latent Epstein-Barr virus (EBV) infection promotes undifferentiated nasopharyngeal carcinomas (NPCs) in humans, but the mechanism(s) for this effect has been difficult to study because EBV cannot transform normal epithelial cells in vitro and the EBV genome is often lost when NPC cells are grown in culture. Here we show that the latent EBV protein, LMP1 (Latent membrane protein 1), induces cellular proliferation and inhibits spontaneous differentiation of telomerase-immortalized normal oral keratinocytes (NOKs) in growth factor-deficient conditions by increasing the activity of the Hippo pathway effectors, YAP (Yes-associated protein) and TAZ (Transcriptional coactivator with PDZ-binding motif). We demonstrate that LMP1 enhances YAP and TAZ activity in NOKs both by decreasing Hippo pathway-mediated serine phosphorylation of YAP and TAZ and increasing Src kinase-mediated Y357 phosphorylation of YAP. Furthermore, knockdown of YAP and TAZ is sufficient to reduce proliferation and promote differentiation in EBV-infected NOKs. We find that YAP and TAZ are also required for LMP1-induced epithelial-to-mesenchymal transition. Importantly, we demonstrate that ibrutinib (an FDA-approved BTK inhibitor that blocks YAP and TAZ activity through an off-target effect) restores spontaneous differentiation and inhibits proliferation of EBV-infected NOKs at clinically relevant doses. These results suggest that LMP1-induced YAP and TAZ activity contributes to the development of NPC.
Collapse
Affiliation(s)
- Deo R. Singh
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, WIMR II, Madison, WI53705
| | - Scott E. Nelson
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, WIMR II, Madison, WI53705
| | - Abigail S. Pawelski
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, WIMR II, Madison, WI53705
| | - Alisha S. Kansra
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, WIMR II, Madison, WI53705
| | - Stuart A. Fogarty
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, WIMR II, Madison, WI53705
| | - Jillian A. Bristol
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, WIMR II, Madison, WI53705
| | - Makoto Ohashi
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, WIMR II, Madison, WI53705
| | - Eric C. Johannsen
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, WIMR II, Madison, WI53705
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, WIMR II, Madison, WI53705
| | - Shannon C. Kenney
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, WIMR II, Madison, WI53705
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, WIMR II, Madison, WI53705
| |
Collapse
|
32
|
Feng J, Zhang P, Yao P, Zhang H. EBNA2 mediates lipid metabolism and tumorigenesis through activation of ATF4 pathway. Am J Cancer Res 2023; 13:1363-1376. [PMID: 37168348 PMCID: PMC10164800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/09/2023] [Indexed: 05/13/2023] Open
Abstract
Epstein-Barr virus (EBV) can infect the majority of the human population with no obvious symptoms and is associated with tumor development, although the mechanism is still largely unknown. In this study, we investigated the role and the underlying mechanism of EBV nuclear antigen 2 (EBNA2) in tumorigenesis. We found that the infection of EBNA2 in human B lymphocytes (HBL) upregulated the expression of activating transcription factor 4 (ATF4). Furthermore, we used gene expression or knockdown approach to demonstrate the effect of EBNA2 on redox balance, mitochondrial function, lipid metabolism, and cell proliferation in both HBL and EBV-transformed lymphocyte cell line (LCL). More importantly, we applied in vivo xenograft tumor mouse model to explore the contribution of EBNA2 and ATF4 in tumor growth and mouse survival. Mechanistically, we revealed that EBNA2 exposure caused persistent expression of ATF4 via EBNA2-mediated epigenetic changes, which increased the binding ability of upstream stimulating factor 1 (USF1) on the ATF4 promoter. ATF4 activation in HBL cells modulated the expression of lipid metabolism-related genes and potentiated fatty acid oxidation and lipogenesis. Conversely, knockdown of either EBNA2 or ATF4 in LCL suppressed lipid metabolism, modulated redox balance and mitochondrial function, as well as inhibited tumor cell proliferation. In consistent with these findings from in vitro study, an in vivo xenograft model confirmed that knockdown of either EBNA2 or ATF4 inhibited the gene expression of SREBP1, ChREBP, and FAS, as well as suppressed tumor growth and prolonged animal survival. Collectively, this study demonstrates that EBNA2 mediates tumorigenesis through ATF4 activation and the modulation of lipid metabolism; therefore, our findings provide a novel avenue for the clinical treatment of EBV-mediated cancer.
