1
|
Sperstad PD, Holmstrom ED. Conformational dynamics of the hepatitis C virus 3'X RNA. RNA (NEW YORK, N.Y.) 2024; 30:1151-1163. [PMID: 38834242 PMCID: PMC11331413 DOI: 10.1261/rna.079983.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/17/2024] [Indexed: 06/06/2024]
Abstract
The 3' end of the hepatitis C virus genome is terminated by a highly conserved, 98 nt sequence called 3'X. This untranslated structural element is thought to regulate several essential RNA-dependent processes associated with infection. 3'X has two proposed conformations comprised of either three or two stem-loop structures that result from the different base-pairing interactions within the first 55 nt. Here, we used single-molecule Förster resonance energy transfer spectroscopy to monitor the conformational status of fluorescently labeled constructs that isolate this region of the RNA (3'X55). We observed that 3'X55 can adopt both proposed conformations and the relative abundance of them can be modulated by either solution conditions or nucleotide deletions. Furthermore, interconversion between the two conformations takes place over the course of several hours. The simultaneous existence of two slowly interconverting conformations may help prime individual copies of the viral genome for either viral protein or RNA synthesis, thereby minimizing conflicts between these two competing processes.
Collapse
Affiliation(s)
- Parker D Sperstad
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Erik D Holmstrom
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
2
|
Barik S. Suppression of Innate Immunity by the Hepatitis C Virus (HCV): Revisiting the Specificity of Host-Virus Interactive Pathways. Int J Mol Sci 2023; 24:16100. [PMID: 38003289 PMCID: PMC10671098 DOI: 10.3390/ijms242216100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The hepatitis C virus (HCV) is a major causative agent of hepatitis that may also lead to liver cancer and lymphomas. Chronic hepatitis C affects an estimated 2.4 million people in the USA alone. As the sole member of the genus Hepacivirus within the Flaviviridae family, HCV encodes a single-stranded positive-sense RNA genome that is translated into a single large polypeptide, which is then proteolytically processed to yield the individual viral proteins, all of which are necessary for optimal viral infection. However, cellular innate immunity, such as type-I interferon (IFN), promptly thwarts the replication of viruses and other pathogens, which forms the basis of the use of conjugated IFN-alpha in chronic hepatitis C management. As a countermeasure, HCV suppresses this form of immunity by enlisting diverse gene products, such as HCV protease(s), whose primary role is to process the large viral polyprotein into individual proteins of specific function. The exact number of HCV immune suppressors and the specificity and molecular mechanism of their action have remained unclear. Nonetheless, the evasion of host immunity promotes HCV pathogenesis, chronic infection, and carcinogenesis. Here, the known and putative HCV-encoded suppressors of innate immunity have been reviewed and analyzed, with a predominant emphasis on the molecular mechanisms. Clinically, the knowledge should aid in rational interventions and the management of HCV infection, particularly in chronic hepatitis.
Collapse
Affiliation(s)
- Sailen Barik
- EonBio, 3780 Pelham Drive, Mobile, AL 36619, USA
| |
Collapse
|
3
|
Sagan SM, Weber SC. Let's phase it: viruses are master architects of biomolecular condensates. Trends Biochem Sci 2023; 48:229-243. [PMID: 36272892 DOI: 10.1016/j.tibs.2022.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/15/2022]
Abstract
Viruses compartmentalize their replication and assembly machinery to both evade detection and concentrate the viral proteins and nucleic acids necessary for genome replication and virion production. Accumulating evidence suggests that diverse RNA and DNA viruses form replication organelles and nucleocapsid assembly sites using phase separation. In general, the biogenesis of these compartments is regulated by two types of viral protein, collectively known as antiterminators and nucleocapsid proteins, respectively. Herein, we discuss how RNA viruses establish replication organelles and nucleocapsid assembly sites, and the evidence that these compartments form through phase separation. While this review focuses on RNA viruses, accumulating evidence suggests that all viruses rely on phase separation and form biomolecular condensates important for completing the infectious cycle.
Collapse
Affiliation(s)
- Selena M Sagan
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada; Department of Biochemistry, McGill University, Montreal, QC, Canada.
| | - Stephanie C Weber
- Department of Biology, McGill University, Montreal, QC, Canada; Department of Physics, McGill University, Montreal, QC, Canada
| |
Collapse
|
4
|
Olsthoorn RCL. Replication of alphaviruses requires a pseudoknot that involves the poly(A) tail. RNA (NEW YORK, N.Y.) 2022; 28:1348-1358. [PMID: 35906005 PMCID: PMC9479738 DOI: 10.1261/rna.079243.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Alphaviruses, such as the Sindbis virus and the Chikungunya virus, are RNA viruses with a positive sense single-stranded RNA genome that infect various vertebrates, including humans. A conserved sequence element (CSE) of ∼19 nt in the 3' noncoding region is important for replication. Despite extensive mutational analysis of the CSE, no comprehensive model of this element exists to date. Here, it is shown that the CSE can form an RNA pseudoknot with part of the poly(A) tail and is similar to the human telomerase pseudoknot with which it shares 17 nt. Mutants that alter the stability of the pseudoknot were investigated in the context of a replicon of the Sindbis virus and by native gel electrophoresis. These studies reveal that the pseudoknot is required for virus replication and is stabilized by UAU base triples. The new model is discussed in relation to previous data on Sindbis virus mutants and revertants lacking (part of) the CSE.
Collapse
Affiliation(s)
- René C L Olsthoorn
- Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| |
Collapse
|
5
|
Wan H, Adams RL, Lindenbach BD, Pyle AM. The In Vivo and In Vitro Architecture of the Hepatitis C Virus RNA Genome Uncovers Functional RNA Secondary and Tertiary Structures. J Virol 2022; 96:e0194621. [PMID: 35353000 PMCID: PMC9044954 DOI: 10.1128/jvi.01946-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/24/2022] [Indexed: 01/21/2023] Open
Abstract
Hepatitis C virus (HCV) is a positive-strand RNA virus that remains one of the main contributors to chronic liver disease worldwide. Studies over the last 30 years have demonstrated that HCV contains a highly structured RNA genome and many of these structures play essential roles in the HCV life cycle. Despite the importance of riboregulation in this virus, most of the HCV RNA genome remains functionally unstudied. Here, we report a complete secondary structure map of the HCV RNA genome in vivo, which was studied in parallel with the secondary structure of the same RNA obtained in vitro. Our results show that HCV is folded extensively in the cellular context. By performing comprehensive structural analyses on both in vivo data and in vitro data, we identify compact and conserved secondary and tertiary structures throughout the genome. Genetic and evolutionary functional analyses demonstrate that many of these elements play important roles in the virus life cycle. In addition to providing a comprehensive map of RNA structures and riboregulatory elements in HCV, this work provides a resource for future studies aimed at identifying therapeutic targets and conducting further mechanistic studies on this important human pathogen. IMPORTANCE HCV has one of the most highly structured RNA genomes studied to date, and it is a valuable model system for studying the role of RNA structure in protein-coding genes. While previous studies have identified individual cases of regulatory RNA structures within the HCV genome, the full-length structure of the HCV genome has not been determined in vivo. Here, we present the complete secondary structure map of HCV determined both in cells and from corresponding transcripts generated in vitro. In addition to providing a comprehensive atlas of functional secondary structural elements throughout the genomic RNA, we identified a novel set of tertiary interactions and demonstrated their functional importance. In terms of broader implications, the pipeline developed in this study can be applied to other long RNAs, such as long noncoding RNAs. In addition, the RNA structural motifs characterized in this study broaden the repertoire of known riboregulatory elements.
Collapse
Affiliation(s)
- Han Wan
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Rebecca L. Adams
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Brett D. Lindenbach
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
6
|
Castillo-Martínez J, Fan L, Szewczyk MP, Wang YX, Gallego J. OUP accepted manuscript. Nucleic Acids Res 2022; 50:2287-2301. [PMID: 35137150 PMCID: PMC8887478 DOI: 10.1093/nar/gkac061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/18/2022] [Accepted: 01/29/2022] [Indexed: 11/26/2022] Open
Abstract
Subdomain 5BSL3.2 of hepatitis C virus RNA lies at the core of a network of distal RNA–RNA contacts that connect the 5′ and 3′ regions of the viral genome and regulate the translation and replication stages of the viral cycle. Using small-angle X-ray scattering and NMR spectroscopy experiments, we have determined at low resolution the structural models of this subdomain and its distal complex with domain 3′X, located at the 3′-terminus of the viral RNA chain. 5BSL3.2 adopts a characteristic ‘L’ shape in solution, whereas the 5BSL3.2–3′X distal complex forms a highly unusual ‘Y’-shaped kissing junction that blocks the dimer linkage sequence of domain 3′X and promotes translation. The structure of this complex may impede an effective association of the viral polymerase with 5BSL3.2 and 3′X to start negative-strand RNA synthesis, contributing to explain the likely mechanism used by these sequences to regulate viral replication and translation. In addition, sequence and shape features of 5BSL3.2 are present in functional RNA motifs of flaviviruses, suggesting conserved regulatory processes within the Flaviviridae family.
Collapse
Affiliation(s)
- Jesús Castillo-Martínez
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, 46001Valencia, Spain
- Escuela de Doctorado, Universidad Católica de Valencia, 46001Valencia, Spain
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer Research, Small-Angle X-ray Scattering Core Facility of National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Mateusz P Szewczyk
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, 46001Valencia, Spain
- Escuela de Doctorado, Universidad Católica de Valencia, 46001Valencia, Spain
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - José Gallego
- To whom correspondence should be addressed. Tel: +34 963637412;
| |
Collapse
|
7
|
Fang X, Gallego J, Wang YX. Deriving RNA topological structure from SAXS. Methods Enzymol 2022; 677:479-529. [DOI: 10.1016/bs.mie.2022.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Chen M, Xu Y, Li N, Yin P, Zhou Q, Feng S, Wu T, Wei L, Wang H, Fu Y, Li YP. Development of full-length cell-culture infectious clone and subgenomic replicon for a genotype 3a isolate of hepatitis C virus. J Gen Virol 2021; 102. [DOI: 10.1099/jgv.0.001704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) genotype 3 is widely distributed, and genotype 3-infected patients achieve a lower cure rate in direct-acting antiviral (DAA) therapy and are associated with a higher risk of hepatic steatosis than patients with other genotypes. Thus, the study of the virology and pathogenesis of genotype 3 HCV is increasingly relevant. Here, we developed a full-length infectious clone and a subgenomic replicon for the genotype 3a isolate, CH3a. From an infected serum, we constructed a full-length CH3a clone, however, it was nonviable in Huh7.5.1 cells. Next, we systematically adapted several intergenotypic recombinants containing Core-NS2 and 5′UTR-NS5A from CH3a, and other sequences from a replication-competent genotype 2 a clone JFH1. Adaptive mutations were identified, of which several combinations facilitated the replication of CH3a-JFH1 recombinants; however, they failed to adapt to the full-length CH3a and the recombinants containing CH3a NS5B. Thus, we attempted to separately adapt CH3a NS5B-3′UTR by constructing an intragenotypic recombinant using 5′UTR-NS5A from an infectious genotype 3a clone, DBN3acc, from which L3004P/M in NS5B and a deletion of 11 nucleotides (Δ11nt) downstream of the polyU/UC tract of the 3′UTR were identified and demonstrated to efficiently improve virus production. Finally, we combined functional 5′UTR-NS5A and NS5B-3′UTR sequences that carried the selected mutations to generate full-length CH3a with 26 or 27 substitutions (CH3acc), and both revealed efficient replication and virus spread in transfected and infected cells, releasing HCV of 104.2 f.f.u. ml−1. CH3acc was inhibited by DAAs targeting NS3/4A, NS5A and NS5B in a dose-dependent manner. The selected mutations permitted the development of subgenomic replicon CH3a-SGRep, by which L3004P, L3004M and Δ11nt were proven, together with a single-cycle virus production assay, to facilitate virus assembly, release, and RNA replication. CH3acc clones and CH3a-SGRep replicon provide new tools for the study of HCV genotype 3.
