1
|
Johansen ER, Schmalzriedt DL, Avila D, Sylvester PA, Rahlf CR, Bobek JM, Sahoo D, Dittel BN, Tarakanova VL. Combination of proviral and antiviral roles of B cell-intrinsic STAT1 expression defines parameters of chronic gammaherpesvirus infection. mBio 2024; 15:e0159824. [PMID: 39440973 PMCID: PMC11559066 DOI: 10.1128/mbio.01598-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Gammaherpesviruses are species-specific, ubiquitous pathogens that establish lifelong infection in their hosts and are associated with cancers, including B cell lymphomas. Type I and II interferons (IFNs) are critical for the control of acute and chronic gammaherpesvirus infection. However, the cell type-specific role of IFN signaling during natural infection is poorly defined and is masked by the altered viral pathogenesis observed in hosts with global IFN deficiencies. STAT1 is a constitutively expressed transcription factor that is critical for the effector function of type I and II IFNs. In this study, we defined the impact of B cell-specific STAT1 expression on gammaherpesvirus infection using murine gammaherpesvirus 68 (MHV68). While the acute stage of MHV68 infection was not affected, we found opposite, anatomic site-dependent effects of B cell-intrinsic STAT1 expression during chronic infection. Consistent with the antiviral role of STAT1, B cell-specific STAT1 expression attenuated the latent viral reservoir in peritoneal B cells of chronically infected mice. In contrast, STAT1 expression in splenic B cells supported the establishment of the latent MHV68 reservoir in germinal center B cells, revealing an unexpected proviral role of B cell-intrinsic STAT1 expression during chronic gammaherpesvirus infection. These STAT1-dependent MHV68 chronic infection phenotypes were fully recapitulated in the peritoneal cavity but not the spleen of mice with B cell-specific deficiency of type I IFN receptor. In summary, our study uncovers the intriguing combination of proviral and antiviral roles of B cell-intrinsic STAT1 expression during chronic gammaherpesvirus infection.IMPORTANCEInterferons (IFNs) execute broadly antiviral roles during acute and chronic viral infections. The constitutively expressed transcription factor STAT1 is a critical downstream effector of IFN signaling. Our studies demonstrate that B cell-intrinsic STAT1 expression has opposing and anatomic site-dependent roles during chronic gammaherpesvirus infection. Specifically, B cell-intrinsic STAT1 expression restricted gammaherpesvirus latent reservoir in the peritoneal cavity, consistent with the classical antiviral role of STAT1. In contrast, decreased STAT1 expression in splenic B cells led to the attenuated establishment of gammaherpesvirus latency and decreased latent infection of germinal center B cells, highlighting a novel proviral role of B cell-intrinsic STAT1 expression during chronic infection with a B cell-tropic gammaherpesvirus. Interestingly, B cell-specific type I IFN receptor deficiency primarily recapitulated the antiviral role of B cell-intrinsic STAT1 expression, suggesting the compensatory function of B cell-intrinsic type II IFN signaling or an IFN-independent proviral role of B cell-intrinsic STAT1 expression during chronic gammaherpesvirus infection.
Collapse
Affiliation(s)
- Erika R. Johansen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Damon L. Schmalzriedt
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Danilela Avila
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Paul A. Sylvester
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Cade R. Rahlf
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jordan M. Bobek
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Daisy Sahoo
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - Vera L. Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
2
|
Huss NP, Majeed ST, Wills BM, Tarakanova VL, Brockman KL, Jondle CN. Nontypeable Haemophilus influenzae challenge during gammaherpesvirus infection enhances viral reactivation and latency. Virology 2024; 597:110153. [PMID: 38941745 PMCID: PMC11257779 DOI: 10.1016/j.virol.2024.110153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
Gammaherpesviruses are ubiquitous, lifelong pathogens associated with multiple cancers that infect over 95% of the adult population. Increases in viral reactivation, due to stress and other unknown factors impacting the immune response, frequently precedes lymphomagenesis. One potential stressor that could promote viral reactivation and increase viral latency would be the myriad of infections from bacterial and viral pathogens that we experience throughout our lives. Using murine gammaherpesvirus 68 (MHV68), a mouse model of gammaherpesvirus infection, we examined the impact of bacterial challenge on gammaherpesvirus infection. We challenged MHV68 infected mice during the establishment of latency with nontypeable Haemophilus influenzae (NTHi) to determine the impact of bacterial infection on viral reactivation and latency. Mice infected with MHV68 and then challenged with NTHi, saw increases in viral reactivation and viral latency. These data support the hypothesis that bacterial challenge can promote gammaherpesvirus reactivation and latency establishment, with possible consequences for viral lymphomagenesis.