Collapse
Affiliation(s)
- Jia Feng
- Department of Hematology, Peking University Shenzhen Hospital Shenzhen 518036, Guangdong, P. R. China
| | - Ping Zhang
- Department of Hematology, Peking University Shenzhen Hospital Shenzhen 518036, Guangdong, P. R. China
| | - Paul Yao
- Department of Hematology, Peking University Shenzhen Hospital Shenzhen 518036, Guangdong, P. R. China
| | - Hongyu Zhang
- Department of Hematology, Peking University Shenzhen Hospital Shenzhen 518036, Guangdong, P. R. China
| |
Collapse
|
33
|
Zhao B. Epstein-Barr Virus B Cell Growth Transformation: The Nuclear Events. Viruses 2023; 15:832. [PMID: 37112815 PMCID: PMC10146190 DOI: 10.3390/v15040832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Epstein-Barr virus (EBV) is the first human DNA tumor virus identified from African Burkitt's lymphoma cells. EBV causes ~200,000 various cancers world-wide each year. EBV-associated cancers express latent EBV proteins, EBV nuclear antigens (EBNAs), and latent membrane proteins (LMPs). EBNA1 tethers EBV episomes to the chromosome during mitosis to ensure episomes are divided evenly between daughter cells. EBNA2 is the major EBV latency transcription activator. It activates the expression of other EBNAs and LMPs. It also activates MYC through enhancers 400-500 kb upstream to provide proliferation signals. EBNALP co-activates with EBNA2. EBNA3A/C represses CDKN2A to prevent senescence. LMP1 activates NF-κB to prevent apoptosis. The coordinated activity of EBV proteins in the nucleus allows efficient transformation of primary resting B lymphocytes into immortalized lymphoblastoid cell lines in vitro.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
34
|
Yu H, Robertson ES. Epstein-Barr Virus History and Pathogenesis. Viruses 2023; 15:714. [PMID: 36992423 PMCID: PMC10056551 DOI: 10.3390/v15030714] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Epstein-Barr virus (EBV) is the first identified human oncogenic virus that can establish asymptomatic life-long persistence. It is associated with a large spectrum of diseases, including benign diseases, a number of lymphoid malignancies, and epithelial cancers. EBV can also transform quiescent B lymphocytes into lymphoblastoid cell lines (LCLs) in vitro. Although EBV molecular biology and EBV-related diseases have been continuously investigated for nearly 60 years, the mechanism of viral-mediated transformation, as well as the precise role of EBV in promoting these diseases, remain a major challenge yet to be completely explored. This review will highlight the history of EBV and current advances in EBV-associated diseases, focusing on how this virus provides a paradigm for exploiting the many insights identified through interplay between EBV and its host during oncogenesis, and other related non-malignant disorders.
Collapse
Affiliation(s)
- Hui Yu
- Department of Hematology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- Departments of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, The Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erle S. Robertson
- Departments of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, The Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
35
|
Chen S, Zhang P, Feng J, Li R, Chen J, Zheng WV, Zhang H, Yao P. LMP1 mediates tumorigenesis through persistent epigenetic modifications and PGC1β upregulation. Oncol Rep 2023; 49:53. [PMID: 36734290 PMCID: PMC9926514 DOI: 10.3892/or.2023.8490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
Latent membrane protein 1 (LMP1), which is encoded by the Epstein‑Barr virus (EBV), has been considered as an oncogene, although the detailed mechanism behind its function remains unclear. It has been previously reported that LMP1 promotes tumorigenesis by upregulation of peroxisome proliferator‑activated receptor‑γ coactivator‑1β (PGC1β). The present study aimed to investigate the potential mechanism for transient EBV/LMP1 exposure‑mediated persistent PGC1β expression and subsequent tumorigenesis through modification of mitochondrial function. Luciferase reporter assay, chromatin immunoprecipitation and DNA mutation techniques were used to evaluate the PGC1β‑mediated expression of dynamin‑related protein 1 (DRP1). Tumorigenesis was evaluated by gene expression, oxidative stress, mitochondrial function and in vitro cellular proliferation assays. The potential effects of EBV, LMP1 and PGC1β on tumor growth were evaluated in an in vivo xenograft mouse model. The present in vitro experiments showed that LMP1 knockdown did not affect PGC1β expression or subsequent cell proliferation in EBV‑positive tumor cells. PGC1β regulated DRP1 expression by coactivation of GA‑binding protein α and nuclear respiratory factor 1 located on the DRP1 promoter, subsequently modulating mitochondrial fission. Transient exposure of either EBV or LMP1 in human hematopoietic stem cells caused persistent epigenetic changes and PGC1β upregulation after long‑term cell culture even in the absence of EBV/LMP1, which decreased oxidative stress, and potentiated mitochondrial function and cell proliferation in vitro. Enhanced tumor growth and shortened survival were subsequently observed in vivo. It was concluded that PGC1β expression and subsequent cell proliferation were independent from LMP1 in EBV‑positive tumor cells. PGC1β modulated mitochondria fission by regulation of DRP1 expression. Transient EBV/LMP1 exposure caused persistent PGC1β expression, triggering tumor growth in the absence of LMP1. The present study proposes a novel mechanism for transient EBV/LMP1 exposure‑mediated tumorigenesis through persistent epigenetic changes and PGC1β upregulation, uncovering the reason why numerous forms of lymphoma exhibit upregulated PGC1β expression, but are devoid of EBV/LMP1.