Collapse
Affiliation(s)
- Mingxiao Chen
- Joint Program in Pathology, Department of Internal Medicine, Guangzhou Women and Children’s Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510623, PR China
| | - Yi Xu
- Joint Program in Pathology, Department of Internal Medicine, Guangzhou Women and Children’s Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510623, PR China
| | - Ni Li
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Ping Yin
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, PR China
| | - Qing Zhou
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Shengjun Feng
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Tiantian Wu
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Lai Wei
- Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, PR China
| | - Haihe Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Yongshui Fu
- Guangzhou Blood Center, Guangzhou 510095, PR China
| | - Yi-Ping Li
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, PR China
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, PR China
| |
Collapse
|
9
|
Takagi A, Amako Y, Yamane D, Kitab B, Tokunaga Y, El-Gohary A, Kohara M, Tsukiyama-Kohara K. Longer Poly(U) Stretches in the 3'UTR Are Essential for Replication of the Hepatitis C Virus Genotype 4a Clone in in vitro and in vivo. Front Microbiol 2021; 12:764816. [PMID: 34899647 PMCID: PMC8656456 DOI: 10.3389/fmicb.2021.764816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022] Open
Abstract
The 3′ untranslated region (UTR) of the hepatitis C virus (HCV) genome plays a significant role in replication including the poly(U) tract (You and Rice, 2008). Here we established an HCV clone that is infectious in vitro and in vivo, from an Egyptian patient with chronic HCV infection and hepatocellular carcinoma (HCC). First, we inoculated the patient plasma into a humanized chimeric mouse and passaged. We observed HCV genotype 4a propagation in the chimeric mouse sera at 1.7 × 107 copies/mL after 6 weeks. Next, we cloned the entire HCV sequence from the HCV-infected chimeric mouse sera using RT-PCR, and 5′ and 3′ RACE methodologies. We obtained first a shorter clone (HCV-G4 KM short, GenBank: AB795432.1), which contained 9,545 nucleotides with 341 nucleotides of the 5′UTR and 177 nucleotides of the 3′UTR, and this was frequently obtained for unknown reasons. We also obtained a longer clone by dividing the HCV genome into three fragments and the poly (U) sequences. We obtained a longer 3′UTR sequence than that of the HCV-G4 KM short clone, which contained 9,617 nucleotides. This longer clone possessed a 3′-UTR of 249 nucleotides (HCV-G4 KM long, GenBank: AB795432.2), because of a 71-nucleotide longer poly (U) stretch. The HCV-G4-KM long clone, but not the HCV-G4-KM short clone, could establish infection in human hepatoma HuH-7 cells. HCV RNAs carrying a nanoluciferase (NL) reporter were also constructed and higher replication activity was observed with G4-KM long-NL in vitro. Next, both short and long RNAs were intra-hepatically injected into humanized chimeric mice. Viral propagation was only observed for the chimeric mouse injected with the HCV-G4 KM long RNA in the sera after 21 days (1.64 × 106 copies/mL) and continued until 10 weeks post inoculation (wpi; 1.45–4.74 × 107 copies/mL). Moreover, sequencing of the HCV genome in mouse sera at 6 wpi revealed the sequence of the HCV-G4-KM long clone. Thus, the in vitro and in vivo results of this study indicate that the sequence of the HCV-G4-KM long RNA is that of an infectious clone.
Collapse
Affiliation(s)
- Asako Takagi
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yutaka Amako
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Daisuke Yamane
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Bouchra Kitab
- Joint Faculty of Veterinary Medicine, Transboundary Animal Diseases Centre, Kagoshima University, Kagoshima, Japan.,Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Yuko Tokunaga
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Ahmed El-Gohary
- Egypt-Japan University of Science and Technology, New-Borg El Arab City, Egypt.,Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kyoko Tsukiyama-Kohara
- Joint Faculty of Veterinary Medicine, Transboundary Animal Diseases Centre, Kagoshima University, Kagoshima, Japan.,Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
10
|
Li J, Zhou Q, Rong L, Rong D, Yang Y, Hao J, Zhang Z, Ma L, Rao G, Zhou Y, Xiao F, Li C, Wang H, Li YP. Development of cell culture infectious clones for hepatitis C virus genotype 1b and transcription analysis of 1b-infected hepatoma cells. Antiviral Res 2021; 193:105136. [PMID: 34252495 DOI: 10.1016/j.antiviral.2021.105136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/16/2021] [Accepted: 07/06/2021] [Indexed: 01/05/2023]
Abstract
Globally, hepatitis C virus (HCV) genotype 1b is the most prevalent, and its infection has been found to associate with a higher risk of hepatocellular carcinoma (HCC) than other genotype viruses. However, an efficient infectious HCV genotype 1b culture system is unavailable, which has largely hampered the study of this important genotype virus. In this study, by using a systematic approach combining the sequences of infectious 1a TNcc clone and adaptive mutations, we succeeded in culture adaption of two full-length 1b clones for the reference strain Con1 and a clinical isolate A6, and designated as Con1cc and A6cc, respectively. Con1cc and A6cc replicated efficiently in hepatoma Huh7.5.1 cells, released HCV infectivity titers of 104.1 and 103.72 focus forming units per milliliter, respectively, and maintained the engineered mutations after passages. Both viruses responded to sofosbuvir and velpatasvir in a dose-dependent manner. With culture infectious 1b clones, we characterized the transcriptomes of 1b Con1cc-infected cells, in comparison with 2a-infected and uninfected cells. In conclusion, we have developed two infectious clones for genotype 1b and shown a novel strategy for culture adaptation of HCV isolates by using a genetically close backbone sequence. Furthermore, this study provides transcriptional landscape of HCV 1b-infected hepatoma cells facilitating the study of genotype 1b infection.
Collapse
Affiliation(s)
- Jinqian Li
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing Zhou
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Liang Rong
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Dade Rong
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yang Yang
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiawei Hao
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhenzhen Zhang
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ling Ma
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Guirong Rao
- Key Laboratory of Liver Diseases, Center of Infectious Diseases, PLA 458 Hospital, Guangzhou, 510602, China
| | - Yuanping Zhou
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Fei Xiao
- Department of Infectious Disease, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Chengyao Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Haihe Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yi-Ping Li
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China; Department of Infectious Disease, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China.
| |
Collapse
|
11
|
New RNA Structural Elements Identified in the Coding Region of the Coxsackie B3 Virus Genome. Viruses 2020; 12:v12111232. [PMID: 33143071 PMCID: PMC7692623 DOI: 10.3390/v12111232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 01/25/2023] Open
Abstract
Here we present a set of new structural elements formed within the open reading frame of the virus, which are highly probable, evolutionarily conserved and may interact with host proteins. This work focused on the coding regions of the CVB3 genome (particularly the V4-, V1-, 2C-, and 3D-coding regions), which, with the exception of the cis-acting replication element (CRE), have not yet been subjected to experimental analysis of their structures. The SHAPE technique, chemical modification with DMS and RNA cleavage with Pb2+, were performed in order to characterize the RNA structure. The experimental results were used to improve the computer prediction of the structural models, whereas a phylogenetic analysis was performed to check universality of the newly identified structural elements for twenty CVB3 genomes and 11 other enteroviruses. Some of the RNA motifs turned out to be conserved among different enteroviruses. We also observed that the 3'-terminal region of the genome tends to dimerize in a magnesium concentration-dependent manner. RNA affinity chromatography was used to confirm RNA-protein interactions hypothesized by database searches, leading to the discovery of several interactions, which may be important for virus propagation.
Collapse
|
12
|
Ribosome Pausing at Inefficient Codons at the End of the Replicase Coding Region Is Important for Hepatitis C Virus Genome Replication. Int J Mol Sci 2020; 21:ijms21186955. [PMID: 32971876 PMCID: PMC7555993 DOI: 10.3390/ijms21186955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/26/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
Hepatitis C virus (HCV) infects liver cells and often causes chronic infection, also leading to liver cirrhosis and cancer. In the cytoplasm, the viral structural and non-structural (NS) proteins are directly translated from the plus strand HCV RNA genome. The viral proteins NS3 to NS5B proteins constitute the replication complex that is required for RNA genome replication via a minus strand antigenome. The most C-terminal protein in the genome is the NS5B replicase, which needs to initiate antigenome RNA synthesis at the very 3′-end of the plus strand. Using ribosome profiling of cells replicating full-length infectious HCV genomes, we uncovered that ribosomes accumulate at the HCV stop codon and about 30 nucleotides upstream of it. This pausing is due to the presence of conserved rare, inefficient Wobble codons upstream of the termination site. Synonymous substitution of these inefficient codons to efficient codons has negative consequences for viral RNA replication but not for viral protein synthesis. This pausing may allow the enzymatically active replicase core to find its genuine RNA template in cis, while the protein is still held in place by being stuck with its C-terminus in the exit tunnel of the paused ribosome.
Collapse
|
13
|
Liu Y, Zhang Y, Wang M, Cheng A, Yang Q, Wu Y, Jia R, Liu M, Zhu D, Chen S, Zhang S, Zhao X, Huang J, Mao S, Ou X, Gao Q, Wang Y, Xu Z, Chen Z, Zhu L, Luo Q, Liu Y, Yu Y, Zhang L, Tian B, Pan L, Chen X. Structures and Functions of the 3' Untranslated Regions of Positive-Sense Single-Stranded RNA Viruses Infecting Humans and Animals. Front Cell Infect Microbiol 2020; 10:453. [PMID: 32974223 PMCID: PMC7481400 DOI: 10.3389/fcimb.2020.00453] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/23/2020] [Indexed: 12/20/2022] Open
Abstract
The 3′ untranslated region (3′ UTR) of positive-sense single-stranded RNA [ssRNA(+)] viruses is highly structured. Multiple elements in the region interact with other nucleotides and proteins of viral and cellular origin to regulate various aspects of the virus life cycle such as replication, translation, and the host-cell response. This review attempts to summarize the primary and higher order structures identified in the 3′UTR of ssRNA(+) viruses and their functional roles.
