1
|
Heng X, Herrera AP, Song Z, Boris-Lawrie K. Retroviral PBS-segment sequence and structure: Orchestrating early and late replication events. Retrovirology 2024; 21:12. [PMID: 38886829 PMCID: PMC11181671 DOI: 10.1186/s12977-024-00646-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
An essential regulatory hub for retroviral replication events, the 5' untranslated region (UTR) encodes an ensemble of cis-acting replication elements that overlap in a logical manner to carry out divergent RNA activities in cells and in virions. The primer binding site (PBS) and primer activation sequence initiate the reverse transcription process in virions, yet overlap with structural elements that regulate expression of the complex viral proteome. PBS-segment also encompasses the attachment site for Integrase to cut and paste the 3' long terminal repeat into the host chromosome to form the provirus and purine residues necessary to execute the precise stoichiometry of genome-length transcripts and spliced viral RNAs. Recent genetic mapping, cofactor affinity experiments, NMR and SAXS have elucidated that the HIV-1 PBS-segment folds into a three-way junction structure. The three-way junction structure is recognized by the host's nuclear RNA helicase A/DHX9 (RHA). RHA tethers host trimethyl guanosine synthase 1 to the Rev/Rev responsive element (RRE)-containing RNAs for m7-guanosine Cap hyper methylation that bolsters virion infectivity significantly. The HIV-1 trimethylated (TMG) Cap licenses specialized translation of virion proteins under conditions that repress translation of the regulatory proteins. Clearly host-adaption and RNA shapeshifting comprise the fundamental basis for PBS-segment orchestrating both reverse transcription of virion RNA and the nuclear modification of m7G-Cap for biphasic translation of the complex viral proteome. These recent observations, which have exposed even greater complexity of retroviral RNA biology than previously established, are the impetus for this article. Basic research to fully comprehend the marriage of PBS-segment structures and host RNA binding proteins that carry out retroviral early and late replication events is likely to expose an immutable virus-specific therapeutic target to attenuate retrovirus proliferation.
Collapse
Affiliation(s)
- Xiao Heng
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA.
| | - Amanda Paz Herrera
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Zhenwei Song
- Department of Veterinary and Biomedical Sciences, Institute for Molecular Virology, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Kathleen Boris-Lawrie
- Department of Veterinary and Biomedical Sciences, Institute for Molecular Virology, University of Minnesota, Saint Paul, MN, 55108, USA.
| |
Collapse
|
2
|
Monette A, Niu M, Maldonado RK, Chang J, Lambert GS, Flanagan JM, Cochrane A, Parent LJ, Mouland AJ. Influence of HIV-1 Genomic RNA on the Formation of Gag Biomolecular Condensates. J Mol Biol 2023; 435:168190. [PMID: 37385580 PMCID: PMC10838171 DOI: 10.1016/j.jmb.2023.168190] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
Biomolecular condensates (BMCs) play an important role in the replication of a growing number of viruses, but many important mechanistic details remain to be elucidated. Previously, we demonstrated that the pan-retroviral nucleocapsid (NC) and HIV-1 pr55Gag (Gag) proteins phase separate into condensates, and that HIV-1 protease (PR)-mediated maturation of Gag and Gag-Pol precursor proteins yields self-assembling BMCs that have HIV-1 core architecture. Using biochemical and imaging techniques, we aimed to further characterize the phase separation of HIV-1 Gag by determining which of its intrinsically disordered regions (IDRs) influence the formation of BMCs, and how the HIV-1 viral genomic RNA (gRNA) could influence BMC abundance and size. We found that mutations in the Gag matrix (MA) domain or the NC zinc finger motifs altered condensate number and size in a salt-dependent manner. Gag BMCs were also bimodally influenced by the gRNA, with a condensate-promoting regime at lower protein concentrations and a gel dissolution at higher protein concentrations. Interestingly, incubation of Gag with CD4+ T cell nuclear lysates led to the formation of larger BMCs compared to much smaller ones observed in the presence of cytoplasmic lysates. These findings suggest that the composition and properties of Gag-containing BMCs may be altered by differential association of host factors in nuclear and cytosolic compartments during virus assembly. This study significantly advances our understanding of HIV-1 Gag BMC formation and provides a foundation for future therapeutic targeting of virion assembly.
Collapse
Affiliation(s)
- Anne Monette
- Lady Davis Institute at the Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
| | - Meijuan Niu
- Lady Davis Institute at the Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
| | - Rebecca Kaddis Maldonado
- Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Jordan Chang
- Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Gregory S Lambert
- Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - John M Flanagan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Alan Cochrane
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Leslie J Parent
- Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States.
| | - Andrew J Mouland
- Lady Davis Institute at the Jewish General Hospital, Montréal, Québec H3T 1E2, Canada; Department of Medicine, McGill University, Montréal, Québec H4A 3J1, Canada.
| |
Collapse
|
3
|
Socas L, Ambroggio E. HIV-1 Gag specificity for PIP2 is regulated by macromolecular electric properties of both protein and membrane local environments. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - BIOMEMBRANES 2023; 1865:184157. [PMID: 37028700 DOI: 10.1016/j.bbamem.2023.184157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/14/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
HIV-1 assembly occurs at the plasma membrane, with the Gag polyprotein playing a crucial role. Gag association with the membrane is directed by the matrix domain (MA), which is myristoylated and has a highly basic region that interacts with anionic lipids. Several pieces of evidence suggest that the presence of phosphatidylinositol-(4,5)-bisphosphate (PIP2) highly influences this binding. Furthermore, MA also interacts with nucleic acids, which is proposed to be important for the specificity of GAG for PIP2-containing membranes. It is hypothesized that RNA has a chaperone function by interacting with the MA domain, preventing Gag from associating with unspecific lipid interfaces. Here, we study the interaction of MA with monolayer and bilayer membrane systems, focusing on the specificity for PIP2 and on the possible effects of a Gag N-terminal peptide on impairing the binding for either RNA or membrane. We found that RNA decreases the kinetics of the protein association with lipid monolayers but has no effect on the selectivity for PIP2. Interestingly, for bilayer systems, this selectivity increases in presence of both the peptide and RNA, even for highly negatively charged compositions, where MA alone does not discriminate between membranes with or without PIP2. Therefore, we propose that the specificity of MA for PIP2-containing membranes might be related to the electrostatic properties of both membrane and protein local environments, rather than a simple difference in molecular affinities. This scenario provides a new understanding of the regulation mechanism, with a macromolecular view, rather than considering molecular interactions within a ligand-receptor model.
Collapse
|
4
|
Monette A, Niu M, Maldonado RK, Chang J, Lambert GS, Flanagan JM, Cochrane A, Parent LJ, Mouland AJ. Influence of HIV-1 genomic RNA on the formation of Gag biomolecular condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529585. [PMID: 36865181 PMCID: PMC9980109 DOI: 10.1101/2023.02.23.529585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Biomolecular condensates (BMCs) play an important role in the replication of a growing number of viruses, but many important mechanistic details remain to be elucidated. Previously, we demonstrated that pan-retroviral nucleocapsid (NC) and the HIV-1 pr55 Gag (Gag) proteins phase separate into condensates, and that HIV-1 protease (PR)-mediated maturation of Gag and Gag-Pol precursor proteins yield self-assembling BMCs having HIV-1 core architecture. Using biochemical and imaging techniques, we aimed to further characterize the phase separation of HIV-1 Gag by determining which of its intrinsically disordered regions (IDRs) influence the formation of BMCs and how the HIV-1 viral genomic RNA (gRNA) could influence BMC abundance and size. We found that mutations in the Gag matrix (MA) domain or the NC zinc finger motifs altered condensate number and size in a salt-dependent manner. Gag BMCs were also bimodally influenced by the gRNA, with a condensate-promoting regime at lower protein concentrations and a gel dissolution at higher protein concentrations. Interestingly, incubation of Gag with CD4 + T cell nuclear lysates led to the formation of larger BMCs as compared to much smaller ones observed in the presence of cytoplasmic lysates. These findings suggests that the composition and properties of Gag-containing BMCs may be altered by differential association of host factors in nuclear and cytosolic compartments during virus assembly. This study significantly advances our understanding of HIV-1 Gag BMC formation and provides a foundation for future therapeutic targeting of virion assembly.
Collapse
|
5
|
Jin D, Zhu Y, Schubert HL, Goff SP, Musier-Forsyth K. HIV-1 Gag Binds the Multi-Aminoacyl-tRNA Synthetase Complex via the EPRS Subunit. Viruses 2023; 15:474. [PMID: 36851687 PMCID: PMC9967848 DOI: 10.3390/v15020474] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Host factor tRNAs facilitate the replication of retroviruses such as human immunodeficiency virus type 1 (HIV-1). HIV-1 uses human tRNALys3 as the primer for reverse transcription, and the assembly of HIV-1 structural protein Gag at the plasma membrane (PM) is regulated by matrix (MA) domain-tRNA interactions. A large, dynamic multi-aminoacyl-tRNA synthetase complex (MSC) exists in the cytosol and consists of eight aminoacyl-tRNA synthetases (ARSs) and three other cellular proteins. Proteomic studies to identify HIV-host interactions have identified the MSC as part of the HIV-1 Gag and MA interactomes. Here, we confirmed that the MA domain of HIV-1 Gag forms a stable complex with the MSC, mapped the primary interaction site to the linker domain of bi-functional human glutamyl-prolyl-tRNA synthetase (EPRS), and showed that the MA-EPRS interaction was RNA dependent. MA mutations that significantly reduced the EPRS interaction reduced viral infectivity and mapped to MA residues that also interact with phosphatidylinositol-(4,5)-bisphosphate. Overexpression of EPRS or EPRS fragments did not affect susceptibility to HIV-1 infection, and knockdown of EPRS reduced both a control reporter gene and HIV-1 protein translation. EPRS knockdown resulted in decreased progeny virion production, but the decrease could not be attributed to selective effects on virus gene expression, and the specific infectivity of the virions remained unchanged. While the precise function of the Gag-EPRS interaction remains uncertain, we discuss possible effects of the interaction on either virus or host activities.
Collapse
Affiliation(s)
- Danni Jin
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Yiping Zhu
- Departments of Biochemistry and Molecular Biophysics, and Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Heidi L. Schubert
- Department of Biochemistry, University of Utah, Salt Lake City, UT 841122, USA
| | - Stephen P. Goff
- Departments of Biochemistry and Molecular Biophysics, and Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Identification of New L-Heptanoylphosphatidyl Inositol Pentakisphosphate Derivatives Targeting the Interaction with HIV-1 Gag by Molecular Modelling Studies. Pharmaceuticals (Basel) 2022; 15:ph15101255. [PMID: 36297367 PMCID: PMC9610595 DOI: 10.3390/ph15101255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/29/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
The HIV-1 Gag protein binds to the host cell membrane and assembles into immature particles. Then, in the course of immature virion budding, activated protease cleaves Gag into its main components: MA, CA, NC, and p6 proteins. The highly basic residues of MA predominantly interact with the acidic head of phosphatidyl-inositol-4,5-bisphosphate (PI(4,5)P2) inserted into the membrane. Our research group developed L-Heptanoylphosphatidyl Inositol Pentakisphosphate (L-HIPPO) and previously confirmed that this compound bound to the MA more strongly than PI(4,5)P2 and inositol hexakisphosphate (IP6) did. Therefore, herein we rationally designed eight new L-HIPPO derivatives based on the fact that the most changeable parts of L-HIPPO were two acyl chains. After that, we employed molecular docking for eight compounds via Maestro software using high-resolution crystal structures of MA in complex with IP6 (PDB IDs: 7E1I, 7E1J, and 7E1K), which were recently elucidated by our research group. The most promising docking scores were obtained with benzene-inserted compounds. Thus, we generated a library containing 213 new aromatic group-inserted L-HIPPO derivatives and performed the same molecular docking procedure. According to the results, we determined the nine new L-HIPPO derivatives most effectively binding to the MA with the most favorable scoring functions and pharmacokinetic properties for further exploration.
Collapse
|
7
|
Upstream of N-Ras (Unr/CSDE1) Interacts with NCp7 and Gag, Modulating HIV-1 IRES-Mediated Translation Initiation. Viruses 2022; 14:v14081798. [PMID: 36016420 PMCID: PMC9413769 DOI: 10.3390/v14081798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
The Human Immunodeficiency Virus-1 (HIV-1) nucleocapsid protein (NC) as a mature protein or as a domain of the Gag precursor plays important roles in the early and late phases of the infection. To better understand its roles, we searched for new cellular partners and identified the RNA-binding protein Unr/CSDE1, Upstream of N-ras, whose interaction with Gag and NCp7 was confirmed by co-immunoprecipitation and FRET-FLIM. Unr interaction with Gag was found to be RNA-dependent and mediated by its NC domain. Using a dual luciferase assay, Unr was shown to act as an ITAF (IRES trans-acting factor), increasing the HIV-1 IRES-dependent translation. Point mutations of the HIV-1 IRES in a consensus Unr binding motif were found to alter both the IRES activity and its activation by Unr, suggesting a strong dependence of the IRES on Unr. Interestingly, Unr stimulatory effect is counteracted by NCp7, while Gag increases the Unr-promoted IRES activity, suggesting a differential Unr effect on the early and late phases of viral infection. Finally, knockdown of Unr in HeLa cells leads to a decrease in infection by a non-replicative lentivector, proving its functional implication in the early phase of viral infection.