Collapse
Affiliation(s)
- Nicholas P Huss
- Department of Investigative Medicine and Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, USA
| | - Sheikh Tahir Majeed
- Department of Investigative Medicine and Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, USA
| | - Brandon M Wills
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Vera L Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA; Cancer Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Kenneth L Brockman
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Christopher N Jondle
- Department of Investigative Medicine and Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, USA.
| |
Collapse
|
3
|
Sylvester PA, Corbett JA, Tarakanova VL. T cell-extrinsic IL-1 signaling controls long-term gammaherpesvirus infection by suppressing viral reactivation. Virology 2022; 576:134-140. [PMID: 36244319 PMCID: PMC10069094 DOI: 10.1016/j.virol.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/31/2022] [Accepted: 09/14/2022] [Indexed: 02/02/2023]
Abstract
Gammaherpesviruses establish life-long infection in over 95% of adults and are associated with several cancers, including B cell lymphomas. Using the murine gammaherpesvirus 68 (MHV68) animal model, we previously showed a pro-viral role of Interleukin-1 (IL-1) signaling that supported viral reactivation during the establishment of chronic infection. Unexpectedly, in this study we found that the proviral effects of IL-1 signaling originally observed during the establishment of chronic gammaherpesvirus infection convert to antiviral effects during the long-term stage of infection. Specifically, IL-1 signaling promoted expansion of antiviral CD8+ T cells and control of viral reactivation in the peritoneal cavity of a long-term infected host. Using a novel mouse model of T cell-specific IL-1 signaling deficiency, we found that the antiviral effects of IL-1 signaling were T cell extrinsic. Our study highlights a dynamic nature of host factors that shape the parameters of chronic gammaherpesvirus infection.
Collapse
Affiliation(s)
- P A Sylvester
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - J A Corbett
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - V L Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA; Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
4
|
Jondle CN, Sylvester PA, Schmalzriedt DL, Njoya K, Tarakanova VL. The Antagonism between the Murine Gammaherpesvirus Protein Kinase and Global Interferon Regulatory Factor 1 Expression Shapes the Establishment of Chronic Infection. J Virol 2022; 96:e0126022. [PMID: 36169331 PMCID: PMC9599343 DOI: 10.1128/jvi.01260-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/09/2022] [Indexed: 11/20/2022] Open
Abstract
Gammaherpesviruses infect most vertebrate species and are associated with B cell lymphomas. Manipulation of B cell differentiation is critical for natural infection and lymphomagenesis driven by gammaherpesviruses. Specifically, human Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 (MHV68) drive differentiation of infected naive B cells into the germinal center to achieve exponential increase in the latent viral reservoir during the establishment of chronic infection. Infected germinal center B cells are also the target of viral lymphomagenesis, as most EBV-positive B cell lymphomas bear the signature of the germinal center response. All gammaherpesviruses encode a protein kinase, which, in the case of Kaposi's sarcoma-associated herpesvirus (KSHV) and MHV68, is sufficient and necessary, respectively, to drive B cell differentiation in vivo. In this study, we used the highly tractable MHV68 model of chronic gammaherpesvirus infection to unveil an antagonistic relationship between MHV68 protein kinase and interferon regulatory factor 1 (IRF-1). IRF-1 deficiency had minimal effect on the attenuated lytic replication of the kinase-null MHV68 in vivo. In contrast, the attenuated latent reservoir of the kinase-null MHV68 was partially to fully rescued in IRF-1-/- mice, along with complete rescue of the MHV68-driven germinal center response. Thus, the novel viral protein kinase-IRF-1 antagonism was largely limited to chronic infection dominated by viral latency and was less relevant for lytic replication during acute infection and in vitro. Given the conserved nature of the viral and host protein, the antagonism between the two, as defined in this study, may regulate gammaherpesvirus infection across species. IMPORTANCE Gammaherpesviruses are prevalent pathogens that manipulate physiological B cell differentiation to establish lifelong infection. This manipulation is also involved in gammaherpesvirus-driven B cell lymphomas, as differentiation of latently infected B cells through the germinal center response targets these for transformation. In this study, we define a novel antagonistic interaction between a conserved gammaherpesvirus protein kinase and a host antiviral and tumor suppressor transcription factor. The virus-host antagonism unveiled in this study was critically important to shape the magnitude of gammaherpesvirus-driven germinal center response. In contrast, the virus-host antagonism was far less relevant for lytic viral replication in vitro and during acute infection in vivo, highlighting the emerging concept that nonoverlapping mechanisms shape the parameters of acute and chronic gammaherpesvirus infection.