Collapse
Affiliation(s)
- Yuanzhi Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - XinXin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yin Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhengli Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qihui Luo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
14
|
Moreira-Soto A, Arroyo-Murillo F, Sander AL, Rasche A, Corman V, Tegtmeyer B, Steinmann E, Corrales-Aguilar E, Wieseke N, Avey-Arroyo J, Drexler JF. Cross-order host switches of hepatitis C-related viruses illustrated by a novel hepacivirus from sloths. Virus Evol 2020; 6:veaa033. [PMID: 32704383 PMCID: PMC7368370 DOI: 10.1093/ve/veaa033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The genealogy of the hepatitis C virus (HCV) and the genus Hepacivirus remains elusive despite numerous recently discovered animal hepaciviruses (HVs). Viruses from evolutionarily ancient mammals might elucidate the HV macro-evolutionary patterns. Here, we investigated sixty-seven two-toed and nine three-toed sloths from Costa Rica for HVs using molecular and serological tools. A novel sloth HV was detected by reverse transcription polymerase chain reaction (RT-PCR) in three-toed sloths (2/9, 22.2%; 95% confidence interval (CI), 5.3-55.7). Genomic characterization revealed typical HV features including overall polyprotein gene structure, a type 4 internal ribosomal entry site in the viral 5'-genome terminus, an A-U-rich region and X-tail structure in the viral 3'-genome terminus. Different from other animal HVs, HV seropositivity in two-toed sloths was low at 4.5 per cent (3/67; CI, 1.0-12.9), whereas the RT-PCR-positive three-toed sloths were seronegative. Limited cross-reactivity of the serological assay implied exposure of seropositive two-toed sloths to HVs of unknown origin and recent infections in RT-PCR-positive animals preceding seroconversion. Recent infections were consistent with only 9 nucleotide exchanges between the two sloth HVs, located predominantly within the E1/E2 encoding regions. Translated sequence distances of NS3 and NS5 proteins and host comparisons suggested that the sloth HV represents a novel HV species. Event- and sequence distance-based reconciliations of phylogenies of HVs and of their hosts revealed complex macro-evolutionary patterns, including both long-term evolutionary associations and host switches, most strikingly from rodents into sloths. Ancestral state reconstructions corroborated rodents as predominant sources of HV host switches during the genealogy of extant HVs. Sequence distance comparisons, partial conservation of critical amino acid residues associated with HV entry and selection pressure signatures of host genes encoding entry and antiviral protein orthologs were consistent with HV host switches between genetically divergent mammals, including the projected host switch from rodents into sloths. Structural comparison of HCV and sloth HV E2 proteins suggested conserved modes of hepaciviral entry. Our data corroborate complex macro-evolutionary patterns shaping the genus Hepacivirus, highlight that host switches are possible across highly diverse host taxa, and elucidate a prominent role of rodent hosts during the Hepacivirus genealogy.
Collapse
Affiliation(s)
- Andres Moreira-Soto
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin 10117, Germany.,Virology-CIET, Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
| | | | - Anna-Lena Sander
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin 10117, Germany
| | - Andrea Rasche
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin 10117, Germany
| | - Victor Corman
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin 10117, Germany
| | - Birthe Tegtmeyer
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover 30625, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Faculty of Medicine, Ruhr-University Bochum, Bochum 44801, Germany
| | | | - Nicolas Wieseke
- Swarm Intelligence and Complex Systems Group, Department of Computer Science, Leipzig University, Leipzig, Germany
| | | | - Jan Felix Drexler
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin 10117, Germany.,German Centre for Infection Research (DZIF), Germany
| |
Collapse
|
15
|
Hepatitis C Virus Translation Regulation. Int J Mol Sci 2020; 21:ijms21072328. [PMID: 32230899 PMCID: PMC7178104 DOI: 10.3390/ijms21072328] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022] Open
Abstract
Translation of the hepatitis C virus (HCV) RNA genome is regulated by the internal ribosome entry site (IRES), located in the 5’-untranslated region (5′UTR) and part of the core protein coding sequence, and by the 3′UTR. The 5′UTR has some highly conserved structural regions, while others can assume different conformations. The IRES can bind to the ribosomal 40S subunit with high affinity without any other factors. Nevertheless, IRES activity is modulated by additional cis sequences in the viral genome, including the 3′UTR and the cis-acting replication element (CRE). Canonical translation initiation factors (eIFs) are involved in HCV translation initiation, including eIF3, eIF2, eIF1A, eIF5, and eIF5B. Alternatively, under stress conditions and limited eIF2-Met-tRNAiMet availability, alternative initiation factors such as eIF2D, eIF2A, and eIF5B can substitute for eIF2 to allow HCV translation even when cellular mRNA translation is downregulated. In addition, several IRES trans-acting factors (ITAFs) modulate IRES activity by building large networks of RNA-protein and protein–protein interactions, also connecting 5′- and 3′-ends of the viral RNA. Moreover, some ITAFs can act as RNA chaperones that help to position the viral AUG start codon in the ribosomal 40S subunit entry channel. Finally, the liver-specific microRNA-122 (miR-122) stimulates HCV IRES-dependent translation, most likely by stabilizing a certain structure of the IRES that is required for initiation.
Collapse
|
16
|
Tabata K, Neufeldt CJ, Bartenschlager R. Hepatitis C Virus Replication. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a037093. [PMID: 31570388 DOI: 10.1101/cshperspect.a037093] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Replication and amplification of the viral genome is a key process for all viruses. For hepatitis C virus (HCV), a positive-strand RNA virus, amplification of the viral genome requires the synthesis of a negative-sense RNA template, which is in turn used for the production of new genomic RNA. This process is governed by numerous proteins, both host and viral, as well as distinct lipids and specific RNA elements within the positive- and negative-strand RNAs. Moreover, this process requires specific changes to host cell ultrastructure to create microenvironments conducive to viral replication. This review will focus on describing the processes and factors involved in facilitating or regulating HCV genome replication.
Collapse
Affiliation(s)
- Keisuke Tabata
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Christopher J Neufeldt
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany.,Division of Virus-Associated Carcinogenesis, German Cancer Research Center, 69120 Heidelberg, Germany.,German Center for Infection Research, Heidelberg Partner Site, 69120 Heidelberg, Germany
| |
Collapse
|
17
|
Castillo-Martínez J, Ovejero T, Romero-López C, Sanmartín I, Berzal-Herranz B, Oltra E, Berzal-Herranz A, Gallego J. Structure and function analysis of the essential 3'X domain of hepatitis C virus. RNA 2019; 26:186-198. [PMID: 31694875 PMCID: PMC6961542 DOI: 10.1261/rna.073189.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/31/2019] [Indexed: 02/05/2023]
Abstract
The 3′X domain of hepatitis C virus has been reported to control viral replication and translation by modulating the exposure of a nucleotide segment involved in a distal base-pairing interaction with an upstream 5BSL3.2 domain. To study the mechanism of this molecular switch, we have analyzed the structure of 3′X mutants that favor one of the two previously proposed conformations comprising either two or three stem–loops. Only the two-stem conformation was found to be stable and to allow the establishment of the distal contact with 5BSL3.2, and also the formation of 3′X domain homodimers by means of a universally conserved palindromic sequence. Nucleotide changes disturbing the two-stem conformation resulted in poorer replication and translation levels, explaining the high degree of conservation detected for this sequence. The switch function attributed to the 3′X domain does not occur as a result of a transition between two- and three-stem conformations, but likely through the sequestration of the 5BSL3.2-binding sequence by formation of 3′X homodimers.
Collapse
Affiliation(s)
- Jesús Castillo-Martínez
- Facultad de Medicina, Universidad Católica de Valencia, Valencia, 46001, Spain.,Escuela de Doctorado, Universidad Católica de Valencia, Valencia, 46001, Spain
| | - Tamara Ovejero
- Facultad de Medicina, Universidad Católica de Valencia, Valencia, 46001, Spain
| | - Cristina Romero-López
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN-CSIC), Armilla, Granada, 18016, Spain
| | - Isaías Sanmartín
- Facultad de Medicina, Universidad Católica de Valencia, Valencia, 46001, Spain
| | - Beatriz Berzal-Herranz
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN-CSIC), Armilla, Granada, 18016, Spain
| | - Elisa Oltra
- Facultad de Medicina, Universidad Católica de Valencia, Valencia, 46001, Spain
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN-CSIC), Armilla, Granada, 18016, Spain
| | - José Gallego
- Facultad de Medicina, Universidad Católica de Valencia, Valencia, 46001, Spain
| |
Collapse
|
18
|
Evidence for Internal Initiation of RNA Synthesis by the Hepatitis C Virus RNA-Dependent RNA Polymerase NS5B In Cellulo. J Virol 2019; 93:JVI.00525-19. [PMID: 31315989 DOI: 10.1128/jvi.00525-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/07/2019] [Indexed: 12/11/2022] Open
Abstract
Initiation of RNA synthesis by the hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) NS5B has been extensively studied in vitro and in cellulo Intracellular replication is thought to rely exclusively on terminal de novo initiation, as it conserves all genetic information of the genome. In vitro, however, additional modes of initiation have been observed. In this study, we aimed to clarify whether the intracellular environment allows for internal initiation of RNA replication by the HCV replicase. We used a dual luciferase replicon harboring a terminal and an internal copy of the viral genomic 5' untranslated region, which was anticipated to support noncanonical initiation. Indeed, a shorter RNA species was detected by Northern blotting with low frequency, depending on the length and sequence composition upstream of the internal initiation site. By introducing mutations at either site, we furthermore established that internal and terminal initiation shared identical sequence requirements. Importantly, lethal point mutations at the terminal site resulted exclusively in truncated replicons. In contrast, the same mutations at the internal site abrogated internal initiation, suggesting a competitive selection of initiation sites, rather than recombination or template-switching events. In conclusion, our data indicate that the HCV replicase is capable of internal initiation in its natural environment, although functional replication likely requires only terminal initiation. Since many other positive-strand RNA viruses generate subgenomic messenger RNAs during their replication cycle, we surmise that their capability for internal initiation is a common and conserved feature of viral RdRps.IMPORTANCE Many aspects of viral RNA replication of hepatitis C virus (HCV) are still poorly understood. The process of RNA synthesis is driven by the RNA-dependent RNA polymerase (RdRp) NS5B. Most mechanistic studies on NS5B so far were performed with in vitro systems using isolated recombinant polymerase. In this study, we present a replicon model, which allows the intracellular assessment of noncanonical modes of initiation by the full HCV replicase. Our results add to the understanding of the biochemical processes underlying initiation of RNA synthesis by NS5B by the discovery of internal initiation in cellulo Moreover, they validate observations made in vitro, showing that the viral polymerase acts very similarly in isolation and in complex with other viral and host proteins. Finally, these observations provide clues about the evolution of RdRps of positive-strand RNA viruses, which might contain the intrinsic ability to initiate internally.
Collapse
|
19
|
Cantero-Camacho Á, Gallego J. An unexpected RNA distal interaction mode found in an essential region of the hepatitis C virus genome. Nucleic Acids Res 2019; 46:4200-4212. [PMID: 29409065 PMCID: PMC5934655 DOI: 10.1093/nar/gky074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/24/2018] [Indexed: 12/31/2022] Open
Abstract
The 3’X tail is a functionally essential 98-nt sequence located at the 3′-end of the hepatitis C virus (HCV) RNA genome. The domain contains two absolutely conserved dimer linkage sequence (DLS) and k nucleotide segments involved in viral RNA dimerization and in a distal base-pairing interaction with stem-loop 5BSL3.2, respectively. We have previously shown that domain 3’X forms an elongated structure comprising two coaxially stacked SL1’ and SL2’ stem-loops. This conformation favors RNA dimerization by exposing a palindromic DLS segment in an apical loop, but buries in the upper stem of hairpin SL2’ the k nucleotides involved in the distal contact with 5BSL3.2. Using nuclear magnetic resonance spectroscopy and gel electrophoresis experiments, here we show that the establishment of the complex between domain 3’X and stem-loop 5BSL3.2 only requires a rearrangement of the nucleotides forming the upper region of subdomain SL2’. The results indicate that the interaction does not occur through a canonical kissing loop mechanism involving the unpaired nucleotides of two terminal loops, but rather involves a base-paired stem and an apical loop and may result in a kissing three-way junction. On the basis of this information we suggest how the 3’X tail switches between monomer, homodimer and heterodimer states to regulate the HCV viral cycle.