Collapse
|
8
|
Cantara WA, Pathirage C, Hatterschide J, Olson ED, Musier-Forsyth K. Phosphomimetic S207D Lysyl-tRNA Synthetase Binds HIV-1 5'UTR in an Open Conformation and Increases RNA Dynamics. Viruses 2022; 14:1556. [PMID: 35891536 PMCID: PMC9315659 DOI: 10.3390/v14071556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 01/25/2023] Open
Abstract
Interactions between lysyl-tRNA synthetase (LysRS) and HIV-1 Gag facilitate selective packaging of the HIV-1 reverse transcription primer, tRNALys3. During HIV-1 infection, LysRS is phosphorylated at S207, released from a multi-aminoacyl-tRNA synthetase complex and packaged into progeny virions. LysRS is critical for proper targeting of tRNALys3 to the primer-binding site (PBS) by specifically binding a PBS-adjacent tRNA-like element (TLE), which promotes release of the tRNA proximal to the PBS. However, whether LysRS phosphorylation plays a role in this process remains unknown. Here, we used a combination of binding assays, RNA chemical probing, and small-angle X-ray scattering to show that both wild-type (WT) and a phosphomimetic S207D LysRS mutant bind similarly to the HIV-1 genomic RNA (gRNA) 5'UTR via direct interactions with the TLE and stem loop 1 (SL1) and have a modest preference for binding dimeric gRNA. Unlike WT, S207D LysRS bound in an open conformation and increased the dynamics of both the PBS region and SL1. A new working model is proposed wherein a dimeric phosphorylated LysRS/tRNA complex binds to a gRNA dimer to facilitate tRNA primer release and placement onto the PBS. Future anti-viral strategies that prevent this host factor-gRNA interaction are envisioned.
Collapse
Affiliation(s)
- William A. Cantara
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (C.P.); (J.H.); (E.D.O.)
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Chathuri Pathirage
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (C.P.); (J.H.); (E.D.O.)
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Joshua Hatterschide
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (C.P.); (J.H.); (E.D.O.)
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Erik D. Olson
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (C.P.); (J.H.); (E.D.O.)
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (C.P.); (J.H.); (E.D.O.)
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
9
|
Bernacchi S. Visualization of Retroviral Gag-Genomic RNA Cellular Interactions Leading to Genome Encapsidation and Viral Assembly: An Overview. Viruses 2022; 14:324. [PMID: 35215917 PMCID: PMC8876502 DOI: 10.3390/v14020324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022] Open
Abstract
Retroviruses must selectively recognize their unspliced RNA genome (gRNA) among abundant cellular and spliced viral RNAs to assemble into newly formed viral particles. Retroviral gRNA packaging is governed by Gag precursors that also orchestrate all the aspects of viral assembly. Retroviral life cycles, and especially the HIV-1 one, have been previously extensively analyzed by several methods, most of them based on molecular biology and biochemistry approaches. Despite these efforts, the spatio-temporal mechanisms leading to gRNA packaging and viral assembly are only partially understood. Nevertheless, in these last decades, progress in novel bioimaging microscopic approaches (as FFS, FRAP, TIRF, and wide-field microscopy) have allowed for the tracking of retroviral Gag and gRNA in living cells, thus providing important insights at high spatial and temporal resolution of the events regulating the late phases of the retroviral life cycle. Here, the implementation of these recent bioimaging tools based on highly performing strategies to label fluorescent macromolecules is described. This report also summarizes recent gains in the current understanding of the mechanisms employed by retroviral Gag polyproteins to regulate molecular mechanisms enabling gRNA packaging and the formation of retroviral particles, highlighting variations and similarities among the different retroviruses.
Collapse
Affiliation(s)
- Serena Bernacchi
- Architecture et Réactivité de l'ARN-UPR 9002, IBMC, CNRS, Université de Strasbourg, F-67000 Strasbourg, France
| |
Collapse
|
10
|
Sumner C, Kotani O, Liu S, Musier-Forsyth K, Sato H, Ono A. Molecular Determinants in tRNA D-arm Required for Inhibition of HIV-1 Gag Membrane Binding. J Mol Biol 2022; 434:167390. [PMID: 34883117 PMCID: PMC8752508 DOI: 10.1016/j.jmb.2021.167390] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 02/01/2023]
Abstract
Plasma-membrane-specific localization of Gag, an essential step in HIV-1 particle assembly, is regulated by the interaction of the Gag MA domain with PI(4,5)P2 and tRNA-mediated inhibition of non-specific or premature membrane binding. Different tRNAs inhibit PI(4,5)P2-independent membrane binding to varying degrees in vitro; however, the structural determinants for this difference remain unknown. Here we demonstrate that membrane binding of full-length Gag synthesized in vitro using reticulocyte lysates is inhibited when RNAs that contain the anticodon arm of tRNAPro, but not that of tRNALys3, are added exogenously. In contrast, in the context of a liposome binding assay in which the effects of tRNAs on purified MA were tested, full-length tRNALys3 showed greater inhibition of MA membrane binding than full-length tRNAPro. While transplantation of the D loop sequence of tRNALys3 into tRNAPro resulted in a modest increase in the inhibitory effect relative to WT tRNAPro, replacing the entire D arm sequence with that of tRNALys3 was necessary to confer the full inhibitory effects upon tRNAPro. Together, these results demonstrate that the D arm of tRNALys3 is a major determinant of strong inhibition of MA membrane binding and that this inhibitory effect requires not only the D loop, which was recently reported to contact the MA highly basic region, but the loop sequence in the context of the D arm structure.
Collapse
Affiliation(s)
- Christopher Sumner
- Dept. of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States
| | - Osamu Kotani
- Center for Pathogen Genomics, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shuohui Liu
- Dept. of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| | - Karin Musier-Forsyth
- Dept. of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| | - Hironori Sato
- Center for Pathogen Genomics, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akira Ono
- Dept. of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
11
|
Blakemore RJ, Burnett C, Swanson C, Kharytonchyk S, Telesnitsky A, Munro JB. Stability and conformation of the dimeric HIV-1 genomic RNA 5'UTR. Biophys J 2021; 120:4874-4890. [PMID: 34529947 PMCID: PMC8595565 DOI: 10.1016/j.bpj.2021.09.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/13/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022] Open
Abstract
During HIV-1 assembly, the viral Gag polyprotein specifically selects the dimeric RNA genome for packaging into new virions. The 5' untranslated region (5'UTR) of the dimeric genome may adopt a conformation that is optimal for recognition by Gag. Further conformational rearrangement of the 5'UTR, promoted by the nucleocapsid (NC) domain of Gag, is predicted during virus maturation. Two 5'UTR dimer conformations, the kissing dimer (KD) and the extended dimer (ED), have been identified in vitro, which differ in the extent of intermolecular basepairing. Whether 5'UTRs from different HIV-1 strains with distinct sequences have access to the same dimer conformations has not been determined. Here, we applied fluorescence cross-correlation spectroscopy and single-molecule Förster resonance energy transfer imaging to demonstrate that 5'UTRs from two different HIV-1 subtypes form (KDs) with divergent stabilities. We further show that both 5'UTRs convert to a stable dimer in the presence of the viral NC protein, adopting a conformation consistent with extensive intermolecular contacts. These results support a unified model in which the genomes of diverse HIV-1 strains adopt an ED conformation.
Collapse
Affiliation(s)
- Robert J Blakemore
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine and School of Graduate Biomedical Sciences, Boston, Massachusetts; Graduate Program in Molecular Microbiology, Tufts University Graduate School of Biomedical Sciences, Boston, Massachusetts
| | - Cleo Burnett
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Canessa Swanson
- Department of Chemistry and Biochemistry, University of Maryland Baltimore Country, Baltimore, Maryland
| | - Siarhei Kharytonchyk
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Alice Telesnitsky
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - James B Munro
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine and School of Graduate Biomedical Sciences, Boston, Massachusetts; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts.
| |
Collapse
|
12
|
Murakami T, Ono A. Roles of Virion-Incorporated CD162 (PSGL-1), CD43, and CD44 in HIV-1 Infection of T Cells. Viruses 2021; 13:v13101935. [PMID: 34696365 PMCID: PMC8541244 DOI: 10.3390/v13101935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Nascent HIV-1 particles incorporate the viral envelope glycoprotein and multiple host transmembrane proteins during assembly at the plasma membrane. At least some of these host transmembrane proteins on the surface of virions are reported as pro-viral factors that enhance virus attachment to target cells or facilitate trans-infection of CD4+ T cells via interactions with non-T cells. In addition to the pro-viral factors, anti-viral transmembrane proteins are incorporated into progeny virions. These virion-incorporated transmembrane proteins inhibit HIV-1 entry at the point of attachment and fusion. In infected polarized CD4+ T cells, HIV-1 Gag localizes to a rear-end protrusion known as the uropod. Regardless of cell polarization, Gag colocalizes with and promotes the virion incorporation of a subset of uropod-directed host transmembrane proteins, including CD162, CD43, and CD44. Until recently, the functions of these virion-incorporated proteins had not been clear. Here, we review the recent findings about the roles played by virion-incorporated CD162, CD43, and CD44 in HIV-1 spread to CD4+ T cells.
Collapse
|
13
|
Gumna J, Andrzejewska-Romanowska A, Garfinkel DJ, Pachulska-Wieczorek K. RNA Binding Properties of the Ty1 LTR-Retrotransposon Gag Protein. Int J Mol Sci 2021; 22:ijms22169103. [PMID: 34445809 PMCID: PMC8396678 DOI: 10.3390/ijms22169103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 11/16/2022] Open
Abstract
A universal feature of retroelement propagation is the formation of distinct nucleoprotein complexes mediated by the Gag capsid protein. The Ty1 retrotransposon Gag protein from Saccharomyces cerevisiae lacks sequence homology with retroviral Gag, but is functionally related. In addition to capsid assembly functions, Ty1 Gag promotes Ty1 RNA dimerization and cyclization and initiation of reverse transcription. Direct interactions between Gag and retrotransposon genomic RNA (gRNA) are needed for Ty1 replication, and mutations in the RNA-binding domain disrupt nucleation of retrosomes and assembly of functional virus-like particles (VLPs). Unlike retroviral Gag, the specificity of Ty1 Gag-RNA interactions remain poorly understood. Here we use microscale thermophoresis (MST) and electrophoretic mobility shift assays (EMSA) to analyze interactions of immature and mature Ty1 Gag with RNAs. The salt-dependent experiments showed that Ty1 Gag binds with high and similar affinity to different RNAs. However, we observed a preferential interaction between Ty1 Gag and Ty1 RNA containing a packaging signal (Psi) in RNA competition analyses. We also uncover a relationship between Ty1 RNA structure and Gag binding involving the pseudoknot present on Ty1 gRNA. In all likelihood, the differences in Gag binding affinity detected in vitro only partially explain selective Ty1 RNA packaging into VLPs in vivo.
Collapse
Affiliation(s)
- Julita Gumna
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland; (J.G.); (A.A.-R.)
| | - Angelika Andrzejewska-Romanowska
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland; (J.G.); (A.A.-R.)
| | - David J. Garfinkel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA;
| | - Katarzyna Pachulska-Wieczorek
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland; (J.G.); (A.A.-R.)
- Correspondence: ; Tel.: +48-61-852-85-03; Fax: +48-61-852-05-32
| |
Collapse
|
14
|
Song Z, Gremminger T, Singh G, Cheng Y, Li J, Qiu L, Ji J, Lange MJ, Zuo X, Chen SJ, Zou X, Boris-Lawrie K, Heng X. The three-way junction structure of the HIV-1 PBS-segment binds host enzyme important for viral infectivity. Nucleic Acids Res 2021; 49:5925-5942. [PMID: 33978756 PMCID: PMC8191761 DOI: 10.1093/nar/gkab342] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022] Open
Abstract
HIV-1 reverse transcription initiates at the primer binding site (PBS) in the viral genomic RNA (gRNA). Although the structure of the PBS-segment undergoes substantial rearrangement upon tRNALys3 annealing, the proper folding of the PBS-segment during gRNA packaging is important as it ensures loading of beneficial host factors. DHX9/RNA helicase A (RHA) is recruited to gRNA to enhance the processivity of reverse transcriptase. Because the molecular details of the interactions have yet to be defined, we solved the solution structure of the PBS-segment preferentially bound by RHA. Evidence is provided that PBS-segment adopts a previously undefined adenosine-rich three-way junction structure encompassing the primer activation stem (PAS), tRNA-like element (TLE) and tRNA annealing arm. Disruption of the PBS-segment three-way junction structure diminished reverse transcription products and led to reduced viral infectivity. Because of the existence of the tRNA annealing arm, the TLE and PAS form a bent helical structure that undergoes shape-dependent recognition by RHA double-stranded RNA binding domain 1 (dsRBD1). Mutagenesis and phylogenetic analyses provide evidence for conservation of the PBS-segment three-way junction structure that is preferentially bound by RHA in support of efficient reverse transcription, the hallmark step of HIV-1 replication.
Collapse
Affiliation(s)
- Zhenwei Song
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Thomas Gremminger
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Gatikrushna Singh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| | - Yi Cheng
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - Jun Li
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - Liming Qiu
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
- Dalton Cardiovascular Research Center, University Missouri, Columbia, MO 65211, USA
| | - Juan Ji
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Margaret J Lange
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65211, USA
| | - Xiaobing Zuo
- X-Ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Shi-Jie Chen
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - Xiaoqin Zou
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
- Dalton Cardiovascular Research Center, University Missouri, Columbia, MO 65211, USA
| | - Kathleen Boris-Lawrie
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| | - Xiao Heng
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
15
|
Xu C, Fischer DK, Rankovic S, Li W, Dick RA, Runge B, Zadorozhnyi R, Ahn J, Aiken C, Polenova T, Engelman AN, Ambrose Z, Rousso I, Perilla JR. Permeability of the HIV-1 capsid to metabolites modulates viral DNA synthesis. PLoS Biol 2020; 18:e3001015. [PMID: 33332391 PMCID: PMC7775124 DOI: 10.1371/journal.pbio.3001015] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 12/31/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
Reverse transcription, an essential event in the HIV-1 life cycle, requires deoxynucleotide triphosphates (dNTPs) to fuel DNA synthesis, thus requiring penetration of dNTPs into the viral capsid. The central cavity of the capsid protein (CA) hexamer reveals itself as a plausible channel that allows the passage of dNTPs into assembled capsids. Nevertheless, the molecular mechanism of nucleotide import into the capsid remains unknown. Employing all-atom molecular dynamics (MD) simulations, we established that cooperative binding between nucleotides inside a CA hexamer cavity results in energetically favorable conditions for passive translocation of dNTPs into the HIV-1 capsid. Furthermore, binding of the host cell metabolite inositol hexakisphosphate (IP6) enhances dNTP import, while binding of synthesized molecules like benzenehexacarboxylic acid (BHC) inhibits it. The enhancing effect on reverse transcription by IP6 and the consequences of interactions between CA and nucleotides were corroborated using atomic force microscopy, transmission electron microscopy, and virological assays. Collectively, our results provide an atomistic description of the permeability of the HIV-1 capsid to small molecules and reveal a novel mechanism for the involvement of metabolites in HIV-1 capsid stabilization, nucleotide import, and reverse transcription. This study shows that the HIV-1 capsid protein, in addition to its structural role, regulates reverse transcription, an essential metabolic process of the virus, by mediating the import of nucleotides. In addition, host cell metabolites such as inositol phosphates are recruited by the capsid to regulate viral DNA synthesis.