Collapse
Affiliation(s)
- C. N. Jondle
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - P. A. Sylvester
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - D. L. Schmalzriedt
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - K. Njoya
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - V. L. Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
5
|
T Cell-Intrinsic Interleukin 17 Receptor A Signaling Supports the Establishment of Chronic Murine Gammaherpesvirus 68 Infection. J Virol 2022; 96:e0063922. [PMID: 35758659 PMCID: PMC9327704 DOI: 10.1128/jvi.00639-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Gammaherpesviruses, such as human Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 (MHV68), are species-specific, ubiquitous pathogens that are associated with multiple cancers, including B cell lymphomas. These viruses have a natural tropism for B cells and usurp B cell differentiation to drive a unique and robust polyclonal germinal center response to establish a long-term latent reservoir in memory B cells. The robust polyclonal germinal center response driven by gammaherpesvirus infection increases the risk for B cell transformation. Unsurprisingly, many gammaherpesvirus cancers are derived from germinal center or post-germinal center B cells. The viral and host factors that influence the gammaherpesvirus-driven germinal center response are not clearly defined. We previously showed that host interleukin 17 receptor A (IL-17RA) signaling promotes the establishment of chronic MHV68 infection and the MHV68-driven germinal center response. In this study, we found that T cell-intrinsic IL-17RA signaling recapitulates some proviral aspects of global IL-17RA signaling during MHV68 infection. Specifically, we found that T cell-intrinsic IL-17RA signaling supports the MHV68-driven germinal center response, the establishment of latency in the spleen, and viral reactivation in the spleen and peritoneal cavity. Our study unveils an unexpected finding where the T cell-specific IL-17RA signaling supports the establishment of a latent reservoir of a B cell-tropic gammaherpesvirus. IMPORTANCE Gammaherpesviruses, such as human EBV, establish lifelong infection in >95% of adults and are associated with B cell lymphomas. Gammaherpesviruses usurp the germinal center response to establish latent infection, and the germinal center B cells are thought to be the target of viral transformation. We previously found that global expression of IL-17RA promotes the establishment of chronic MHV68 infection and the MHV68-driven germinal center response. In this study, we showed that T cell-intrinsic IL-17RA signaling is necessary to promote the MHV68-driven germinal center response by supporting CD4+ T follicular helper cell expansion. We also found that T cell-intrinsic IL-17RA signaling contributes to but is not solely responsible for the systemic proviral role of IL-17RA signaling, highlighting the multifaceted function of IL-17RA signaling during MHV68 infection.