Collapse
Affiliation(s)
- Ángel Cantero-Camacho
- Facultad de Medicina, Universidad Católica de Valencia, C/Quevedo 2, 46001 Valencia, Spain
| | - José Gallego
- Facultad de Medicina, Universidad Católica de Valencia, C/Quevedo 2, 46001 Valencia, Spain
| |
Collapse
|
20
|
Abstract
Hepatitis C virus represents a global pathogen of human health significance. In the space of less than three decades, we have witnessed the discovery of the virus, a growing understanding of the structure and biology of the viral-encoded proteins and their interaction with the host cell and the sequencing of the viral genome. Most importantly, we have moved from early therapeutic strategies aimed at crude boosting of host anti-viral immunity, limited by side effects and with poor response rates, to therapies that directly exploit our understanding of viral biology. In this review, we discuss the significance of the virus, its' discovery and outline the advances in the molecular characterisation of the virus, before setting these within the context of contemporary and emerging therapeutic strategies as well as viral resistance mechanisms.
Collapse
|
21
|
Hepatitis C Virus Escape Studies of Human Antibody AR3A Reveal a High Barrier to Resistance and Novel Insights on Viral Antibody Evasion Mechanisms. J Virol 2019; 93:JVI.01909-18. [PMID: 30487284 DOI: 10.1128/jvi.01909-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/20/2018] [Indexed: 12/19/2022] Open
Abstract
Yearly, ∼2 million people become hepatitis C virus (HCV) infected, resulting in an elevated lifetime risk for severe liver-related chronic illnesses. Characterizing epitopes of broadly neutralizing antibodies (NAbs), such as AR3A, is critical to guide vaccine development. Previously identified alanine substitutions that can reduce AR3A binding to expressed H77 envelope were introduced into chimeric cell culture-infectious HCV recombinants (HCVcc) H77(core-NS2)/JFH1. Substitutions G523A, G530A, and D535A greatly reduced fitness, and S424A, P525A, and N540A, although viable, conferred only low-level AR3A resistance. Using highly NAb-sensitive hypervariable region 1 (HVR1)-deleted HCVcc, H77/JFH1ΔHVR1 and J6(core-NS2)/JFH1ΔHVR1, we previously reported a low barrier to developing AR5A NAb resistance substitutions. Here, we cultured Huh7.5 cells infected with H77/JFH1, H77/JFH1ΔHVR1, or J6/JFH1ΔHVR1 with AR3A. We identified the resistance envelope substitutions M345T in H77/JFH1, L438S and F442Y in H77/JFH1ΔHVR1, and D431G in J6/JFH1ΔHVR1 M345T increased infectivity and conferred low-level AR3A resistance to H77/JFH1 but not H77/JFH1ΔHVR1 L438S and F442Y conferred high-level AR3A resistance to H77/JFH1ΔHVR1 but abrogated the infectivity of H77/JFH1. D431G conferred AR3A resistance to J6/JFH1ΔHVR1 but not J6/JFH1. This was possibly because D431G conferred broadly increased neutralization sensitivity to J6/JFH1D431G but not J6/JFH1ΔHVR1/D431G while decreasing scavenger receptor class B type I coreceptor dependency. Common substitutions at positions 431 and 442 did not confer high-level resistance in other genotype 2a recombinants [JFH1 or T9(core-NS2)/JFH1]. Although the data indicate that AR3A has a high barrier to resistance, our approach permitted identification of low-level resistance substitutions. Also, the HVR1-dependent effects on AR3A resistance substitutions suggest a complex role of HVR1 in virus escape and receptor usage, with important implications for HCV vaccine development.IMPORTANCE Hepatitis C virus (HCV) is a leading cause of liver-related mortality, and limited treatment accessibility makes vaccine development a high priority. The vaccine-relevant cross-genotype-reactive antibody AR3A has shown high potency, but the ability of the virus to rapidly escape by mutating the AR3A epitope (barrier to resistance) remains unexplored. Here, we succeeded in inducing only low-level AR3A resistance, indicating a higher barrier to resistance than what we have previously reported for AR5A. Furthermore, we identify AR3A resistance substitutions that have hypervariable region 1 (HVR1)-dependent effects on HCV viability and on broad neutralization sensitivity. One of these substitutions increased envelope breathing and decreased scavenger receptor class B type I HCV coreceptor dependency, both in an HVR1-dependent fashion. Thus, we identify novel AR3A-specific resistance substitutions and the role of HVR1 in protecting HCV from AR3-targeting antibodies. These viral escape mechanisms should be taken into consideration in future HCV vaccine development.
Collapse
|
22
|
Desirò D, Hölzer M, Ibrahim B, Marz M. SilentMutations (SIM): A tool for analyzing long-range RNA-RNA interactions in viral genomes and structured RNAs. Virus Res 2019; 260:135-141. [PMID: 30439394 PMCID: PMC7172452 DOI: 10.1016/j.virusres.2018.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/30/2018] [Accepted: 11/09/2018] [Indexed: 01/28/2023]
Abstract
We developed a tool to analyze the effect of multiple point mutations on the secondary structures of two interacting viral RNAs. Our tool simulates destructive and compensatory mutants of two key regions from a single-stranded RNA. The simulated mutants can be utilized for the combinatorial in vitro analysis of RNA–RNA interactions. We predicted potential mutants for in vitro validation experiments of influenza A virus and hepatitis C virus interactions.
A single nucleotide change in the coding region can alter the amino acid sequence of a protein. In consequence, natural or artificial sequence changes in viral RNAs may have various effects not only on protein stability, function and structure but also on viral replication. In recent decades, several tools have been developed to predict the effect of mutations in structured RNAs such as viral genomes or non-coding RNAs. Some tools use multiple point mutations and also take coding regions into account. However, none of these tools was designed to specifically simulate the effect of mutations on viral long-range interactions. Here, we developed SilentMutations (SIM), an easy-to-use tool to analyze the effect of multiple point mutations on the secondary structures of two interacting viral RNAs. The tool can simulate disruptive and compensatory mutants of two interacting single-stranded RNAs. This allows a fast and accurate assessment of key regions potentially involved in functional long-range RNA–RNA interactions and will eventually help virologists and RNA-experts to design appropriate experiments. SIM only requires two interacting single-stranded RNA regions as input. The output is a plain text file containing the most promising mutants and a graphical representation of all interactions. We applied our tool on two experimentally validated influenza A virus and hepatitis C virus interactions and we were able to predict potential double mutants for in vitro validation experiments. The source code and documentation of SIM are freely available at github.com/desiro/silentMutations.
Collapse
Affiliation(s)
- Daniel Desirò
- European Virus Bioinformatics Center, Jena, Germany; RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University, Jena, Germany
| | - Martin Hölzer
- European Virus Bioinformatics Center, Jena, Germany; RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University, Jena, Germany
| | - Bashar Ibrahim
- European Virus Bioinformatics Center, Jena, Germany; Chair of Bioinformatics, Matthias Schleiden Institute, Friedrich Schiller University, Jena, Germany
| | - Manja Marz
- European Virus Bioinformatics Center, Jena, Germany; RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University, Jena, Germany; Leibniz Institute for Age Research-Fritz Lipmann Institute, Jena, Germany.
| |
Collapse
|
23
|
Genomic-Scale Interaction Involving Complementary Sequences in the Hepatitis C Virus 5'UTR Domain IIa and the RNA-Dependent RNA Polymerase Coding Region Promotes Efficient Virus Replication. Viruses 2018; 11:v11010017. [PMID: 30597844 PMCID: PMC6357077 DOI: 10.3390/v11010017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/22/2018] [Accepted: 12/23/2018] [Indexed: 12/31/2022] Open
Abstract
The hepatitis C virus (HCV) genome contains structured elements thought to play important regulatory roles in viral RNA translation and replication processes. We used in vitro RNA binding assays to map interactions involving the HCV 5′UTR and distal sequences in NS5B to examine their impact on viral RNA replication. The data revealed that 5′UTR nucleotides (nt) 95–110 in the internal ribosome entry site (IRES) domain IIa and matching nt sequence 8528–8543 located in the RNA-dependent RNA polymerase coding region NS5B, form a high-affinity RNA-RNA complex in vitro. This duplex is composed of both wobble and Watson-Crick base-pairings, with the latter shown to be essential to the formation of the high-affinity duplex. HCV genomic RNA constructs containing mutations in domain IIa nt 95–110 or within the genomic RNA location comprising nt 8528–8543 displayed, on average, 5-fold less intracellular HCV RNA and 6-fold less infectious progeny virus. HCV genomic constructs containing complementary mutations for IRES domain IIa nt 95–110 and NS5B nt 8528–8543 restored intracellular HCV RNA and progeny virus titers to levels obtained for parental virus RNA. We conclude that this long-range duplex interaction between the IRES domain IIa and NS5B nt 8528–8543 is essential for optimal virus replication.
Collapse
|
24
|
Zarudnaya MI, Kolomiets IM, Potyahaylo AL, Hovorun DM. Structural transitions in poly(A), poly(C), poly(U), and poly(G) and their possible biological roles. J Biomol Struct Dyn 2018; 37:2837-2866. [PMID: 30052138 DOI: 10.1080/07391102.2018.1503972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The homopolynucleotide (homo-oligonucleotide) tracts function as regulatory elements at various stages of mRNAs life cycle. Numerous cellular proteins specifically bind to these tracts. Among them are the different poly(A)-binding proteins, poly(C)-binding proteins, multifunctional fragile X mental retardation protein which binds specifically both to poly(G) and poly(U) and others. Molecular mechanisms of regulation of gene expression mediated by homopolynucleotide tracts in RNAs are not fully understood and the structural diversity of these tracts can contribute substantially to this regulation. This review summarizes current knowledge on different forms of homoribopolynucleotides, in particular, neutral and acidic forms of poly(A) and poly(C), and also biological relevance of homoribopolynucleotide (homoribo-oligonucleotide) tracts is discussed. Under physiological conditions, the acidic forms of poly(A) and poly(C) can be induced by proton transfer from acidic amino acids of proteins to adenine and cytosine bases. Finally, we present potential mechanisms for the regulation of some biological processes through the formation of intramolecular poly(A) duplexes.
Collapse
Affiliation(s)
- Margarita I Zarudnaya
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv , Ukraine
| | - Iryna M Kolomiets
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv , Ukraine
| | - Andriy L Potyahaylo
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv , Ukraine
| | - Dmytro M Hovorun
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv , Ukraine.,b Department of Molecular Biotechnology and Bioinformatics , Institute of High Technologies, Taras Shevchenko National University of Kyiv , Kyiv , Ukraine
| |
Collapse
|
25
|
Bentley K, Cook JP, Tuplin AK, Evans DJ. Structural and functional analysis of the roles of the HCV 5' NCR miR122-dependent long-range association and SLVI in genome translation and replication. PeerJ 2018; 6:e5870. [PMID: 30416884 PMCID: PMC6225842 DOI: 10.7717/peerj.5870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/30/2018] [Indexed: 11/29/2022] Open
Abstract
The hepatitis C virus RNA genome possesses a variety of conserved structural elements, in both coding and non-coding regions, that are important for viral replication. These elements are known or predicted to modulate key life cycle events, such as translation and genome replication, some involving conformational changes induced by long-range RNA–RNA interactions. One such element is SLVI, a stem-loop (SL) structure located towards the 5′ end of the core protein-coding region. This element forms an alternative RNA–RNA interaction with complementary sequences in the 5′ untranslated regions that are independently involved in the binding of the cellular microRNA 122 (miR122). The switch between ‘open’ and ‘closed’ structures involving SLVI has previously been proposed to modulate translation, with lower translation efficiency associated with the ‘closed’ conformation. In the current study, we have used selective 2′-hydroxyl acylation analysed by primer extension to validate this RNA–RNA interaction in the absence and presence of miR122. We show that the long-range association (LRA) only forms in the absence of miR122, or otherwise requires the blocking of miR122 binding combined with substantial disruption of SLVI. Using site-directed mutations introduced to promote open or closed conformations of the LRA we demonstrate no correlation between the conformation and the translation phenotype. In addition, we observed no influence on virus replication compared to unmodified genomes. The presence of SLVI is well-documented to suppress translation, but these studies demonstrate that this is not due to its contribution to the LRA. We conclude that, although there are roles for SLVI in translation, the LRA is not a riboswitch regulating the translation and replication phenotypes of the virus.