Collapse
Affiliation(s)
- Siliang Chen
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Ping Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Jia Feng
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Rui Li
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Junhui Chen
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Wei V. Zheng
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Hongyu Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China,Correspondence to: Dr Paul Yao or Dr Hongyu Zhang, Department of Hematology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, Guangdong 518036, P.R. China, E-mail:
| | - Paul Yao
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China,Correspondence to: Dr Paul Yao or Dr Hongyu Zhang, Department of Hematology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, Guangdong 518036, P.R. China, E-mail:
| |
Collapse
|
36
|
Comprehensive Profiling of EBV Gene Expression and Promoter Methylation Reveals Latency II Viral Infection and Sporadic Abortive Lytic Activation in Peripheral T-Cell Lymphomas. Viruses 2023; 15:v15020423. [PMID: 36851637 PMCID: PMC9960980 DOI: 10.3390/v15020423] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/18/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Epstein-Barr virus (EBV) latency patterns are well defined in EBV-associated epithelial, NK/T-cell, and B-cell malignancies, with links between latency stage and tumorigenesis deciphered in various studies. In vitro studies suggest that the oncogenic activity of EBV in T-cells might be somewhat different from that in EBV-tropic B lymphoid cells, prompting us to study this much less investigated viral gene expression pattern and its regulation in nine EBV+ peripheral T-cell lymphoma (PTCL) biopsies. Using frozen specimens, RT-PCR showed 6/7 cases with a latency II pattern of EBV gene expression. Analyses of EBNA1 promoter usage and CpG methylation status in these six cases showed that only Qp was used, while Cp, Wp, and Fp were all silent. However, the remaining case showed an exceptionally unique latency III type with lytic activation, as evidenced by EBV lytic clonality and confirmed by the full usage of Cp and Qp as well as weakly lytic Fp and Wp, fully unmethylated Cp and marginally unmethylated Wp. Further immunostaining of the eight cases revealed a few focally clustered LMP1+ cells in 7/8 cases, with rare isolated LMP1+ cells detected in another case. Double immunostaining confirmed that the LMP1+ cells were of the T-cell phenotype (CD3+). In 6/8 cases, sporadically scattered Zta+ cells were detected. Double staining of EBER-ISH with T-cell (CD45RO/UCHL1) or B-cell (CD20) markers confirmed that the vast majority of EBER+ cells were of the T-cell phenotype. Predominant type-A EBV variant and LMP1 30-bp deletion variant were present, with both F and f variants detected. In summary, the EBV gene expression pattern in PTCL was found to be mainly of latency II (BART+EBNA1(Qp)+LMP1+LMP2A+BZLF1+), similar to that previously reported in EBV-infected nasopharyngeal epithelial, NK/T-cell, and Hodgkin malignancies; however, fully lytic infection could also be detected in occasional cases. Rare cells with sporadic immediate-early gene expression were commonly detected in PTCL. These findings have implications for the future development of EBV-targeting therapeutics for this cancer.
Collapse
|
37
|
Molecular Characterisation of Epstein-Barr Virus in Classical Hodgkin Lymphoma. Int J Mol Sci 2022; 23:ijms232415635. [PMID: 36555277 PMCID: PMC9778902 DOI: 10.3390/ijms232415635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Hodgkin lymphomas (HLs) are a heterogeneous group of lymphoid neoplasia associated with Epstein-Barr virus (EBV) infection. EBV, considered to be an important etiological co-factor in approximately 1% of human malignancies, can be classified into two genotypes based on EBNA-2, EBNA-3A and EBNA-3C sequences, and into genetic variants based on the sequence variation of the gene coding for the LMP1 protein. Here, we present the results on the distribution of EBV genotypes 1 and 2 as well as LMP1 gene variants in 50 patients with EBV-positive classical HL selected from a cohort of 289 histologically verified cases collected over a 9-year period in a tertiary clinical center in the Southeast of Europe. The population-based sequencing of the EBNA-3C gene showed the exclusive presence of EBV genotype 1 in all cHL samples. The analysis of EBV LMP1 variant distribution showed a predominance of the wild-type strain B95-8 and the Mediterranean subtype with 30 bp deletion. These findings could contribute to the understanding of EBV immunobiology in cHL as well as to the development of a prophylactic and therapeutic vaccine.
Collapse
|
38
|
Shechter O, Sausen DG, Gallo ES, Dahari H, Borenstein R. Epstein-Barr Virus (EBV) Epithelial Associated Malignancies: Exploring Pathologies and Current Treatments. Int J Mol Sci 2022; 23:14389. [PMID: 36430864 PMCID: PMC9699474 DOI: 10.3390/ijms232214389] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
Epstein-Barr virus (EBV) is one of eight known herpesviruses with the potential to infect humans. Globally, it is estimated that between 90-95% of the population has been infected with EBV. EBV is an oncogenic virus that has been strongly linked to various epithelial malignancies such as nasopharyngeal and gastric cancer. Recent evidence suggests a link between EBV and breast cancer. Additionally, there are other, rarer cancers with weaker evidence linking them to EBV. In this review, we discuss the currently known epithelial malignancies associated with EBV. Additionally, we discuss and establish which treatments and therapies are most recommended for each cancer associated with EBV.
