1
|
Loes AN, Tarabi RAL, Huddleston J, Touyon L, Wong SS, Cheng SMS, Leung NHL, Hannon WW, Bedford T, Cobey S, Cowling BJ, Bloom JD. High-throughput sequencing-based neutralization assay reveals how repeated vaccinations impact titers to recent human H1N1 influenza strains. J Virol 2024; 98:e0068924. [PMID: 39315814 PMCID: PMC11494878 DOI: 10.1128/jvi.00689-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
The high genetic diversity of influenza viruses means that traditional serological assays have too low throughput to measure serum antibody neutralization titers against all relevant strains. To overcome this challenge, we developed a sequencing-based neutralization assay that simultaneously measures titers against many viral strains using small serum volumes using a workflow similar to traditional neutralization assays. The key innovation is to incorporate unique nucleotide barcodes into the hemagglutinin (HA) genomic segment, and then pool viruses with numerous different barcoded HA variants and quantify the infectivity of all of them simultaneously using next-generation sequencing. With this approach, a single researcher performed the equivalent of 2,880 traditional neutralization assays (80 serum samples against 36 viral strains) in approximately 1 month. We applied the sequencing-based assay to quantify the impact of influenza vaccination on neutralization titers against recent human H1N1 strains for individuals who had or had not also received a vaccine in the previous year. We found that the viral strain specificities of the neutralizing antibodies elicited by vaccination vary among individuals and that vaccination induced a smaller increase in titers for individuals who had also received a vaccine the previous year-although the titers 6 months after vaccination were similar in individuals with and without the previous-year vaccination. We also identified a subset of individuals with low titers to a subclade of recent H1N1 even after vaccination. We provide an experimental protocol (dx.doi.org/10.17504/protocols.io.kqdg3xdmpg25/v1) and computational pipeline (https://github.com/jbloomlab/seqneut-pipeline) for the sequencing-based neutralization assays to facilitate the use of this method by others. IMPORTANCE We describe a new approach that can rapidly measure how the antibodies in human serum inhibit infection by many different influenza strains. This new approach is useful for understanding how viral evolution affects antibody immunity. We apply the approach to study the effect of repeated influenza vaccination.
Collapse
MESH Headings
- Humans
- High-Throughput Nucleotide Sequencing/methods
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Influenza, Human/prevention & control
- Influenza, Human/immunology
- Influenza, Human/virology
- Neutralization Tests/methods
- Vaccination
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Adult
- Female
Collapse
Affiliation(s)
- Andrea N Loes
- Howard Hughes Medical Institute, Seattle, Washington, USA
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Rosario Araceli L Tarabi
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - John Huddleston
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Lisa Touyon
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - Sook San Wong
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - Samuel M S Cheng
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - Nancy H L Leung
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - William W Hannon
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, USA
| | - Trevor Bedford
- Howard Hughes Medical Institute, Seattle, Washington, USA
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Sarah Cobey
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, USA
| | - Benjamin J Cowling
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - Jesse D Bloom
- Howard Hughes Medical Institute, Seattle, Washington, USA
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
2
|
Welsh FC, Eguia RT, Lee JM, Haddox HK, Galloway J, Van Vinh Chau N, Loes AN, Huddleston J, Yu TC, Quynh Le M, Nhat NTD, Thi Le Thanh N, Greninger AL, Chu HY, Englund JA, Bedford T, Matsen FA, Boni MF, Bloom JD. Age-dependent heterogeneity in the antigenic effects of mutations to influenza hemagglutinin. Cell Host Microbe 2024; 32:1397-1411.e11. [PMID: 39032493 PMCID: PMC11329357 DOI: 10.1016/j.chom.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/19/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024]
Abstract
Human influenza virus evolves to escape neutralization by polyclonal antibodies. However, we have a limited understanding of how the antigenic effects of viral mutations vary across the human population and how this heterogeneity affects virus evolution. Here, we use deep mutational scanning to map how mutations to the hemagglutinin (HA) proteins of two H3N2 strains, A/Hong Kong/45/2019 and A/Perth/16/2009, affect neutralization by serum from individuals of a variety of ages. The effects of HA mutations on serum neutralization differ across age groups in ways that can be partially rationalized in terms of exposure histories. Mutations that were fixed in influenza variants after 2020 cause greater escape from sera from younger individuals compared with adults. Overall, these results demonstrate that influenza faces distinct antigenic selection regimes from different age groups and suggest approaches to understand how this heterogeneous selection shapes viral evolution.
Collapse
MESH Headings
- Humans
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Mutation
- Adult
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Influenza, Human/virology
- Influenza, Human/immunology
- Age Factors
- Middle Aged
- Young Adult
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Adolescent
- Evolution, Molecular
- Aged
- Child
Collapse
Affiliation(s)
- Frances C Welsh
- Molecular and Cellular Biology Graduate Program, University of Washington, and Basic Sciences Division, Fred Hutch Cancer Center, Seattle, WA 98109, USA; Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Rachel T Eguia
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Juhye M Lee
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Hugh K Haddox
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Jared Galloway
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Nguyen Van Vinh Chau
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Andrea N Loes
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - John Huddleston
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Timothy C Yu
- Molecular and Cellular Biology Graduate Program, University of Washington, and Basic Sciences Division, Fred Hutch Cancer Center, Seattle, WA 98109, USA; Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Mai Quynh Le
- National Institutes for Hygiene and Epidemiology, Hanoi, Vietnam
| | - Nguyen T D Nhat
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam; Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Nguyen Thi Le Thanh
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA; Division of Allergy and Infectious Diseases, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Helen Y Chu
- Division of Allergy and Infectious Diseases, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Janet A Englund
- Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Trevor Bedford
- Howard Hughes Medical Institute, Seattle, WA 98109, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Frederick A Matsen
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Maciej F Boni
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam; Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA.
| |
Collapse
|
3
|
Dadonaite B, Ahn JJ, Ort JT, Yu J, Furey C, Dosey A, Hannon WW, Baker AV, Webby RJ, King NP, Liu Y, Hensley SE, Peacock TP, Moncla LH, Bloom JD. Deep mutational scanning of H5 hemagglutinin to inform influenza virus surveillance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595634. [PMID: 38826368 PMCID: PMC11142178 DOI: 10.1101/2024.05.23.595634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
H5 influenza is a potential pandemic threat. Previous studies have identified molecular phenotypes of the viral hemagglutinin (HA) protein that contribute to pandemic risk, including cell entry, receptor preference, HA stability, and reduced neutralization by polyclonal sera. Here we use pseudovirus deep mutational scanning to measure how all mutations to a clade 2.3.4.4b H5 HA affect each phenotype. We identify mutations that allow HA to better bind a2-6-linked sialic acids, and show that some viruses already carry mutations that stabilize HA. We also identify recent viral strains with reduced neutralization to sera elicited by candidate vaccine virus. Overall, the systematic nature of deep mutational scanning combined with the safety of pseudoviruses enables comprehensive characterization of mutations to inform surveillance of H5 influenza.
Collapse
|
4
|
Lee CY. Exploring Potential Intermediates in the Cross-Species Transmission of Influenza A Virus to Humans. Viruses 2024; 16:1129. [PMID: 39066291 PMCID: PMC11281536 DOI: 10.3390/v16071129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The influenza A virus (IAV) has been a major cause of several pandemics, underscoring the importance of elucidating its transmission dynamics. This review investigates potential intermediate hosts in the cross-species transmission of IAV to humans, focusing on the factors that facilitate zoonotic events. We evaluate the roles of various animal hosts, including pigs, galliformes, companion animals, minks, marine mammals, and other animals, in the spread of IAV to humans.
Collapse
Affiliation(s)
- Chung-Young Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
- Untreatable Infectious Disease Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
5
|
Loes AN, Tarabi RAL, Huddleston J, Touyon L, Wong SS, Cheng SMS, Leung NHL, Hannon WW, Bedford T, Cobey S, Cowling BJ, Bloom JD. High-throughput sequencing-based neutralization assay reveals how repeated vaccinations impact titers to recent human H1N1 influenza strains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584176. [PMID: 38496577 PMCID: PMC10942427 DOI: 10.1101/2024.03.08.584176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The high genetic diversity of influenza viruses means that traditional serological assays have too low throughput to measure serum antibody neutralization titers against all relevant strains. To overcome this challenge, we have developed a sequencing-based neutralization assay that simultaneously measures titers against many viral strains using small serum volumes via a workflow similar to traditional neutralization assays. The key innovation is to incorporate unique nucleotide barcodes into the hemagglutinin (HA) genomic segment, and then pool viruses with numerous different barcoded HA variants and quantify infectivity of all of them simultaneously using next-generation sequencing. With this approach, a single researcher performed the equivalent of 2,880 traditional neutralization assays (80 serum samples against 36 viral strains) in approximately one month. We applied the sequencing-based assay to quantify the impact of influenza vaccination on neutralization titers against recent human H1N1 strains for individuals who had or had not also received a vaccine in the previous year. We found that the viral strain specificities of the neutralizing antibodies elicited by vaccination vary among individuals, and that vaccination induced a smaller increase in titers for individuals who had also received a vaccine the previous year-although the titers six months after vaccination were similar in individuals with and without the previous-year vaccination. We also identified a subset of individuals with low titers to a subclade of recent H1N1 even after vaccination. This study demonstrates the utility of high-throughput sequencing-based neutralization assays that enable titers to be simultaneously measured against many different viral strains. We provide a detailed experimental protocol (DOI: https://dx.doi.org/10.17504/protocols.io.kqdg3xdmpg25/v1) and a computational pipeline (https://github.com/jbloomlab/seqneut-pipeline) for the sequencing-based neutralization assays to facilitate the use of this method by others.
Collapse
Affiliation(s)
- Andrea N Loes
- Howard Hughes Medical Institute, Seattle, WA
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Rosario Araceli L Tarabi
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - John Huddleston
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Lisa Touyon
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - Sook San Wong
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - Samuel M S Cheng
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - Nancy H L Leung
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - William W Hannon
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98109, USA
| | - Trevor Bedford
- Howard Hughes Medical Institute, Seattle, WA
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Sarah Cobey
- Department of Ecology and Evolution, University of Chicago, Chicago, IL
| | - Benjamin J Cowling
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - Jesse D Bloom
- Howard Hughes Medical Institute, Seattle, WA
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
6
|
Welsh FC, Eguia RT, Lee JM, Haddox HK, Galloway J, Chau NVV, Loes AN, Huddleston J, Yu TC, Le MQ, Nhat NTD, Thanh NTL, Greninger AL, Chu HY, Englund JA, Bedford T, Matsen FA, Boni MF, Bloom JD. Age-dependent heterogeneity in the antigenic effects of mutations to influenza hemagglutinin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571235. [PMID: 38168237 PMCID: PMC10760046 DOI: 10.1101/2023.12.12.571235] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Human influenza virus evolves to escape neutralization by polyclonal antibodies. However, we have a limited understanding of how the antigenic effects of viral mutations vary across the human population, and how this heterogeneity affects virus evolution. Here we use deep mutational scanning to map how mutations to the hemagglutinin (HA) proteins of the A/Hong Kong/45/2019 (H3N2) and A/Perth/16/2009 (H3N2) strains affect neutralization by serum from individuals of a variety of ages. The effects of HA mutations on serum neutralization differ across age groups in ways that can be partially rationalized in terms of exposure histories. Mutations that fixed in influenza variants after 2020 cause the greatest escape from sera from younger individuals. Overall, these results demonstrate that influenza faces distinct antigenic selection regimes from different age groups, and suggest approaches to understand how this heterogeneous selection shapes viral evolution.