Collapse
Affiliation(s)
- Chaoyi Xu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, United States of America
- Pittsburgh Center for HIV Protein Interactions (PCHPI), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Douglas K. Fischer
- Pittsburgh Center for HIV Protein Interactions (PCHPI), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Sanela Rankovic
- Department of Physiology and Cell Biology, Ben-Gurion University of Negev, Beer Sheva, Israel
| | - Wen Li
- Pittsburgh Center for HIV Protein Interactions (PCHPI), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Robert A. Dick
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Brent Runge
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, United States of America
- Pittsburgh Center for HIV Protein Interactions (PCHPI), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Roman Zadorozhnyi
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, United States of America
- Pittsburgh Center for HIV Protein Interactions (PCHPI), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jinwoo Ahn
- Pittsburgh Center for HIV Protein Interactions (PCHPI), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Christopher Aiken
- Pittsburgh Center for HIV Protein Interactions (PCHPI), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, United States of America
- Pittsburgh Center for HIV Protein Interactions (PCHPI), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Alan N. Engelman
- Pittsburgh Center for HIV Protein Interactions (PCHPI), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Zandrea Ambrose
- Pittsburgh Center for HIV Protein Interactions (PCHPI), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (ZA); (IR); (JRP)
| | - Itay Rousso
- Department of Physiology and Cell Biology, Ben-Gurion University of Negev, Beer Sheva, Israel
- * E-mail: (ZA); (IR); (JRP)
| | - Juan R. Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, United States of America
- Pittsburgh Center for HIV Protein Interactions (PCHPI), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (ZA); (IR); (JRP)
| |
Collapse
|
16
|
Beziau A, Brand D, Piver E. The Role of Phosphatidylinositol Phosphate Kinases during Viral Infection. Viruses 2020; 12:v12101124. [PMID: 33022924 PMCID: PMC7599803 DOI: 10.3390/v12101124] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
Phosphoinositides account for only a small proportion of cellular phospholipids, but have long been known to play an important role in diverse cellular processes, such as cell signaling, the establishment of organelle identity, and the regulation of cytoskeleton and membrane dynamics. As expected, given their pleiotropic regulatory functions, they have key functions in viral replication. The spatial restriction and steady-state levels of each phosphoinositide depend primarily on the concerted action of specific phosphoinositide kinases and phosphatases. This review focuses on a number of remarkable examples of viral strategies involving phosphoinositide kinases to ensure effective viral replication.
Collapse
Affiliation(s)
- Anne Beziau
- INSERM U1259, University of Tours, 37000 Tours, France
| | - Denys Brand
- INSERM U1259, University of Tours, 37000 Tours, France
- Virology Laboratory, Tours University Hospital, 3700 Tours, France
| | - Eric Piver
- INSERM U1259, University of Tours, 37000 Tours, France
- Biochemistry and Molecular Biology, Tours University Hospital, 3700 Tours, France
| |
Collapse
|
17
|
Guo C, Yao X, Wang K, Wang J, Wang Y. Comparison of HIV-1 Gag and NCp7 in their selectivity for package signal, affinity for stem-loop 3, and Zn 2+ content. Biochimie 2020; 179:135-145. [PMID: 32987107 DOI: 10.1016/j.biochi.2020.09.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 11/17/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) Gag recognizes viral packaging signal (Psi) specifically via its nucleocapsid (NC) domain, resulting in the encapsidation of two copies of genomic RNA (gRNA) into the viral particle. The NCp7, which is cleaved from Gag during viral maturation, is a nucleic acid chaperone, coating and protecting the gRNA. In this study, an RT-qPCR-based approach was developed to quantitatively compare the Psi-selectivity of Gag and NCp7 in the presence of bacterial or 293T total RNAs. The binding affinity of Gag and NCp7 to the stem-loop (SL) 3 of Psi was also compared using surface plasmon resonance. We found that Gag selected more Psi-RNA than NCp7 from both E. coli BL21 (DE3) and in vitro binding reactions, and Gag bound to SL3-RNA with a higher affinity than NCp7. Moreover, Gag contained two Zn2+ whereas NCp7 contained one. The N-terminal zinc-finger motif of NCp7 lost most of its Zn2+-binding activity. Deletion of N-terminal amino acids 1-11 of NCp7 resulted in increased Psi-selectivity, SL3-affinity and Zn2+ content. These results indicated that Zn2+ coordination of Gag is critical for Psi-binding and selection. Removal of Zn2+ from the first zinc-finger motif during or after Gag cleavage to generate mature NCp7 might serve as a switch to regulate the functions of Gag NC domain and mature NCp7. Our study will be helpful to elucidate the important roles that Zn2+ plays in the viral life cycle, and may benefit further investigations of the function of HIV-1 Gag and NCp7.
Collapse
Affiliation(s)
- Chao Guo
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, 300457, China
| | - Xiaohong Yao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, 300457, China
| | - Kangkang Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, 300457, China
| | - Jinzhong Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, 300457, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin, 300457, China; Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin, 300457, China.
| | - Ying Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, 300457, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin, 300457, China; Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin, 300457, China.
| |
Collapse
|
18
|
Karnib H, Nadeem MF, Humbert N, Sharma KK, Grytsyk N, Tisné C, Boutant E, Lequeu T, Réal E, Boudier C, de Rocquigny H, Mély Y. The nucleic acid chaperone activity of the HIV-1 Gag polyprotein is boosted by its cellular partner RPL7: a kinetic study. Nucleic Acids Res 2020; 48:9218-9234. [PMID: 32797159 PMCID: PMC7498347 DOI: 10.1093/nar/gkaa659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 07/20/2020] [Accepted: 07/29/2020] [Indexed: 01/10/2023] Open
Abstract
The HIV-1 Gag protein playing a key role in HIV-1 viral assembly has recently been shown to interact through its nucleocapsid domain with the ribosomal protein L7 (RPL7) that acts as a cellular co-factor promoting Gag's nucleic acid (NA) chaperone activity. To further understand how the two proteins act together, we examined their mechanism individually and in concert to promote the annealing between dTAR, the DNA version of the viral transactivation element and its complementary cTAR sequence, taken as model HIV-1 sequences. Gag alone or complexed with RPL7 was found to act as a NA chaperone that destabilizes cTAR stem-loop and promotes its annealing with dTAR through the stem ends via a two-step pathway. In contrast, RPL7 alone acts as a NA annealer that through its NA aggregating properties promotes cTAR/dTAR annealing via two parallel pathways. Remarkably, in contrast to the isolated proteins, their complex promoted efficiently the annealing of cTAR with highly stable dTAR mutants. This was confirmed by the RPL7-promoted boost of the physiologically relevant Gag-chaperoned annealing of (+)PBS RNA to the highly stable tRNALys3 primer, favoring the notion that Gag recruits RPL7 to overcome major roadblocks in viral assembly.
Collapse
Affiliation(s)
- Hassan Karnib
- Laboratory of Bioimaging and Pathologies (LBP), UMR 7021, Faculty of pharmacy, University of Strasbourg, 67400 Illkirch, France
| | - Muhammad F Nadeem
- Laboratory of Bioimaging and Pathologies (LBP), UMR 7021, Faculty of pharmacy, University of Strasbourg, 67400 Illkirch, France
| | - Nicolas Humbert
- Laboratory of Bioimaging and Pathologies (LBP), UMR 7021, Faculty of pharmacy, University of Strasbourg, 67400 Illkirch, France
| | - Kamal K Sharma
- Laboratory of Bioimaging and Pathologies (LBP), UMR 7021, Faculty of pharmacy, University of Strasbourg, 67400 Illkirch, France
| | - Natalia Grytsyk
- Laboratory of Bioimaging and Pathologies (LBP), UMR 7021, Faculty of pharmacy, University of Strasbourg, 67400 Illkirch, France
| | - Carine Tisné
- Expression génétique microbienne, UMR 8261, CNRS, Université de Paris, Institut de biologie physico-chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Emmanuel Boutant
- Laboratory of Bioimaging and Pathologies (LBP), UMR 7021, Faculty of pharmacy, University of Strasbourg, 67400 Illkirch, France
| | - Thiebault Lequeu
- Laboratory of Bioimaging and Pathologies (LBP), UMR 7021, Faculty of pharmacy, University of Strasbourg, 67400 Illkirch, France
| | - Eleonore Réal
- Laboratory of Bioimaging and Pathologies (LBP), UMR 7021, Faculty of pharmacy, University of Strasbourg, 67400 Illkirch, France
| | - Christian Boudier
- Laboratory of Bioimaging and Pathologies (LBP), UMR 7021, Faculty of pharmacy, University of Strasbourg, 67400 Illkirch, France
| | - Hugues de Rocquigny
- Inserm – U1259 Morphogenesis and Antigenicity of HIV and Hepatitis Viruses (MAVIVH), 10 boulevard Tonnellé, BP 3223, 37032 Tours Cedex 1, France
| | - Yves Mély
- Laboratory of Bioimaging and Pathologies (LBP), UMR 7021, Faculty of pharmacy, University of Strasbourg, 67400 Illkirch, France
| |
Collapse
|
19
|
Rendezvous at Plasma Membrane: Cellular Lipids and tRNA Set up Sites of HIV-1 Particle Assembly and Incorporation of Host Transmembrane Proteins. Viruses 2020; 12:v12080842. [PMID: 32752131 PMCID: PMC7472227 DOI: 10.3390/v12080842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/28/2022] Open
Abstract
The HIV-1 structural polyprotein Gag drives the virus particle assembly specifically at the plasma membrane (PM). During this process, the nascent virion incorporates specific subsets of cellular lipids and host membrane proteins, in addition to viral glycoproteins and viral genomic RNA. Gag binding to the PM is regulated by cellular factors, including PM-specific phospholipid PI(4,5)P2 and tRNAs, both of which bind the highly basic region in the matrix domain of Gag. In this article, we review our current understanding of the roles played by cellular lipids and tRNAs in specific localization of HIV-1 Gag to the PM. Furthermore, we examine the effects of PM-bound Gag on the organization of the PM bilayer and discuss how the reorganization of the PM at the virus assembly site potentially contributes to the enrichment of host transmembrane proteins in the HIV-1 particle. Since some of these host transmembrane proteins alter release, attachment, or infectivity of the nascent virions, the mechanism of Gag targeting to the PM and the nature of virus assembly sites have major implications in virus spread.
Collapse
|
20
|
Significant Differences in RNA Structure Destabilization by HIV-1 GagDp6 and NCp7 Proteins. Viruses 2020; 12:v12050484. [PMID: 32344834 PMCID: PMC7290599 DOI: 10.3390/v12050484] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 01/12/2023] Open
Abstract
Retroviral nucleocapsid (NC) proteins are nucleic acid chaperones that play distinct roles in the viral life cycle. During reverse transcription, HIV-1 NC facilitates the rearrangement of nucleic acid secondary structures, allowing the transactivation response (TAR) RNA hairpin to be transiently destabilized and annealed to a complementary RNA hairpin. In contrast, during viral assembly, NC, as a domain of the group-specific antigen (Gag) polyprotein, binds the genomic RNA and facilitates packaging into new virions. It is not clear how the same protein, alone or as part of Gag, performs such different RNA binding functions in the viral life cycle. By combining single-molecule optical tweezers measurements with a quantitative mfold-based model, we characterize the equilibrium stability and unfolding barrier for TAR RNA. Comparing measured results with a model of discrete protein binding allows us to localize affected binding sites, in addition to quantifying hairpin stability. We find that, while both NCp7 and Gag∆p6 destabilize the TAR hairpin, Gag∆p6 binding is localized to two sites in the stem, while NCp7 targets sites near the top loop. Unlike Gag∆p6, NCp7 destabilizes this loop, shifting the location of the reaction barrier toward the folded state and increasing the natural rate of hairpin opening by ~104. Thus, our results explain why Gag cleavage and NC release is an essential prerequisite for reverse transcription within the virion.