Collapse
Affiliation(s)
- Oren Shechter
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Daniel G. Sausen
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Elisa S. Gallo
- Tel-Aviv Sourasky Medical Center, Division of Dermatology, Tel-Aviv 6423906, Israel
| | - Harel Dahari
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Ronen Borenstein
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
39
|
Payaradka R, Ramesh PS, Vyas R, Patil P, Rajendra VK, Kumar M, Shetty V, Devegowda D. Oncogenic viruses as etiological risk factors for head and neck cancers: An overview on prevalence, mechanism of infection and clinical relevance. Arch Oral Biol 2022; 143:105526. [DOI: 10.1016/j.archoralbio.2022.105526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/03/2022] [Accepted: 08/16/2022] [Indexed: 12/07/2022]
|
40
|
Zhang B, Choi IK. Facts and Hopes in the Relationship of EBV with Cancer Immunity and Immunotherapy. Clin Cancer Res 2022; 28:4363-4369. [PMID: 35686929 PMCID: PMC9714122 DOI: 10.1158/1078-0432.ccr-21-3408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/21/2022] [Accepted: 06/02/2022] [Indexed: 12/14/2022]
Abstract
Epstein-Barr virus (EBV), the first identified human tumor virus, infects and takes up residency in almost every human. However, EBV genome-positive tumors arise in only a tiny minority of infected people, presumably when the virus-carrying tumor cells are able to evade immune surveillance. Traditional views regard viral antigens as the principal targets of host immune surveillance against virus-infected cells. However, recent findings indicate that EBV-infected/-transformed B cells elicit both cytotoxic CD8+ and CD4+ T-cell responses against a wide range of overexpressed cellular antigens known to function as tumor-associated antigens (TAA), in addition to various EBV-encoded antigens. This not only broadens the ways by which the immune system controls EBV infection and prevents it from causing cancers, but also potentially extends immune protection toward EBV-unrelated cancers by targeting shared TAAs. The goal of this review is to incorporate these new findings with literature data and discuss future directions for improved understanding of EBV-induced antitumor immunity, as well as the hopes for rational immune strategies for cancer prevention and therapy.
Collapse
Affiliation(s)
- Baochun Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA
| | - Il-Kyu Choi
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
- New Biology Research Center (NBRC), Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| |
Collapse
|
41
|
Singh DR, Nelson SE, Pawelski AS, Cantres-Velez JA, Kansra AS, Pauly NP, Bristol JA, Hayes M, Ohashi M, Casco A, Lee D, Fogarty SA, Lambert PF, Johannsen EC, Kenney SC. Type 1 and Type 2 Epstein-Barr viruses induce proliferation, and inhibit differentiation, in infected telomerase-immortalized normal oral keratinocytes. PLoS Pathog 2022; 18:e1010868. [PMID: 36190982 PMCID: PMC9529132 DOI: 10.1371/journal.ppat.1010868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/08/2022] [Indexed: 11/06/2022] Open
Abstract
Differentiated epithelial cells are an important source of infectious EBV virions in human saliva, and latent Epstein-Barr virus (EBV) infection is strongly associated with the epithelial cell tumor, nasopharyngeal carcinoma (NPC). However, it has been difficult to model how EBV contributes to NPC, since EBV has not been shown to enhance proliferation of epithelial cells in monolayer culture in vitro and is not stably maintained in epithelial cells without antibiotic selection. In addition, although there are two major types of EBV (type 1 (T1) and type 2 (T2)), it is currently unknown whether T1 and T2 EBV behave differently in epithelial cells. Here we inserted a G418 resistance gene into the T2 EBV strain, AG876, allowing us to compare the phenotypes of T1 Akata virus versus T2 AG876 virus in a telomerase-immortalized normal oral keratinocyte cell line (NOKs) using a variety of different methods, including RNA-seq analysis, proliferation assays, immunoblot analyses, and air-liquid interface culture. We show that both T1 Akata virus infection and T2 AG876 virus infection of NOKs induce cellular proliferation, and inhibit spontaneous differentiation, in comparison to the uninfected cells when cells are grown without supplemental growth factors in monolayer culture. T1 EBV and T2 EBV also have a similar ability to induce epithelial-to-mesenchymal (EMT) transition and activate canonical and non-canonical NF-κB signaling in infected NOKs. In contrast to our recent results in EBV-infected lymphoblastoid cells (in which T2 EBV infection is much more lytic than T1 EBV infection), we find that NOKs infected with T1 and T2 EBV respond similarly to lytic inducing agents such as TPA treatment or differentiation. These results suggest that T1 and T2 EBV have similar phenotypes in infected epithelial cells, with both EBV types enhancing cellular proliferation and inhibiting differentiation when growth factors are limiting.