Collapse
Affiliation(s)
- Frances C Welsh
- Molecular and Cellular Biology Graduate Program, University of Washington, and Basic Sciences Division, Fred Hutch Cancer Center, Seattle, WA, 98109, USA
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Rachel T Eguia
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Howard Hughes Medical Institute, Seattle, WA, 98109, USA
| | - Juhye M Lee
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Howard Hughes Medical Institute, Seattle, WA, 98109, USA
| | - Hugh K Haddox
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Jared Galloway
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Nguyen Van Vinh Chau
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Andrea N Loes
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Howard Hughes Medical Institute, Seattle, WA, 98109, USA
| | - John Huddleston
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Timothy C Yu
- Molecular and Cellular Biology Graduate Program, University of Washington, and Basic Sciences Division, Fred Hutch Cancer Center, Seattle, WA, 98109, USA
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Mai Quynh Le
- National Institutes for Hygiene and Epidemiology, Hanoi, Vietnam
| | - Nguyen T D Nhat
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Nguyen Thi Le Thanh
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Division of Allergy and Infectious Diseases, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Helen Y Chu
- Division of Allergy and Infectious Diseases, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Janet A Englund
- Seattle Children's Research Institute, Seattle, WA, 98109, USA
| | - Trevor Bedford
- Howard Hughes Medical Institute, Seattle, WA, 98109, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Frederick A Matsen
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Howard Hughes Medical Institute, Seattle, WA, 98109, USA
| | - Maciej F Boni
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Howard Hughes Medical Institute, Seattle, WA, 98109, USA
| |
Collapse
|
7
|
Liu L, Chen G, Huang S, Wen F. Receptor Binding Properties of Neuraminidase for influenza A virus: An Overview of Recent Research Advances. Virulence 2023; 14:2235459. [PMID: 37469130 PMCID: PMC10361132 DOI: 10.1080/21505594.2023.2235459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/20/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023] Open
Abstract
Influenza A viruses (IAVs) pose a serious risk to both human and animal health. IAVs' receptor binding characteristics account for a major portion of their host range and tissue tropism. While the function of neuraminidase (NA) in promoting the release of progeny virus is well-known, its role in the virus entry process remains poorly understood. Studies have suggested that certain subtypes of NA can act as receptor-binding proteins, either alone or in conjunction with haemagglutinin (HA). An important distinction is that NA from the avian influenza virus have a second sialic acid-binding site (2SBS) that is preserved in avian strains but missing in human or swine strains. Those observations suggest that the 2SBS may play a key role in the adaptation of the avian influenza virus to mammalian hosts. In this review, we provide an update of the recent research advances in the receptor-binding role of NA and highlight its underestimated importance during the early stages of the IAV life cycle. By doing so, we aim to provide new insights into the mechanisms underlying IAV host adaptation and pathogenesis.
Collapse
Affiliation(s)
- Lian Liu
- School of Medicine, Foshan University, Foshan, China
| | - Gaojie Chen
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Shujian Huang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Feng Wen
- School of Life Science and Engineering, Foshan University, Foshan, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
8
|
Kistler KE, Bedford T. An atlas of continuous adaptive evolution in endemic human viruses. Cell Host Microbe 2023; 31:1898-1909.e3. [PMID: 37883977 DOI: 10.1016/j.chom.2023.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/25/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023]
Abstract
Through antigenic evolution, viruses such as seasonal influenza evade recognition by neutralizing antibodies. This means that a person with antibodies well tuned to an initial infection will not be protected against the same virus years later and that vaccine-mediated protection will decay. To expand our understanding of which endemic human viruses evolve in this fashion, we assess adaptive evolution across the genome of 28 endemic viruses spanning a wide range of viral families and transmission modes. Surface proteins consistently show the highest rates of adaptation, and ten viruses in this panel are estimated to undergo antigenic evolution to selectively fix mutations that enable the escape of prior immunity. Thus, antibody evasion is not an uncommon evolutionary strategy among human viruses, and monitoring this evolution will inform future vaccine efforts. Additionally, by comparing overall amino acid substitution rates, we show that SARS-CoV-2 is accumulating protein-coding changes at substantially faster rates than endemic viruses.
Collapse
Affiliation(s)
- Kathryn E Kistler
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA, USA.
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|
9
|
Gao R, Pascua PNQ, Nguyen HT, Chesnokov A, Champion C, Mishin VP, Wentworth DE, Gubareva LV. New insights into the neuraminidase-mediated hemagglutination activity of influenza A(H3N2) viruses. Antiviral Res 2023; 218:105719. [PMID: 37717821 PMCID: PMC10549826 DOI: 10.1016/j.antiviral.2023.105719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/07/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Influenza virus neuraminidase (NA) can act as a receptor-binding protein, a role commonly attributed to hemagglutinin (HA). In influenza A(H3N2) viruses, three NA amino acid residues have previously been associated with NA-mediated hemagglutination: T148, D151, and more recently, H150. These residues are part of the 150-loop of the NA monomer. Substitutions at 148 and 151 arise from virus propagation in laboratory cell cultures, whereas changes at 150 occurred during virus evolution in the human host. In this study, we examined the effect of natural amino acid polymorphism at position 150 on NA-mediated hemagglutination. Using the A/Puerto Rico/8/34 backbone, we generated a comprehensive panel of recombinant A(H3N2) viruses that have different NAs but shared an HA that displays poor binding to red blood cells (RBCs). None of the tested substitutions at 150 (C, H, L, R, and S) promoted NA-binding. However, we identified two new determinants of NA-binding, Q136K and T439R, that emerged during virus culturing. Similar to T148I, both Q136K and T439R reduced NA enzyme activity by 48-86% and inhibition (14- to 173-fold) by the NA inhibitor zanamivir. NA-binding was observed when a virus preparation contained approximately 10% of NA variants with either T148I or T439R, highlighting the benefit of using deep sequencing in virus characterization. Taken together, our findings provide new insights into the molecular mechanisms underlying the ability of NA to function as a binding protein. Information gained may aid in the design of new and improved NA-targeting antivirals.
Collapse
Affiliation(s)
- Rongyuan Gao
- Influenza Division, NCIRD, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | | | - Ha T Nguyen
- Influenza Division, NCIRD, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Anton Chesnokov
- Influenza Division, NCIRD, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Chloe Champion
- Influenza Division, NCIRD, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA; Chippewa Government Solutions, Sault Sainte Marie, MI, USA
| | - Vasiliy P Mishin
- Influenza Division, NCIRD, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Dave E Wentworth
- Influenza Division, NCIRD, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Larisa V Gubareva
- Influenza Division, NCIRD, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA.
| |
Collapse
|
10
|
AbuBakar U, Amrani L, Kamarulzaman FA, Karsani SA, Hassandarvish P, Khairat JE. Avian Influenza Virus Tropism in Humans. Viruses 2023; 15:833. [PMID: 37112812 PMCID: PMC10142937 DOI: 10.3390/v15040833] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
An influenza pandemic happens when a novel influenza A virus is able to infect and transmit efficiently to a new, distinct host species. Although the exact timing of pandemics is uncertain, it is known that both viral and host factors play a role in their emergence. Species-specific interactions between the virus and the host cell determine the virus tropism, including binding and entering cells, replicating the viral RNA genome within the host cell nucleus, assembling, maturing and releasing the virus to neighboring cells, tissues or organs before transmitting it between individuals. The influenza A virus has a vast and antigenically varied reservoir. In wild aquatic birds, the infection is typically asymptomatic. Avian influenza virus (AIV) can cross into new species, and occasionally it can acquire the ability to transmit from human to human. A pandemic might occur if a new influenza virus acquires enough adaptive mutations to maintain transmission between people. This review highlights the key determinants AIV must achieve to initiate a human pandemic and describes how AIV mutates to establish tropism and stable human adaptation. Understanding the tropism of AIV may be crucial in preventing virus transmission in humans and may help the design of vaccines, antivirals and therapeutic agents against the virus.
Collapse
Affiliation(s)
- Umarqayum AbuBakar
- Institute of Biological Sciences (ISB), Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Lina Amrani
- Institute of Biological Sciences (ISB), Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Farah Ayuni Kamarulzaman
- Institute of Biological Sciences (ISB), Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Saiful Anuar Karsani
- Institute of Biological Sciences (ISB), Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Pouya Hassandarvish
- Tropical Infectious Diseases Research and Education Center, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Jasmine Elanie Khairat
- Institute of Biological Sciences (ISB), Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
11
|
Scheibner D, Salaheldin AH, Bagato O, Zaeck LM, Mostafa A, Blohm U, Müller C, Eweas AF, Franzke K, Karger A, Schäfer A, Gischke M, Hoffmann D, Lerolle S, Li X, Abd El-Hamid HS, Veits J, Breithaupt A, Boons GJ, Matrosovich M, Finke S, Pleschka S, Mettenleiter TC, de Vries RP, Abdelwhab EM. Phenotypic effects of mutations observed in the neuraminidase of human origin H5N1 influenza A viruses. PLoS Pathog 2023; 19:e1011135. [PMID: 36745654 PMCID: PMC9934401 DOI: 10.1371/journal.ppat.1011135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/16/2023] [Accepted: 01/18/2023] [Indexed: 02/07/2023] Open
Abstract
Global spread and regional endemicity of H5Nx Goose/Guangdong avian influenza viruses (AIV) pose a continuous threat for poultry production and zoonotic, potentially pre-pandemic, transmission to humans. Little is known about the role of mutations in the viral neuraminidase (NA) that accompanied bird-to-human transmission to support AIV infection of mammals. Here, after detailed analysis of the NA sequence of human H5N1 viruses, we studied the role of A46D, L204M, S319F and S430G mutations in virus fitness in vitro and in vivo. Although H5N1 AIV carrying avian- or human-like NAs had similar replication efficiency in avian cells, human-like NA enhanced virus replication in human airway epithelia. The L204M substitution consistently reduced NA activity of H5N1 and nine other influenza viruses carrying NA of groups 1 and 2, indicating a universal effect. Compared to the avian ancestor, human-like H5N1 virus has less NA incorporated in the virion, reduced levels of viral NA RNA replication and NA expression. We also demonstrate increased accumulation of NA at the plasma membrane, reduced virus release and enhanced cell-to-cell spread. Furthermore, NA mutations increased virus binding to human-type receptors. While not affecting high virulence of H5N1 in chickens, the studied NA mutations modulated virulence and replication of H5N1 AIV in mice and to a lesser extent in ferrets. Together, mutations in the NA of human H5N1 viruses play different roles in infection of mammals without affecting virulence or transmission in chickens. These results are important to understand the genetic determinants for replication of AIV in mammals and should assist in the prediction of AIV with zoonotic potential.