Collapse
|
21
|
Biochemical Reconstitution of HIV-1 Assembly and Maturation. J Virol 2020; 94:JVI.01844-19. [PMID: 31801870 DOI: 10.1128/jvi.01844-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/28/2019] [Indexed: 12/18/2022] Open
Abstract
The assembly of an orthoretrovirus such as HIV-1 requires the coordinated functioning of multiple biochemical activities of the viral Gag protein. These activities include membrane targeting, lattice formation, packaging of the RNA genome, and recruitment of cellular cofactors that modulate assembly. In most previous studies, these Gag activities have been investigated individually, which provided somewhat limited insight into how they functionally integrate during the assembly process. Here, we report the development of a biochemical reconstitution system that allowed us to investigate how Gag lattice formation, RNA binding, and the assembly cofactor inositol hexakisphosphate (IP6) synergize to generate immature virus particles in vitro The results identify an important rate-limiting step in assembly and reveal new insights into how RNA and IP6 promote immature Gag lattice formation. The immature virus-like particles can be converted into mature capsid-like particles by the simple addition of viral protease, suggesting that it is possible in principle to fully biochemically reconstitute the sequential processes of HIV-1 assembly and maturation from purified components.IMPORTANCE Assembly and maturation are essential steps in the replication of orthoretroviruses such as HIV-1 and are proven therapeutic targets. These processes require the coordinated functioning of the viral Gag protein's multiple biochemical activities. We describe here the development of an experimental system that allows an integrative analysis of how Gag's multiple functionalities cooperate to generate a retrovirus particle. Our current studies help to illuminate how Gag synergizes the formation of the virus compartment with RNA binding and how these activities are modulated by the small molecule IP6. Further development and use of this system should lead to a more comprehensive understanding of the molecular mechanisms of HIV-1 assembly and maturation and may provide new insights for the development of antiretroviral drugs.
Collapse
|
22
|
McCauley MJ, Rouzina I, Williams MC. Specific Nucleic Acid Chaperone Activity of HIV-1 Nucleocapsid Protein Deduced from Hairpin Unfolding. Methods Mol Biol 2020; 2106:59-88. [PMID: 31889251 DOI: 10.1007/978-1-0716-0231-7_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
RNA and DNA hairpin formation and disruption play key regulatory roles in a variety of cellular processes. The 59-nucleotide transactivation response (TAR) RNA hairpin facilitates the production of full-length transcripts of the HIV-1 genome. Yet the stability of this long, irregular hairpin becomes a liability during reverse transcription as 24 base pairs must be disrupted for strand transfer. Retroviral nucleocapsid (NC) proteins serve as nucleic acid chaperones that have been shown to both destabilize the TAR hairpin and facilitate strand annealing with its complementary DNA sequence. Yet it has remained difficult to elucidate the way NC targets and dramatically destabilizes this hairpin while only weakly affecting the annealed product. In this work, we used optical tweezers to measure the stability of TAR and found that adding NC destabilized the hairpin and simultaneously caused a distinct change in both the height and location of the energy barrier. This data was matched to an energy landscape predicted from a simple theory of definite base pair destabilization. Comparisons revealed the specific binding sites found by NC along the irregular TAR hairpin. Furthermore, specific binding explained both the unusual shift in the transition state and the much weaker effect on the annealed product. These experiments illustrate a general method of energy landscape transformation that exposes important physical insights.
Collapse
Affiliation(s)
| | - Ioulia Rouzina
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, USA
| | - Mark C Williams
- Department of Physics, Northeastern University, Boston, MA, USA.
| |
Collapse
|
23
|
Alfadhli A, Staubus AO, Tedbury PR, Novikova M, Freed EO, Barklis E. Analysis of HIV-1 Matrix-Envelope Cytoplasmic Tail Interactions. J Virol 2019; 93:e01079-19. [PMID: 31375589 PMCID: PMC6803273 DOI: 10.1128/jvi.01079-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/30/2019] [Indexed: 01/08/2023] Open
Abstract
The matrix (MA) domains of HIV-1 precursor Gag (PrGag) proteins direct PrGag proteins to plasma membrane (PM) assembly sites where envelope (Env) protein trimers are incorporated into virus particles. MA targeting to PM sites is facilitated by its binding to phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2], and MA binding to cellular RNAs appears to serve a chaperone function that prevents MA from associating with intracellular membranes prior to arrival at the PI(4,5)P2-rich PM. Investigations have shown genetic evidence of an interaction between MA and the cytoplasmic tails (CTs) of Env trimers that contributes to Env incorporation into virions, but demonstrations of direct MA-CT interactions have proven more difficult. In direct binding assays, we show here that MA binds to Env CTs. Using MA mutants, matrix-capsid (MACA) proteins, and MA proteins incubated in the presence of inositol polyphosphate, we show a correlation between MA trimerization and CT binding. RNA ligands with high affinities for MA reduced MA-CT binding levels, suggesting that MA-RNA binding interferes with trimerization and/or directly or indirectly blocks MA-CT binding. Rough-mapping studies indicate that C-terminal CT helices are involved in MA binding and are in agreement with cell culture studies with replication-competent viruses. Our results support a model in which full-length HIV-1 Env trimers are captured in assembling PrGag lattices by virtue of their binding to MA trimers.IMPORTANCE The mechanism by which HIV-1 envelope (Env) protein trimers assemble into virus particles is poorly understood but involves an interaction between Env cytoplasmic tails (CTs) and the matrix (MA) domain of the structural precursor Gag (PrGag) proteins. We show here that direct binding of MA to Env CTs correlates with MA trimerization, suggesting models where MA lattices regulate CT interactions and/or MA-CT trimer-trimer associations increase the avidity of MA-CT binding. We also show that MA binding to RNA ligands impairs MA-CT binding, potentially by interfering with MA trimerization and/or directly or allosterically blocking MA-CT binding sites. Rough mapping implicated CT C-terminal helices in MA binding, in agreement with cell culture studies on MA-CT interactions. Our results indicate that targeting HIV-1 MA-CT interactions may be a promising avenue for antiviral therapy.
Collapse
Affiliation(s)
- Ayna Alfadhli
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, USA
| | - August O Staubus
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, USA
| | - Philip R Tedbury
- Virus-Cell Interaction Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Mariia Novikova
- Virus-Cell Interaction Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, USA
| |
Collapse
|
24
|
Lin C, Mendoza-Espinosa P, Rouzina I, Guzmán O, Moreno-Razo JA, Francisco JS, Bruinsma R. Specific inter-domain interactions stabilize a compact HIV-1 Gag conformation. PLoS One 2019; 14:e0221256. [PMID: 31437199 PMCID: PMC6705756 DOI: 10.1371/journal.pone.0221256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/04/2019] [Indexed: 01/01/2023] Open
Abstract
HIV-1 Gag is a large multidomain poly-protein with flexible unstructured linkers connecting its globular subdomains. It is compact when in solution but assumes an extended conformation when assembled within the immature HIV-1 virion. Here, we use molecular dynamics (MD) simulations to quantitatively characterize the intra-domain interactions of HIV-1 Gag. We find that the matrix (MA) domain and the C-terminal subdomain CActd of the CA capsid domain can form a bound state. The bound state, which is held together primarily by interactions between complementary charged and polar residues, stabilizes the compact state of HIV-1 Gag. We calculate the depth of the attractive free energy potential between the MA/ CActd sites and find it to be about three times larger than the dimerization interaction between the CActd domains. Sequence analysis shows high conservation within the newly-found intra-Gag MA/CActd binding site, as well as its spatial proximity to other well known elements of Gag -such as CActd's SP1 helix region, its inositol hexaphosphate (IP6) binding site and major homology region (MHR), as well as the MA trimerization site. Our results point to a high, but yet undetermined, functional significance of the intra-Gag binding site. Recent biophysical experiments that address the binding specificity of Gag are interpreted in the context of the MA/CActd bound state, suggesting an important role in selective packaging of genomic RNA by Gag.
Collapse
Affiliation(s)
- Chen Lin
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Paola Mendoza-Espinosa
- Departamento de Física, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México, México
| | - Ioulia Rouzina
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States of America
| | - Orlando Guzmán
- Departamento de Física, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México, México
| | - José Antonio Moreno-Razo
- Departamento de Física, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México, México
| | - Joseph S. Francisco
- Department of Chemistry, The University of Pennsylvania, Philadelphia, PA, United States of America
| | - Robijn Bruinsma
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA, United States of America
| |
Collapse
|
25
|
Abstract
Successful replication of the AIDS retrovirus, HIV, requires that its genomic RNA be packaged in assembling virus particles with high fidelity. However, cellular mRNAs can also be packaged under some conditions. Viral RNA (vRNA) contains a 'packaging signal' (ψ) and is packaged as a dimer, with two vRNA monomers joined by a limited number of base pairs. It has two conformers, only one of which is capable of dimerization and packaging. Recent years have seen important progress on the 3D structure of dimeric ψ. Gag, the protein that assembles into the virus particle, interacts specifically with ψ, but this is obscured under physiological conditions by its high nonspecific affinity for any RNA. New results suggest that vRNA is selected for packaging because ψ nucleates assembly more efficiently than other RNAs.
Collapse
Affiliation(s)
- Alan Rein
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA.
| |
Collapse
|
26
|
Qualley DF, Cooper SE, Ross JL, Olson ED, Cantara WA, Musier-Forsyth K. Solution Conformation of Bovine Leukemia Virus Gag Suggests an Elongated Structure. J Mol Biol 2019; 431:1203-1216. [PMID: 30731090 PMCID: PMC6424597 DOI: 10.1016/j.jmb.2019.01.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 01/13/2023]
Abstract
Bovine leukemia virus (BLV) is a deltaretrovirus that infects domestic cattle. The structural protein Gag, found in all retroviruses, is a polyprotein comprising three major functional domains: matrix (MA), capsid (CA), and nucleocapsid (NC). Previous studies have shown that both mature BLV MA and NC are able to bind to nucleic acids; however, the viral assembly process and packaging of viral genomic RNA requires full-length Gag to produce infectious particles. Compared to lentiviruses, little is known about the structure of the Gag polyprotein of deltaretroviruses. In this work, structural models of full-length BLV Gag and Gag lacking the MA domain were generated based on previous structural data of individual domains, homology modeling, and flexible fitting to SAXS data using molecular dynamics. The models were used in molecular dynamic simulations to determine the relative mobility of the protein backbone. Functional annealing assays revealed the role of MA in the nucleic acid chaperone activity of BLV Gag. Our results show that full-length BLV Gag has an elongated rod-shaped structure that is relatively rigid, with the exception of the linker between the MA and CA domains. Deletion of the MA domain maintains the elongated structure but alters the rate of BLV Gag-facilitated annealing of two complementary nucleic acids. These data are consistent with a role for the MA domain of retroviral Gag proteins in modulating nucleic acid binding and chaperone activity. IMPORTANCE: BLV is a retrovirus that is found worldwide in domestic cattle. Since BLV infection has serious implications for agriculture, and given its similarities to human retroviruses such as HTLV-1, the development of an effective treatment would have numerous benefits. The Gag polyprotein exists in all retroviruses and is a key player in viral assembly. However, the full-length structure of Gag from any virus has yet to be elucidated at high resolution. This study provides structural data for BLV Gag and could be a starting point for modeling Gag-small molecule interactions with the ultimate goal of developing of a new class of pharmaceuticals.
Collapse
Affiliation(s)
- Dominic F Qualley
- Department of Chemistry and Biochemistry, and Center for One Health Studies, Berry College, Mt. Berry, GA 30149, USA.
| | - Sarah E Cooper
- Department of Chemistry and Biochemistry, and Center for One Health Studies, Berry College, Mt. Berry, GA 30149, USA
| | - James L Ross
- Department of Chemistry and Biochemistry, and Center for One Health Studies, Berry College, Mt. Berry, GA 30149, USA
| | - Erik D Olson
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, Ohio State University, Columbus, OH 43210, USA
| | - William A Cantara
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, Ohio State University, Columbus, OH 43210, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
27
|
Annealing of ssDNA and compaction of dsDNA by the HIV-1 nucleocapsid and Gag proteins visualized using nanofluidic channels. Q Rev Biophys 2019; 52:e2. [DOI: 10.1017/s0033583518000124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
The nucleocapsid protein NC is a crucial component in the human immunodeficiency virus type 1 life cycle. It functions both in its processed mature form and as part of the polyprotein Gag that plays a key role in the formation of new viruses. NC can protect nucleic acids (NAs) from degradation by compacting them to a dense coil. Moreover, through its NA chaperone activity, NC can also promote the most stable conformation of NAs. Here, we explore the balance between these activities for NC and Gag by confining DNA–protein complexes in nanochannels. The chaperone activity is visualized as concatemerization and circularization of long DNA via annealing of short single-stranded DNA overhangs. The first ten amino acids of NC are important for the chaperone activity that is almost completely absent for Gag. Gag condenses DNA more efficiently than mature NC, suggesting that additional residues of Gag are involved. Importantly, this is the first single DNA molecule study of full-length Gag and we reveal important differences to the truncated Δ-p6 Gag that has been used before. In addition, the study also highlights how nanochannels can be used to study reactions on ends of long single DNA molecules, which is not trivial with competing single DNA molecule techniques.
Collapse
|
28
|
Jin D, Musier-Forsyth K. Role of host tRNAs and aminoacyl-tRNA synthetases in retroviral replication. J Biol Chem 2019; 294:5352-5364. [PMID: 30700559 DOI: 10.1074/jbc.rev118.002957] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The lifecycle of retroviruses and retrotransposons includes a reverse transcription step, wherein dsDNA is synthesized from genomic RNA for subsequent insertion into the host genome. Retroviruses and retrotransposons commonly appropriate major components of the host cell translational machinery, including cellular tRNAs, which are exploited as reverse transcription primers. Nonpriming functions of tRNAs have also been proposed, such as in HIV-1 virion assembly, and tRNA-derived fragments may also be involved in retrovirus and retrotransposon replication. Moreover, host cellular proteins regulate retroviral replication by binding to tRNAs and thereby affecting various steps in the viral lifecycle. For example, in some cases, tRNA primer selection is facilitated by cognate aminoacyl-tRNA synthetases (ARSs), which bind tRNAs and ligate them to their corresponding amino acids, but also have many known nontranslational functions. Multi-omic studies have revealed that ARSs interact with both viral proteins and RNAs and potentially regulate retroviral replication. Here, we review the currently known roles of tRNAs and their derivatives in retroviral and retrotransposon replication and shed light on the roles of tRNA-binding proteins such as ARSs in this process.