Collapse
Affiliation(s)
- Deo R. Singh
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Scott E. Nelson
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Abigail S. Pawelski
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Juan A. Cantres-Velez
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Alisha S. Kansra
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Nicholas P. Pauly
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Jillian A. Bristol
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Mitchell Hayes
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Makoto Ohashi
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Alejandro Casco
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Denis Lee
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Stuart A. Fogarty
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Paul F. Lambert
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Eric C. Johannsen
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shannon C. Kenney
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
42
|
The Epstein-Barr Virus Enhancer Interaction Landscapes in Virus-Associated Cancer Cell Lines. J Virol 2022; 96:e0073922. [PMID: 36094314 PMCID: PMC9517713 DOI: 10.1128/jvi.00739-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) persists in human cells as episomes. EBV episomes are chromatinized and their 3D conformation varies greatly in cells expressing different latency genes. We used HiChIP, an assay which combines genome-wide chromatin conformation capture followed by deep sequencing (Hi-C) and chromatin immunoprecipitation (ChIP), to interrogate the EBV episome 3D conformation in different cancer cell lines. In an EBV-transformed lymphoblastoid cell line (LCL) GM12878 expressing type III EBV latency genes, abundant genomic interactions were identified by H3K27ac HiChIP. A strong enhancer was located near the BILF2 gene and looped to multiple genes around BALFs loci. Perturbation of the BILF2 enhancer by CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) altered the expression of BILF2 enhancer-linked genes, including BARF0 and BALF2, suggesting that this enhancer regulates the expression of linked genes. H3K27ac ChIP followed by deep sequencing (ChIP-seq) identified several strong EBV enhancers in T/NK (natural killer) lymphoma cells that express type II EBV latency genes. Extensive intragenomic interactions were also found which linked enhancers to target genes. A strong enhancer at BILF2 also looped to the BALF loci. CRISPRi also validated the functional connection between BILF2 enhancer and BARF1 gene. In contrast, H3K27ac HiChIP found significantly fewer intragenomic interactions in type I EBV latency gene-expressing primary effusion lymphoma (PEL) cell lines. These data provided new insight into the regulation of EBV latency gene expression in different EBV-associated tumors. IMPORTANCE EBV is the first human DNA tumor virus identified, discovered over 50 years ago. EBV causes ~200,000 cases of various cancers each year. EBV-encoded oncogenes, noncoding RNAs, and microRNAs (miRNAs) can promote cell growth and survival and suppress senescence. Regulation of EBV gene expression is very complex. The viral C promoter regulates the expression of all EBV nuclear antigens (EBNAs), some of which are very far away from the C promoter. Another way by which the virus activates remote gene expression is through DNA looping. In this study, we describe the viral genome looping patterns in various EBV-associated cancer cell lines and identify important EBV enhancers in these cells. This study also identified novel opportunities to perturb and eventually control EBV gene expression in these cancer cells.
Collapse
|
43
|
SoRelle ED, Dai J, Reinoso-Vizcaino NM, Barry AP, Chan C, Luftig MA. Time-resolved transcriptomes reveal diverse B cell fate trajectories in the early response to Epstein-Barr virus infection. Cell Rep 2022; 40:111286. [PMID: 36044865 PMCID: PMC9879279 DOI: 10.1016/j.celrep.2022.111286] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/07/2022] [Accepted: 08/08/2022] [Indexed: 01/28/2023] Open
Abstract
Epstein-Barr virus infection of B lymphocytes elicits diverse host responses via well-adapted transcriptional control dynamics. Consequently, this host-pathogen interaction provides a powerful system to explore fundamental processes leading to consensus fate decisions. Here, we use single-cell transcriptomics to construct a genome-wide multistate model of B cell fates upon EBV infection. Additional single-cell data from human tonsils reveal correspondence of model states to analogous in vivo phenotypes within secondary lymphoid tissue, including an EBV+ analog of multipotent activated precursors that can yield early memory B cells. These resources yield exquisitely detailed perspectives of the transforming cellular landscape during an oncogenic viral infection that simulates antigen-induced B cell activation and differentiation. Thus, they support investigations of state-specific EBV-host dynamics, effector B cell fates, and lymphomagenesis. To demonstrate this potential, we identify EBV infection dynamics in FCRL4+/TBX21+ atypical memory B cells that are pathogenically associated with numerous immune disorders.
Collapse
Affiliation(s)
- Elliott D SoRelle
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Joanne Dai
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nicolás M Reinoso-Vizcaino
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ashley P Barry
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Micah A Luftig
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
44
|
Zhang B, Peng Y, Wang Y, Wang X. Exploring the trimerization process of a transmembrane helix with an ionizable residue by molecular dynamics simulations: a case study of transmembrane domain 5 of LMP-1. Phys Chem Chem Phys 2022; 24:7084-7092. [PMID: 35262149 DOI: 10.1039/d2cp00102k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oligomerization of membrane proteins is an important biological process that plays a critical role in the initialization of membrane protein receptor signaling. Unveiling how transmembrane segments oligomerize is critical for understanding the mechanism of membrane receptor signaling activation. Owing to the complicated membrane environment and the extraordinary dynamic properties of the ionizable residues in the transmembrane segment, it is extremely challenging to thoroughly understand the oligomerization process of the transmembrane domain. In this study, transmembrane domain 5 (TMD5) of latent membrane protein-1 from Epstein-Barr virus was used as a prototype model to investigate the trimerization process of the transmembrane segment with ionizable residues. The trimerization process of TMD5 was rebuilt and investigated via conventional molecular dynamics simulations and constant-pH molecular dynamics simulations. When TMD5s approached each other, the tilting angles of the TMD5 monomer decreased. TMD5s formed stable trimers until two interacting sites (D150s and Q139s) along each transmembrane helix were created to lock the TMD5s. The pKa values of D150 shifted toward neutral states in the membrane environment. When TMD5s were monomers, the pKa shift of D150 was mainly influenced by its microenvironment in the lipid bilayer. When TMD5s were moving close to each other, protein-protein interactions became the main contributing factor for the pKa shift of D150s. Overall, this work elucidates the behavior of the TMD5 helix and the pKa shift of ionizable residue D150 in the process of TMD5 oligomerization. This study may provide insight into the development of agents for targeting the oligomerization of membrane proteins.