Collapse
Affiliation(s)
- David Scheibner
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Ahmed H. Salaheldin
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Alexandria University, El-Beheira, Egypt
| | - Ola Bagato
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Water Pollution Research Department, Dokki, Giza, Egypt
| | - Luca M. Zaeck
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Water Pollution Research Department, Dokki, Giza, Egypt
| | - Ulrike Blohm
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Christin Müller
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
| | - Ahmed F. Eweas
- Department of Medicinal Chemistry, National Research Center, Dokki, Giza, Egypt; Department of Science, University of Technology and Applied Sciences-Rustaq, Rustaq, Sultanate of Oman
| | - Kati Franzke
- Institute of Infectology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Alexander Schäfer
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Marcel Gischke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Solène Lerolle
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Xuguang Li
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology and Emerging Pathogens Research Centre, University of Ottawa, Ottawa, Ontario, Canada
| | - Hatem S. Abd El-Hamid
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Damanhur University, Al-Buheira, Egypt
| | - Jutta Veits
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Geert-Jan Boons
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Science, the Netherlands
| | | | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Stephan Pleschka
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research (DZIF) partner site Giessen-Marburg-Langen, Germany
| | - Thomas C. Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Robert P. de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Science, the Netherlands
| | - Elsayed M. Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- * E-mail:
| |
Collapse
|
12
|
Matsubara T, Ogami A, Kori H, Hashizume M, Sato T. Detection of Influenza Virus by Agglutination of Microparticles Immobilized a Mixed Glycan Receptor Produced from Cells. ACS APPLIED BIO MATERIALS 2022; 5:2130-2134. [DOI: 10.1021/acsabm.2c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Teruhiko Matsubara
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi,
Kouhoku-ku, Yokohama 223-8522, Japan
| | - Ayaka Ogami
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi,
Kouhoku-ku, Yokohama 223-8522, Japan
| | - Haruka Kori
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi,
Kouhoku-ku, Yokohama 223-8522, Japan
| | - Mineo Hashizume
- Department of Industrial Chemistry, Tokyo University of Science, 12-1 Ichigayafunagawara-machi, Shinjuku-ku, Tokyo 162-0826, Japan
| | - Toshinori Sato
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi,
Kouhoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
13
|
Wen F, Cheng Q, Guo J, Zhang H, Liu Q. Second receptor binding site of influenza A virus neuraminidase: a key factor for virus host range? Future Virol 2022. [DOI: 10.2217/fvl-2021-0237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Feng Wen
- College of Life Science & Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Qing Cheng
- College of Life Science & Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Jinyue Guo
- College of Life Science & Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Haoji Zhang
- College of Life Science & Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Quan Liu
- College of Life Science & Engineering, Foshan University, Foshan, Guangdong, 528231, China
| |
Collapse
|
14
|
Wang Y, Tang CY, Wan XF. Antigenic characterization of influenza and SARS-CoV-2 viruses. Anal Bioanal Chem 2022; 414:2841-2881. [PMID: 34905077 PMCID: PMC8669429 DOI: 10.1007/s00216-021-03806-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022]
Abstract
Antigenic characterization of emerging and re-emerging viruses is necessary for the prevention of and response to outbreaks, evaluation of infection mechanisms, understanding of virus evolution, and selection of strains for vaccine development. Primary analytic methods, including enzyme-linked immunosorbent/lectin assays, hemagglutination inhibition, neuraminidase inhibition, micro-neutralization assays, and antigenic cartography, have been widely used in the field of influenza research. These techniques have been improved upon over time for increased analytical capacity, and some have been mobilized for the rapid characterization of the SARS-CoV-2 virus as well as its variants, facilitating the development of highly effective vaccines within 1 year of the initially reported outbreak. While great strides have been made for evaluating the antigenic properties of these viruses, multiple challenges prevent efficient vaccine strain selection and accurate assessment. For influenza, these barriers include the requirement for a large virus quantity to perform the assays, more than what can typically be provided by the clinical samples alone, cell- or egg-adapted mutations that can cause antigenic mismatch between the vaccine strain and circulating viruses, and up to a 6-month duration of vaccine development after vaccine strain selection, which allows viruses to continue evolving with potential for antigenic drift and, thus, antigenic mismatch between the vaccine strain and the emerging epidemic strain. SARS-CoV-2 characterization has faced similar challenges with the additional barrier of the need for facilities with high biosafety levels due to its infectious nature. In this study, we review the primary analytic methods used for antigenic characterization of influenza and SARS-CoV-2 and discuss the barriers of these methods and current developments for addressing these challenges.
Collapse
Affiliation(s)
- Yang Wang
- MU Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Cynthia Y Tang
- MU Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
| | - Xiu-Feng Wan
- MU Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, MO, USA.
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA.
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA.
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
15
|
Huang QJ, Song K, Xu C, Bolon DNA, Wang JP, Finberg RW, Schiffer CA, Somasundaran M. Quantitative structural analysis of influenza virus by cryo-electron tomography and convolutional neural networks. Structure 2022; 30:777-786.e3. [PMID: 35290796 PMCID: PMC9610019 DOI: 10.1016/j.str.2022.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/08/2021] [Accepted: 02/17/2022] [Indexed: 01/01/2023]
Abstract
Influenza viruses pose severe public health threats globally. Influenza viruses are extensively pleomorphic, in shape, size, and organization of viral proteins. Analysis of influenza morphology and ultrastructure can help elucidate viral structure-function relationships and aid in therapeutics and vaccine development. While cryo-electron tomography (cryoET) can depict the 3D organization of pleomorphic influenza, the low signal-to-noise ratio inherent to cryoET and viral heterogeneity have precluded detailed characterization of influenza viruses. In this report, we leveraged convolutional neural networks and cryoET to characterize the morphological architecture of the A/Puerto Rico/8/34 (H1N1) influenza strain. Our pipeline improved the throughput of cryoET analysis and accurately identified viral components within tomograms. Using this approach, we successfully characterized influenza morphology, glycoprotein density, and conducted subtomogram averaging of influenza glycoproteins. Application of this processing pipeline can aid in the structural characterization of not only influenza viruses, but other pleomorphic viruses and infected cells.
Collapse
Affiliation(s)
- Qiuyu J Huang
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Kangkang Song
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Chen Xu
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Daniel N A Bolon
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Jennifer P Wang
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Robert W Finberg
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
| | - Mohan Somasundaran
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
16
|
Identification of a permissive secondary mutation that restores the enzymatic activity of oseltamivir resistance mutation H275Y. J Virol 2022; 96:e0198221. [PMID: 35045267 DOI: 10.1128/jvi.01982-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many oseltamivir resistance mutations exhibit fitness defects in the absence of drug pressure that hinders their propagation in hosts. Secondary permissive mutations can rescue fitness defects and facilitate the segregation of resistance mutations in viral populations. Previous studies have identified a panel of permissive or compensatory mutations in neuraminidase (NA) that restore the growth defect of the predominant oseltamivir resistance mutation (H275Y) in H1N1 influenza A. In prior work, we identified a hyperactive mutation (Y276F) that increased NA activity by approximately 70%. While Y276F had not been previously identified as a permissive mutation, we hypothesized that Y276F may counteract the defects caused by H275Y by buffering its reduced NA expression and enzyme activity. In this study we measured the relative fitness, NA activity, and surface expression, as well as sensitivity to oseltamivir, for several oseltamivir resistance mutations including H275Y in the wildtype or Y276F genetic background. Our results demonstrate that Y276F selectively rescues the fitness defect of H275Y by restoring its NA surface expression and enzymatic activity, elucidating the local compensatory structural impacts of Y276F on the adjacent H275Y. Importance The potential for influenza A virus (IAV) to cause pandemics makes understanding evolutionary mechanisms that impact drug resistance critical for developing surveillance and treatment strategies. Oseltamivir is the most widely used therapeutic strategy to treat IAV infections, but mutations in IAV can lead to drug resistance. The main oseltamivir resistance mutation, H275Y, occurs in the neuraminidase (NA) protein of IAV and reduces drug binding as well as NA function. Here, we identify a new helper mutation, Y276F that can rescue the functional defects of H275Y and contribute to the evolution of drug resistance in IAV.
Collapse
|
17
|
Yu Y, Wu M, Cui X, Xu F, Wen F, Pan L, Li S, Sun H, Zhu X, Lin J, Feng Y, Li M, Liu Y, Yuan S, Liao M, Sun H. Pathogenicity and transmissibility of current H3N2 swine influenza virus in Southern China: A zoonotic potential. Transbound Emerg Dis 2021; 69:2052-2064. [PMID: 34132051 DOI: 10.1111/tbed.14190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/12/2021] [Accepted: 06/12/2021] [Indexed: 11/27/2022]
Abstract
Swine are considered as 'mixing vessels' of influenza A viruses and play an important role in the generation of novel influenza pandemics. In this study, we described that the H3N2 swine influenza (swH3N2) viruses currently circulating in pigs in Guangdong province carried six internal genes from 2009 pandemic H1N1 virus (pmd09), and their antigenicity was obviously different from that of current human H3N2 influenza viruses or recommended vaccine strains (A/Guangdong/1194/2019, A/Hong Kong/4801/2014). These swH3N2 viruses preferentially bonded to the human-like receptors, and efficiently replicated in human, canine and swine cells. In addition, the virus replicated in turbinate and trachea of guinea pigs, and efficiently transmitted among guinea pigs, and virus shedding last for 6 days post-infection (dpi). The virus replicated in the respiratory tract of pigs, effectively transmitted among pigs, and virus shedding last until 9 dpi. Taken together, these current swH3N2 viruses might have the zoonotic potential. Strengthening surveillance and monitoring the pathogenicity of such swH3N2 viruses are urgently needed.
Collapse
Affiliation(s)
- Yanan Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Meihua Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Xinxin Cui
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Fengxiang Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Feng Wen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Liangqi Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Shuo Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Huapeng Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Xuhui Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Jiate Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Yaling Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Mingliang Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Yang Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Shaohua Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| | - Hailiang Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, Guangzhou, China
| |
Collapse
|
18
|
Walti CS, Loes AN, Shuey K, Krantz EM, Boonyaratanakornkit J, Keane-Candib J, Loeffelholz T, Wolf CR, Taylor JJ, Gardner RA, Green DJ, Cowan AJ, Maloney DG, Turtle CJ, Pergam SA, Chu HY, Bloom JD, Hill JA. Humoral immunogenicity of the seasonal influenza vaccine before and after CAR-T-cell therapy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021. [PMID: 34013294 PMCID: PMC8132269 DOI: 10.1101/2021.05.10.21256634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recipients of chimeric antigen receptor-modified T (CAR-T) cell therapies for B-cell malignancies are immunocompromised and at risk for serious infections. Vaccine immunogenicity is unknown in this population. We conducted a prospective observational study of the humoral immunogenicity of 2019-2020 inactivated influenza vaccines (IIV) in children and adults immediately prior to (n=7) or 13-57 months after (n=15) CD19-, CD20-, or BCMA-targeted CAR-T-cell therapy, as well as controls (n=8). Individuals post-CAR-T-cell therapy were in remission. We tested for antibodies to 4 vaccine strains at baseline and ≥1 time point after IIV using neutralization and hemagglutination inhibition assays. An antibody response was defined as a ≥4-fold titer increase from baseline at the first post-vaccine time point. Baseline A(H1N1) titers in the CAR-T cohorts were significantly lower compared to controls. Antibody responses to ≥1 vaccine strain occurred in 2 (29%) individuals before CAR-T-cell therapy; one individual maintained a response for >3 months post-CAR-T-cell therapy. Antibody responses to ≥1 vaccine strain occurred in 6 (40%) individuals vaccinated after CAR-T-cell therapy. An additional 2 (29%) and 6 (40%) individuals had ≥2-fold increases (at any time) in the pre- and post-CAR-T cohorts, respectively. There were no identified clinical or immunologic predictors of antibody responses. Neither severe hypogammaglobulinemia nor B-cell aplasia precluded antibody responses. These data support consideration for vaccination before and after CAR-T-cell therapy for influenza and other relevant pathogens such as SARS-CoV-2, irrespective of hypogammaglobulinemia or B-cell aplasia. Larger studies are needed to determine correlates of vaccine immunogenicity and durability in CAR-T-cell therapy recipients. Key Points Influenza vaccination was immunogenic pre- and post-CAR-T-cell therapy, despite hypogammaglobulinemia and B-cell aplasia.Vaccination with inactivated vaccines can be considered before CAR-T-cell therapy and in individuals with remission after therapy.
Collapse
|
19
|
Zhang T, Du H, Guo L, Liu F, Su H, Yang F. Identifying novel amino acid substitutions of hemagglutinin involved in virulence enhancement in H7N9 virus strains. Virol J 2021; 18:14. [PMID: 33430903 PMCID: PMC7798331 DOI: 10.1186/s12985-020-01464-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/04/2020] [Indexed: 11/10/2022] Open
Abstract
Background To identify site-specific features of amino acid substitutions that confer enhanced H7N9 virulence in humans, we independently generated mammalian-adapted variants of A/Anhui/1/2013 (AH-H7N9) and A/Shanghai/2/2013 (SH-H7N9) by serial passaging in Madin-Darby canine kidney (MDCK) cells. Methods Virus was respectively extracted from cell culture supernatant and cells, and was absolutely quantified by using real-time polymerase chain reaction. Viral RNAs were extracted and subjected to sequencing for identifying mutations. Then, site-specific mutations introduced by viral passaging were selected for further constructing HA7 or NA9 mutant plasmids, which were used to generate recombinant viruses. The interaction between the recombinant HA and receptors, H7N9-pseudotyped viruses and receptors were detected. Results Both subtypes displayed high variability in replicative capability and virulence during serial passaging. Analysis of viral genomes revealed multiple amino acid mutations in the hemagglutinin 7 (HA7) (A135T [AH-H7N9], T71I [SH-H7N9], T157I [SH-H7N9], T71I-V223I [SH-H7N9], T71I-T157I-V223I [SH-H7N9], and T71I-T157I-V223I-T40I [SH-H7N9]), and NA9 (N171S [AH-H7N9] and G335S [AH-H7N9]) proteins in various strains of the corresponding subtypes. Notably, quite a few amino acid substitutions indeed collectively strengthened the interactions between H7N9 strains and sialic acid receptors. Moreover, some of the amino acid substitutions identified were highly and specifically cytopathogenic to MDCK cells. Conclusions This study demonstrated that AH-H7N9 and SH-H7N9 subtypes can acquire enhanced receptor affinity for sialic receptors through novel amino acid substitutions. Such changes in affinitive interactions are conferred by site-specific mutations of HA7 proteins that affect the virulence and pathology of the virus strain, and/or limited compatibility between the host and the virus strain.