Collapse
Affiliation(s)
- Danni Jin
- From the Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210
| | - Karin Musier-Forsyth
- From the Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
29
|
Wu W, Hatterschide J, Syu YC, Cantara WA, Blower RJ, Hanson HM, Mansky LM, Musier-Forsyth K. Human T-cell leukemia virus type 1 Gag domains have distinct RNA-binding specificities with implications for RNA packaging and dimerization. J Biol Chem 2018; 293:16261-16276. [PMID: 30217825 DOI: 10.1074/jbc.ra118.005531] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/13/2018] [Indexed: 12/14/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the first retrovirus that has conclusively been shown to cause human diseases. In HIV-1, specific interactions between the nucleocapsid (NC) domain of the Gag protein and genomic RNA (gRNA) mediate gRNA dimerization and selective packaging; however, the mechanism for gRNA packaging in HTLV-1, a deltaretrovirus, is unclear. In other deltaretroviruses, the matrix (MA) and NC domains of Gag are both involved in gRNA packaging, but MA binds nucleic acids with higher affinity and has more robust chaperone activity, suggesting that this domain may play a primary role. Here, we show that the MA domain of HTLV-1, but not the NC domain, binds short hairpin RNAs derived from the putative gRNA packaging signal. RNA probing of the HTLV-1 5' leader and cross-linking studies revealed that the primer-binding site and a region within the putative packaging signal form stable hairpins that interact with MA. In addition to a previously identified palindromic dimerization initiation site (DIS), we identified a new DIS in HTLV-1 gRNA and found that both palindromic sequences bind specifically the NC domain. Surprisingly, a mutant partially defective in dimer formation in vitro exhibited a significant increase in RNA packaging into HTLV-1-like particles, suggesting that efficient RNA dimerization may not be strictly required for RNA packaging in HTLV-1. Moreover, the lifecycle of HTLV-1 and other deltaretroviruses may be characterized by NC and MA functions that are distinct from those of the corresponding HIV-1 proteins, but together provide the functions required for viral replication.
Collapse
Affiliation(s)
- Weixin Wu
- From the Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus Ohio 43210 and
| | - Joshua Hatterschide
- From the Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus Ohio 43210 and
| | - Yu-Ci Syu
- From the Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus Ohio 43210 and
| | - William A Cantara
- From the Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus Ohio 43210 and
| | | | - Heather M Hanson
- Institute for Molecular Virology.,Molecular, Cellular, Developmental Biology and Genetics Graduate Program, and
| | - Louis M Mansky
- Institute for Molecular Virology.,Molecular, Cellular, Developmental Biology and Genetics Graduate Program, and.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455
| | - Karin Musier-Forsyth
- From the Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus Ohio 43210 and
| |
Collapse
|
30
|
Dubois N, Khoo KK, Ghossein S, Seissler T, Wolff P, McKinstry WJ, Mak J, Paillart JC, Marquet R, Bernacchi S. The C-terminal p6 domain of the HIV-1 Pr55 Gag precursor is required for specific binding to the genomic RNA. RNA Biol 2018; 15:923-936. [PMID: 29954247 DOI: 10.1080/15476286.2018.1481696] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The Pr55Gag precursor specifically selects the HIV-1 genomic RNA (gRNA) from a large excess of cellular and partially or fully spliced viral RNAs and drives the virus assembly at the plasma membrane. During these processes, the NC domain of Pr55Gag interacts with the gRNA, while its C-terminal p6 domain binds cellular and viral factors and orchestrates viral particle release. Gag∆p6 is a truncated form of Pr55Gag lacking the p6 domain usually used as a default surrogate for wild type Pr55Gag for in vitro analysis. With recent advance in production of full-length recombinant Pr55Gag, here, we tested whether the p6 domain also contributes to the RNA binding specificity of Pr55Gag by systematically comparing binding of Pr55Gag and Gag∆p6 to a panel of viral and cellular RNAs. Unexpectedly, our fluorescence data reveal that the p6 domain is absolutely required for specific binding of Pr55Gag to the HIV-1 gRNA. Its deletion resulted not only in a decreased affinity for gRNA, but also in an increased affinity for spliced viral and cellular RNAs. In contrast Gag∆p6 displayed a similar affinity for all tested RNAs. Removal of the C-terminal His-tag from Pr55Gag and Gag∆p6 uniformly increased the Kd values of the RNA-protein complexes by ~ 2.5 fold but did not affect the binding specificities of these proteins. Altogether, our results demonstrate a novel role of the p6 domain in the specificity of Pr55Gag-RNA interactions, and strongly suggest that the p6 domain contributes to the discrimination of HIV-1 gRNA from cellular and spliced viral mRNAs, which is necessary for its selective encapsidation.
Collapse
Affiliation(s)
- Noé Dubois
- a Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS , Université de Strasbourg , Strasbourg , France
| | - Keith K Khoo
- b School of Medicine , Deakin University , Geelong , Australia.,c CSIRO Manufacturing , Parkville , Australia
| | - Shannon Ghossein
- b School of Medicine , Deakin University , Geelong , Australia.,c CSIRO Manufacturing , Parkville , Australia
| | - Tanja Seissler
- a Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS , Université de Strasbourg , Strasbourg , France
| | - Philippe Wolff
- a Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS , Université de Strasbourg , Strasbourg , France.,d Plateforme protéomique Strasbourg-Esplanade, IBMC, CNRS , Université de Strasbourg , Strasbourg , France
| | | | - Johnson Mak
- b School of Medicine , Deakin University , Geelong , Australia.,e Institute for Glycomics, Griffith University , Southport , Australia
| | - Jean-Christophe Paillart
- a Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS , Université de Strasbourg , Strasbourg , France
| | - Roland Marquet
- a Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS , Université de Strasbourg , Strasbourg , France
| | - Serena Bernacchi
- a Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS , Université de Strasbourg , Strasbourg , France
| |
Collapse
|
31
|
Antonucci JM, Kim SH, St Gelais C, Bonifati S, Li TW, Buzovetsky O, Knecht KM, Duchon AA, Xiong Y, Musier-Forsyth K, Wu L. SAMHD1 Impairs HIV-1 Gene Expression and Negatively Modulates Reactivation of Viral Latency in CD4 + T Cells. J Virol 2018; 92:e00292-18. [PMID: 29793958 PMCID: PMC6052313 DOI: 10.1128/jvi.00292-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/15/2018] [Indexed: 11/20/2022] Open
Abstract
Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) restricts human immunodeficiency virus type 1 (HIV-1) replication in nondividing cells by degrading intracellular deoxynucleoside triphosphates (dNTPs). SAMHD1 is highly expressed in resting CD4+ T cells, which are important for the HIV-1 reservoir and viral latency; however, whether SAMHD1 affects HIV-1 latency is unknown. Recombinant SAMHD1 binds HIV-1 DNA or RNA fragments in vitro, but the function of this binding remains unclear. Here we investigate the effect of SAMHD1 on HIV-1 gene expression and reactivation of viral latency. We found that endogenous SAMHD1 impaired HIV-1 long terminal repeat (LTR) activity in monocytic THP-1 cells and HIV-1 reactivation in latently infected primary CD4+ T cells. Overexpression of wild-type (WT) SAMHD1 suppressed HIV-1 LTR-driven gene expression at a transcriptional level. Tat coexpression abrogated SAMHD1-mediated suppression of HIV-1 LTR-driven luciferase expression. SAMHD1 overexpression also suppressed the LTR activity of human T-cell leukemia virus type 1 (HTLV-1), but not that of murine leukemia virus (MLV), suggesting specific suppression of retroviral LTR-driven gene expression. WT SAMHD1 bound to proviral DNA and impaired reactivation of HIV-1 gene expression in latently infected J-Lat cells. In contrast, a nonphosphorylated mutant (T592A) and a dNTP triphosphohydrolase (dNTPase) inactive mutant (H206D R207N [HD/RN]) of SAMHD1 failed to efficiently suppress HIV-1 LTR-driven gene expression and reactivation of latent virus. Purified recombinant WT SAMHD1, but not the T592A and HD/RN mutants, bound to fragments of the HIV-1 LTR in vitro These findings suggest that SAMHD1-mediated suppression of HIV-1 LTR-driven gene expression potentially regulates viral latency in CD4+ T cells.IMPORTANCE A critical barrier to developing a cure for HIV-1 infection is the long-lived viral reservoir that exists in resting CD4+ T cells, the main targets of HIV-1. The viral reservoir is maintained through a variety of mechanisms, including regulation of the HIV-1 LTR promoter. The host protein SAMHD1 restricts HIV-1 replication in nondividing cells, but its role in HIV-1 latency remains unknown. Here we report a new function of SAMHD1 in regulating HIV-1 latency. We found that SAMHD1 suppressed HIV-1 LTR promoter-driven gene expression and reactivation of viral latency in cell lines and primary CD4+ T cells. Furthermore, SAMHD1 bound to the HIV-1 LTR in vitro and in a latently infected CD4+ T-cell line, suggesting that the binding may negatively modulate reactivation of HIV-1 latency. Our findings indicate a novel role for SAMHD1 in regulating HIV-1 latency, which enhances our understanding of the mechanisms regulating proviral gene expression in CD4+ T cells.
Collapse
Affiliation(s)
- Jenna M Antonucci
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Sun Hee Kim
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Corine St Gelais
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Serena Bonifati
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Tai-Wei Li
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Olga Buzovetsky
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Kirsten M Knecht
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Alice A Duchon
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Karin Musier-Forsyth
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Li Wu
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
32
|
HIV-1 Exploits a Dynamic Multi-aminoacyl-tRNA Synthetase Complex To Enhance Viral Replication. J Virol 2017; 91:JVI.01240-17. [PMID: 28814526 DOI: 10.1128/jvi.01240-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/10/2017] [Indexed: 11/20/2022] Open
Abstract
A hallmark of retroviruses such as human immunodeficiency virus type 1 (HIV-1) is reverse transcription of genomic RNA to DNA, a process that is primed by cellular tRNAs. HIV-1 recruits human tRNALys3 to serve as the reverse transcription primer via an interaction between lysyl-tRNA synthetase (LysRS) and the HIV-1 Gag polyprotein. LysRS is normally sequestered in a multi-aminoacyl-tRNA synthetase complex (MSC). Previous studies demonstrated that components of the MSC can be mobilized in response to certain cellular stimuli, but how LysRS is redirected from the MSC to viral particles for packaging is unknown. Here, we show that upon HIV-1 infection, a free pool of non-MSC-associated LysRS is observed and partially relocalized to the nucleus. Heat inactivation of HIV-1 blocks nuclear localization of LysRS, but treatment with a reverse transcriptase inhibitor does not, suggesting that the trigger for relocalization occurs prior to reverse transcription. A reduction in HIV-1 infection is observed upon treatment with an inhibitor to mitogen-activated protein kinase that prevents phosphorylation of LysRS on Ser207, release of LysRS from the MSC, and nuclear localization. A phosphomimetic mutant of LysRS (S207D) that lacked the capability to aminoacylate tRNALys3 localized to the nucleus, rescued HIV-1 infectivity, and was packaged into virions. In contrast, a phosphoablative mutant (S207A) remained cytosolic and maintained full aminoacylation activity but failed to rescue infectivity and was not packaged. These findings suggest that HIV-1 takes advantage of the dynamic nature of the MSC to redirect and coopt cellular translation factors to enhance viral replication.IMPORTANCE Human tRNALys3, the primer for reverse transcription, and LysRS are essential host factors packaged into HIV-1 virions. Previous studies found that tRNALys3 packaging depends on interactions between LysRS and HIV-1 Gag; however, many details regarding the mechanism of tRNALys3 and LysRS packaging remain unknown. LysRS is normally sequestered in a high-molecular-weight multi-aminoacyl-tRNA synthetase complex (MSC), restricting the pool of free LysRS-tRNALys Mounting evidence suggests that LysRS is released under a variety of stimuli to perform alternative functions within the cell. Here, we show that HIV-1 infection results in a free pool of LysRS that is relocalized to the nucleus of target cells. Blocking this pathway in HIV-1-producing cells resulted in less infectious progeny virions. Understanding the mechanism by which LysRS is recruited into the viral assembly pathway can be exploited for the development of specific and effective therapeutics targeting this nontranslational function.
Collapse
|
33
|
Todd GC, Duchon A, Inlora J, Olson ED, Musier-Forsyth K, Ono A. Inhibition of HIV-1 Gag-membrane interactions by specific RNAs. RNA (NEW YORK, N.Y.) 2017; 23:395-405. [PMID: 27932583 PMCID: PMC5311501 DOI: 10.1261/rna.058453.116] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/07/2016] [Indexed: 05/03/2023]
Abstract
HIV-1 particle assembly, which occurs at the plasma membrane (PM) of cells, is driven by the viral polyprotein Gag. Gag recognizes phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2], a PM-specific phospholipid, via the highly basic region (HBR) in its N-terminal matrix (MA) domain. The HBR is also known to bind to RNA. We have previously shown, using an in vitro liposome binding assay, that RNA inhibits Gag binding to membranes that lack PI(4,5)P2 If this RNA block is removed by RNase treatment, Gag can bind nonspecifically to other negatively charged membranes. In an effort to identify the RNA species that confer this inhibition of Gag membrane binding, we have tested the impact of purified RNAs on Gag interactions with negatively charged liposomes lacking PI(4,5)P2 We found that some tRNA species and RNAs containing stem-loop 1 of the psi region in the 5' untranslated region of the HIV-1 genome impose inhibition of Gag binding to membranes lacking PI(4,5)P2 In contrast, a specific subset of tRNAs, as well as an RNA sequence previously selected in vitro for MA binding, failed to suppress Gag-membrane interactions. Furthermore, switching the identity of charged residues in the HBR did not diminish the susceptibility of Gag-liposome binding for each of the RNAs tested, while deletion of most of the NC domain abrogates the inhibition of membrane binding mediated by the RNAs that are inhibitory to WT Gag-liposome binding. These results support a model in which NC facilitates binding of RNA to MA and thereby promotes RNA-based inhibition of Gag-membrane binding.