Collapse
Affiliation(s)
- Bo Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China. .,Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yinghua Peng
- State Key Laboratory for Molecular Biology of Special Economic Animal, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130112, China
| | - Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China. .,Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.,Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| |
Collapse
|
45
|
Abstract
Epstein–Barr virus (EBV) contributes to Burkitt lymphoma and post-transplant lymphoproliferative disease (PTLD). EBV-transforming programs activate lipid metabolism to convert B cells into immortalized lymphoblastoid cell lines (LCL), a PTLD model. We found that stages of EBV transformation generate lipid reactive oxygen species (ROS) byproducts to varying degrees, and that a Burkitt-like phase of B cell outgrowth requires lipid ROS detoxification by glutathione peroxidase 4 and its cofactor glutathione. Perturbation of this redox defense in early stages of transformation or in Burkitt cells triggered ferroptosis, a programmed cell death pathway. LCLs were less dependent on this defense, a distinction tied to EBV latency programs. This highlights ferroptosis induction as a potential therapeutic approach for prevention or treatment of certain EBV+ lymphomas. Epstein–Barr virus (EBV) causes 200,000 cancers annually. Upon B cell infection, EBV induces lipid metabolism to support B cell proliferation. Yet, little is known about how latent EBV infection, or human B cell stimulation more generally, alter sensitivity to ferroptosis, a nonapoptotic form of programmed cell death driven by iron-dependent lipid peroxidation and membrane damage. To gain insights, we analyzed lipid reactive oxygen species (ROS) levels and ferroptosis vulnerability in primary human CD19+ B cells infected by EBV or stimulated by key B cell receptors. Prior to the first mitosis, EBV-infected cells were exquisitely sensitive to blockade of glutathione biosynthesis, a phenomenon not observed with B cell receptor stimulation. Subsequently, EBV-mediated Burkitt-like hyperproliferation generated elevated levels of lipid ROS, which necessitated SLC7A11-mediated cystine import and glutathione peroxidase 4 (GPX4) activity to prevent ferroptosis. By comparison, B cells were sensitized to ferroptosis induction by combinatorial CD40-ligand and interleukin-4 stimulation or anti–B cell receptor and Toll-like receptor 9 stimulation upon GPX4 inhibition but not with SLC7A11 blockade. EBV transforming B cells became progressively resistant to ferroptosis induction upon switching to the latency III program and lymphoblastoid physiology. Similarly, latency I Burkitt cells were particularly vulnerable to blockade of SLC7A11 or GPX4 or cystine withdrawal, while latency III Burkitt and lymphoblastoid cells were comparatively resistant. The selenocysteine biosynthesis kinase PSTK was newly implicated as a cellular target for ferroptosis induction including in Burkitt cells, likely due to roles in GPX4 biosynthesis. These results highlight ferroptosis as an intriguing therapeutic target for the prevention or treatment of particular EBV-driven B cell malignancies.
Collapse
|
46
|
Manara F, Jay A, Odongo GA, Mure F, Maroui MA, Diederichs A, Sirand C, Cuenin C, Granai M, Mundo L, Hernandez-Vargas H, Lazzi S, Khoueiry R, Gruffat H, Herceg Z, Accardi R. Epigenetic Alteration of the Cancer-Related Gene TGFBI in B Cells Infected with Epstein-Barr Virus and Exposed to Aflatoxin B1: Potential Role in Burkitt Lymphoma Development. Cancers (Basel) 2022; 14:1284. [PMID: 35267594 PMCID: PMC8909323 DOI: 10.3390/cancers14051284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 01/25/2023] Open
Abstract
Burkitt lymphoma (BL) is a malignant B cell neoplasm that accounts for almost half of pediatric cancers in sub-Saharan African countries. Although the BL endemic prevalence is attributable to the combination of Epstein-Barr virus (EBV) infection with malaria and environmental carcinogens exposure, such as the food contaminant aflatoxin B1 (AFB1), the molecular determinants underlying the pathogenesis are not fully understood. Consistent with the role of epigenetic mechanisms at the interface between the genome and environment, AFB1 and EBV impact the methylome of respectively leukocytes and B cells specifically. Here, we conducted a thorough investigation of common epigenomic changes following EBV or AFB1 exposure in B cells. Genome-wide DNA methylation profiling identified an EBV-AFB1 common signature within the TGFBI locus, which encodes for a putative tumor suppressor often altered in cancer. Subsequent mechanistic analyses confirmed a DNA-methylation-dependent transcriptional silencing of TGFBI involving the recruitment of DNMT1 methyltransferase that is associated with an activation of the NF-κB pathway. Our results reveal a potential common mechanism of B cell transformation shared by the main risk factors of endemic BL (EBV and AFB1), suggesting a key determinant of disease that could allow the development of more efficient targeted therapeutic strategies.