Collapse
Affiliation(s)
- Kirsten Bentley
- BSRC and School of Biology, University of St Andrews, St Andrews, UK
| | - Jonathan P Cook
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Andrew K Tuplin
- The Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - David J Evans
- BSRC and School of Biology, University of St Andrews, St Andrews, UK
| |
Collapse
|
26
|
Dutkiewicz M, Ciesiołka J. Form confers function: Case of the 3’X region of the hepatitis C virus genome. World J Gastroenterol 2018; 24:3374-3383. [PMID: 30122877 PMCID: PMC6092582 DOI: 10.3748/wjg.v24.i30.3374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/25/2018] [Accepted: 06/30/2018] [Indexed: 02/06/2023] Open
Abstract
At the 3’ end of genomic hepatitis C virus (HCV) RNA there is a highly conserved untranslated region, the 3’X-tail, which forms part of the 3’UTR. This region plays key functions in regulation of critical processes of the viral life cycle. The 3’X region is essential for viral replication and infectivity. It is also responsible for regulation of switching between translation and transcription of the viral RNA. There is some evidence indicating the contribution of the 3’X region to the translation efficiency of the viral polyprotein and to the encapsidation process. Several different secondary structure models of the 3’X region, based on computer predictions and experimental structure probing, have been proposed. It is likely that the 3’X region adopts more than one structural form in infected cells and that a specific equilibrium between the various forms regulates several aspects of the viral life cycle. The most intriguing explanations of the structural heterogeneity problem of the 3’X region came with the discovery of its involvement in long-range RNA-RNA interactions and the potential for homodimer formation. This article summarizes current knowledge on the structure and function of the 3’X region of hepatitis C genomic RNA, reviews previous opinions, presents new hypotheses and summarizes the questions that still remain unanswered.
Collapse
Affiliation(s)
- Mariola Dutkiewicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Jerzy Ciesiołka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| |
Collapse
|
27
|
Ramirez S, Bukh J. Current status and future development of infectious cell-culture models for the major genotypes of hepatitis C virus: Essential tools in testing of antivirals and emerging vaccine strategies. Antiviral Res 2018; 158:264-287. [PMID: 30059723 DOI: 10.1016/j.antiviral.2018.07.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 02/08/2023]
Abstract
In this review, we summarize the relevant scientific advances that led to the development of infectious cell culture systems for hepatitis C virus (HCV) with the corresponding challenges and successes. We also provide an overview of how these systems have contributed to the study of antiviral compounds and their relevance for the development of a much-needed vaccine against this major human pathogen. An efficient infectious system to study HCV in vitro, using human hepatoma derived cells, has only been available since 2005, and was limited to a single isolate, named JFH1, until 2012. Successive developments have been slow and cumbersome, as each available system has been the result of a systematic effort for discovering adaptive mutations conferring culture replication and propagation to patient consensus clones that are inherently non-viable in vitro. High genetic heterogeneity is a paramount characteristic of this virus, and as such, it should preferably be reflected in basic, translational, and clinical studies. The limited number of efficient viral culture systems, in the context of the vast genetic diversity of HCV, continues to represent a major hindrance for the study of this virus, posing a significant barrier towards studies of antivirals (particularly of resistance) and for advancing vaccine development. Intensive research efforts, driven by isolate-specific culture adaptation, have only led to efficient full-length infectious culture systems for a few strains of HCV genotypes 1, 2, 3, and 6. Hence research aimed at identifying novel strategies that will permit universal culture of HCV will be needed to further our understanding of this unique virus causing 400 thousand deaths annually.
Collapse
Affiliation(s)
- Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
28
|
Niepmann M, Shalamova LA, Gerresheim GK, Rossbach O. Signals Involved in Regulation of Hepatitis C Virus RNA Genome Translation and Replication. Front Microbiol 2018; 9:395. [PMID: 29593672 PMCID: PMC5857606 DOI: 10.3389/fmicb.2018.00395] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/21/2018] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) preferentially replicates in the human liver and frequently causes chronic infection, often leading to cirrhosis and liver cancer. HCV is an enveloped virus classified in the genus Hepacivirus in the family Flaviviridae and has a single-stranded RNA genome of positive orientation. The HCV RNA genome is translated and replicated in the cytoplasm. Translation is controlled by the Internal Ribosome Entry Site (IRES) in the 5' untranslated region (5' UTR), while also downstream elements like the cis-replication element (CRE) in the coding region and the 3' UTR are involved in translation regulation. The cis-elements controlling replication of the viral RNA genome are located mainly in the 5'- and 3'-UTRs at the genome ends but also in the protein coding region, and in part these signals overlap with the signals controlling RNA translation. Many long-range RNA-RNA interactions (LRIs) are predicted between different regions of the HCV RNA genome, and several such LRIs are actually involved in HCV translation and replication regulation. A number of RNA cis-elements recruit cellular RNA-binding proteins that are involved in the regulation of HCV translation and replication. In addition, the liver-specific microRNA-122 (miR-122) binds to two target sites at the 5' end of the viral RNA genome as well as to at least three additional target sites in the coding region and the 3' UTR. It is involved in the regulation of HCV RNA stability, translation and replication, thereby largely contributing to the hepatotropism of HCV. However, we are still far from completely understanding all interactions that regulate HCV RNA genome translation, stability, replication and encapsidation. In particular, many conclusions on the function of cis-elements in HCV replication have been obtained using full-length HCV genomes or near-full-length replicon systems. These include both genome ends, making it difficult to decide if a cis-element in question acts on HCV replication when physically present in the plus strand genome or in the minus strand antigenome. Therefore, it may be required to use reduced systems that selectively focus on the analysis of HCV minus strand initiation and/or plus strand initiation.
Collapse
Affiliation(s)
- Michael Niepmann
- Medical Faculty, Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Lyudmila A Shalamova
- Medical Faculty, Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany.,Faculty of Biology and Chemistry, Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Gesche K Gerresheim
- Medical Faculty, Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany.,Faculty of Biology and Chemistry, Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Oliver Rossbach
- Faculty of Biology and Chemistry, Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
29
|
Shi G, Suzuki T. Molecular Basis of Encapsidation of Hepatitis C Virus Genome. Front Microbiol 2018; 9:396. [PMID: 29563905 PMCID: PMC5845887 DOI: 10.3389/fmicb.2018.00396] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/21/2018] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV), a major etiologic agent of human liver diseases, is a positive-sense single-stranded RNA virus and is classified in the Flaviviridae family. Although research findings for the assembly of HCV particles are accumulating due to development of HCV cell culture system, the mechanism(s) by which the HCV genome becomes encapsidated remains largely unclear. In general, viral RNA represents only a small fraction of the RNA molecules in the cells infected with RNA viruses, but the viral genomic RNA is considered to selectively packaged into virions. It was recently demonstrated that HCV RNAs containing 3' end of the genome are selectively incorporated into virus particles during the assembly process and the 3' untranslated region functions as a cis-acting element for RNA packaging. Here, we discuss the molecular basis of RNA encapsidation of HCV and classical flaviviruses, contrast with the packaging mechanism of HIV-1.
Collapse
Affiliation(s)
- Guoli Shi
- Antiviral Immunity and Resistance Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Tetsuro Suzuki
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
30
|
Lim CS, Brown CM. Know Your Enemy: Successful Bioinformatic Approaches to Predict Functional RNA Structures in Viral RNAs. Front Microbiol 2018; 8:2582. [PMID: 29354101 PMCID: PMC5758548 DOI: 10.3389/fmicb.2017.02582] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/11/2017] [Indexed: 12/14/2022] Open
Abstract
Structured RNA elements may control virus replication, transcription and translation, and their distinct features are being exploited by novel antiviral strategies. Viral RNA elements continue to be discovered using combinations of experimental and computational analyses. However, the wealth of sequence data, notably from deep viral RNA sequencing, viromes, and metagenomes, necessitates computational approaches being used as an essential discovery tool. In this review, we describe practical approaches being used to discover functional RNA elements in viral genomes. In addition to success stories in new and emerging viruses, these approaches have revealed some surprising new features of well-studied viruses e.g., human immunodeficiency virus, hepatitis C virus, influenza, and dengue viruses. Some notable discoveries were facilitated by new comparative analyses of diverse viral genome alignments. Importantly, comparative approaches for finding RNA elements embedded in coding and non-coding regions differ. With the exponential growth of computer power we have progressed from stem-loop prediction on single sequences to cutting edge 3D prediction, and from command line to user friendly web interfaces. Despite these advances, many powerful, user friendly prediction tools and resources are underutilized by the virology community.
Collapse
Affiliation(s)
- Chun Shen Lim
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Chris M Brown
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
31
|
Sun LZ, Heng X, Chen SJ. Theory Meets Experiment: Metal Ion Effects in HCV Genomic RNA Kissing Complex Formation. Front Mol Biosci 2017; 4:92. [PMID: 29312955 PMCID: PMC5744182 DOI: 10.3389/fmolb.2017.00092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/12/2017] [Indexed: 12/14/2022] Open
Abstract
The long-range base pairing between the 5BSL3. 2 and 3′X domains in hepatitis C virus (HCV) genomic RNA is essential for viral replication. Experimental evidence points to the critical role of metal ions, especially Mg2+ ions, in the formation of the 5BSL3.2:3′X kissing complex. Furthermore, NMR studies suggested an important ion-dependent conformational switch in the kissing process. However, for a long time, mechanistic understanding of the ion effects for the process has been unclear. Recently, computational modeling based on the Vfold RNA folding model and the partial charge-based tightly bound ion (PCTBI) model, in combination with the NMR data, revealed novel physical insights into the role of metal ions in the 5BSL3.2-3′X system. The use of the PCTBI model, which accounts for the ion correlation and fluctuation, gives reliable predictions for the ion-dependent electrostatic free energy landscape and ion-induced population shift of the 5BSL3.2:3′X kissing complex. Furthermore, the predicted ion binding sites offer insights about how ion-RNA interactions shift the conformational equilibrium. The integrated theory-experiment study shows that Mg2+ ions may be essential for HCV viral replication. Moreover, the observed Mg2+-dependent conformational equilibrium may be an adaptive property of the HCV genomic RNA such that the equilibrium is optimized to the intracellular Mg2+ concentration in liver cells for efficient viral replication.