Collapse
MESH Headings
- Aptamers, Nucleotide/chemical synthesis
- Aptamers, Nucleotide/pharmacology
- Base Pairing
- Base Sequence
- Binding Sites
- Cell Membrane/chemistry
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Cloning, Molecular
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression
- HIV-1/chemistry
- Humans
- Liposomes/antagonists & inhibitors
- Liposomes/chemistry
- Nucleic Acid Conformation
- Phosphatidylinositol 4,5-Diphosphate/chemistry
- Phosphatidylinositol 4,5-Diphosphate/deficiency
- Protein Binding/drug effects
- RNA, Transfer/chemistry
- RNA, Transfer/pharmacology
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Saccharomyces cerevisiae/chemistry
- Static Electricity
- gag Gene Products, Human Immunodeficiency Virus/antagonists & inhibitors
- gag Gene Products, Human Immunodeficiency Virus/chemistry
- gag Gene Products, Human Immunodeficiency Virus/genetics
- gag Gene Products, Human Immunodeficiency Virus/metabolism
Collapse
Affiliation(s)
- Gabrielle C Todd
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Alice Duchon
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, The Ohio State University, Columbus, Ohio 43210, USA
| | - Jingga Inlora
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Erik D Olson
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, The Ohio State University, Columbus, Ohio 43210, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, The Ohio State University, Columbus, Ohio 43210, USA
| | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
34
|
Post K, Olson ED, Naufer MN, Gorelick RJ, Rouzina I, Williams MC, Musier-Forsyth K, Levin JG. Mechanistic differences between HIV-1 and SIV nucleocapsid proteins and cross-species HIV-1 genomic RNA recognition. Retrovirology 2016; 13:89. [PMID: 28034301 PMCID: PMC5198506 DOI: 10.1186/s12977-016-0322-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/29/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The nucleocapsid (NC) domain of HIV-1 Gag is responsible for specific recognition and packaging of genomic RNA (gRNA) into new viral particles. This occurs through specific interactions between the Gag NC domain and the Psi packaging signal in gRNA. In addition to this critical function, NC proteins are also nucleic acid (NA) chaperone proteins that facilitate NA rearrangements during reverse transcription. Although the interaction with Psi and chaperone activity of HIV-1 NC have been well characterized in vitro, little is known about simian immunodeficiency virus (SIV) NC. Non-human primates are frequently used as a platform to study retroviral infection in vivo; thus, it is important to understand underlying mechanistic differences between HIV-1 and SIV NC. RESULTS Here, we characterize SIV NC chaperone activity for the first time. Only modest differences are observed in the ability of SIV NC to facilitate reactions that mimic the minus-strand annealing and transfer steps of reverse transcription relative to HIV-1 NC, with the latter displaying slightly higher strand transfer and annealing rates. Quantitative single molecule DNA stretching studies and dynamic light scattering experiments reveal that these differences are due to significantly increased DNA compaction energy and higher aggregation capability of HIV-1 NC relative to the SIV protein. Using salt-titration binding assays, we find that both proteins are strikingly similar in their ability to specifically interact with HIV-1 Psi RNA. In contrast, they do not demonstrate specific binding to an RNA derived from the putative SIV packaging signal. CONCLUSIONS Based on these studies, we conclude that (1) HIV-1 NC is a slightly more efficient NA chaperone protein than SIV NC, (2) mechanistic differences between the NA interactions of highly similar retroviral NC proteins are revealed by quantitative single molecule DNA stretching, and (3) SIV NC demonstrates cross-species recognition of the HIV-1 Psi RNA packaging signal.
Collapse
Affiliation(s)
- Klara Post
- Section on Viral Gene Regulation, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2780 USA
| | - Erik D. Olson
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210 USA
| | - M. Nabuan Naufer
- Department of Physics, Northeastern University, Boston, MA 02115 USA
| | - Robert J. Gorelick
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702-1201 USA
| | - Ioulia Rouzina
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210 USA
| | - Mark C. Williams
- Department of Physics, Northeastern University, Boston, MA 02115 USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210 USA
| | - Judith G. Levin
- Section on Viral Gene Regulation, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2780 USA
| |
Collapse
|
35
|
Bernacchi S, Abd El-Wahab EW, Dubois N, Hijnen M, Smyth RP, Mak J, Marquet R, Paillart JC. HIV-1 Pr55 Gag binds genomic and spliced RNAs with different affinity and stoichiometry. RNA Biol 2016; 14:90-103. [PMID: 27841704 DOI: 10.1080/15476286.2016.1256533] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The HIV-1 Pr55Gag precursor specifically selects genomic RNA (gRNA) from a large variety of cellular and spliced viral RNAs (svRNAs), however the molecular mechanisms of this selective recognition remains poorly understood. To gain better understanding of this process, we analyzed the interactions between Pr55Gag and a large panel of viral RNA (vRNA) fragments encompassing the main packaging signal (Psi) and its flanking regions by fluorescence spectroscopy. We showed that the gRNA harbors a high affinity binding site which is absent from svRNA species, suggesting that this site might be crucial for selecting the HIV-1 genome. Our stoichiometry analysis of protein/RNA complexes revealed that few copies of Pr55Gag specifically associate with the 5' region of the gRNA. Besides, we found that gRNA dimerization significantly impacts Pr55Gag binding, and we confirmed that the internal loop of stem-loop 1 (SL1) in Psi is crucial for specific interaction with Pr55Gag. Our analysis of gRNA fragments of different length supports the existence of a long-range tertiary interaction involving sequences upstream and downstream of the Psi region. This long-range interaction might promote optimal exposure of SL1 for efficient Pr55Gag recognition. Altogether, our results shed light on the molecular mechanisms allowing the specific selection of gRNA by Pr55Gag among a variety of svRNAs, all harboring SL1 in their first common exon.
Collapse
Affiliation(s)
- Serena Bernacchi
- a Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN , Strasbourg , France
| | - Ekram W Abd El-Wahab
- a Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN , Strasbourg , France
| | - Noé Dubois
- a Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN , Strasbourg , France
| | - Marcel Hijnen
- b Centre for Virology, Burnet Institute , Melbourne , Victoria , Australia.,c Department of Biochemistry and Molecular Biology , Monash University , Clayton , Victoria , Australia
| | - Redmond P Smyth
- a Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN , Strasbourg , France
| | - Johnson Mak
- b Centre for Virology, Burnet Institute , Melbourne , Victoria , Australia.,c Department of Biochemistry and Molecular Biology , Monash University , Clayton , Victoria , Australia.,d School of Medicine, Faculty of Health, Deakin University , Geelong , Victoria , Australia.,e Commonwealth Scientific and Industrial Research Organization, Livestock Industries, Australian Animal Health Laboratory , Geelong , Victoria , Australia
| | - Roland Marquet
- a Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN , Strasbourg , France
| | | |
Collapse
|
36
|
Inlora J, Chukkapalli V, Bedi S, Ono A. Molecular Determinants Directing HIV-1 Gag Assembly to Virus-Containing Compartments in Primary Macrophages. J Virol 2016; 90:8509-19. [PMID: 27440886 PMCID: PMC5021390 DOI: 10.1128/jvi.01004-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/11/2016] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED The subcellular sites of HIV-1 assembly, determined by the localization of the structural protein Gag, vary in a cell-type-dependent manner. In T cells and transformed cell lines used as model systems, HIV-1 assembles at the plasma membrane (PM). The binding and localization of HIV-1 Gag to the PM are mediated by the interaction between the matrix (MA) domain, specifically the highly basic region, and a PM-specific acidic phospholipid, phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]. In primary macrophages, prominent accumulation of assembling or assembled particles is found in the virus-containing compartments (VCCs), which largely consist of convoluted invaginations of the PM. To elucidate the molecular mechanism of HIV-1 Gag targeting to the VCCs, we examined the impact of overexpression of polyphosphoinositide 5-phosphatase IV (5ptaseIV), which depletes cellular PI(4,5)P2, in primary macrophages. We found that the VCC localization and virus release of HIV-1 are severely impaired upon 5ptaseIV overexpression, suggesting an important role for the MA-PI(4,5)P2 interaction in HIV-1 assembly in primary macrophages. However, our analysis of HIV-1 Gag derivatives with MA changes showed that this interaction contributes to Gag membrane binding but is dispensable for specific targeting of Gag to the VCCs per se We further determined that deletion of the NC domain abolishes VCC-specific localization of HIV-1 Gag. Notably, HIV-1 Gag localized efficiently to the VCCs when the NC domain was replaced with a leucine zipper dimerization motif that promotes Gag multimerization. Altogether, our data revealed that targeting of HIV-1 Gag to the VCCs requires NC-dependent multimerization. IMPORTANCE In T cells and model cell lines, HIV-1 Gag localizes to the PM in a manner dependent on the MA-PI(4,5)P2 interaction. On the other hand, in primary macrophages, HIV-1 Gag localizes to convoluted intracellular membrane structures termed virus-containing compartments (VCCs). Although these compartments have been known for decades, and despite the implication of viruses in VCCs being involved in virus reservoir maintenance and spread, the viral determinant(s) that promotes Gag targeting to VCCs is unknown. In this study, we found that the MA-PI(4,5)P2 interaction facilitates efficient Gag membrane binding in macrophages but is not essential for Gag targeting to VCCs. Rather, our results revealed that NC-dependent multimerization promotes VCC targeting. Our findings highlight the differential roles played by MA and NC in HIV-1 Gag membrane binding and targeting and suggest a multimerization-dependent mechanism for Gag trafficking in primary macrophages similar to that for Gag localization to uropods in polarized T cells.
Collapse
Affiliation(s)
- Jingga Inlora
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Vineela Chukkapalli
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Sukhmani Bedi
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
37
|
Rye-McCurdy T, Olson ED, Liu S, Binkley C, Reyes JP, Thompson BR, Flanagan JM, Parent LJ, Musier-Forsyth K. Functional Equivalence of Retroviral MA Domains in Facilitating Psi RNA Binding Specificity by Gag. Viruses 2016; 8:v8090256. [PMID: 27657107 PMCID: PMC5035970 DOI: 10.3390/v8090256] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 12/18/2022] Open
Abstract
Retroviruses specifically package full-length, dimeric genomic RNA (gRNA) even in the presence of a vast excess of cellular RNA. The “psi” (Ψ) element within the 5′-untranslated region (5′UTR) of gRNA is critical for packaging through interaction with the nucleocapsid (NC) domain of Gag. However, in vitro Gag binding affinity for Ψ versus non-Ψ RNAs is not significantly different. Previous salt-titration binding assays revealed that human immunodeficiency virus type 1 (HIV-1) Gag bound to Ψ RNA with high specificity and relatively few charge interactions, whereas binding to non-Ψ RNA was less specific and involved more electrostatic interactions. The NC domain was critical for specific Ψ binding, but surprisingly, a Gag mutant lacking the matrix (MA) domain was less effective at discriminating Ψ from non-Ψ RNA. We now find that Rous sarcoma virus (RSV) Gag also effectively discriminates RSV Ψ from non-Ψ RNA in a MA-dependent manner. Interestingly, Gag chimeras, wherein the HIV-1 and RSV MA domains were swapped, maintained high binding specificity to cognate Ψ RNAs. Using Ψ RNA mutant constructs, determinants responsible for promoting high Gag binding specificity were identified in both systems. Taken together, these studies reveal the functional equivalence of HIV-1 and RSV MA domains in facilitating Ψ RNA selectivity by Gag, as well as Ψ elements that promote this selectivity.
Collapse
Affiliation(s)
- Tiffiny Rye-McCurdy
- Department of Chemistry and Biochemistry, The Ohio State University, Center for Retroviral Research, and Center for RNA Biology, Columbus, OH 43210, USA.
| | - Erik D Olson
- Department of Chemistry and Biochemistry, The Ohio State University, Center for Retroviral Research, and Center for RNA Biology, Columbus, OH 43210, USA.
| | - Shuohui Liu
- Department of Chemistry and Biochemistry, The Ohio State University, Center for Retroviral Research, and Center for RNA Biology, Columbus, OH 43210, USA.
| | - Christiana Binkley
- Department of Chemistry and Biochemistry, The Ohio State University, Center for Retroviral Research, and Center for RNA Biology, Columbus, OH 43210, USA.
| | - Joshua-Paolo Reyes
- Department of Chemistry and Biochemistry, The Ohio State University, Center for Retroviral Research, and Center for RNA Biology, Columbus, OH 43210, USA.
| | - Brian R Thompson
- Department of Chemistry and Biochemistry, The Ohio State University, Center for Retroviral Research, and Center for RNA Biology, Columbus, OH 43210, USA.
| | - John M Flanagan
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA.
| | - Leslie J Parent
- Departments of Medicine and Microbiology and Immunology, Division of Infectious Diseases and Epidemiology, Penn State College of Medicine, Hershey, PA 17033, USA.