Collapse
|
6
|
Lee J, Cullum E, Stoltz K, Bachmann N, Strong Z, Millick DD, Denzin LK, Chang A, Tarakanova V, Chervonsky AV, Golovkina T. Mouse Homologue of Human HLA-DO Does Not Preempt Autoimmunity but Controls Murine Gammaherpesvirus MHV68. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2944-2951. [PMID: 34810225 PMCID: PMC9124240 DOI: 10.4049/jimmunol.2100650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/14/2021] [Indexed: 11/19/2022]
Abstract
H2-O (human HLA-DO) is a relatively conserved nonclassical MHC class II (MHCII)-like molecule. H2-O interaction with human HLA-DM edits the repertoire of peptides presented to TCRs by MHCII. It was long hypothesized that human HLA-DM inhibition by H2-O provides protection from autoimmunity by preventing binding of the high-affinity self-peptides to MHCII. The available evidence supporting this hypothesis, however, was inconclusive. A possibility still remained that the effect of H2-O deficiency on autoimmunity could be better revealed by using H2-O-deficient mice that were already genetically predisposed to autoimmunity. In this study, we generated and used autoimmunity-prone mouse models for systemic lupus erythematosus and organ-specific autoimmunity (type 1 diabetes and multiple sclerosis) to definitively test whether H2-O prevents autoimmune pathology. Whereas our data failed to support any significance of H2-O in protection from autoimmunity, we found that it was critical for controlling a γ-herpesvirus, MHV68. Thus, we propose that H2-O editing of the MHCII peptide repertoire may have evolved as a safeguard against specific highly prevalent viral pathogens.
Collapse
Affiliation(s)
- Jean Lee
- Committee on Cancer Biology, the University of Chicago, Chicago, IL
| | - Emily Cullum
- Committee on Immunology, the University of Chicago, Chicago, IL
| | - Kyle Stoltz
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Niklas Bachmann
- Department of Microbiology, the University of Chicago, Chicago, IL
| | - Zoe Strong
- Department of Pathology, the University of Chicago, Chicago, IL
| | - Danielle D Millick
- Graduate School of Biomedical Sciences, Rutgers University, Piscataway, NJ
| | - Lisa K Denzin
- Graduate School of Biomedical Sciences, Rutgers University, Piscataway, NJ
- Child Health Institute of New Jersey, Department of Pediatrics and Pharmacology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ; and
| | - Anthony Chang
- Department of Pathology, the University of Chicago, Chicago, IL
| | - Vera Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Alexander V Chervonsky
- Committee on Immunology, the University of Chicago, Chicago, IL;
- Department of Pathology, the University of Chicago, Chicago, IL
- Committee on Microbiology, the University of Chicago, Chicago, IL
| | - Tatyana Golovkina
- Committee on Immunology, the University of Chicago, Chicago, IL;
- Department of Microbiology, the University of Chicago, Chicago, IL
- Committee on Microbiology, the University of Chicago, Chicago, IL
| |
Collapse
|
7
|
Wang Y, Tibbetts SA, Krug LT. Conquering the Host: Determinants of Pathogenesis Learned from Murine Gammaherpesvirus 68. Annu Rev Virol 2021; 8:349-371. [PMID: 34586873 PMCID: PMC9153731 DOI: 10.1146/annurev-virology-011921-082615] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Gammaherpesviruses are an important class of oncogenic pathogens that are exquisitely evolved to their respective hosts. As such, the human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi sarcoma herpesvirus (KSHV) do not naturally infect nonhuman primates or rodents. There is a clear need to fully explore mechanisms of gammaherpesvirus pathogenesis, host control, and immune evasion in the host. A gammaherpesvirus pathogen isolated from murid rodents was first reported in 1980; 40 years later, murine gammaherpesvirus 68 (MHV68, MuHV-4, γHV68) infection of laboratory mice is a well-established pathogenesis system recognized for its utility in applying state-of-the-art approaches to investigate virus-host interactions ranging from the whole host to the individual cell. Here, we highlight recent advancements in our understanding of the processes by which MHV68 colonizes the host and drives disease. Lessons that inform KSHV and EBV pathogenesis and provide future avenues for novel interventions against infection and virus-associated cancers are emphasized.