Collapse
Affiliation(s)
- Li-Zhen Sun
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou, China.,Department of Physics, University of Missouri, Columbia, MO, United States
| | - Xiao Heng
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Shi-Jie Chen
- Department of Physics, University of Missouri, Columbia, MO, United States.,Department of Biochemistry, University of Missouri, Columbia, MO, United States.,University of Missouri Informatics Institute, University of Missouri, Columbia, MO, United States
| |
Collapse
|
32
|
Romero-López C, Berzal-Herranz A. The 5BSL3.2 Functional RNA Domain Connects Distant Regions in the Hepatitis C Virus Genome. Front Microbiol 2017; 8:2093. [PMID: 29163393 PMCID: PMC5671509 DOI: 10.3389/fmicb.2017.02093] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/12/2017] [Indexed: 02/05/2023] Open
Abstract
Viral genomes are complexly folded entities that carry all the information required for the infective cycle. The nucleotide sequence of the RNA virus genome encodes proteins and functional information contained in discrete, highly conserved structural units. These so-called functional RNA domains play essential roles in the progression of infection, which requires their preservation from one generation to the next. Numerous functional RNA domains exist in the genome of the hepatitis C virus (HCV). Among them, the 5BSL3.2 domain in the cis-acting replication element (CRE) at the 3' end of the viral open reading frame has become of particular interest given its role in HCV RNA replication and as a regulator of viral protein synthesis. These functionalities are achieved via the establishment of a complex network of long-distance RNA-RNA contacts involving (at least as known to date) the highly conserved 3'X tail, the apical loop of domain IIId in the internal ribosome entry site, and/or the so-called Alt region upstream of the CRE. Changing contacts promotes the execution of different stages of the viral cycle. The 5BSL3.2 domain thus operates at the core of a system that governs the progression of HCV infection. This review summarizes our knowledge of the long-range RNA-RNA interaction network in the HCV genome, with special attention paid to the structural and functional consequences derived from the establishment of different contacts. The potential implications of such interactions in switching between the different stages of the viral cycle are discussed.
Collapse
Affiliation(s)
- Cristina Romero-López
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| |
Collapse
|
33
|
Kranawetter C, Brady S, Sun L, Schroeder M, Chen SJ, Heng X. Nuclear Magnetic Resonance Study of RNA Structures at the 3'-End of the Hepatitis C Virus Genome. Biochemistry 2017; 56:4972-4984. [PMID: 28829576 DOI: 10.1021/acs.biochem.7b00573] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The 3'-end of the genomic RNA of the hepatitis C virus (HCV) embeds conserved elements that regulate viral RNA synthesis and protein translation by mechanisms that have yet to be elucidated. Previous studies with oligo-RNA fragments have led to multiple, mutually exclusive secondary structure predictions, indicating that HCV RNA structure may be context-dependent. Here we employed a nuclear magnetic resonance (NMR) approach that involves long-range adenosine interaction detection, coupled with site-specific 2H labeling, to probe the structure of the intact 3'-end of the HCV genome (385 nucleotides). Our data reveal that the 3'-end exists as an equilibrium mixture of two conformations: an open conformation in which the 98 nucleotides of the 3'-tail (3'X) form a two-stem-loop structure with the kissing-loop residues sequestered and a closed conformation in which the 3'X rearranges its structure and forms a long-range kissing-loop interaction with an upstream cis-acting element 5BSL3.2. The long-range kissing species is favored under high-Mg2+ conditions, and the intervening sequences do not affect the equilibrium as their secondary structures remain unchanged. The open and closed conformations are consistent with the reported function regulation of viral RNA synthesis and protein translation, respectively. Our NMR detection of these RNA conformations and the structural equilibrium in the 3'-end of the HCV genome support its roles in coordinating various steps of HCV replication.
Collapse
Affiliation(s)
- Clayton Kranawetter
- Department of Biochemistry, University of Missouri , Columbia, Missouri 65211, United States
| | - Samantha Brady
- Department of Biochemistry, University of Missouri , Columbia, Missouri 65211, United States
| | - Lizhen Sun
- Department of Physics, Department of Biochemistry, and Informatics Institute, University of Missouri , Columbia, Missouri 65211, United States
| | - Mark Schroeder
- Department of Biochemistry, University of Missouri , Columbia, Missouri 65211, United States
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry, and Informatics Institute, University of Missouri , Columbia, Missouri 65211, United States
| | - Xiao Heng
- Department of Biochemistry, University of Missouri , Columbia, Missouri 65211, United States
| |
Collapse
|
34
|
Cantero-Camacho Á, Fan L, Wang YX, Gallego J. Three-dimensional structure of the 3'X-tail of hepatitis C virus RNA in monomeric and dimeric states. RNA (NEW YORK, N.Y.) 2017; 23:1465-1476. [PMID: 28630140 PMCID: PMC5558915 DOI: 10.1261/rna.060632.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 06/12/2017] [Indexed: 06/08/2023]
Abstract
The 3'X domain is a 98-nt region located at the 3' end of hepatitis C virus genomic RNA that plays essential functions in the viral life cycle. It contains an absolutely conserved, 16-base palindromic sequence that promotes viral RNA dimerization, overlapped with a 7-nt tract implicated in a distal contact with a nearby functional sequence. Using small angle X-ray scattering measurements combined with model building guided by NMR spectroscopy, we have studied the stoichiometry, structure, and flexibility of domain 3'X and two smaller subdomain sequences as a function of ionic strength, and obtained a three-dimensional view of the full-length domain in its monomeric and dimeric states. In the monomeric form, the 3'X domain adopted an elongated conformation containing two SL1' and SL2' double-helical stems stabilized by coaxial stacking. This structure was significantly less flexible than that of isolated subdomain SL2' monomers. At higher ionic strength, the 3'X scattering envelope nearly doubled its size, reflecting the formation of extended homodimers containing an antiparallel SL2' duplex flanked by coaxially stacked SL1' helices. Formation of these dimers could initialize and/or regulate the packaging of viral RNA genomes into virions.
Collapse
Affiliation(s)
| | - Lixin Fan
- The Small-Angle X-ray Scattering Core Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland 21702, USA
| | - Yun-Xing Wang
- National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| | - José Gallego
- Facultad de Medicina, Universidad Católica de Valencia, 46001 Valencia, Spain
| |
Collapse
|
35
|
Wang Y, Lee S, Ha Y, Lam W, Chen SR, Dutschman GE, Gullen EA, Grill SP, Cheng Y, Fürstner A, Francis S, Baker DC, Yang X, Lee KH, Cheng YC. Tylophorine Analogs Allosterically Regulates Heat Shock Cognate Protein 70 And Inhibits Hepatitis C Virus Replication. Sci Rep 2017; 7:10037. [PMID: 28855547 PMCID: PMC5577180 DOI: 10.1038/s41598-017-08815-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/19/2017] [Indexed: 12/12/2022] Open
Abstract
Tylophorine analogs have been shown to exhibit diverse activities against cancer, inflammation, arthritis, and lupus in vivo. In this study, we demonstrated that two tylophorine analogs, DCB-3503 and rac-cryptopleurine, exhibit potent inhibitory activity against hepatitis C virus (HCV) replication in genotype 1b Con 1 isolate. The inhibition of HCV replication is at least partially mediated through cellular heat shock cognate protein 70 (Hsc70). Hsc70 associates with the HCV replication complex by primarily binding to the poly U/UC motifs in HCV RNA. The interaction of DCB-3503 and rac-cryptopleurine with Hsc70 promotes the ATP hydrolysis activity of Hsc70 in the presence of the 3' poly U/UC motif of HCV RNA. Regulating the ATPase activity of Hsc70 may be one of the mechanisms by which tylophorine analogs inhibit HCV replication. This study demonstrates the novel anti-HCV activity of tylophorine analogs. Our results also highlight the importance of Hsc70 in HCV replication.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA. .,Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, SAR, China.
| | - Sangwon Lee
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Ya Ha
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Wing Lam
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Shao-Ru Chen
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, SAR, China
| | - Ginger E Dutschman
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Elizabeth A Gullen
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Susan P Grill
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Yao Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim/Ruhr, Germany
| | - Samson Francis
- Department of Chemistry, The University of Tennessee, Knoxville, TN, 37996, USA
| | - David C Baker
- Department of Chemistry, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Xiaoming Yang
- Natural Products Research Laboratories, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA.,Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan
| | - Yung-Chi Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
36
|
Sun LZ, Kranawetter C, Heng X, Chen SJ. Predicting Ion Effects in an RNA Conformational Equilibrium. J Phys Chem B 2017; 121:8026-8036. [PMID: 28780864 DOI: 10.1021/acs.jpcb.7b03873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We develop a partial charge-based tightly bound ion (PCTBI) model for the ion effects in RNA folding. On the basis of the Monte Carlo tightly bound ion (MCTBI) approach, the model can account for ion fluctuation and correlation effects, and can predict the ion distribution around the RNA. Furthermore, unlike the previous coarse-grained RNA charge models, where negative charges are placed on the phosphates only, the current new model considers the detailed all-atom partial charge distribution on the RNA. Thus, the model not only keeps the advantage of the MCTBI model, but also has the potential to provide important detailed information unattainable by the previous MCTBI models. For example, the model predicts the reduction in ion binding upon protein binding and ion-induced conformational switches. For hepatitis C virus genomic RNA, the model predicts a Mg2+-induced stabilization of a kissing motif for a cis-acting regulatory element in the genomic RNA. Extensive theory-experiment comparisons support the reliability of the theoretical predictions. Therefore, the model may serve as a robust starting point for further development of an accurate method for ion effects in an RNA conformational equilibrium and RNA-cofactor interactions.
Collapse
Affiliation(s)
- Li-Zhen Sun
- Department of Physics, Department of Biochemistry, and Informatics Institute and ‡Department of Biochemistry, University of Missouri , Columbia, Missouri 65211, United States
| | - Clayton Kranawetter
- Department of Physics, Department of Biochemistry, and Informatics Institute and ‡Department of Biochemistry, University of Missouri , Columbia, Missouri 65211, United States
| | - Xiao Heng
- Department of Physics, Department of Biochemistry, and Informatics Institute and ‡Department of Biochemistry, University of Missouri , Columbia, Missouri 65211, United States
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry, and Informatics Institute and ‡Department of Biochemistry, University of Missouri , Columbia, Missouri 65211, United States
| |
Collapse
|
37
|
Functional RNA structures throughout the Hepatitis C Virus genome. Curr Opin Virol 2017; 24:79-86. [PMID: 28511116 DOI: 10.1016/j.coviro.2017.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/21/2017] [Indexed: 12/18/2022]
Abstract
The single-stranded Hepatitis C Virus (HCV) genome adopts a set of elaborate RNA structures that are involved in every stage of the viral lifecycle. Recent advances in chemical probing, sequencing, and structural biology have facilitated analysis of RNA folding on a genome-wide scale, revealing novel structures and networks of interactions. These studies have underscored the active role played by RNA in every function of HCV and they open the door to new types of RNA-targeted therapeutics.
Collapse
|
38
|
Miyamura T, Lemon SM, Walker CM, Wakita T. The HCV Replicase Complex and Viral RNA Synthesis. HEPATITIS C VIRUS I 2016. [PMCID: PMC7122888 DOI: 10.1007/978-4-431-56098-2_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Replication of hepatitis C virus (HCV) is tightly linked to membrane alterations designated the membranous web, harboring the viral replicase complex. In this chapter we describe the morphology and 3D architecture of the HCV-induced replication organelles, mainly consisting of double membrane vesicles, which are generated by a concerted action of the nonstructural proteins NS3 to NS5B. Recent studies have furthermore identified a number of host cell proteins and lipids contributing to the biogenesis of the membranous web, which are discussed in this chapter. Viral RNA synthesis is tightly associated with these membrane alterations and mainly driven by the viral RNA dependent RNA polymerase NS5B. We summarize our current knowledge of the structure and function of NS5B, the role of cis-acting replication elements at the termini of the genome in regulating RNA synthesis and the contribution of additional viral and host factors to viral RNA synthesis, which is still ill defined.