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, The Ohio State University, Center for Retroviral Research, and Center for RNA Biology, Columbus, OH 43210, USA.
| |
Collapse
|
38
|
Comas-Garcia M, Davis SR, Rein A. On the Selective Packaging of Genomic RNA by HIV-1. Viruses 2016; 8:v8090246. [PMID: 27626441 PMCID: PMC5035960 DOI: 10.3390/v8090246] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/16/2016] [Accepted: 08/30/2016] [Indexed: 12/12/2022] Open
Abstract
Like other retroviruses, human immunodeficiency virus type 1 (HIV-1) selectively packages genomic RNA (gRNA) during virus assembly. However, in the absence of the gRNA, cellular messenger RNAs (mRNAs) are packaged. While the gRNA is selected because of its cis-acting packaging signal, the mechanism of this selection is not understood. The affinity of Gag (the viral structural protein) for cellular RNAs at physiological ionic strength is not much higher than that for the gRNA. However, binding to the gRNA is more salt-resistant, implying that it has a higher non-electrostatic component. We have previously studied the spacer 1 (SP1) region of Gag and showed that it can undergo a concentration-dependent conformational transition. We proposed that this transition represents the first step in assembly, i.e., the conversion of Gag to an assembly-ready state. To explain selective packaging of gRNA, we suggest here that binding of Gag to gRNA, with its high non-electrostatic component, triggers this conversion more readily than binding to other RNAs; thus we predict that a Gag-gRNA complex will nucleate particle assembly more efficiently than other Gag-RNA complexes. New data shows that among cellular mRNAs, those with long 3'-untranslated regions (UTR) are selectively packaged. It seems plausible that the 3'-UTR, a stretch of RNA not occupied by ribosomes, offers a favorable binding site for Gag.
Collapse
Affiliation(s)
- Mauricio Comas-Garcia
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| | - Sean R Davis
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| | - Alan Rein
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
39
|
Abstract
The HIV genome encodes a small number of viral proteins (i.e., 16), invariably establishing cooperative associations among HIV proteins and between HIV and host proteins, to invade host cells and hijack their internal machineries. As a known example, the HIV envelope glycoprotein GP120 is closely associated with GP41 for viral entry. From a genome-wide perspective, a hypothesis can be worked out to determine whether 16 HIV proteins could develop 120 possible pairwise associations either by physical interactions or by functional associations mediated via HIV or host molecules. Here, we present the first systematic review of experimental evidence on HIV genome-wide protein associations using a large body of publications accumulated over the past 3 decades. Of 120 possible pairwise associations between 16 HIV proteins, at least 34 physical interactions and 17 functional associations have been identified. To achieve efficient viral replication and infection, HIV protein associations play essential roles (e.g., cleavage, inhibition, and activation) during the HIV life cycle. In either a dispensable or an indispensable manner, each HIV protein collaborates with another viral protein to accomplish specific activities that precisely take place at the proper stages of the HIV life cycle. In addition, HIV genome-wide protein associations have an impact on anti-HIV inhibitors due to the extensive cross talk between drug-inhibited proteins and other HIV proteins. Overall, this study presents for the first time a comprehensive overview of HIV genome-wide protein associations, highlighting meticulous collaborations between all viral proteins during the HIV life cycle.
Collapse
Affiliation(s)
- Guangdi Li
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China KU Leuven-University of Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgium
| | - Erik De Clercq
- KU Leuven-University of Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgium
| |
Collapse
|
40
|
HIV Genome-Wide Protein Associations: a Review of 30 Years of Research. Microbiol Mol Biol Rev 2016; 80:679-731. [PMID: 27357278 DOI: 10.1128/mmbr.00065-15] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The HIV genome encodes a small number of viral proteins (i.e., 16), invariably establishing cooperative associations among HIV proteins and between HIV and host proteins, to invade host cells and hijack their internal machineries. As a known example, the HIV envelope glycoprotein GP120 is closely associated with GP41 for viral entry. From a genome-wide perspective, a hypothesis can be worked out to determine whether 16 HIV proteins could develop 120 possible pairwise associations either by physical interactions or by functional associations mediated via HIV or host molecules. Here, we present the first systematic review of experimental evidence on HIV genome-wide protein associations using a large body of publications accumulated over the past 3 decades. Of 120 possible pairwise associations between 16 HIV proteins, at least 34 physical interactions and 17 functional associations have been identified. To achieve efficient viral replication and infection, HIV protein associations play essential roles (e.g., cleavage, inhibition, and activation) during the HIV life cycle. In either a dispensable or an indispensable manner, each HIV protein collaborates with another viral protein to accomplish specific activities that precisely take place at the proper stages of the HIV life cycle. In addition, HIV genome-wide protein associations have an impact on anti-HIV inhibitors due to the extensive cross talk between drug-inhibited proteins and other HIV proteins. Overall, this study presents for the first time a comprehensive overview of HIV genome-wide protein associations, highlighting meticulous collaborations between all viral proteins during the HIV life cycle.
Collapse
|
41
|
Trimer Enhancement Mutation Effects on HIV-1 Matrix Protein Binding Activities. J Virol 2016; 90:5657-5664. [PMID: 27030269 DOI: 10.1128/jvi.00509-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 03/25/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The HIV-1 matrix (MA) protein is the amino-terminal domain of the HIV-1 precursor Gag (Pr55Gag) protein. MA binds to membranes and RNAs, helps transport Pr55Gag proteins to virus assembly sites at the plasma membranes of infected cells, and facilitates the incorporation of HIV-1 envelope (Env) proteins into virions by virtue of an interaction with the Env protein cytoplasmic tails (CTs). MA has been shown to crystallize as a trimer and to organize on membranes in hexamer lattices. MA mutations that localize to residues near the ends of trimer spokes have been observed to impair Env protein assembly into virus particles, and several of these are suppressed by the 62QR mutation at the hubs of trimer interfaces. We have examined the binding activities of wild-type (WT) MA and 62QR MA variants and found that the 62QR mutation stabilized MA trimers but did not alter the way MA proteins organized on membranes. Relative to WT MA, the 62QR protein showed small effects on membrane and RNA binding. However, 62QR proteins bound significantly better to Env CTs than their WT counterparts, and CT binding efficiencies correlated with trimerization efficiencies. Our data suggest a model in which multivalent binding of trimeric HIV-1 Env proteins to MA trimers contributes to the process of Env virion incorporation. IMPORTANCE The HIV-1 Env proteins assemble as trimers, and incorporation of the proteins into virus particles requires an interaction of Env CT domains with the MA domains of the viral precursor Gag proteins. Despite this knowledge, little is known about the mechanisms by which MA facilitates the virion incorporation of Env proteins. To help elucidate this process, we examined the binding activities of an MA mutant that stabilizes MA trimers. We found that the mutant proteins organized similarly to WT proteins on membranes, and that mutant and WT proteins revealed only slight differences in their binding to RNAs or lipids. However, the mutant proteins showed better binding to Env CTs than the WT proteins, and CT binding correlated with MA trimerization. Our results suggest that multivalent binding of trimeric HIV-1 Env proteins to MA trimers contributes to the process of Env virion incorporation.
Collapse
|
42
|
Pachulska-Wieczorek K, Błaszczyk L, Biesiada M, Adamiak RW, Purzycka KJ. The matrix domain contributes to the nucleic acid chaperone activity of HIV-2 Gag. Retrovirology 2016; 13:18. [PMID: 26987314 PMCID: PMC4794849 DOI: 10.1186/s12977-016-0245-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/17/2016] [Indexed: 01/17/2023] Open
Abstract
Background The Gag polyprotein is a multifunctional regulator of retroviral replication and major structural component of immature virions. The nucleic acid chaperone (NAC) activity is considered necessary to retroviral Gag functions, but so far, NAC activity has only been confirmed for HIV-1 and RSV Gag polyproteins. The nucleocapsid (NC) domain of Gag is proposed to be crucial for interactions with nucleic acids and NAC activity. The major function of matrix (MA) domain is targeting and binding of Gag to the plasma membrane but MA can also interact with RNA and influence NAC activity of Gag. Here, we characterize RNA binding properties and NAC activity of HIV-2 MA and Gag, lacking p6 domain (GagΔp6) and discuss potential contribution of NC and MA domains to HIV-2 GagΔp6 functions and interactions with RNA. Results We found that HIV-2 GagΔp6 is a robust nucleic acid chaperone. HIV-2 MA protein promotes nucleic acids aggregation and tRNALys3 annealing in vitro. The NAC activity of HIV-2 NC is affected by salt which is in contrast to HIV-2 GagΔp6 and MA. At a physiological NaCl concentration the tRNALys3 annealing activity of HIV-2 GagΔp6 or MA is higher than HIV-2 NC. The HIV-2 NC and GagΔp6 show strong binding to the packaging signal (Ψ) of HIV-2 RNA and preference for the purine-rich sequences, while MA protein binds mainly to G residues without favouring Ψ RNA. Moreover, HIV-2 GagΔp6 and NC promote HIV-2 RNA dimerization while our data do not support MA domain participation in this process in vitro. Conclusions We present that contrary to HIV-1 MA, HIV-2 MA displays NAC activity and we propose that MA domain may enhance the activity of HIV-2 GagΔp6. The role of the MA domain in the NAC activity of Gag may differ significantly between HIV-1 and HIV-2. The HIV-2 NC and MA interactions with RNA are not equivalent. Even though both NC and MA can facilitate tRNALys3 annealing, MA does not participate in RNA dimerization in vitro. Our data on HIV-2 indicate that the role of the MA domain in the NAC activity of Gag differs not only between, but also within, retroviral genera. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0245-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Leszek Błaszczyk
- Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965, Poznan, Poland
| | - Marcin Biesiada
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.,Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965, Poznan, Poland
| | - Ryszard W Adamiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.,Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965, Poznan, Poland
| | - Katarzyna J Purzycka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.
| |
Collapse
|
43
|
Hendrix J, Baumgärtel V, Schrimpf W, Ivanchenko S, Digman MA, Gratton E, Kräusslich HG, Müller B, Lamb DC. Live-cell observation of cytosolic HIV-1 assembly onset reveals RNA-interacting Gag oligomers. J Cell Biol 2015; 210:629-46. [PMID: 26283800 PMCID: PMC4539982 DOI: 10.1083/jcb.201504006] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Analysis of the cytosolic HIV-1 Gag fraction in live cells via advanced fluctuation imaging methods reveals potential nucleation steps before membrane-assisted Gag assembly. Assembly of the Gag polyprotein into new viral particles in infected cells is a crucial step in the retroviral replication cycle. Currently, little is known about the onset of assembly in the cytosol. In this paper, we analyzed the cytosolic HIV-1 Gag fraction in real time in live cells using advanced fluctuation imaging methods and thereby provide detailed insights into the complex relationship between cytosolic Gag mobility, stoichiometry, and interactions. We show that Gag diffuses as a monomer on the subsecond timescale with severely reduced mobility. Reduction of mobility is associated with basic residues in its nucleocapsid (NC) domain, whereas capsid (CA) and matrix (MA) domains do not contribute significantly. Strikingly, another diffusive Gag species was observed on the seconds timescale that oligomerized in a concentration-dependent manner. Both NC- and CA-mediated interactions strongly assist this process. Our results reveal potential nucleation steps of cytosolic Gag fractions before membrane-assisted Gag assembly.
Collapse
Affiliation(s)
- Jelle Hendrix
- Physical Chemistry, Department of Chemistry, Ludwig Maximilian University of Munich, D-81377 Munich, Germany NanoSystems Initiative Munich (NIM), Ludwig Maximilian University of Munich, D-81377 Munich, Germany Munich Center for Integrated Protein Science (CiPSM), Ludwig Maximilian University of Munich, D-81377 Munich, Germany Center for Nanoscience (CeNS), Ludwig Maximilian University of Munich, D-81377 Munich, Germany
| | - Viola Baumgärtel
- Physical Chemistry, Department of Chemistry, Ludwig Maximilian University of Munich, D-81377 Munich, Germany NanoSystems Initiative Munich (NIM), Ludwig Maximilian University of Munich, D-81377 Munich, Germany Munich Center for Integrated Protein Science (CiPSM), Ludwig Maximilian University of Munich, D-81377 Munich, Germany Center for Nanoscience (CeNS), Ludwig Maximilian University of Munich, D-81377 Munich, Germany
| | - Waldemar Schrimpf
- Physical Chemistry, Department of Chemistry, Ludwig Maximilian University of Munich, D-81377 Munich, Germany NanoSystems Initiative Munich (NIM), Ludwig Maximilian University of Munich, D-81377 Munich, Germany Munich Center for Integrated Protein Science (CiPSM), Ludwig Maximilian University of Munich, D-81377 Munich, Germany Center for Nanoscience (CeNS), Ludwig Maximilian University of Munich, D-81377 Munich, Germany
| | - Sergey Ivanchenko
- Physical Chemistry, Department of Chemistry, Ludwig Maximilian University of Munich, D-81377 Munich, Germany NanoSystems Initiative Munich (NIM), Ludwig Maximilian University of Munich, D-81377 Munich, Germany Munich Center for Integrated Protein Science (CiPSM), Ludwig Maximilian University of Munich, D-81377 Munich, Germany Center for Nanoscience (CeNS), Ludwig Maximilian University of Munich, D-81377 Munich, Germany
| | - Michelle A Digman
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697 Development Biology Center Optical Biology Core Facility, University of California, Irvine, Irvine, CA 92697
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697 Development Biology Center Optical Biology Core Facility, University of California, Irvine, Irvine, CA 92697
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Barbara Müller
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Ludwig Maximilian University of Munich, D-81377 Munich, Germany NanoSystems Initiative Munich (NIM), Ludwig Maximilian University of Munich, D-81377 Munich, Germany Munich Center for Integrated Protein Science (CiPSM), Ludwig Maximilian University of Munich, D-81377 Munich, Germany Center for Nanoscience (CeNS), Ludwig Maximilian University of Munich, D-81377 Munich, Germany
| |
Collapse
|
44
|
McCauley MJ, Rouzina I, Manthei KA, Gorelick RJ, Musier-Forsyth K, Williams MC. Targeted binding of nucleocapsid protein transforms the folding landscape of HIV-1 TAR RNA. Proc Natl Acad Sci U S A 2015; 112:13555-60. [PMID: 26483503 PMCID: PMC4640786 DOI: 10.1073/pnas.1510100112] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Retroviral nucleocapsid (NC) proteins are nucleic acid chaperones that play a key role in the viral life cycle. During reverse transcription, HIV-1 NC facilitates the rearrangement of nucleic acid secondary structure, allowing the transactivation response (TAR) RNA hairpin to be transiently destabilized and annealed to a cDNA hairpin. It is not clear how NC specifically destabilizes TAR RNA but does not strongly destabilize the resulting annealed RNA-DNA hybrid structure, which must be formed for reverse transcription to continue. By combining single-molecule optical tweezers measurements with a quantitative mfold-based model, we characterize the equilibrium TAR stability and unfolding barrier for TAR RNA. Experiments show that adding NC lowers the transition state barrier height while also dramatically shifting the barrier location. Incorporating TAR destabilization by NC into the mfold-based model reveals that a subset of preferential protein binding sites is responsible for the observed changes in the unfolding landscape, including the unusual shift in the transition state. We measure the destabilization induced at these NC binding sites and find that NC preferentially targets TAR RNA by binding to specific sequence contexts that are not present on the final annealed RNA-DNA hybrid structure. Thus, specific binding alters the entire RNA unfolding landscape, resulting in the dramatic destabilization of this specific structure that is required for reverse transcription.