Collapse
Affiliation(s)
- Francesca Manara
- International Agency for Research on Cancer, World Health Organization, 69000 Lyon, France; (F.M.); (A.J.); (G.A.O.); (A.D.); (C.S.); (C.C.); (R.K.)
| | - Antonin Jay
- International Agency for Research on Cancer, World Health Organization, 69000 Lyon, France; (F.M.); (A.J.); (G.A.O.); (A.D.); (C.S.); (C.C.); (R.K.)
| | - Grace Akinyi Odongo
- International Agency for Research on Cancer, World Health Organization, 69000 Lyon, France; (F.M.); (A.J.); (G.A.O.); (A.D.); (C.S.); (C.C.); (R.K.)
| | - Fabrice Mure
- CIRI, Centre International de Recherche en Infectiologie, RNA Expression in Viruses and Eukaryotes Group, Universite Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, ENS Lyon, 69007 Lyon, France; (F.M.); (M.A.M.)
| | - Mohamed Ali Maroui
- CIRI, Centre International de Recherche en Infectiologie, RNA Expression in Viruses and Eukaryotes Group, Universite Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, ENS Lyon, 69007 Lyon, France; (F.M.); (M.A.M.)
| | - Audrey Diederichs
- International Agency for Research on Cancer, World Health Organization, 69000 Lyon, France; (F.M.); (A.J.); (G.A.O.); (A.D.); (C.S.); (C.C.); (R.K.)
| | - Cecilia Sirand
- International Agency for Research on Cancer, World Health Organization, 69000 Lyon, France; (F.M.); (A.J.); (G.A.O.); (A.D.); (C.S.); (C.C.); (R.K.)
| | - Cyrille Cuenin
- International Agency for Research on Cancer, World Health Organization, 69000 Lyon, France; (F.M.); (A.J.); (G.A.O.); (A.D.); (C.S.); (C.C.); (R.K.)
| | - Massimo Granai
- Department of Medical Biotechnology, Section of Pathology, University of Siena, 53100 Siena, Italy; (M.G.); (S.L.)
| | - Lucia Mundo
- Health Research Institute, University of Limerick, V94 T9PX Limerick, Ireland;
| | | | - Stefano Lazzi
- Department of Medical Biotechnology, Section of Pathology, University of Siena, 53100 Siena, Italy; (M.G.); (S.L.)
| | - Rita Khoueiry
- International Agency for Research on Cancer, World Health Organization, 69000 Lyon, France; (F.M.); (A.J.); (G.A.O.); (A.D.); (C.S.); (C.C.); (R.K.)
| | - Henri Gruffat
- CIRI, Centre International de Recherche en Infectiologie, RNA Expression in Viruses and Eukaryotes Group, Universite Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, ENS Lyon, 69007 Lyon, France; (F.M.); (M.A.M.)
| | - Zdenko Herceg
- International Agency for Research on Cancer, World Health Organization, 69000 Lyon, France; (F.M.); (A.J.); (G.A.O.); (A.D.); (C.S.); (C.C.); (R.K.)
| | - Rosita Accardi
- International Agency for Research on Cancer, World Health Organization, 69000 Lyon, France; (F.M.); (A.J.); (G.A.O.); (A.D.); (C.S.); (C.C.); (R.K.)
| |
Collapse
|
47
|
Ranger-Rogez S. EBV Genome Mutations and Malignant Proliferations. Infect Dis (Lond) 2021. [DOI: 10.5772/intechopen.93194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The Epstein-Barr virus (EBV) is a DNA virus with a relatively stable genome. Indeed, genomic variability is reported to be around 0.002%. However, some regions are more variable such as those carrying latency genes and specially EBNA1, -2, -LP, and LMP1. Tegument genes, particularly BNRF1, BPLF1, and BKRF3, are also quite mutated. For a long time, it has been considered for this ubiquitous virus, which infects a very large part of the population, that particular strains could be the cause of certain diseases. However, the mutations found, in some cases, are more geographically restricted rather than associated with proliferation. In other cases, they appear to be involved in oncogenesis. The objective of this chapter is to provide an update on changes in viral genome sequences in malignancies associated with EBV. We focused on describing the structure and function of the proteins corresponding to the genes mentioned above in order to understand how certain mutations of these proteins could increase the tumorigenic character of this virus. Mutations described in the literature for these proteins were identified by reporting viral and/or cellular functional changes as they were described.