Collapse
Affiliation(s)
- Tatsuo Miyamura
- National Institute of Infectious Diseases, Tokyo, Tokyo Japan
| | - Stanley M. Lemon
- Departments of Medicine and Microbiology & Immunology , The University of North Carolina, Chapel Hill, North Carolina USA
| | - Christopher M. Walker
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio USA
| | - Takaji Wakita
- National Institute of Infectious Diseases, Tokyo, Tokyo Japan
| |
Collapse
|
39
|
The cis-acting replication element of the Hepatitis C virus genome recruits host factors that influence viral replication and translation. Sci Rep 2016; 6:25729. [PMID: 27165399 PMCID: PMC4863150 DOI: 10.1038/srep25729] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/21/2016] [Indexed: 02/08/2023] Open
Abstract
The cis-acting replication element (CRE) of the hepatitis C virus (HCV) RNA genome is a region of conserved sequence and structure at the 3′ end of the open reading frame. It participates in a complex and dynamic RNA-RNA interaction network involving, among others, essential functional domains of the 3′ untranslated region and the internal ribosome entry site located at the 5′ terminus of the viral genome. A proper balance between all these contacts is critical for the control of viral replication and translation, and is likely dependent on host factors. Proteomic analyses identified a collection of proteins from a hepatoma cell line as CRE-interacting candidates. A large fraction of these were RNA-binding proteins sharing highly conserved RNA recognition motifs. The vast majority of these proteins were validated by bioinformatics tools that consider RNA-protein secondary structure. Further characterization of representative proteins indicated that hnRNPA1 and HMGB1 exerted negative effects on viral replication in a subgenomic HCV replication system. Furthermore DDX5 and PARP1 knockdown reduced the HCV IRES activity, suggesting an involvement of these proteins in HCV translation. The identification of all these host factors provides new clues regarding the function of the CRE during viral cycle progression.
Collapse
|
40
|
The Coding Region of the HCV Genome Contains a Network of Regulatory RNA Structures. Mol Cell 2016; 62:111-20. [PMID: 26924328 DOI: 10.1016/j.molcel.2016.01.024] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 12/22/2015] [Accepted: 01/21/2016] [Indexed: 12/11/2022]
Abstract
RNA is a versatile macromolecule that accommodates functional information in primary sequence and secondary and tertiary structure. We use a combination of chemical probing, RNA structure modeling, comparative sequence analysis, and functional assays to examine the role of RNA structure in the hepatitis C virus (HCV) genome. We describe a set of conserved but functionally diverse structural RNA motifs that occur in multiple coding regions of the HCV genome, and we demonstrate that conformational changes in these motifs influence specific stages in the virus' life cycle. Our study shows that these types of structures can pervade a genome, where they play specific mechanistic and regulatory roles, constituting a "code within the code" for controlling biological processes.
Collapse
|
41
|
Shi G, Ando T, Suzuki R, Matsuda M, Nakashima K, Ito M, Omatsu T, Oba M, Ochiai H, Kato T, Mizutani T, Sawasaki T, Wakita T, Suzuki T. Involvement of the 3' Untranslated Region in Encapsidation of the Hepatitis C Virus. PLoS Pathog 2016; 12:e1005441. [PMID: 26867128 PMCID: PMC4750987 DOI: 10.1371/journal.ppat.1005441] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/15/2016] [Indexed: 02/06/2023] Open
Abstract
Although information regarding morphogenesis of the hepatitis C virus (HCV) is accumulating, the mechanism(s) by which the HCV genome encapsidated remains unknown. In the present study, in cell cultures producing HCV, the molecular ratios of 3’ end- to 5’ end-regions of the viral RNA population in the culture medium were markedly higher than those in the cells, and the ratio was highest in the virion-rich fraction. The interaction of the 3’ untranslated region (UTR) with Core in vitro was stronger than that of the interaction of other stable RNA structure elements across the HCV genome. A foreign gene flanked by the 3’ UTR was encapsidated by supplying both viral NS3-NS5B proteins and Core-NS2 in trans. Mutations within the conserved stem-loops of the 3’ UTR were observed to dramatically diminish packaging efficiency, suggesting that the conserved apical motifs of the 3´ X region are important for HCV genome packaging. This study provides evidence of selective packaging of the HCV genome into viral particles and identified that the 3’ UTR acts as a cis-acting element for encapsidation. Although cell culture systems provide a powerful tool for deciphering the life cycle of the hepatitis C virus (HCV), the mechanisms of encapsidation of the viral genome into infectious particles remain to be uncovered. The HCV genome is a positive RNA with one single reading frame flanked by 5’- and 3’ untranslated regions (UTRs). Thus far, there is no direct evidence that HCV employs a packaging-signal dependent- or replication-coupled mechanism of encapsidation of its genome. The possible overlap of RNA sequences that function in RNA replication with those that function in encapsidation may present an obstacle to investigation of the cis-elements for RNA packaging. In this study, we characterized the properties of HCV RNAs in a cell culture system by determining their integrity in virus-replicating cells and in culture supernatants, and we found that over-distributed 5’-subgenomes were negatively selected during virus assembly in the cells. Using trans-packaging systems with replication defective subgenomes, we identified the 3’UTR as a cis-acting element that was sufficient for packaging of not only a HCV subgenome but also a foreign gene into infectious particles. Mutagenesis analyses, together with an in vitro binding assay with Core demonstrated that, whereas the best encapsidation occurs with the entire 3’ UTR, the loop sequences of the 3’ X region appear to be essential for encapsidation. Our work opens new perspectives for understanding the molecular mechanisms that regulate the HCV life cycle and potentially paves a way to a new anti-viral therapy.
Collapse
Affiliation(s)
- Guoli Shi
- Department of Infectious Diseases, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Tomomi Ando
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.,Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Mami Matsuda
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kenji Nakashima
- Department of Infectious Diseases, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Masahiko Ito
- Department of Infectious Diseases, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Tsutomu Omatsu
- Research and Education center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Mami Oba
- Research and Education center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hideharu Ochiai
- Research Institute of Biosciences, Azabu University, Kanagawa, Japan
| | - Takanobu Kato
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsuya Mizutani
- Research and Education center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | | | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsuro Suzuki
- Department of Infectious Diseases, Hamamatsu University School of Medicine, Shizuoka, Japan
| |
Collapse
|
42
|
Kell A, Stoddard M, Li H, Marcotrigiano J, Shaw GM, Gale M. Pathogen-Associated Molecular Pattern Recognition of Hepatitis C Virus Transmitted/Founder Variants by RIG-I Is Dependent on U-Core Length. J Virol 2015; 89:11056-68. [PMID: 26311867 PMCID: PMC4621103 DOI: 10.1128/jvi.01964-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/19/2015] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED Despite the introduction of direct-acting antiviral (DAA) drugs against hepatitis C virus (HCV), infection remains a major public health concern because DAA therapeutics do not prevent reinfection and patients can still progress to chronic liver disease. Chronic HCV infection is supported by a variety of viral immune evasion strategies, but, remarkably, 20% to 30% of acute infections spontaneously clear prior to development of adaptive immune responses, thus implicating innate immunity in resolving acute HCV infection. However, the virus-host interactions regulating acute infection are unknown. Transmission of HCV involves one or a few transmitted/founder (T/F) variants. In infected hepatocytes, the retinoic acid-inducible gene I (RIG-I) protein recognizes 5' triphosphate (5'ppp) of the HCV RNA and a pathogen-associated molecular pattern (PAMP) motif located within the 3' untranslated region consisting of poly-U/UC. PAMP binding activates RIG-I to induce innate immune signaling and type 1 interferon antiviral defenses. HCV poly-U/UC sequences can differ in length and complexity, suggesting that PAMP diversity in T/F genomes could regulate innate immune control of acute HCV infection. Using 14 unique poly-U/UC sequences from HCV T/F genomes recovered from acute-infection patients, we tested whether RIG-I recognition and innate immune activation correlate with PAMP sequence characteristics. We show that T/F variants are recognized by RIG-I in a manner dependent on length of the U-core motif of the poly-U/UC PAMP and are recognized by RIG-I to induce innate immune responses that restrict acute infection. PAMP recognition of T/F HCV variants by RIG-I may therefore impart innate immune signaling and HCV restriction to impact acute-phase-to-chronic-phase transition. IMPORTANCE Recognition of nonself molecular patterns such as those seen with viral nucleic acids is an essential step in triggering the immune response to virus infection. Innate immunity is induced by hepatitis C virus infection through the recognition of viral RNA by the cellular RIG-I protein, where RIG-I recognizes a poly-uridine/cytosine motif in the viral genome. Variation within this motif may provide an immune evasion strategy for transmitted/founder viruses during acute infection. Using 14 unique poly-U/UC sequences from HCV T/F genomes recovered from acutely infected HCV patients, we demonstrate that RIG-I binding and activation of innate immunity depend primarily on the length of the uridine core within this motif. T/F variants found in acute infection contained longer U cores within the motif and could activate RIG-I and induce innate immune signaling sufficient to restrict viral infection. Thus, recognition of T/F variants by RIG-I could significantly impact the transition from acute to chronic infection.
Collapse
Affiliation(s)
- Alison Kell
- Center for Innate Immunity and Immune Disease, Department of Immunology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Mark Stoddard
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hui Li
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joe Marcotrigiano
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA
| | - George M Shaw
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, School of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
43
|
RNA Aptamers as Molecular Tools to Study the Functionality of the Hepatitis C Virus CRE Region. Molecules 2015; 20:16030-47. [PMID: 26364632 PMCID: PMC6331917 DOI: 10.3390/molecules200916030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/25/2015] [Accepted: 08/29/2015] [Indexed: 02/05/2023] Open
Abstract
Background: Hepatitis C virus (HCV) contains a (+) ssRNA genome with highly conserved structural, functional RNA domains, many of them with unknown roles for the consecution of the viral cycle. Such genomic domains are candidate therapeutic targets. This study reports the functional characterization of a set of aptamers targeting the cis-acting replication element (CRE) of the HCV genome, an essential partner for viral replication and also involved in the regulation of protein synthesis. Methods: Forty-four aptamers were tested for their ability to interfere with viral RNA synthesis in a subgenomic replicon system. Some of the most efficient inhibitors were further evaluated for their potential to affect the recruitment of the HCV RNA-dependent RNA polymerase (NS5B) and the viral translation in cell culture. Results: Four aptamers emerged as potent inhibitors of HCV replication by direct interaction with functional RNA domains of the CRE, yielding a decrease in the HCV RNA levels higher than 90%. Concomitantly, one of them also induced a significant increase in viral translation (>50%). The three remaining aptamers efficiently competed with the binding of the NS5B protein to the CRE. Conclusions: Present findings confirm the potential of the CRE as an anti-HCV target and support the use of aptamers as molecular tools for investigating the functionality of RNA domains in viral genomes.
Collapse
|
44
|
The yin and yang of hepatitis C: synthesis and decay of hepatitis C virus RNA. Nat Rev Microbiol 2015; 13:544-58. [PMID: 26256788 DOI: 10.1038/nrmicro3506] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) is an unusual RNA virus that has a striking capacity to persist for the remaining life of the host in the majority of infected individuals. In order to persist, HCV must balance viral RNA synthesis and decay in infected cells. In this Review, we focus on interactions between the positive-sense RNA genome of HCV and the host RNA-binding proteins and microRNAs, and describe how these interactions influence the competing processes of viral RNA synthesis and decay to achieve stable, long-term persistence of the viral genome. Furthermore, we discuss how these processes affect hepatitis C pathogenesis and therapeutic strategies against HCV.