Collapse
Affiliation(s)
- Micah J McCauley
- Department of Physics, Northeastern University, Boston, MA 02115
| | - Ioulia Rouzina
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Kelly A Manthei
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Robert J Gorelick
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for Retroviral Research and Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| | - Mark C Williams
- Department of Physics, Northeastern University, Boston, MA 02115;
| |
Collapse
|
45
|
Olson ED, Cantara WA, Musier-Forsyth K. New Structure Sheds Light on Selective HIV-1 Genomic RNA Packaging. Viruses 2015; 7:4826-35. [PMID: 26305251 PMCID: PMC4576207 DOI: 10.3390/v7082846] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 11/21/2022] Open
Abstract
Two copies of unspliced human immunodeficiency virus (HIV)-1 genomic RNA (gRNA) are preferentially selected for packaging by the group-specific antigen (Gag) polyprotein into progeny virions as a dimer during the late stages of the viral lifecycle. Elucidating the RNA features responsible for selective recognition of the full-length gRNA in the presence of an abundance of other cellular RNAs and spliced viral RNAs remains an area of intense research. The recent nuclear magnetic resonance (NMR) structure by Keane et al. [1] expands upon previous efforts to determine the conformation of the HIV-1 RNA packaging signal. The data support a secondary structure wherein sequences that constitute the major splice donor site are sequestered through base pairing, and a tertiary structure that adopts a tandem 3-way junction motif that exposes the dimerization initiation site and unpaired guanosines for specific recognition by Gag. While it remains to be established whether this structure is conserved in the context of larger RNA constructs or in the dimer, this study serves as the basis for characterizing large RNA structures using novel NMR techniques, and as a major advance toward understanding how the HIV-1 gRNA is selectively packaged.
Collapse
Affiliation(s)
- Erik D Olson
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| | - William A Cantara
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
46
|
Phosphatidylinositol-(4,5)-Bisphosphate Acyl Chains Differentiate Membrane Binding of HIV-1 Gag from That of the Phospholipase Cδ1 Pleckstrin Homology Domain. J Virol 2015; 89:7861-73. [PMID: 25995263 DOI: 10.1128/jvi.00794-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/13/2015] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED HIV-1 Gag, which drives virion assembly, interacts with a plasma membrane (PM)-specific phosphoinositide, phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2]. While cellular acidic phospholipid-binding proteins/domains, such as the PI(4,5)P2-specific pleckstrin homology domain of phospholipase Cδ1 (PHPLCδ1), mediate headgroup-specific interactions with corresponding phospholipids, the exact nature of the Gag-PI(4,5)P2 interaction remains undetermined. In this study, we used giant unilamellar vesicles (GUVs) to examine how PI(4,5)P2 with unsaturated or saturated acyl chains affect membrane binding of PHPLCδ1 and Gag. Both unsaturated dioleoyl-PI(4,5)P2 [DO-PI(4,5)P2] and saturated dipalmitoyl-PI(4,5)P2 [DP-PI(4,5)P2] successfully recruited PHPLCδ1 to membranes of single-phase GUVs. In contrast, DO-PI(4,5)P2 but not DP-PI(4,5)P2 recruited Gag to GUVs, indicating that PI(4,5)P2 acyl chains contribute to stable membrane binding of Gag. GUVs containing PI(4,5)P2, cholesterol, and dipalmitoyl phosphatidylserine separated into two coexisting phases: one was a liquid phase, and the other appeared to be a phosphatidylserine-enriched gel phase. In these vesicles, the liquid phase recruited PHPLCδ1 regardless of PI(4,5)P2 acyl chains. Likewise, Gag bound to the liquid phase when PI(4,5)P2 had DO-acyl chains. DP-PI(4,5)P2-containing GUVs showed no detectable Gag binding to the liquid phase. Unexpectedly, however, DP-PI(4,5)P2 still promoted recruitment of Gag, but not PHPLCδ1, to the dipalmitoyl-phosphatidylserine-enriched gel phase of these GUVs. Altogether, these results revealed different roles for PI(4,5)P2 acyl chains in membrane binding of two PI(4,5)P2-binding proteins, Gag and PHPLCδ1. Notably, we observed that nonmyristylated Gag retains the preference for PI(4,5)P2 containing an unsaturated acyl chain over DP-PI(4,5)P2, suggesting that Gag sensitivity to PI(4,5)P2 acyl chain saturation is determined directly by the matrix-PI(4,5)P2 interaction, rather than indirectly by a myristate-dependent mechanism. IMPORTANCE Binding of HIV-1 Gag to the plasma membrane is promoted by its interaction with a plasma membrane-localized phospholipid, PI(4,5)P2. Many cellular proteins are also recruited to the plasma membrane via PI(4,5)P2-interacting domains represented by PHPLCδ1. However, differences and/or similarities between these host proteins and viral Gag protein in the nature of their PI(4,5)P2 interactions, especially in the context of membrane binding, remain to be determined. Using a novel giant unilamellar vesicle-based system, we found that PI(4,5)P2 with an unsaturated acyl chain recruited PHPLCδ1 and Gag similarly, whereas PI(4,5)P2 with saturated acyl chains either recruited PHPLCδ1 but not Gag or sorted these proteins to different phases of vesicles. To our knowledge, this is the first study to show that PI(4,5)P2 acyl chains differentially modulate membrane binding of PI(4,5)P2-binding proteins. Since Gag membrane binding is essential for progeny virion production, the PI(4,5)P2 acyl chain property may serve as a potential target for anti-HIV therapeutic strategies.
Collapse
|
47
|
Seif E, Niu M, Kleiman L. In virio SHAPE analysis of tRNA(Lys3) annealing to HIV-1 genomic RNA in wild type and protease-deficient virus. Retrovirology 2015; 12:40. [PMID: 25981241 PMCID: PMC4445796 DOI: 10.1186/s12977-015-0171-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 05/06/2015] [Indexed: 11/29/2022] Open
Abstract
Background tRNALys3 annealing to the viral RNA of human immunodeficiency virus type-1 (HIV-1) is an essential step in the virus life cycle, because this tRNA serves as the primer for initiating reverse transcription. tRNALys3 annealing to viral RNA occurs in two steps. First, Gag promotes annealing of tRNALys3 to the viral RNA during cytoplasmic HIV-1 assembly. Second, mature nucleocapsid (NCp7), produced from the processing of Gag by viral protease during viral budding from the cell, remodels the annealed complex to form a more stable interaction between the viral RNA and tRNALys3, resulting in a more tightly bound and efficient primer for reverse transcription. Results In this report, we have used in virio SHAPE analysis of both the 5´-untranslated region in HIV-1 RNA and the annealed tRNALys3 to determine structural differences of the annealed complex that occur between protease-negative (Pr-) and wild type viruses. Our results indicate that the weaker binding of tRNALys3 annealed by Gag in Pr- virions reflects both missing interactions of tRNALys3 with viral RNA regions in the upper PBS stem, and a weaker interaction with the internal stem-loop found within the unannealed primer binding site in viral RNA. Conclusions We propose secondary structure models for the tRNALys3/viral RNA annealed complexes in PR- and wild type viruses that support the two-step annealing model by showing that Gag promotes a partial annealing of tRNALys3 to HIV-1 viral RNA, followed by a more complete annealing by NCp7. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0171-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elias Seif
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, QC, H3T 1E2, Canada.
| | - Meijuan Niu
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, QC, H3T 1E2, Canada.
| | - Lawrence Kleiman
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, QC, H3T 1E2, Canada. .,Department of Medicine, McGill University, Montreal, QC, H3A 1A1, Canada.
| |
Collapse
|
48
|
Role of the nucleocapsid domain in HIV-1 Gag oligomerization and trafficking to the plasma membrane: a fluorescence lifetime imaging microscopy investigation. J Mol Biol 2015; 427:1480-1494. [PMID: 25644662 DOI: 10.1016/j.jmb.2015.01.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/26/2015] [Accepted: 01/27/2015] [Indexed: 11/20/2022]
Abstract
The Pr55 Gag of human immunodeficiency virus type 1 orchestrates viral particle assembly in producer cells, which requires the genomic RNA and a lipid membrane as scaffolding platforms. The nucleocapsid (NC) domain with its two invariant CCHC zinc fingers flanked by unfolded basic sequences is thought to direct genomic RNA selection, dimerization and packaging during virus assembly. To further investigate the role of NC domain, we analyzed the assembly of Gag with deletions in the NC domain in parallel with that of wild-type Gag using fluorescence lifetime imaging microscopy combined with Förster resonance energy transfer in HeLa cells. We found that, upon binding to nucleic acids, the NC domain promotes the formation of compact Gag oligomers in the cytoplasm. Moreover, the intracellular distribution of the population of oligomers further suggests that oligomers progressively assemble during their trafficking toward the plasma membrane (PM), but with no dramatic changes in their compact arrangement. This ultimately results in the accumulation at the PM of closely packed Gag oligomers that likely arrange in hexameric lattices, as revealed by the perfect match between the experimental Förster resonance energy transfer value and the one calculated from the structural model of Gag in immature viruses. The distal finger and flanking basic sequences, but not the proximal finger, appear to be essential for Gag oligomer compaction and membrane binding. Moreover, the full NC domain was found to be instrumental in the kinetics of Gag oligomerization and intracellular trafficking. These findings further highlight the key roles played by the NC domain in virus assembly.
Collapse
|
49
|
Abstract
UNLABELLED We have examined the interactions of wild-type (WT) and matrix protein-deleted (ΔMA) HIV-1 precursor Gag (PrGag) proteins in virus-producing cells using a biotin ligase-tagging approach. To do so, WT and ΔMA PrGag proteins were tagged with the Escherichia coli promiscuous biotin ligase (BirA*), expressed in cells, and examined. Localization patterns of PrGag proteins and biotinylated proteins overlapped, consistent with observations that BirA*-tagged proteins biotinylate neighbor proteins that are in close proximity. Results indicate that BirA*-tagged PrGag proteins biotinylated themselves as well as WT PrGag proteins in trans. Previous data have shown that the HIV-1 Envelope (Env) protein requires an interaction with MA for assembly into virions. Unexpectedly, ΔMA proteins biotinylated Env, whereas WT BirA*-tagged proteins did not, suggesting that the presence of MA made Env inaccessible to biotinylation. We also identified over 50 cellular proteins that were biotinylated by BirA*-tagged PrGag proteins. These included membrane proteins, cytoskeleton-associated proteins, nuclear transport factors, lipid metabolism regulators, translation factors, and RNA-processing proteins. The identification of these biotinylated proteins offers new insights into HIV-1 Gag protein trafficking and activities and provides new potential targets for antiviral interference. IMPORTANCE We have employed a novel strategy to analyze the interactions of the HIV-1 structural Gag proteins, which involved tagging wild-type and mutant Gag proteins with a biotin ligase. Expression of the tagged proteins in cells allowed us to analyze proteins that came in close proximity to the Gag proteins as they were synthesized, transported, assembled, and released from cells. The tagged proteins biotinylated proteins encoded by the HIV-1 pol gene and neighbor Gag proteins, but, surprisingly, only the mutant Gag protein biotinylated the HIV-1 Envelope protein. We also identified over 50 cellular proteins that were biotinylated, including membrane and cytoskeletal proteins and proteins involved in lipid metabolism, nuclear import, translation, and RNA processing. Our results offer new insights into HIV-1 Gag protein trafficking and activities and provide new potential targets for antiviral interference.
Collapse
|
50
|
Rye-McCurdy T, Rouzina I, Musier-Forsyth K. Fluorescence anisotropy-based salt-titration approach to characterize protein-nucleic acid interactions. Methods Mol Biol 2015; 1259:385-402. [PMID: 25579598 DOI: 10.1007/978-1-4939-2214-7_23] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Many proteins bind nucleic acids (NA) via cationic residues that interact electrostatically with the anionic phosphate backbone of RNA or DNA. These electrostatic interactions are often insensitive to NA sequence and structure, but confer strong salt dependence to the binding interactions. In contrast, salt-independent non-electrostatic contacts reflect more specific binding interactions. Proteins with multiple cationic NA-binding domains connected by flexible linkers, such as the HIV-1 Gag polyprotein, may bind different NA molecules in distinct ways. For example, Gag binding to the Psi-packaging signal of the HIV-1 RNA genome optimizes the specific non-electrostatic binding component of this protein-RNA interaction. In contrast, Gag binding to a non-psi RNA optimizes the electrostatic interactions at the expense of specific contacts. Here, we describe a fluorescence anisotropy-based salt-titration approach that allows complete characterization of both electrostatic and non-electrostatic binding components for any protein-NA complex in a quantitative manner within a single assay.
Collapse
Affiliation(s)
- Tiffiny Rye-McCurdy
- Department of Chemistry and Biochemistry, Ohio State Biochemistry Program, Centers for Retroviral Research and RNA Biology, The Ohio State University, 100 West 18th Ave., Columbus, OH, 43210-1340, USA
| | | | | |
Collapse
|