Collapse
Affiliation(s)
- Yiping Wang
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Scott A Tibbetts
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Laurie T Krug
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA;
| |
Collapse
|
8
|
Conserved Gammaherpesvirus Protein Kinase Counters the Antiviral Effects of Myeloid Cell-Specific STAT1 Expression To Promote the Establishment of Splenic B Cell Latency. J Virol 2021; 95:e0085921. [PMID: 34132573 DOI: 10.1128/jvi.00859-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gammaherpesviruses establish lifelong infections and are associated with B cell lymphomas. Murine gammaherpesvirus 68 (MHV68) infects epithelial and myeloid cells during acute infection, with subsequent passage of the virus to B cells, where physiological B cell differentiation is usurped to ensure the establishment of a chronic latent reservoir. Interferons (IFNs) represent a major antiviral defense system that engages the transcriptional factor STAT1 to attenuate diverse acute and chronic viral infections, including those of gammaherpesviruses. Correspondingly, global deficiency of type I or type II IFN signaling profoundly increases the pathogenesis of acute and chronic gammaherpesvirus infection, compromises host survival, and impedes mechanistic understanding of cell type-specific role of IFN signaling. Here, we demonstrate that myeloid-specific STAT1 expression attenuates acute and persistent MHV68 replication in the lungs and suppresses viral reactivation from peritoneal cells, without any effect on the establishment of viral latent reservoir in splenic B cells. All gammaherpesviruses encode a conserved protein kinase that antagonizes type I IFN signaling in vitro. Here, we show that myeloid-specific STAT1 deficiency rescues the attenuated splenic latent reservoir of the kinase-null MHV68 mutant. However, despite having gained access to splenic B cells, the protein kinase-null MHV68 mutant fails to drive B cell differentiation. Thus, while myeloid-intrinsic STAT1 expression must be counteracted by the gammaherpesvirus protein kinase to facilitate viral passage to splenic B cells, expression of the viral protein kinase continues to be required to promote optimal B cell differentiation and viral reactivation, highlighting the multifunctional nature of this conserved viral protein during chronic infection. IMPORTANCE IFN signaling is a major antiviral system of the host that suppresses replication of diverse viruses, including acute and chronic gammaherpesvirus infection. STAT1 is a critical member and the primary antiviral effector of IFN signaling pathways. Given the significantly compromised antiviral status of global type I or type II IFN deficiency, unabated gammaherpesvirus replication and pathogenesis hinders understanding of cell type-specific antiviral effects. In this study, a mouse model of myeloid-specific STAT1 deficiency unveiled site-specific antiviral effects of STAT1 in the lungs and peritoneal cavity, but not the spleen, of chronically infected hosts. Interestingly, expression of a conserved gammaherpesvirus protein kinase was required to counteract the antiviral effects of myeloid-specific STAT1 expression to facilitate latent infection of splenic B cells, revealing a cell type-specific virus-host antagonism during the establishment of chronic gammaherpesvirus infection.
Collapse
|
9
|
Interferon Regulatory Factor 3 Supports the Establishment of Chronic Gammaherpesvirus Infection in a Route- and Dose-Dependent Manner. J Virol 2021; 95:JVI.02208-20. [PMID: 33597211 DOI: 10.1128/jvi.02208-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/10/2021] [Indexed: 12/15/2022] Open
Abstract
Gammaherpesviruses are ubiquitous pathogens that establish lifelong infections and are associated with several malignancies, including B cell lymphomas. Uniquely, these viruses manipulate B cell differentiation to establish long-term latency in memory B cells. This study focuses on the interaction between gammaherpesviruses and interferon regulatory factor 3 (IRF-3), a ubiquitously expressed transcription factor with multiple direct target genes, including beta interferon (IFN-β), a type I IFN. IRF-3 attenuates acute replication of a plethora of viruses, including gammaherpesvirus. Furthermore, IRF-3-driven IFN-β expression is antagonized by the conserved gammaherpesvirus protein kinase during lytic virus replication in vitro In this study, we have uncovered an unexpected proviral role of IRF-3 during chronic gammaherpesvirus infection. In contrast to the antiviral activity of IRF-3 during acute infection, IRF-3 facilitated establishment of latent gammaherpesvirus infection in B cells, particularly, germinal center and activated B cells, the cell types critical for both natural infection and viral lymphomagenesis. This proviral role of IRF-3 was further modified by the route of infection and viral dose. Furthermore, using a combination of viral and host genetics, we show that IRF-3 deficiency does not rescue attenuated chronic infection of a protein kinase null gammaherpesvirus mutant, highlighting the multifunctional nature of the conserved gammaherpesvirus protein kinases in vivo In summary, this study unveils an unexpected proviral nature of the classical innate immune factor, IRF-3, during chronic virus infection.IMPORTANCE Interferon regulatory factor 3 (IRF-3) is a critical component of the innate immune response, in part due to its transactivation of beta interferon (IFN-β) expression. Similar to that observed in all acute virus infections examined to date, IRF-3 suppresses lytic viral replication during acute gammaherpesvirus infection. Because gammaherpesviruses establish lifelong infection, this study aimed to define the antiviral activity of IRF-3 during chronic infection. Surprisingly, we found that, in contrast to acute infection, IRF-3 supported the establishment of gammaherpesvirus latency in splenic B cells, revealing an unexpected proviral nature of this classical innate immune host factor.