Collapse
|
45
|
Cantero-Camacho Á, Gallego J. The conserved 3'X terminal domain of hepatitis C virus genomic RNA forms a two-stem structure that promotes viral RNA dimerization. Nucleic Acids Res 2015; 43:8529-39. [PMID: 26240378 PMCID: PMC4787799 DOI: 10.1093/nar/gkv786] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/21/2015] [Indexed: 02/06/2023] Open
Abstract
The 3′X domain of hepatitis C virus is a strongly conserved structure located at the 3′ terminus of the viral genomic RNA. This domain modulates the replication and translation processes of the virus in conjunction with an upstream 5BSL3.2 stem–loop, and contains a palindromic sequence that facilitates RNA dimerization. Based on nuclear magnetic resonance spectroscopy and gel electrophoresis, we report here that domain 3′X adopts a structure composed of two stem–loops, and not three hairpins or a mixture of folds, as previously proposed. This structure exposes unpaired terminal nucleotides after a double-helical stem and palindromic bases in an apical loop, favoring genomic RNA replication and self-association. At higher ionic strength the domain forms homodimers comprising an intermolecular duplex of 110 nucleotides. The 3′X sequences can alternatively form heterodimers with 5BSL3.2. This contact, reported to favor translation, likely involves local melting of one of the 3′X stem–loops.
Collapse
Affiliation(s)
- Ángel Cantero-Camacho
- Facultad de Medicina, Universidad Católica de Valencia, C/Quevedo 2, 46001 Valencia, Spain
| | - José Gallego
- Facultad de Medicina, Universidad Católica de Valencia, C/Quevedo 2, 46001 Valencia, Spain
| |
Collapse
|
46
|
Elshaffei IM, Gupta N, Wu CH, Wu DC, Hammad LN, Abo-Elmatty DM, Mesbah NM, Wu GY. Effects of short RNA structural analogues against hepatitis C virus genotypes 2, 3 and 4 in replicon cells. J Dig Dis 2015; 16:449-55. [PMID: 25873200 DOI: 10.1111/1751-2980.12250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To determine whether computer-predicted short RNA structural analogues could inhibit hepatitis C virus (HCV) genotype 2a, 3a and 4a replication in cultured cells. METHODS Short RNA sequences, X12, X12a and X12b, designed to be identical in secondary structure to the X region in the 3'-untranslated region (3'-UTR) of the HCV 1b genome, as well as shorter stem-loop components of X region, were inserted into a plasmid and transfected into separate Huh7.5 human hepatoma cells stably transfected with subgenomic replicons for genotypes 2a, 3a and 4a. All replicons included a firefly luciferase reporter gene. After 48 h of plasmid transfection, the inhibition of HCV replication was determined by HCV RNA isolation and quantification by real-time polymerase chain reaction and luciferase assays. RESULTS All the secondary structural analogues to genotype 1b X region cross-inhibited genotype 2a, 3a and 4a replicons. The maximum inhibition by genotype 1b X region structural analogues was obtained against genotype 2a cells in which X12, X12a and X12b inhibited replication by 30%, 63% and 72%, respectively (P < 0.05 for all), compared to an unrelated hepatitis B viral analogue. CONCLUSIONS Despite substantial sequence dissimilarity, HCV RNA genotype 1b X region analogues cross-inhibited the replication of HCV genotypes 2a, 3a and 4a. Particular conformations and not the sequence of the stem-loops of the X region are involved in HCV replication.
Collapse
Affiliation(s)
- Ismail M Elshaffei
- Department of Biochemistry, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Nidhi Gupta
- Department of Medicine, Division of Gastroenterology-Hepatology, UCONN HEALTH, USA
| | - Catherine H Wu
- Department of Medicine, Division of Gastroenterology-Hepatology, UCONN HEALTH, USA
| | - David C Wu
- Department of Medicine, Division of Gastroenterology-Hepatology, UCONN HEALTH, USA
| | - Lamiaa N Hammad
- Department of Biochemistry, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Dina M Abo-Elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Noha M Mesbah
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - George Y Wu
- Department of Medicine, Division of Gastroenterology-Hepatology, UCONN HEALTH, USA
| |
Collapse
|
47
|
Fricke M, Dünnes N, Zayas M, Bartenschlager R, Niepmann M, Marz M. Conserved RNA secondary structures and long-range interactions in hepatitis C viruses. RNA (NEW YORK, N.Y.) 2015; 21:1219-32. [PMID: 25964384 PMCID: PMC4478341 DOI: 10.1261/rna.049338.114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/07/2015] [Indexed: 05/02/2023]
Abstract
Hepatitis C virus (HCV) is a hepatotropic virus with a plus-strand RNA genome of ∼9.600 nt. Due to error-prone replication by its RNA-dependent RNA polymerase (RdRp) residing in nonstructural protein 5B (NS5B), HCV isolates are grouped into seven genotypes with several subtypes. By using whole-genome sequences of 106 HCV isolates and secondary structure alignments of the plus-strand genome and its minus-strand replication intermediate, we established refined secondary structures of the 5' untranslated region (UTR), the cis-acting replication element (CRE) in NS5B, and the 3' UTR. We propose an alternative structure in the 5' UTR, conserved secondary structures of 5B stem-loop (SL)1 and 5BSL2, and four possible structures of the X-tail at the very 3' end of the HCV genome. We predict several previously unknown long-range interactions, most importantly a possible circularization interaction between distinct elements in the 5' and 3' UTR, reminiscent of the cyclization elements of the related flaviviruses. Based on analogy to these viruses, we propose that the 5'-3' UTR base-pairing in the HCV genome might play an important role in viral RNA replication. These results may have important implications for our understanding of the nature of the cis-acting RNA elements in the HCV genome and their possible role in regulating the mutually exclusive processes of viral RNA translation and replication.
Collapse
Affiliation(s)
- Markus Fricke
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Nadia Dünnes
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, 35392 Giessen, Germany
| | - Margarita Zayas
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Michael Niepmann
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, 35392 Giessen, Germany
| | - Manja Marz
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, 07743 Jena, Germany FLI Leibniz Institute for Age Research, 07745 Jena, Germany
| |
Collapse
|
48
|
Identification, molecular cloning, and analysis of full-length hepatitis C virus transmitted/founder genotypes 1, 3, and 4. mBio 2015; 6:e02518. [PMID: 25714714 PMCID: PMC4358020 DOI: 10.1128/mbio.02518-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepatitis C virus (HCV) infection is characterized by persistent replication of a complex mixture of viruses termed a “quasispecies.” Transmission is generally associated with a stringent population bottleneck characterized by infection by limited numbers of “transmitted/founder” (T/F) viruses. Characterization of T/F genomes of human immunodeficiency virus type 1 (HIV-1) has been integral to studies of transmission, immunopathogenesis, and vaccine development. Here, we describe the identification of complete T/F genomes of HCV by single-genome sequencing of plasma viral RNA from acutely infected subjects. A total of 2,739 single-genome-derived amplicons comprising 10,966,507 bp from 18 acute-phase and 11 chronically infected subjects were analyzed. Acute-phase sequences diversified essentially randomly, except for the poly(U/UC) tract, which was subject to polymerase slippage. Fourteen acute-phase subjects were productively infected by more than one genetically distinct virus, permitting assessment of recombination between replicating genomes. No evidence of recombination was found among 1,589 sequences analyzed. Envelope sequences of T/F genomes lacked transmission signatures that could distinguish them from chronic infection viruses. Among chronically infected subjects, higher nucleotide substitution rates were observed in the poly(U/UC) tract than in envelope hypervariable region 1. Fourteen full-length molecular clones with variable poly(U/UC) sequences corresponding to seven genotype 1a, 1b, 3a, and 4a T/F viruses were generated. Like most unadapted HCV clones, T/F genomes did not replicate efficiently in Huh 7.5 cells, indicating that additional cellular factors or viral adaptations are necessary for in vitro replication. Full-length T/F HCV genomes and their progeny provide unique insights into virus transmission, virus evolution, and virus-host interactions associated with immunopathogenesis. Hepatitis C virus (HCV) infects 2% to 3% of the world’s population and exhibits extraordinary genetic diversity. This diversity is mirrored by HIV-1, where characterization of transmitted/founder (T/F) genomes has been instrumental in studies of virus transmission, immunopathogenesis, and vaccine development. Here, we show that despite major differences in genome organization, replication strategy, and natural history, HCV (like HIV-1) diversifies essentially randomly early in infection, and as a consequence, sequences of actual T/F viruses can be identified. This allowed us to capture by molecular cloning the full-length HCV genomes that are responsible for infecting the first hepatocytes and eliciting the initial immune responses, weeks before these events could be directly analyzed in human subjects. These findings represent an enabling experimental strategy, not only for HCV and HIV-1 research, but also for other RNA viruses of medical importance, including West Nile, chikungunya, dengue, Venezuelan encephalitis, and Ebola viruses.
Collapse
|
49
|
Tuplin A, Struthers M, Cook J, Bentley K, Evans DJ. Inhibition of HCV translation by disrupting the structure and interactions of the viral CRE and 3' X-tail. Nucleic Acids Res 2015; 43:2914-26. [PMID: 25712095 PMCID: PMC4357731 DOI: 10.1093/nar/gkv142] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A phylogenetically conserved RNA structure within the NS5B coding region of hepatitis C virus functions as a cis-replicating element (CRE). Integrity of this CRE, designated SL9266 (alternatively 5BSL3.2), is critical for genome replication. SL9266 forms the core of an extended pseudoknot, designated SL9266/PK, involving long distance RNA–RNA interactions between unpaired loops of SL9266 and distal regions of the genome. Previous studies demonstrated that SL9266/PK is dynamic, with ‘open’ and ‘closed’ conformations predicted to have distinct functions during virus replication. Using a combination of site-directed mutagenesis and locked nucleic acids (LNA) complementary to defined domains of SL9266 and its interacting regions, we have explored the influence of this structure on genome translation and replication. We demonstrate that LNAs which block formation of the closed conformation inhibit genome translation. Inhibition was at least partly independent of the initiation mechanism, whether driven by homologous or heterologous internal ribosome entry sites or from a capped message. Provision of SL9266/PK in trans relieved translational inhibition, and mutational analysis implied a mechanism in which the closed conformation recruits a cellular factor that would otherwise suppresses translation. We propose that SL9266/PK functions as a temporal switch, modulating the mutually incompatible processes of translation and replication.
Collapse
Affiliation(s)
- Andrew Tuplin
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Madeleine Struthers
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Jonathan Cook
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Kirsten Bentley
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - David J Evans
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| |
Collapse
|
50
|
Sagan SM, Chahal J, Sarnow P. cis-Acting RNA elements in the hepatitis C virus RNA genome. Virus Res 2015; 206:90-8. [PMID: 25576644 DOI: 10.1016/j.virusres.2014.12.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 12/12/2014] [Accepted: 12/24/2014] [Indexed: 12/22/2022]
Abstract
Hepatitis C virus (HCV) infection is a rapidly increasing global health problem with an estimated 170 million people infected worldwide. HCV is a hepatotropic, positive-sense RNA virus of the family Flaviviridae. As a positive-sense RNA virus, the HCV genome itself must serve as a template for translation, replication and packaging. The viral RNA must therefore be a dynamic structure that is able to readily accommodate structural changes to expose different regions of the genome to viral and cellular proteins to carry out the HCV life cycle. The ∼ 9600 nucleotide viral genome contains a single long open reading frame flanked by 5' and 3' non-coding regions that contain cis-acting RNA elements important for viral translation, replication and stability. Additional cis-acting RNA elements have also been identified in the coding sequences as well as in the 3' end of the negative-strand replicative intermediate. Herein, we provide an overview of the importance of these cis-acting RNA elements in the HCV life cycle.
Collapse
Affiliation(s)
- Selena M Sagan
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| | - Jasmin Chahal
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| | - Peter Sarnow
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States.
| |
Collapse
|