Collapse
Affiliation(s)
- Ting Zhang
- MHC Key Laboratory of Systems Biology of Pathogen, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Haiwei Du
- MHC Key Laboratory of Systems Biology of Pathogen, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Guo
- MHC Key Laboratory of Systems Biology of Pathogen, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Feng Liu
- MHC Key Laboratory of Systems Biology of Pathogen, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haoxiang Su
- MHC Key Laboratory of Systems Biology of Pathogen, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fan Yang
- MHC Key Laboratory of Systems Biology of Pathogen, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
20
|
Coronavirus hemagglutinin-esterase and spike proteins coevolve for functional balance and optimal virion avidity. Proc Natl Acad Sci U S A 2020; 117:25759-25770. [PMID: 32994342 DOI: 10.1073/pnas.2006299117] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human coronaviruses OC43 and HKU1 are respiratory pathogens of zoonotic origin that have gained worldwide distribution. OC43 apparently emerged from a bovine coronavirus (BCoV) spillover. All three viruses attach to 9-O-acetylated sialoglycans via spike protein S with hemagglutinin-esterase (HE) acting as a receptor-destroying enzyme. In BCoV, an HE lectin domain promotes esterase activity toward clustered substrates. OC43 and HKU1, however, lost HE lectin function as an adaptation to humans. Replaying OC43 evolution, we knocked out BCoV HE lectin function and performed forced evolution-population dynamics analysis. Loss of HE receptor binding selected for second-site mutations in S, decreasing S binding affinity by orders of magnitude. Irreversible HE mutations led to cooperativity in virus swarms with low-affinity S minority variants sustaining propagation of high-affinity majority phenotypes. Salvageable HE mutations induced successive second-site substitutions in both S and HE. Apparently, S and HE are functionally interdependent and coevolve to optimize the balance between attachment and release. This mechanism of glycan-based receptor usage, entailing a concerted, fine-tuned activity of two envelope protein species, is unique among CoVs, but reminiscent of that of influenza A viruses. Apparently, general principles fundamental to virion-sialoglycan interactions prompted convergent evolution of two important groups of human and animal pathogens.
Collapse
|
21
|
Loes AN, Gentles LE, Greaney AJ, Crawford KHD, Bloom JD. Attenuated Influenza Virions Expressing the SARS-CoV-2 Receptor-Binding Domain Induce Neutralizing Antibodies in Mice. Viruses 2020; 12:E987. [PMID: 32899480 PMCID: PMC7552029 DOI: 10.3390/v12090987] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022] Open
Abstract
An effective vaccine is essential for controlling the spread of the SARS-CoV-2 virus. Here, we describe an influenza virus-based vaccine for SARS-CoV-2. We incorporated a membrane-anchored form of the SARS-CoV-2 spike receptor binding domain (RBD) in place of the neuraminidase (NA) coding sequence in an influenza virus also possessing a mutation that reduces the affinity of hemagglutinin for its sialic acid receptor. The resulting ΔNA(RBD)-Flu virus can be generated by reverse genetics and grown to high titers in cell culture. A single-dose intranasal inoculation of mice with ΔNA(RBD)-Flu elicits serum neutralizing antibody titers against SAR-CoV-2 comparable to those observed in humans following natural infection (~1:200). Furthermore, ΔNA(RBD)-Flu itself causes no apparent disease in mice. It might be possible to produce a vaccine similar to ΔNA(RBD)-Flu at scale by leveraging existing platforms for the production of influenza vaccines.
Collapse
Affiliation(s)
- Andrea N. Loes
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (A.N.L.); (L.E.G.); (A.J.G.); (K.H.D.C.)
- Howard Hughes Medical Institute, Seattle, WA 98103, USA
| | - Lauren E. Gentles
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (A.N.L.); (L.E.G.); (A.J.G.); (K.H.D.C.)
- Department of Microbiology, University of Washington, Seattle, WA 98195-7735, USA
| | - Allison J. Greaney
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (A.N.L.); (L.E.G.); (A.J.G.); (K.H.D.C.)
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Katharine H. D. Crawford
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (A.N.L.); (L.E.G.); (A.J.G.); (K.H.D.C.)
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Jesse D. Bloom
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (A.N.L.); (L.E.G.); (A.J.G.); (K.H.D.C.)
- Howard Hughes Medical Institute, Seattle, WA 98103, USA
- Department of Microbiology, University of Washington, Seattle, WA 98195-7735, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
22
|
Loes AN, Gentles LE, Greaney AJ, Crawford KHD, Bloom JD. Attenuated influenza virions expressing the SARS-CoV-2 receptor-binding domain induce neutralizing antibodies in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.08.12.248823. [PMID: 32817935 PMCID: PMC7430565 DOI: 10.1101/2020.08.12.248823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
An effective vaccine is essential to controlling the spread of SARS-CoV-2 virus. Here, we describe an influenza-virus-based vaccine for SARS-CoV-2. We incorporated a membrane-anchored form of the SARS-CoV-2 Spike receptor binding domain (RBD) in place of the neuraminidase (NA) coding sequence in an influenza virus also possessing a mutation that reduces the affinity of hemagglutinin for its sialic acid receptor. The resulting ΔNA(RBD)-Flu virus can be generated by reverse genetics and grown to high titers in cell culture. A single-dose intranasal inoculation of mice with ΔNA(RBD)-Flu elicits serum neutralizing antibody titers against SAR-CoV-2 comparable to those observed in humans following natural infection (~1:200). Furthermore, ΔNA(RBD)-Flu itself causes no apparent disease in mice. It might be possible to produce a vaccine similar to ΔNA(RBD)-Flu at scale by leveraging existing platforms for production of influenza vaccines.
Collapse
Affiliation(s)
- Andrea N. Loes
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98103, USA
| | - Lauren E. Gentles
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Microbiology, University of Washington, Seattle, WA 98195-7735, USA
| | - Allison J. Greaney
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Katharine H. D. Crawford
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Jesse D. Bloom
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98103, USA
- Department of Microbiology, University of Washington, Seattle, WA 98195-7735, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
23
|
Zhong M, Yu Y, Song JQ, Jia TW, Liu AY, Zhao TF, He HJ, Yang MB, Zhang WX, Yang Y. Amide-sialoside protein conjugates as neomucin bioshields prevent influenza virus infection. Carbohydr Res 2020; 495:108088. [PMID: 32807356 DOI: 10.1016/j.carres.2020.108088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 10/24/2022]
Abstract
We report the preparation of multivalent amide-sialoside-decorated human serum albumin (HSA) and bovine serum albumin (BSA) as mimics of natural mucin and bioshields against influenza virus infection. Free sialic acid with an amine on C-2 was covalently attached to the protein scaffolds using di-(N-succinimidyl) adipate. Dynamic light scattering (DLS) showed that the synthetic neomucins were able to act as bioshields and aggregate the influenza virion particles. The dissociation constants (KD) of the interactions between the prepared glycoconjugates and three different viral strains were measured by isothermal titration calorimetry (ITC) indicating the multivalent presentation of sialyl ligands on the HSA and BSA backbones can dramatically enhance the adsorbent capability compared to the corresponding monomeric sialoside. Hemagglutinin inhibition (HAI) and neuraminidase inhibition (NAI) assays showed that the glycoconjugates acted as moderate HA and NA inhibitors, thus impeding viral infection. Moreover, the different binding affinities of the glycoproteins to HA and NA proteins from different influenza viruses demonstrated the importance of HA/NA balance in viral replication and evolution. These findings provide a foundation for the development of antiviral drugs and viral adsorbent materials based on mimicking the structure of mucin.
Collapse
Affiliation(s)
- Ming Zhong
- Medical College of Shaoguan University, Shaoguan, 512026, Guangdong Province, China
| | - Yao Yu
- Key Laboratory of Industrial Microbiology, Ministry of Education, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Jia-Qi Song
- Key Laboratory of Industrial Microbiology, Ministry of Education, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Tian-Wei Jia
- Key Laboratory of Industrial Microbiology, Ministry of Education, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Ao-Yun Liu
- Key Laboratory of Industrial Microbiology, Ministry of Education, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Teng-Fei Zhao
- Key Laboratory of Industrial Microbiology, Ministry of Education, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Hao-Jie He
- Key Laboratory of Industrial Microbiology, Ministry of Education, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Mei-Bing Yang
- Key Laboratory of Industrial Microbiology, Ministry of Education, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Wen-Xuan Zhang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yang Yang
- Key Laboratory of Industrial Microbiology, Ministry of Education, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China.
| |
Collapse
|
24
|
Broszeit F, Tzarum N, Zhu X, Nemanichvili N, Eggink D, Leenders T, Li Z, Liu L, Wolfert MA, Papanikolaou A, Martínez-Romero C, Gagarinov IA, Yu W, García-Sastre A, Wennekes T, Okamatsu M, Verheije MH, Wilson IA, Boons GJ, de Vries RP. N-Glycolylneuraminic Acid as a Receptor for Influenza A Viruses. Cell Rep 2020; 27:3284-3294.e6. [PMID: 31189111 PMCID: PMC6750725 DOI: 10.1016/j.celrep.2019.05.048] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 03/05/2019] [Accepted: 05/15/2019] [Indexed: 12/05/2022] Open
Abstract
A species barrier for the influenza A virus is the differential expression of sialic acid, which can either be α2,3-linked for avians or α2,6-linked for human viruses. The influenza A virus hosts also express other species-specific sialic acid derivatives. One major modification at C-5 is N-glycolyl (NeuGc), instead of N-acetyl (NeuAc). N-glycolyl is mammalian specific and expressed in pigs and horses, but not in humans, ferrets, seals, or dogs. Hemagglutinin (HA) adaptation to either N-acetyl or N-glycolyl is analyzed on a sialoside microarray containing both α2,3- and α2,6-linkage modifications on biologically relevant N-glycans. Binding studies reveal that avian, human, and equine HAs bind either N-glycolyl or N-acetyl. Structural data on N-glycolyl binding HA proteins of both H5 and H7 origin describe this specificity. Neuraminidases can cleave N-glycolyl efficiently, and tissue-binding studies reveal strict species specificity. The exclusive manner in which influenza A viruses differentiate between N-glycolyl and N-acetyl is indicative of selection. Broszeit and colleagues demonstrate that influenza A viruses recognize either N-acetyl or N-glycolyl neuraminic acid, and they explain these specificities using X-ray structures. NeuGc-binding viruses are perfectly viable, and neuraminidases can cleave NeuGc-containing receptor structures. There is an apparent selection now for NeuAc, as no known NeuGc-binding virus currently circulates.