Collapse
|
10
|
Abstract
Gammaherpesviruses establish lifelong infections in a majority of humans and are associated with B cell lymphomas. IL-17A is a host cytokine that plays a well-established role in the clearance of bacterial and fungal infections; however, the role of IL-17A in viral infections is poorly understood. Gammaherpesviruses establish lifelong infection and are associated with a variety of cancers, including B cell lymphomas. These viruses manipulate the B cell differentiation process to establish lifelong infection in memory B cells. Specifically, gammaherpesviruses infect naive B cells and promote entry of both infected and uninfected naive B cells into germinal centers, where the virus usurps rapid proliferation of germinal center B cells to exponentially increase its cellular latent reservoir. In addition to facilitating the establishment of latent infection, germinal center B cells are thought to be the target of viral transformation. In this study, we have uncovered a novel proviral role of host interleukin 17A (IL-17A), a well-established antibacterial and antifungal factor. Loss of IL-17A signaling attenuated the establishment of chronic gammaherpesvirus infection and gammaherpesvirus-driven germinal center response in a route of inoculation-dependent manner. Further, IL-17A treatment directly supported gammaherpesvirus reactivation and de novo lytic infection. This study is the first demonstration of a multifaceted proviral role of IL-17 signaling.
Collapse
|
11
|
Jondle CN, Tarakanova VL. Innate immunity and alpha/gammaherpesviruses: first impressions last a lifetime. Curr Opin Virol 2020; 44:81-89. [PMID: 32777757 DOI: 10.1016/j.coviro.2020.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 06/25/2020] [Accepted: 07/04/2020] [Indexed: 12/26/2022]
Abstract
Innate immune system is considered the first line of defense during viral invasion, with the wealth of the literature demonstrating innate immune control of diverse viruses during acute infection. What is far less clear is the role of innate immune system during chronic virus infections. This short review focuses on alphaherpesviruses and gammaherpesviruses, two highly prevalent herpesvirus subfamilies that, following a brief, once in a lifetime period of acute lytic infection, establish life-long latent infection that is characterized by sporadic reactivation in an immunocompetent host. In spite of many similarities, these two viral families are characterized by distinct cellular tropism and pathogenesis. Here we focus on the published in vivo studies to review known interactions of these two viral subfamilies with the innate immunity of the intact host, both during acute and, particularly, chronic virus infection.
Collapse
Affiliation(s)
- Christopher N Jondle
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI, 53226, United States
| | - Vera L Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI, 53226, United States; Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States.
| |
Collapse
|
12
|
Dangerous Liaisons: Gammaherpesvirus Subversion of the Immunoglobulin Repertoire. Viruses 2020; 12:v12080788. [PMID: 32717815 PMCID: PMC7472090 DOI: 10.3390/v12080788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
A common biologic property of the gammaherpesviruses Epstein–Barr Virus and Kaposi sarcoma herpesvirus is their use of B lymphocytes as a reservoir of latency in healthy individuals that can undergo oncogenic transformation later in life. Gammaherpesviruses (GHVs) employ an impressive arsenal of proteins and non-coding RNAs to reprogram lymphocytes for proliferative expansion. Within lymphoid tissues, the germinal center (GC) reaction is a hub of B cell proliferation and death. The goal of a GC is to generate and then select for a pool of immunoglobulin (Ig) genes that will provide a protective humoral adaptive immune response. B cells infected with GHVs are detected in GCs and bear the hallmark signatures of the mutagenic processes of somatic hypermutation and isotype class switching of the Ig genes. However, data also supports extrafollicular B cells as a reservoir engaged by GHVs. Next-generation sequencing technologies provide unprecedented detail of the Ig sequence that informs the natural history of infection at the single cell level. Here, we review recent reports from human and murine GHV systems that identify striking differences in the immunoglobulin repertoire of infected B cells compared to their uninfected counterparts. Implications for virus biology, GHV-associated cancers, and host immune dysfunction will be discussed.