Collapse
|
48
|
Molecular Basis of Epstein-Barr Virus Latency Establishment and Lytic Reactivation. Viruses 2021; 13:v13122344. [PMID: 34960613 PMCID: PMC8706188 DOI: 10.3390/v13122344] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/27/2022] Open
Abstract
Epstein–Barr virus (EBV) is a causative agent of infectious mononucleosis and several types of cancer. Like other herpesviruses, it establishes an asymptomatic, life-long latent infection, with occasional reactivation and shedding of progeny viruses. During latency, EBV expresses a small number of viral genes, and exists as an episome in the host–cell nucleus. Expression patterns of latency genes are dependent on the cell type, time after infection, and milieu of the cell (e.g., germinal center or peripheral blood). Upon lytic induction, expression of the viral immediate-early genes, BZLF1 and BRLF1, are induced, followed by early gene expression, viral DNA replication, late gene expression, and maturation and egress of progeny virions. Furthermore, EBV reactivation involves more than just progeny production. The EBV life cycle is regulated by signal transduction, transcription factors, promoter sequences, epigenetics, and the 3D structure of the genome. In this article, the molecular basis of EBV latency establishment and reactivation is summarized.
Collapse
|
49
|
Abstract
Viral infection is an indisputable causal factor for nearly 17% of all human cancers. However, the diversity and complexity of oncogenic mechanisms raises new questions as to the mechanistic role of viruses in cancer. Classical viral oncogenes have been identified for all tumor-associated viruses. These oncogenes can have multiple oncogenic activities that may or may not be utilized in a particular tumor cell. In addition, stochastic events, like viral mutation and integration, as well as heritable host susceptibilities and immune deficiencies are also implicated in tumorigenesis. A more contemporary view of tumor biology highlights the importance of evolutionary forces that select for phenotypes better adapted to a complex and changing environment. Given the challenges of prioritizing singular mechanistic causes, it may be necessary to integrate concepts from evolutionary theory and systems biology to better understand viral cancer-driving forces. Here, we propose that viral infection provides a biological “entropy” that increases genetic variation and phenotypic plasticity, accelerating the main driving forces of cancer cell evolution. Viruses can also influence the evolutionary selection criteria by altering the tumor microenvironment and immune signaling. Utilizing concepts from cancer cell evolution, population genetics, thermodynamics, and systems biology may provide new perspectives on viral oncogenesis and identify novel therapeutic strategies for treating viruses and cancer.
Collapse
Affiliation(s)
- Italo Tempera
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, PA, United States
| | - Paul M Lieberman
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, PA, United States
| |
Collapse
|
50
|
New Look of EBV LMP1 Signaling Landscape. Cancers (Basel) 2021; 13:cancers13215451. [PMID: 34771613 PMCID: PMC8582580 DOI: 10.3390/cancers13215451] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/01/2021] [Accepted: 10/26/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Epstein-Barr Virus (EBV) infection is associated with various lymphomas and carcinomas as well as other diseases in humans. The transmembrane protein LMP1 plays versatile roles in EBV life cycle and pathogenesis, by perturbing, reprograming, and regulating a large range of host cellular mechanisms and functions, which have been increasingly disclosed but not fully understood so far. We summarize recent research progress on LMP1 signaling, including the novel components LIMD1, p62, and LUBAC in LMP1 signalosome and LMP1 novel functions, such as its induction of p62-mediated selective autophagy, regulation of metabolism, induction of extracellular vehicles, and activation of NRF2-mediated antioxidative defense. A comprehensive understanding of LMP1 signal transduction and functions may allow us to leverage these LMP1-regulated cellular mechanisms for clinical purposes. Abstract The Epstein–Barr Virus (EBV) principal oncoprotein Latent Membrane Protein 1 (LMP1) is a member of the Tumor Necrosis Factor Receptor (TNFR) superfamily with constitutive activity. LMP1 shares many features with Pathogen Recognition Receptors (PRRs), including the use of TRAFs, adaptors, and kinase cascades, for signal transduction leading to the activation of NFκB, AP1, and Akt, as well as a subset of IRFs and likely the master antioxidative transcription factor NRF2, which we have gradually added to the list. In recent years, we have discovered the Linear UBiquitin Assembly Complex (LUBAC), the adaptor protein LIMD1, and the ubiquitin sensor and signaling hub p62, as novel components of LMP1 signalosome. Functionally, LMP1 is a pleiotropic factor that reprograms, balances, and perturbs a large spectrum of cellular mechanisms, including the ubiquitin machinery, metabolism, epigenetics, DNA damage response, extracellular vehicles, immune defenses, and telomere elongation, to promote oncogenic transformation, cell proliferation and survival, anchorage-independent cell growth, angiogenesis, and metastasis and invasion, as well as the development of the tumor microenvironment. We have recently shown that LMP1 induces p62-mediated selective autophagy in EBV latency, at least by contributing to the induction of p62 expression, and Reactive Oxygen Species (ROS) production. We have also been collecting evidence supporting the hypothesis that LMP1 activates the Keap1-NRF2 pathway, which serves as the key antioxidative defense mechanism. Last but not least, our preliminary data shows that LMP1 is associated with the deregulation of cGAS-STING DNA sensing pathway in EBV latency. A comprehensive understanding of the LMP1 signaling landscape is essential for identifying potential targets for the development of novel strategies towards targeted therapeutic applications.
Collapse
|