Collapse
Affiliation(s)
- Frederik Broszeit
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Netanel Tzarum
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nikoloz Nemanichvili
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Dirk Eggink
- Department of Experimental Virology, Amsterdam Medical Centre, Amsterdam, the Netherlands
| | - Tim Leenders
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Zeshi Li
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Margreet A Wolfert
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands; Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Andreas Papanikolaou
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Carles Martínez-Romero
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ivan A Gagarinov
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Wenli Yu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tom Wennekes
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Masatoshi Okamatsu
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Monique H Verheije
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Geert-Jan Boons
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands; Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Robert P de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|
25
|
Gentles LE, Wan H, Eichelberger MC, Bloom JD. Antibody Neutralization of an Influenza Virus that Uses Neuraminidase for Receptor Binding. Viruses 2020; 12:v12060597. [PMID: 32486222 PMCID: PMC7354634 DOI: 10.3390/v12060597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
Influenza virus infection elicits antibodies against the receptor-binding protein hemagglutinin (HA) and the receptor-cleaving protein neuraminidase (NA). Because HA is essential for viral entry, antibodies targeting HA often potently neutralize the virus in single-cycle infection assays. However, antibodies against NA are not potently neutralizing in such assays, since NA is dispensable for single-cycle infection. Here we show that a modified influenza virus that depends on NA for receptor binding is much more sensitive than a virus with receptor-binding HA to neutralization by some anti-NA antibodies. Specifically, a virus with a receptor-binding G147R N1 NA and a binding-deficient HA is completely neutralized in single-cycle infections by an antibody that binds near the NA active site. Infection is also substantially inhibited by antibodies that bind NA epitopes distant from the active site. Finally, we demonstrate that this modified virus can be used to efficiently select mutations in NA that escape antibody binding, a task that can be laborious with typical influenza viruses that are not well neutralized by anti-NA antibodies. Thus, viruses dependent on NA for receptor binding allow for sensitive in vitro detection of antibodies binding near the catalytic site of NA and enable the selection of viral escape mutants.
Collapse
MESH Headings
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/metabolism
- Antibodies, Viral/immunology
- Antibodies, Viral/metabolism
- Epitopes/immunology
- Humans
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/metabolism
- Influenza, Human/immunology
- Influenza, Human/virology
- Neuraminidase/metabolism
- Neutralization Tests
- Orthomyxoviridae/genetics
- Orthomyxoviridae/immunology
- Orthomyxoviridae/metabolism
- RNA, Viral/genetics
- Receptors, Virus/metabolism
- Sequence Analysis, RNA
Collapse
Affiliation(s)
- Lauren E. Gentles
- Division of Basic Sciences Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA;
- Department of Microbiology, University of Washington, 1705 NE Pacific St., Seattle, WA 98195-7735, USA
| | - Hongquan Wan
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - Maryna C. Eichelberger
- Division of Biological Standards and Quantity Control, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - Jesse D. Bloom
- Division of Basic Sciences Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA;
- Department of Microbiology, University of Washington, 1705 NE Pacific St., Seattle, WA 98195-7735, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
- Correspondence:
| |
Collapse
|
26
|
Wong HH, Fung K, Nicholls JM. MDCK-B4GalNT2 cells disclose a α2,3-sialic acid requirement for the 2009 pandemic H1N1 A/California/04/2009 and NA aid entry of A/WSN/33. Emerg Microbes Infect 2020; 8:1428-1437. [PMID: 31560252 PMCID: PMC6781475 DOI: 10.1080/22221751.2019.1665971] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Switching of receptor binding preference has been widely considered as one of the necessary mutations for avian influenza viruses, enabling efficient transmissions between human hosts. By stably overexpressing B4GalNT2 gene in MDCK cells, surface α2,3-siallylactose receptors were modified without affecting α2,6-receptor expression. The cell line MDCK-B4GalNT2 was used as a tool to screen for α2,3-receptor requirements in a panel of influenza viruses with previously characterized glycan array data. Infection of viruses with α2,3-receptor binding capability was inhibited in MDCK-B4GalNT2 cells, with the exception of A/WSN/33 (WSN). Infection with the 2009 pandemic H1N1 strains, A/California/04/2009 (Cal04) and A/Hong Kong/415742/2009 (HK09), despite showing α2,6-receptor binding, was also found to be inhibited. Further investigation showed that viral inhibition was due to a reduction in viral entry rate and viral attachment. Recombinant WSN virus with the neuraminidase (NA) gene swapped to A/Puerto Rico/8/1934 (PR8) and Cal04 resulted in a significant viral inhibition in MDCK-B4GalNT2 cells. With oseltamivir, the NA active site was found to be important for the replication results of WSN, but not Cal04.
Collapse
Affiliation(s)
- Ho Him Wong
- Department of Pathology, University of Hong Kong , Hong Kong.,HKU-Pasteur Research Pole, University of Hong Kong , Hong Kong
| | - Kevin Fung
- Department of Pathology, University of Hong Kong , Hong Kong
| | - John M Nicholls
- Department of Pathology, University of Hong Kong , Hong Kong
| |
Collapse
|
27
|
Lee JM, Eguia R, Zost SJ, Choudhary S, Wilson PC, Bedford T, Stevens-Ayers T, Boeckh M, Hurt AC, Lakdawala SS, Hensley SE, Bloom JD. Mapping person-to-person variation in viral mutations that escape polyclonal serum targeting influenza hemagglutinin. eLife 2019; 8:e49324. [PMID: 31452511 PMCID: PMC6711711 DOI: 10.7554/elife.49324] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/27/2019] [Indexed: 12/11/2022] Open
Abstract
A longstanding question is how influenza virus evolves to escape human immunity, which is polyclonal and can target many distinct epitopes. Here, we map how all amino-acid mutations to influenza's major surface protein affect viral neutralization by polyclonal human sera. The serum of some individuals is so focused that it selects single mutations that reduce viral neutralization by over an order of magnitude. However, different viral mutations escape the sera of different individuals. This individual-to-individual variation in viral escape mutations is not present among ferrets that have been infected just once with a defined viral strain. Our results show how different single mutations help influenza virus escape the immunity of different members of the human population, a phenomenon that could shape viral evolution and disease susceptibility.
Collapse
Affiliation(s)
- Juhye M Lee
- Basic Sciences DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
| | - Rachel Eguia
- Basic Sciences DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Seth J Zost
- Department of MicrobiologyPerelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Saket Choudhary
- Department of Biological SciencesUniversity of Southern CaliforniaLos AngelesUnited States
| | - Patrick C Wilson
- Department of MedicineSection of Rheumatology, University of ChicagoChicagoUnited States
| | - Trevor Bedford
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Terry Stevens-Ayers
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Michael Boeckh
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | - Seema S Lakdawala
- Department of Microbiology and Molecular GeneticsSchool of Medicine, University of PittsburghPittsburghUnited States
| | - Scott E Hensley
- Department of MicrobiologyPerelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Jesse D Bloom
- Basic Sciences DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
- Howard Hughes Medical InstituteSeattleUnited States
| |
Collapse
|
28
|
Chen F, Liu T, Xu J, Huang Y, Liu S, Yang J. Key amino acid residues of neuraminidase involved in influenza A virus entry. Pathog Dis 2019; 77:5614974. [PMID: 31702775 DOI: 10.1093/femspd/ftz063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 11/07/2019] [Indexed: 11/13/2022] Open
Abstract
Generally, influenza virus neuraminidase (NA) plays a critical role in the release stage of influenza virus. Recently, it has been found that NA may promote influenza virus to access the target cells. However, the mechanism remain unclear. Here, we reported that peramivir indeed possessed anti-influenza A virus (IAV) activity in the stage of viral entry. Importantly, we verified the critical residues of influenza NA involved in the viral entry. As a result, peramivir as an efficient NA inhibitor could suppress the initiation of IAV infection. Furthermore, mutational analysis showed NA might be associated with viral entry via amino acids residues R118, E119, D151, R152, W178, I222, E227, E276, R292 and R371. Our results demonstrated NA must contain the key amino acid residues can involve in IAV entry.
Collapse
Affiliation(s)
- Fangzhao Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Teng Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Jiagui Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Yingna Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Jie Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| |
Collapse
|
29
|
Du R, Cui Q, Rong L. Competitive Cooperation of Hemagglutinin and Neuraminidase during Influenza A Virus Entry. Viruses 2019; 11:v11050458. [PMID: 31137516 PMCID: PMC6563287 DOI: 10.3390/v11050458] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 12/15/2022] Open
Abstract
The hemagglutinin (HA) and neuraminidase (NA) of influenza A virus possess antagonistic activities on interaction with sialic acid (SA), which is the receptor for virus attachment. HA binds SA through its receptor-binding sites, while NA is a receptor-destroying enzyme by removing SAs. The function of HA during virus entry has been extensively investigated, however, examination of NA has long been focused to its role in the exit of progeny virus from infected cells, and the role of NA in the entry process is still under-appreciated. This review summarizes the current understanding of the roles of HA and NA in relation to each other during virus entry.
Collapse
Affiliation(s)
- Ruikun Du
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
- Shandong Provincial Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan 250355, China.
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266122, China.
| | - Qinghua Cui
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
- Shandong Provincial Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan 250355, China.
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266122, China.
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
30
|
Wen F, Wan XF. Influenza Neuraminidase: Underrated Role in Receptor Binding. Trends Microbiol 2019; 27:477-479. [PMID: 30930001 DOI: 10.1016/j.tim.2019.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 01/08/2023]
Abstract
Influenza virus neuraminidase cleaves sialic acid groups from cell glycoproteins, enabling release of the virus from host cells. Neuraminidase also contributes to virus binding to the sialic acid groups of cell glycoproteins, which could complement the receptor-binding function of hemagglutinin, enhancing enzymatic activities of neuraminidase, and facilitate virus infection.
Collapse
Affiliation(s)
- Feng Wen
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Xiu-Feng Wan
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA.
| |
Collapse
|
31
|
Powell TJ, Rijal P, McEwen-Smith RM, Byun H, Hardwick M, Schimanski LM, Huang KYA, Daniels RS, Townsend ARM. A single cycle influenza virus coated in H7 haemagglutinin generates neutralizing antibody responses to haemagglutinin and neuraminidase glycoproteins and protection from heterotypic challenge. J Gen Virol 2019; 100:431-445. [PMID: 30714896 DOI: 10.1099/jgv.0.001228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A non-replicating form of pseudotyped influenza virus, inactivated by suppression of the haemagglutinin signal sequence (S-FLU), can act as a broadly protective vaccine. S-FLU can infect for a single round only, and induces heterotypic protection predominantly through activation of cross-reactive T cells in the lung. Unlike the licensed live attenuated virus, it cannot reassort a pandemic haemagglutinin (HA) into seasonal influenza. Here we present data on four new forms of S-FLU coated with H7 HAs from either A/Anhui/1/2013, A/Shanghai/1/2013, A/Netherlands/219/2003 or A/New York/107/2003 strains of H7 virus. We show that intranasal vaccination induced a strong local CD8 T cell response and protected against heterosubtypic X31 (H3N2) virus and highly virulent PR8 (H1N1), but not influenza B virus. Intranasal vaccination also induced a strong neutralizing antibody response to the encoded neuraminidase. If given at higher dose in the periphery with intraperitoneal administration, H7 S-FLU induced a specific neutralizing antibody response to H7 HA coating the particle. Polyvalent intraperitoneal vaccination with mixed H7 S-FLU induced a broadly neutralizing antibody response to all four H7 strains. S-FLU is a versatile vaccine candidate that could be rapidly mobilized ahead of a new pandemic threat.
Collapse
Affiliation(s)
- Timothy J Powell
- 1MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK.,†Present address: Respiratory Medicine Unit, NIHR Biomedical Research Centre, Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Pramila Rijal
- 1MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Rosanna M McEwen-Smith
- 1MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Haewon Byun
- 1MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Marc Hardwick
- 1MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Lisa M Schimanski
- 1MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Kuan-Ying A Huang
- 2Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Children's Hospital, Taoyuan City, Taiwan, ROC
| | - Rodney S Daniels
- 3Crick Worldwide Influenza Centre, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Alain R M Townsend
- 1MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| |
Collapse
|
32
|
McAuley JL, Gilbertson BP, Trifkovic S, Brown LE, McKimm-Breschkin JL. Influenza Virus Neuraminidase Structure and Functions. Front Microbiol 2019; 10:39. [PMID: 30761095 PMCID: PMC6362415 DOI: 10.3389/fmicb.2019.00039] [Citation(s) in RCA: 267] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/10/2019] [Indexed: 12/31/2022] Open
Abstract
With the constant threat of emergence of a novel influenza virus pandemic, there must be continued evaluation of the molecular mechanisms that contribute to virulence. Although the influenza A virus surface glycoprotein neuraminidase (NA) has been studied mainly in the context of its role in viral release from cells, accumulating evidence suggests it plays an important, multifunctional role in virus infection and fitness. This review investigates the various structural features of NA, linking these with functional outcomes in viral replication. The contribution of evolving NA activity to viral attachment, entry and release of virions from infected cells, and maintenance of functional balance with the viral hemagglutinin are also discussed. Greater insight into the role of this important antiviral drug target is warranted.