Collapse
|
13
|
B Cell-Intrinsic Expression of Interferon Regulatory Factor 1 Supports Chronic Murine Gammaherpesvirus 68 Infection. J Virol 2020; 94:JVI.00399-20. [PMID: 32321819 DOI: 10.1128/jvi.00399-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023] Open
Abstract
Gammaherpesviruses are ubiquitous pathogens that are associated with cancers, including B cell lymphomas. These viruses are unique in that they infect naive B cells and subsequently drive a robust polyclonal germinal center response in order to amplify the latent reservoir and to establish lifelong infection in memory B cells. The gammaherpesvirus-driven germinal center response in combination with robust infection of germinal center B cells is thought to precipitate lymphomagenesis. Importantly, host and viral factors that selectively affect the gammaherpesvirus-driven germinal center response remain poorly understood. Global deficiency of antiviral tumor-suppressive interferon regulatory factor 1 (IRF-1) selectively promotes the murine gammaherpesvirus 68 (MHV68)-driven germinal center response and expansion of the viral latent reservoir. To determine the extent to which antiviral effects of IRF-1 are B cell intrinsic, we generated mice with conditional IRF-1 deficiency. Surprisingly, B cell-specific IRF-1 deficiency attenuated the establishment of chronic infection and the germinal center response, indicating that MHV68 may, in a B cell-intrinsic manner, usurp IRF-1 to promote the germinal center response and expansion of the latent reservoir. Further, we found that B cell-specific IRF-1 deficiency led to reduced levels of active tyrosine phosphatase SHP1, which plays a B cell-intrinsic proviral function during MHV68 infection. Finally, results of this study indicate that the antiviral functions of IRF-1 unveiled in MHV68-infected mice with global IRF-1 deficiency are mediated via IRF-1 expression by non-B cell populations.IMPORTANCE Gammaherpesviruses establish lifelong infection in over 95% of all adults and are associated with B cell lymphomas. The virus's manipulation of the germinal center response and B cell differentiation to establish lifelong infection is thought to also precipitate malignant transformation, through a mechanism that remains poorly understood. The host transcription factor IRF-1, a well-established tumor suppressor, selectively attenuates MHV68-driven germinal center response, a phenotype that we originally hypothesized to occur in a B cell-intrinsic manner. In contrast, in testing, B cell-intrinsic IRF-1 expression promoted the MHV68-driven germinal center response and the establishment of chronic infection. Our report highlights the underappreciated multifaceted role of IRF-1 in MHV68 infection and pathogenesis.
Collapse
|
14
|
Zelazowska MA, Dong Q, Plummer JB, Zhong Y, Liu B, Krug LT, McBride KM. Gammaherpesvirus-infected germinal center cells express a distinct immunoglobulin repertoire. Life Sci Alliance 2020; 3:3/3/e201900526. [PMID: 32029571 PMCID: PMC7012147 DOI: 10.26508/lsa.201900526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/17/2022] Open
Abstract
Germinal center B cells infected with gammaherpesvirus display altered repertoire with biased usage of lambda light chain and skewed utilization of IGHV genes. The gammaherpesviruses (γHVs), human Kaposi sarcoma-associated herpesvirus (KSHV), EBV, and murine γHV68 are prevalent infections associated with lymphocyte pathologies. After primary infection, EBV and γHV68 undergo latent expansion in germinal center (GC) B cells and persists in memory cells. The GC reaction evolves and selects antigen-specific B cells for memory development but whether γHV passively transients or manipulates this process in vivo is unknown. Using the γHV68 infection model, we analyzed the Ig repertoire of infected and uninfected GC cells from individual mice. We found that infected cells displayed the hallmarks of affinity maturation, hypermutation, and isotype switching but underwent clonal expansion. Strikingly, infected cells displayed distinct repertoire, not found in uninfected cells, with recurrent utilization of certain Ig heavy V segments including Ighv10-1. In a manner observed with KSHV, γHV68 infected cells also displayed lambda light chain bias. Thus, γHV68 subverts GC selection to expand in a specific B cell subset during the process that develops long-lived immunologic memory.