Collapse
Affiliation(s)
- Julie L McAuley
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Brad P Gilbertson
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Sanja Trifkovic
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, United States
| | - Lorena E Brown
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jennifer L McKimm-Breschkin
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
33
|
Mutations in Influenza A Virus Neuraminidase and Hemagglutinin Confer Resistance against a Broadly Neutralizing Hemagglutinin Stem Antibody. J Virol 2019; 93:JVI.01639-18. [PMID: 30381484 DOI: 10.1128/jvi.01639-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/22/2018] [Indexed: 11/20/2022] Open
Abstract
Influenza A virus (IAV), a major cause of human morbidity and mortality, continuously evolves in response to selective pressures. Stem-directed, broadly neutralizing antibodies (sBnAbs) targeting the influenza virus hemagglutinin (HA) are a promising therapeutic strategy, but neutralization escape mutants can develop. We used an integrated approach combining viral passaging, deep sequencing, and protein structural analyses to define escape mutations and mechanisms of neutralization escape in vitro for the F10 sBnAb. IAV was propagated with escalating concentrations of F10 over serial passages in cultured cells to select for escape mutations. Viral sequence analysis revealed three mutations in HA and one in neuraminidase (NA). Introduction of these specific mutations into IAV through reverse genetics confirmed their roles in resistance to F10. Structural analyses revealed that the selected HA mutations (S123G, N460S, and N203V) are away from the F10 epitope but may indirectly impact influenza virus receptor binding, endosomal fusion, or budding. The NA mutation E329K, which was previously identified to be associated with antibody escape, affects the active site of NA, highlighting the importance of the balance between HA and NA function for viral survival. Thus, whole-genome population sequencing enables the identification of viral resistance mutations responding to antibody-induced selective pressure.IMPORTANCE Influenza A virus is a public health threat for which currently available vaccines are not always effective. Broadly neutralizing antibodies that bind to the highly conserved stem region of the influenza virus hemagglutinin (HA) can neutralize many influenza virus strains. To understand how influenza virus can become resistant or escape such antibodies, we propagated influenza A virus in vitro with escalating concentrations of antibody and analyzed viral populations by whole-genome sequencing. We identified HA mutations near and distal to the antibody binding epitope that conferred resistance to antibody neutralization. Additionally, we identified a neuraminidase (NA) mutation that allowed the virus to grow in the presence of high concentrations of the antibody. Virus carrying dual mutations in HA and NA also grew under high antibody concentrations. We show that NA mutations mediate the escape of neutralization by antibodies against HA, highlighting the importance of a balance between HA and NA for optimal virus function.
Collapse
|
34
|
Machkovech HM, Bloom JD, Subramaniam AR. Comprehensive profiling of translation initiation in influenza virus infected cells. PLoS Pathog 2019; 15:e1007518. [PMID: 30673779 PMCID: PMC6361465 DOI: 10.1371/journal.ppat.1007518] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 02/04/2019] [Accepted: 12/10/2018] [Indexed: 12/11/2022] Open
Abstract
Translation can initiate at alternate, non-canonical start codons in response to stressful stimuli in mammalian cells. Recent studies suggest that viral infection and anti-viral responses alter sites of translation initiation, and in some cases, lead to production of novel immune epitopes. Here we systematically investigate the extent and impact of alternate translation initiation in cells infected with influenza virus. We perform evolutionary analyses that suggest selection against non-canonical initiation at CUG codons in influenza virus lineages that have adapted to mammalian hosts. We then use ribosome profiling with the initiation inhibitor lactimidomycin to experimentally delineate translation initiation sites in a human lung epithelial cell line infected with influenza virus. We identify several candidate sites of alternate initiation in influenza mRNAs, all of which occur at AUG codons that are downstream of canonical initiation codons. One of these candidate downstream start sites truncates 14 amino acids from the N-terminus of the N1 neuraminidase protein, resulting in loss of its cytoplasmic tail and a portion of the transmembrane domain. This truncated neuraminidase protein is expressed on the cell surface during influenza virus infection, is enzymatically active, and is conserved in most N1 viral lineages. We do not detect globally higher levels of alternate translation initiation on host transcripts upon influenza infection or during the anti-viral response, but the subset of host transcripts induced by the anti-viral response is enriched for alternate initiation sites. Together, our results systematically map the landscape of translation initiation during influenza virus infection, and shed light on the evolutionary forces shaping this landscape.
Collapse
Affiliation(s)
- Heather M. Machkovech
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Medical Scientist Training Program, University of Washington, Seattle, Washington, United States of America
| | - Jesse D. Bloom
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Arvind R. Subramaniam
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
35
|
Singh S. Alignment-Free Analyses of Nucleic Acid Sequences Using Graphical Representation (with Special Reference to Pandemic Bird Flu and Swine Flu). Synth Biol (Oxf) 2018. [PMCID: PMC7121243 DOI: 10.1007/978-981-10-8693-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The exponential growth in database of bio-molecular sequences have spawned many approaches towards storage, retrieval, classification and analyses requirements. Alignment-free techniques such as graphical representations and numerical characterisation (GRANCH) methods have enabled some detailed analyses of large sequences and found a number of different applications in the eukaryotic and prokaryotic domain. In particular, recalling the history of pandemic influenza in brief, we have followed the progress of viral infections such as bird flu of 1997 onwards and determined that the virus can spread conserved over space and time, that influenza virus can undergo fairly conspicuous recombination-like events in segmented genes, that certain segments of the neuraminidase and hemagglutinin surface proteins remain conserved and can be targeted for peptide vaccines. We recount in some detail a few of the representative GRANCH techniques to provide a glimpse of how these methods are used in formulating quantitative sequence descriptors to analyse DNA, RNA and protein sequences to derive meaningful results. Finally, we survey the surveillance techniques with a special reference to how the GRANCH techniques can be used for the purpose and recount the forecasts made of possible metamorphosis of pandemic bird flu to pandemic human infecting agents.
Collapse
Affiliation(s)
- Shailza Singh
- Department of Pathogenesis and Cellular Response, National Centre for Cell Science, Computational and Systems Biology Lab, Pune, Maharashtra India
| |
Collapse
|
36
|
Guo H, Rabouw H, Slomp A, Dai M, van der Vegt F, van Lent JWM, McBride R, Paulson JC, de Groot RJ, van Kuppeveld FJM, de Vries E, de Haan CAM. Kinetic analysis of the influenza A virus HA/NA balance reveals contribution of NA to virus-receptor binding and NA-dependent rolling on receptor-containing surfaces. PLoS Pathog 2018; 14:e1007233. [PMID: 30102740 PMCID: PMC6107293 DOI: 10.1371/journal.ppat.1007233] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/23/2018] [Accepted: 07/19/2018] [Indexed: 01/02/2023] Open
Abstract
Interactions of influenza A virus (IAV) with sialic acid (SIA) receptors determine viral fitness and host tropism. Binding to mucus decoy receptors and receptors on epithelial host cells is determined by a receptor-binding hemagglutinin (HA), a receptor-destroying neuraminidase (NA) and a complex in vivo receptor-repertoire. The crucial but poorly understood dynamics of these multivalent virus-receptor interactions cannot be properly analyzed using equilibrium binding models and endpoint binding assays. In this study, the use of biolayer interferometric analysis revealed the virtually irreversible nature of IAV binding to surfaces coated with synthetic sialosides or engineered sialoglycoproteins in the absence of NA activity. In addition to HA, NA was shown to be able to contribute to the initial binding rate while catalytically active. Virus-receptor binding in turn contributed to receptor cleavage by NA. Multiple low-affinity HA-SIA interactions resulted in overall extremely high avidity but also permitted a dynamic binding mode, in which NA activity was driving rolling of virus particles over the receptor-surface. Virus dissociation only took place after receptor density of the complete receptor-surface was sufficiently decreased due to NA activity of rolling IAV particles. The results indicate that in vivo IAV particles, after landing on the mucus layer, reside continuously in a receptor-bound state while rolling through the mucus layer and over epithelial cell surfaces driven by the HA-NA-receptor balance. Quantitative BLI analysis enabled functional examination of this balance which governs this dynamic and motile interaction that is expected to be crucial for penetration of the mucus layer and subsequent infection of cells by IAV but likely also by other enveloped viruses carrying a receptor-destroying enzyme in addition to a receptor-binding protein. Influenza A virus (IAV) tropism is largely determined by the interaction of virus particles with the sialic acid receptor repertoire of the host. IAVs encounter a diverse range of sialic acid receptors that can function as decoys (e.g. in the mucus that covers epithelial cells) or as entry receptors. We studied the dynamics of IAV-receptor interactions in real-time using biolayer interferometry (BLI) in combination with synthetic glycans and recombinant sialoglycoproteins mimicking in vivo receptors. Thereby we could show that IAVs do not continuously associate and dissociate with receptor-coated surfaces but actually were rolling over the surface with which they remained permanently associated until the receptors were sufficiently cleared. This required the concerted action of the receptor-binding hemagglutinin (HA) and the receptor-destroying neuraminidase (NA) on the receptor surface. We could quantify the precise HA-NA-receptor balance that determined the speed of rolling and eventual elution from the surface by BLI and propose a model in which IAV is permanently, but dynamically, associated with receptors on mucus or host cells in vivo.
Collapse
Affiliation(s)
- Hongbo Guo
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Huib Rabouw
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Anne Slomp
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Meiling Dai
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Floor van der Vegt
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Jan W. M. van Lent
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, PB Wageningen, the Netherlands
| | - Ryan McBride
- Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science, Scripps Research Institute, La Jolla, California, United States of America
| | - James C. Paulson
- Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science, Scripps Research Institute, La Jolla, California, United States of America
| | - Raoul J. de Groot
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Frank J. M. van Kuppeveld
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Erik de Vries
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- * E-mail: (EDV); (CAMDH)
| | - Cornelis A. M. de Haan
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- * E-mail: (EDV); (CAMDH)
| |
Collapse
|
37
|
Deep mutational scanning of hemagglutinin helps predict evolutionary fates of human H3N2 influenza variants. Proc Natl Acad Sci U S A 2018; 115:E8276-E8285. [PMID: 30104379 PMCID: PMC6126756 DOI: 10.1073/pnas.1806133115] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A key goal in the study of influenza virus evolution is to forecast which viral strains will persist and which ones will die out. Here we experimentally measure the effects of all amino acid mutations to the hemagglutinin protein from a human H3N2 influenza strain on viral growth in cell culture. We show that these measurements have utility for distinguishing among viral strains that do and do not succeed in nature. Overall, our work suggests that new high-throughput experimental approaches may be useful for understanding virus evolution in nature. Human influenza virus rapidly accumulates mutations in its major surface protein hemagglutinin (HA). The evolutionary success of influenza virus lineages depends on how these mutations affect HA’s functionality and antigenicity. Here we experimentally measure the effects on viral growth in cell culture of all single amino acid mutations to the HA from a recent human H3N2 influenza virus strain. We show that mutations that are measured to be more favorable for viral growth are enriched in evolutionarily successful H3N2 viral lineages relative to mutations that are measured to be less favorable for viral growth. Therefore, despite the well-known caveats about cell-culture measurements of viral fitness, such measurements can still be informative for understanding evolution in nature. We also compare our measurements for H3 HA to similar data previously generated for a distantly related H1 HA and find substantial differences in which amino acids are preferred at many sites. For instance, the H3 HA has less disparity in mutational tolerance between the head and stalk domains than the H1 HA. Overall, our work suggests that experimental measurements of mutational effects can be leveraged to help understand the evolutionary fates of viral lineages in nature—but only when the measurements are made on a viral strain similar to the ones being studied in nature.
Collapse
|
38
|
Greninger AL, Roychoudhury P, Xie H, Casto A, Cent A, Pepper G, Koelle DM, Huang ML, Wald A, Johnston C, Jerome KR. Ultrasensitive Capture of Human Herpes Simplex Virus Genomes Directly from Clinical Samples Reveals Extraordinarily Limited Evolution in Cell Culture. mSphere 2018; 3:e00283-18. [PMID: 29898986 PMCID: PMC6001610 DOI: 10.1128/mspheredirect.00283-18] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex viruses (HSVs) are difficult to sequence due to their large DNA genome, high GC content, and the presence of repeats. To date, most HSV genomes have been recovered from culture isolates, raising concern that these genomes may not accurately represent circulating clinical strains. We report the development and validation of a DNA oligonucleotide hybridization panel to recover nearly complete HSV genomes at abundances up to 50,000-fold lower than previously reported. Using copy number information on herpesvirus and host DNA background via quantitative PCR, we developed a protocol for pooling for cost-effective recovery of more than 50 HSV-1 or HSV-2 genomes per MiSeq run. We demonstrate the ability to recover >99% of the HSV genome at >100× coverage in 72 h at viral loads that allow whole-genome recovery from latently infected ganglia. We also report a new computational pipeline for rapid HSV genome assembly and annotation. Using the above tools and a series of 17 HSV-1-positive clinical swabs sent to our laboratory for viral isolation, we show limited evolution of HSV-1 during viral isolation in human fibroblast cells compared to the original clinical samples. Our data indicate that previous studies using low-passage-number clinical isolates of herpes simplex viruses are reflective of the viral sequences present in the lesion and thus can be used in phylogenetic analyses. We also detect superinfection within a single sample with unrelated HSV-1 strains recovered from separate oral lesions in an immunosuppressed patient during a 2.5-week period, illustrating the power of direct-from-specimen sequencing of HSV.IMPORTANCE Herpes simplex viruses affect more than 4 billion people across the globe, constituting a large burden of disease. Understanding the global diversity of herpes simplex viruses is important for diagnostics and therapeutics as well as cure research and tracking transmission among humans. To date, most HSV genomics has been performed on culture isolates and DNA swabs with high quantities of virus. We describe the development of wet-lab and computational tools that enable the accurate sequencing of near-complete genomes of HSV-1 and HSV-2 directly from clinical specimens at abundances >50,000-fold lower than previously sequenced and at significantly reduced cost. We use these tools to profile circulating HSV-1 strains in the community and illustrate limited changes to the viral genome during the viral isolation process. These techniques enable cost-effective, rapid sequencing of HSV-1 and HSV-2 genomes that will help enable improved detection, surveillance, and control of this human pathogen.
Collapse
Affiliation(s)
- Alexander L Greninger
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
- Fred Hutchinson Cancer Research Institute, Seattle, Washington, USA
| | - Pavitra Roychoudhury
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
- Fred Hutchinson Cancer Research Institute, Seattle, Washington, USA
| | - Hong Xie
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Amanda Casto
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Anne Cent
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
- Fred Hutchinson Cancer Research Institute, Seattle, Washington, USA
| | - Gregory Pepper
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
- Fred Hutchinson Cancer Research Institute, Seattle, Washington, USA
| | - David M Koelle
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
- Fred Hutchinson Cancer Research Institute, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Benaroya Research Institute, Seattle, Washington, USA
| | - Meei-Li Huang
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
- Fred Hutchinson Cancer Research Institute, Seattle, Washington, USA
| | - Anna Wald
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
- Fred Hutchinson Cancer Research Institute, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Christine Johnston
- Fred Hutchinson Cancer Research Institute, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Keith R Jerome
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
- Fred Hutchinson Cancer Research Institute, Seattle, Washington, USA
| |
Collapse
|
39
|
How single mutations affect viral escape from broad and narrow antibodies to H1 influenza hemagglutinin. Nat Commun 2018; 9:1386. [PMID: 29643370 PMCID: PMC5895760 DOI: 10.1038/s41467-018-03665-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 02/28/2018] [Indexed: 01/19/2023] Open
Abstract
Influenza virus can escape most antibodies with single mutations. However, rare antibodies broadly neutralize many viral strains. It is unclear how easily influenza virus might escape such antibodies if there was strong pressure to do so. Here, we map all single amino-acid mutations that increase resistance to broad antibodies to H1 hemagglutinin. Our approach not only identifies antigenic mutations but also quantifies their effect sizes. All antibodies select mutations, but the effect sizes vary widely. The virus can escape a broad antibody to hemagglutinin's receptor-binding site the same way it escapes narrow strain-specific antibodies: via single mutations with huge effects. In contrast, broad antibodies to hemagglutinin's stalk only select mutations with small effects. Therefore, among the antibodies we examine, breadth is an imperfect indicator of the potential for viral escape via single mutations. Antibodies targeting the H1 hemagglutinin stalk are quantifiably harder to escape than the other antibodies tested here.
Collapse
|
40
|
Koday MT, Leonard JA, Munson P, Forero A, Koday M, Bratt DL, Fuller JT, Murnane R, Qin S, Reinhart TA, Duus K, Messaoudi I, Hartman AL, Stefano-Cole K, Morrison J, Katze MG, Fuller DH. Multigenic DNA vaccine induces protective cross-reactive T cell responses against heterologous influenza virus in nonhuman primates. PLoS One 2017; 12:e0189780. [PMID: 29267331 PMCID: PMC5739435 DOI: 10.1371/journal.pone.0189780] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 12/01/2017] [Indexed: 01/19/2023] Open
Abstract
Recent avian and swine-origin influenza virus outbreaks illustrate the ongoing threat of influenza pandemics. We investigated immunogenicity and protective efficacy of a multi-antigen (MA) universal influenza DNA vaccine consisting of HA, M2, and NP antigens in cynomolgus macaques. Following challenge with a heterologous pandemic H1N1 strain, vaccinated animals exhibited significantly lower viral loads and more rapid viral clearance when compared to unvaccinated controls. The MA DNA vaccine induced robust serum and mucosal antibody responses but these high antibody titers were not broadly neutralizing. In contrast, the vaccine induced broadly-reactive NP specific T cell responses that cross-reacted with the challenge virus and inversely correlated with lower viral loads and inflammation. These results demonstrate that a MA DNA vaccine that induces strong cross-reactive T cell responses can, independent of neutralizing antibody, mediate significant cross-protection in a nonhuman primate model and further supports development as an effective approach to induce broad protection against circulating and emerging influenza strains.
Collapse
Affiliation(s)
- Merika T. Koday
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
| | - Jolie A. Leonard
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
| | - Paul Munson
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
| | - Adriana Forero
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
| | - Michael Koday
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States of America
| | - Debra L. Bratt
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States of America
| | - James T. Fuller
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
| | - Robert Murnane
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States of America
| | - Shulin Qin
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Todd A. Reinhart
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Karen Duus
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States of America
- Basic Sciences Department, College of Osteopathic Medicine, Touro University Nevada, Henderson, NV, United States of America
| | - Ilhem Messaoudi
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, OR, United States of America
| | - Amy L. Hartman
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Kelly Stefano-Cole
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Juliet Morrison
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
| | - Michael G. Katze
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States of America
| | - Deborah Heydenburg Fuller
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States of America
- * E-mail:
| |
Collapse
|
41
|
Gubareva LV, Besselaar TG, Daniels RS, Fry A, Gregory V, Huang W, Hurt AC, Jorquera PA, Lackenby A, Leang SK, Lo J, Pereyaslov D, Rebelo-de-Andrade H, Siqueira MM, Takashita E, Odagiri T, Wang D, Zhang W, Meijer A. Global update on the susceptibility of human influenza viruses to neuraminidase inhibitors, 2015-2016. Antiviral Res 2017; 146:12-20. [PMID: 28802866 PMCID: PMC5667636 DOI: 10.1016/j.antiviral.2017.08.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/25/2017] [Accepted: 08/08/2017] [Indexed: 01/26/2023]
Abstract
Four World Health Organization (WHO) Collaborating Centres for Reference and Research on Influenza and one WHO Collaborating Centre for the Surveillance, Epidemiology and Control of Influenza (WHO CCs) assessed antiviral susceptibility of 14,330 influenza A and B viruses collected by WHO-recognized National Influenza Centres (NICs) between May 2015 and May 2016. Neuraminidase (NA) inhibition assay was used to determine 50% inhibitory concentration (IC50) data for NA inhibitors (NAIs) oseltamivir, zanamivir, peramivir and laninamivir. Furthermore, NA sequences from 13,484 influenza viruses were retrieved from public sequence databases and screened for amino acid substitutions (AAS) associated with reduced inhibition (RI) or highly reduced inhibition (HRI) by NAIs. Of the viruses tested by WHO CCs 93% were from three WHO regions: Western Pacific, the Americas and Europe. Approximately 0.8% (n = 113) exhibited either RI or HRI by at least one of four NAIs. As in previous seasons, the most common NA AAS was H275Y in A(H1N1)pdm09 viruses, which confers HRI by oseltamivir and peramivir. Two A(H1N1)pdm09 viruses carried a rare NA AAS, S247R, shown in this study to confer RI/HRI by the four NAIs. The overall frequency of A(H1N1)pdm09 viruses containing NA AAS associated with RI/HRI was approximately 1.8% (125/6915), which is slightly higher than in the previous 2014-15 season (0.5%). Three B/Victoria-lineage viruses contained a new AAS, NA H134N, which conferred HRI by zanamivir and laninamivir, and borderline HRI by peramivir. A single B/Victoria-lineage virus harboured NA G104E, which was associated with HRI by all four NAIs. The overall frequency of RI/HRI phenotype among type B viruses was approximately 0.6% (43/7677), which is lower than that in the previous season. Overall, the vast majority (>99%) of the viruses tested by WHO CCs were susceptible to all four NAIs, showing normal inhibition (NI). Hence, NAIs remain the recommended antivirals for treatment of influenza virus infections. Nevertheless, our data indicate that it is prudent to continue drug susceptibility monitoring using both NAI assay and sequence analysis. A total of 14,330 influenza viruses were collected worldwide, May 2015–May 2016. Approximately 0.8% showed reduced inhibition by at least one NA inhibitor. The frequency of viruses with reduced inhibition was slightly higher than in 2014–15 (0.5%). NA inhibitors remain an appropriate choice for influenza treatment. Global surveillance of influenza antiviral susceptibility should be continued.