Collapse
Affiliation(s)
- Monika A Zelazowska
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - Qiwen Dong
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA.,Graduate Program of Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY, USA
| | - Joshua B Plummer
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - Yi Zhong
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - Laurie T Krug
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Kevin M McBride
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| |
Collapse
|
15
|
Johnson KE, Tarakanova VL. Gammaherpesviruses and B Cells: A Relationship That Lasts a Lifetime. Viral Immunol 2020; 33:316-326. [PMID: 31913773 DOI: 10.1089/vim.2019.0126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gammaherpesviruses are highly prevalent pathogens that establish life-long infection and are associated with diverse malignancies, including lymphoproliferative diseases and B cell lymphomas. Unlike other viruses that either do not infect B cells or infect B cells transiently, gammaherpesviruses manipulate physiological B cell differentiation to establish life-long infection in memory B cells. Disruption of such viral manipulation by genetic or environmental causes is likely to seed viral lymphomagenesis. In this review, we discuss physiological and unique host and viral mechanisms usurped by gammaherpesviruses to fine tune host B cell biology for optimal infection establishment and maintenance.
Collapse
Affiliation(s)
- Kaitlin E Johnson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Vera L Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
16
|
B Cell-Intrinsic SHP1 Expression Promotes the Gammaherpesvirus-Driven Germinal Center Response and the Establishment of Chronic Infection. J Virol 2019; 94:JVI.01232-19. [PMID: 31597758 DOI: 10.1128/jvi.01232-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023] Open
Abstract
Gammaherpesviruses are ubiquitous pathogens that establish lifelong infections in the majority of adults worldwide. Chronic gammaherpesvirus infection has been implicated in both lymphomagenesis and, somewhat controversially, autoimmune disease development. Pathogenesis is largely associated with the unique ability of gammaherpesviruses to usurp B cell differentiation, specifically, the germinal center response, to establish long-term latency in memory B cells. The host tyrosine phosphatase SHP1 is known as a brake on immune cell activation and is downregulated in several gammaherpesvirus-driven malignancies. However, here we demonstrate that B cell- but not T cell-intrinsic SHP1 expression supports the gammaherpesvirus-driven germinal center response and the establishment of viral latency. Furthermore, B cell-intrinsic SHP1 deficiency cooperated with gammaherpesvirus infection to increase the levels of double-stranded DNA-reactive antibodies at the peak of viral latency. Thus, in spite of decreased SHP1 levels in gammaherpesvirus-driven B cell lymphomas, B cell-intrinsic SHP1 expression plays a proviral role during the establishment of chronic infection, suggesting that the gammaherpesvirus-SHP1 interaction is more nuanced and is modified by the stage of infection and pathogenesis.IMPORTANCE Gammaherpesviruses establish lifelong infection in a majority of adults worldwide and are associated with a number of malignancies, including B cell lymphomas. These viruses infect naive B cells and manipulate B cell differentiation to achieve a lifelong infection of memory B cells. The germinal center stage of B cell differentiation is important as both an amplifier of the viral latent reservoir and the target of malignant transformation. In this study, we demonstrate that expression of tyrosine phosphatase SHP1, a negative regulator that normally limits the activation and proliferation of hematopoietic cells, enhances the gammaherpesvirus-driven germinal center response and the establishment of chronic infection. The results of this study uncover an intriguing beneficial interaction between gammaherpesviruses that are presumed to profit from B cell activation and a cellular phosphatase that is traditionally perceived to be a negative regulator of the same processes.
Collapse
|