Collapse
Affiliation(s)
- Larisa V Gubareva
- WHO Collaborating Center for Surveillance, Epidemiology and Control of Influenza, Centers for Disease Control and Prevention (CDC), 1600 Clifton RD NE, MS-G16, Atlanta, GA, 30329, United States.
| | - Terry G Besselaar
- Global Influenza Programme, World Health Organization, Avenue Appia 20, 1211 Geneva 27, Switzerland
| | - Rod S Daniels
- The Francis Crick Institute, Worldwide Influenza Centre (WIC), WHO Collaborating Centre for Reference and Research on Influenza, 1 Midland Road, London, NW1 1AT, United Kingdom
| | - Alicia Fry
- WHO Collaborating Center for Surveillance, Epidemiology and Control of Influenza, Centers for Disease Control and Prevention (CDC), 1600 Clifton RD NE, MS-G16, Atlanta, GA, 30329, United States
| | - Vicki Gregory
- The Francis Crick Institute, Worldwide Influenza Centre (WIC), WHO Collaborating Centre for Reference and Research on Influenza, 1 Midland Road, London, NW1 1AT, United Kingdom
| | - Weijuan Huang
- WHO Collaborating Centre for Reference and Research on Influenza, National Institute for Viral Disease Control and Prevention, Collaboration Innovation Centre for Diagnosis and Treatment of Infectious Diseases, China CDC, Beijing, China
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, At the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia; Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Patricia A Jorquera
- WHO Collaborating Center for Surveillance, Epidemiology and Control of Influenza, Centers for Disease Control and Prevention (CDC), 1600 Clifton RD NE, MS-G16, Atlanta, GA, 30329, United States
| | - Angie Lackenby
- National Infection Service, Public Health England, London, NW9 5HT, United Kingdom
| | - Sook-Kwan Leang
- WHO Collaborating Centre for Reference and Research on Influenza, At the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Janice Lo
- Public Health Laboratory Centre, 382 Nam Cheong Street, Hong Kong, China
| | - Dmitriy Pereyaslov
- Division of Health Emergencies and Communicable Diseases, World Health Organization Regional Office for Europe, UN City, Marmorvej 51, DK-2100, Copenhagen, Denmark
| | - Helena Rebelo-de-Andrade
- Influenza Pathogenesis and Antiviral Resistance Laboratory, National Institute of Health, Av. Padre Cruz, 1649-016, Lisboa, Portugal; Faculdade de Farmácia, Universidade de Lisboa, Av. Prof Gama Pinto, 1649-016, Lisboa, Portugal
| | - Marilda M Siqueira
- National Influenza Center, Laboratorio de Virus Respiratorios, Oswaldo Cruz Institute/FIOCRUZ, Rio de Janeiro, Brazil
| | - Emi Takashita
- WHO Collaborating Centre for Reference and Research on Influenza, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo, 208-0011, Japan
| | - Takato Odagiri
- WHO Collaborating Centre for Reference and Research on Influenza, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo, 208-0011, Japan
| | - Dayan Wang
- WHO Collaborating Centre for Reference and Research on Influenza, National Institute for Viral Disease Control and Prevention, Collaboration Innovation Centre for Diagnosis and Treatment of Infectious Diseases, China CDC, Beijing, China
| | - Wenqing Zhang
- Global Influenza Programme, World Health Organization, Avenue Appia 20, 1211 Geneva 27, Switzerland
| | - Adam Meijer
- National Institute for Public Health and the Environment, PO Box 1, 3720 BA, Bilthoven, The Netherlands
| |
Collapse
|
42
|
Mögling R, Richard MJ, Vliet SVD, Beek RV, Schrauwen EJA, Spronken MI, Rimmelzwaan GF, Fouchier RAM. Neuraminidase-mediated haemagglutination of recent human influenza A(H3N2) viruses is determined by arginine 150 flanking the neuraminidase catalytic site. J Gen Virol 2017; 98:1274-1281. [PMID: 28612701 DOI: 10.1099/jgv.0.000809] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Over the last decade, an increasing proportion of circulating human influenza A(H3N2) viruses exhibited haemagglutination activity that was sensitive to neuraminidase inhibitors. This change in haemagglutination as compared to older circulating A(H3N2) viruses prompted an investigation of the underlying molecular basis. Recent human influenza A(H3N2) viruses were found to agglutinate turkey erythrocytes in a manner that could be blocked with either oseltamivir or neuraminidase-specific antisera, indicating that agglutination was driven by neuraminidase, with a low or negligible contribution of haemagglutinin. Using representative virus recombinants it was shown that the haemagglutinin of a recent A(H3N2) virus indeed had decreased activity to agglutinate turkey erythrocytes, while its neuraminidase displayed increased haemagglutinating activity. Viruses with chimeric and mutant neuraminidases were used to identify the amino acid substitution histidine to arginine at position 150 flanking the neuraminidase catalytic site as the determinant of this neuraminidase-mediated haemagglutination. An analysis of publicly available neuraminidase gene sequences showed that viruses with histidine at position 150 were rapidly replaced by viruses with arginine at this position between 2005 and 2008, in agreement with the phenotypic data. As a consequence of neuraminidase-mediated haemagglutination of recent A(H3N2) viruses and poor haemagglutination via haemagglutinin, haemagglutination inhibition assays with A(H3N2) antisera are no longer useful to characterize the antigenic properties of the haemagglutinin of these viruses for vaccine strain selection purposes. Continuous monitoring of the evolution of these viruses and potential consequences for vaccine strain selection remains important.
Collapse
Affiliation(s)
- Ramona Mögling
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Ruud van Beek
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Eefje J A Schrauwen
- Laboratory for Microbiology and Infection Control, Amphia Hospital, Breda, The Netherlands
| | | | | | - Ron A M Fouchier
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
43
|
Computational design of trimeric influenza-neutralizing proteins targeting the hemagglutinin receptor binding site. Nat Biotechnol 2017; 35:667-671. [PMID: 28604661 PMCID: PMC5512607 DOI: 10.1038/nbt.3907] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 05/19/2017] [Indexed: 01/17/2023]
Abstract
Many viral surface glycoproteins and cell surface receptors are homo-oligomers, and thus can potentially be targeted by geometrically matched homo-oligomers that engage all subunits simultaneously to attain high avidity and/or lock subunits together. The adaptive immune system cannot generally employ this strategy since the individual antibody binding sites are not arranged with appropriate geometry to simultaneously engage multiple sites in a single target homo-oligomer. We describe a general strategy for the computational design of homo-oligomeric protein assemblies with binding functionality precisely matched to homo-oligomeric target sites. In the first step, a small protein is designed that binds a single site on the target. In the second step, the designed protein is assembled into a homo-oligomer such that the designed binding sites are aligned with the target sites. We use this approach to design high-avidity trimeric proteins that bind influenza A hemagglutinin (HA) at its conserved receptor binding site. The designed trimers can both capture and detect HA in a paper-based diagnostic format, neutralizes influenza in cell culture, and completely protects mice when given as a single dose 24 h before or after challenge with influenza.
Collapse
|
44
|
Doud MB, Hensley SE, Bloom JD. Complete mapping of viral escape from neutralizing antibodies. PLoS Pathog 2017; 13:e1006271. [PMID: 28288189 PMCID: PMC5363992 DOI: 10.1371/journal.ppat.1006271] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/23/2017] [Accepted: 03/06/2017] [Indexed: 11/18/2022] Open
Abstract
Identifying viral mutations that confer escape from antibodies is crucial for understanding the interplay between immunity and viral evolution. We describe a high-throughput approach to quantify the selection that monoclonal antibodies exert on all single amino-acid mutations to a viral protein. This approach, mutational antigenic profiling, involves creating all replication-competent protein variants of a virus, selecting with antibody, and using deep sequencing to identify enriched mutations. We use mutational antigenic profiling to comprehensively identify mutations that enable influenza virus to escape four monoclonal antibodies targeting hemagglutinin, and validate key findings with neutralization assays. We find remarkable mutation-level idiosyncrasy in antibody escape: for instance, at a single residue targeted by two antibodies, some mutations escape both antibodies while other mutations escape only one or the other. Because mutational antigenic profiling rapidly maps all mutations selected by an antibody, it is useful for elucidating immune specificities and interpreting the antigenic consequences of viral genetic variation.
Collapse
Affiliation(s)
- Michael B. Doud
- Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Medical Scientist Training Program, University of Washington, Seattle, Washington, United States of America
| | - Scott E. Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jesse D. Bloom
- Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
45
|
Takashita E, Fujisaki S, Shirakura M, Nakamura K, Kishida N, Kuwahara T, Shimazu Y, Shimomura T, Watanabe S, Odagiri T. Influenza A(H1N1)pdm09 virus exhibiting enhanced cross-resistance to oseltamivir and peramivir due to a dual H275Y/G147R substitution, Japan, March 2016. ACTA ACUST UNITED AC 2017; 21:30258. [PMID: 27336226 DOI: 10.2807/1560-7917.es.2016.21.24.30258] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/16/2016] [Indexed: 12/22/2022]
Abstract
An influenza A(H1N1)pdm09 virus carrying a G147R substitution in combination with an H275Y substitution in the neuraminidase protein, which confers cross-resistance to oseltamivir and peramivir, was detected from an immunocompromised inpatient in Japan, March 2016. This dual H275Y/G147R mutant virus exhibited enhanced cross-resistance to both drugs compared with the single H275Y mutant virus and reduced susceptibility to zanamivir, although it showed normal inhibition by laninamivir.
Collapse
Affiliation(s)
- Emi Takashita
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gao Z, Niikura M, Withers SG. Ultrasensitive Fluorogenic Reagents for Neuraminidase Titration. Angew Chem Int Ed Engl 2017; 56:6112-6116. [PMID: 28191709 DOI: 10.1002/anie.201610544] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Indexed: 11/07/2022]
Abstract
Influenza viral neuraminidase plays a crucial role during infections. It is a major target for the development of anti-influenza drugs and is also attracting increasing attention as a vaccine target as evidence accumulates that neuraminidase-neutralizing antibodies contribute to protection. However, no method currently exists to accurately and efficiently measure concentrations of active neuraminidase in virus samples or other crude mixtures, which hampers development on both fronts. In this report, we describe the development of a selective and sensitive active-site titration reagent for neuraminidase that can quantify viral neuraminidases down to sub-nanomolar levels in crude samples, with no background from non-viral neuraminidases. By using this reagent, we determined accurate kcat values for six influenza A and two influenza B neuraminidases for the first time. We also quantified the neuraminidase content in a commercial influenza vaccine, thus demonstrating that this titration reagent opens the possibility for better vaccine analysis.
Collapse
Affiliation(s)
- Zhizeng Gao
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Masahiro Niikura
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Stephen G Withers
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| |
Collapse
|
47
|
Gao Z, Niikura M, Withers SG. Ultrasensitive Fluorogenic Reagents for Neuraminidase Titration. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201610544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhizeng Gao
- Department of Chemistry; University of British Columbia; Vancouver British Columbia V6T 1Z1 Canada
| | - Masahiro Niikura
- Faculty of Health Sciences; Simon Fraser University; Burnaby British Columbia V5A 1S6 Canada
| | - Stephen G. Withers
- Department of Chemistry; University of British Columbia; Vancouver British Columbia V6T 1Z1 Canada
| |
Collapse
|
48
|
Gaymard A, Le Briand N, Frobert E, Lina B, Escuret V. Functional balance between neuraminidase and haemagglutinin in influenza viruses. Clin Microbiol Infect 2016; 22:975-983. [DOI: 10.1016/j.cmi.2016.07.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2016] [Indexed: 01/15/2023]
|
49
|
He Y, Yang Y, Iyer SS. Neuraminidase Resistant Sialosides for the Detection of Influenza Viruses. Bioconjug Chem 2016; 27:1509-17. [DOI: 10.1021/acs.bioconjchem.6b00150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yun He
- Petit Science Center, Department
of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30302 United States
| | - Yang Yang
- Petit Science Center, Department
of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30302 United States
| | - Suri S. Iyer
- Petit Science Center, Department
of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30302 United States
| |
Collapse
|
50
|
Nogales A, Baker SF, Domm W, Martínez-Sobrido L. Development and applications of single-cycle infectious influenza A virus (sciIAV). Virus Res 2016; 216:26-40. [PMID: 26220478 PMCID: PMC4728073 DOI: 10.1016/j.virusres.2015.07.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 07/05/2015] [Accepted: 07/13/2015] [Indexed: 02/06/2023]
Abstract
The diverse host range, high transmissibility, and rapid evolution of influenza A viruses justify the importance of containing pathogenic viruses studied in the laboratory. Other than physically or mechanically changing influenza A virus containment procedures, modifying the virus to only replicate for a single round of infection similarly ensures safety and consequently decreases the level of biosafety containment required to study highly pathogenic members in the virus family. This biological containment is more ideal because it is less apt to computer, machine, or human error. With many necessary proteins that can be deleted, generation of single-cycle infectious influenza A viruses (sciIAV) can be achieved using a variety of approaches. Here, we review the recent burst in sciIAV generation and summarize the applications and findings on this important human pathogen using biocontained viral mimics.
Collapse
Affiliation(s)
- Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Steven F Baker
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - William Domm
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States.
| |
Collapse
|