1
|
Promsong A, Chuerduangphui J, Levy CN, Hladik F, Satthakarn S, Nittayananta W. Effects of Ellagic Acid on Vaginal Innate Immune Mediators and HPV16 Infection In Vitro. Molecules 2024; 29:3630. [PMID: 39125034 PMCID: PMC11314121 DOI: 10.3390/molecules29153630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Ellagic acid (EA) is a phenolic phytochemical found in many plants and their fruits. Vaginal epithelial cells are the first line of defense against pathogen invasion in the female reproductive tract and express antimicrobial peptides, including hBD2 and SLPI. This study investigated the in vitro effects of EA (1) on vaginal innate immunity using human vaginal epithelial cells, and (2) on HPV16 pseudovirus infection. Vaginal cells were cultured in the presence or absence of EA, and the expression of hBD2 and SLPI was determined at both transcriptional and translational levels. In addition, secretion of various cytokines and chemokines was measured. Cytotoxicity of EA was determined by CellTiter-blue and MTT assays. To investigate the ability of EA to inhibit HPV16 infection, EA was used to treat HEK-293FT cells in pre-attachment and adsorption steps. We found significant increases in both hBD2 mRNA (mean 2.9-fold at 12.5 µM EA, p < 0.001) and protein (mean 7.1-fold at 12.5 µM EA, p = 0.002) in response to EA. SLPI mRNA also increased significantly (mean 1.4-fold at 25 µM EA, p = 0.01), but SLPI protein did not. Secretion of IL-2 but not of other cytokines/chemokines was induced by EA in a dose-dependent manner. EA was not cytotoxic. At the pre-attachment step, EA at CC20 and CC50 showed a slight trend towards inhibiting HPV16 pseudovirus, but this was not significant. In summary, vaginal epithelial cells can respond to EA by producing innate immune factors, and at tested concentrations, EA is not cytotoxic. Thus, plant-derived EA could be useful as an immunomodulatory agent to improve vaginal health.
Collapse
Affiliation(s)
- Aornrutai Promsong
- Faculty of Medicine, Princess of Naradhiwas University, Narathiwat 96000, Thailand;
| | | | - Claire N. Levy
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA; (C.N.L.); (F.H.)
| | - Florian Hladik
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA; (C.N.L.); (F.H.)
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Surada Satthakarn
- Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand;
| | | |
Collapse
|
2
|
Pierce CA, Loh LN, Steach HR, Cheshenko N, Preston-Hurlburt P, Zhang F, Stransky S, Kravets L, Sidoli S, Philbrick W, Nassar M, Krishnaswamy S, Herold KC, Herold BC. HSV-2 triggers upregulation of MALAT1 in CD4+ T cells and promotes HIV latency reversal. J Clin Invest 2023; 133:e164317. [PMID: 37079384 PMCID: PMC10232005 DOI: 10.1172/jci164317] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 04/17/2023] [Indexed: 04/21/2023] Open
Abstract
Herpes simplex virus type 2 (HSV-2) coinfection is associated with increased HIV-1 viral loads and expanded tissue reservoirs, but the mechanisms are not well defined. HSV-2 recurrences result in an influx of activated CD4+ T cells to sites of viral replication and an increase in activated CD4+ T cells in peripheral blood. We hypothesized that HSV-2 induces changes in these cells that facilitate HIV-1 reactivation and replication and tested this hypothesis in human CD4+ T cells and 2D10 cells, a model of HIV-1 latency. HSV-2 promoted latency reversal in HSV-2-infected and bystander 2D10 cells. Bulk and single-cell RNA-Seq studies of activated primary human CD4+ T cells identified decreased expression of HIV-1 restriction factors and increased expression of transcripts including MALAT1 that could drive HIV replication in both the HSV-2-infected and bystander cells. Transfection of 2D10 cells with VP16, an HSV-2 protein that regulates transcription, significantly upregulated MALAT1 expression, decreased trimethylation of lysine 27 on histone H3 protein, and triggered HIV latency reversal. Knockout of MALAT1 from 2D10 cells abrogated the response to VP16 and reduced the response to HSV-2 infection. These results demonstrate that HSV-2 contributes to HIV-1 reactivation through diverse mechanisms, including upregulation of MALAT1 to release epigenetic silencing.
Collapse
Affiliation(s)
- Carl A. Pierce
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, New York, USA
| | - Lip Nam Loh
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, New York, USA
| | | | - Natalia Cheshenko
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, New York, USA
| | | | - Fengrui Zhang
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Leah Kravets
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, New York, USA
| | | | - William Philbrick
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michel Nassar
- Department of Otorhinolaryngology–Head and Neck Surgery, Albert Einstein College of Medicine, New York, New York, USA
| | - Smita Krishnaswamy
- Department of Computational Biology
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Kevan C. Herold
- Department of Immunobiology, and
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Betsy C. Herold
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, New York, USA
- Department of Pediatrics, Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
3
|
Pérez-López FR, Fernández-Alonso AM, Mezones-Holguín E, Vieira-Baptista P. Low genitourinary tract risks in women living with the human immunodeficiency virus. Climacteric 2023:1-7. [PMID: 37054721 DOI: 10.1080/13697137.2023.2194528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
This review analyzes the clinical associations between specific low genitourinary tract clinical circumstances in perimenopausal and postmenopausal women living with human immunodeficiency virus (WLHIV). Modern antiretroviral therapy (ART) improves survival and reduces opportunistic infections and HIV transmission. Despite appropriate ART, WLHIV may display menstrual dysfunction, risk of early menopause, vaginal microbiome alterations, vaginal dryness, dyspareunia, vasomotor symptoms and low sexual function as compared to women without the infection. They have increased risks of intraepithelial and invasive cervical, vaginal and vulvar cancers. The reduced immunity capacity may also increase the risk of urinary tract infections, side-effects or toxicity of ARTs, and opportunistic infections. Menstrual dysfunction and early menopause may contribute to the early onset of vascular atherosclerosis and plaque formation, and increased osteoporosis risks requiring specific early interventions. On the other hand, the association between being postmenopausal and having a low sexual function is significant and related to low adherence to ART. WLHIV deserve a specific approach to manage different low genitourinary risks and complications related to hormone dysfunction and early menopause.
Collapse
Affiliation(s)
- F R Pérez-López
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Zaragoza, Zaragoza, Spain
- Obstetrics and Reproduction, Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain
| | | | - E Mezones-Holguín
- Centro de Estudios Económicos y Sociales en Salud, Universidad San Ignacio de Loyola, Lima, Perú
| | - P Vieira-Baptista
- Department of Gynecology-Obstetrics and Pediatrics, Hospital Lusíadas Porto, Porto, Portugal
- Lower Genital Tract Unit, Centro Hospitalar de São João, Porto, Portugal
- Department of Gynecology-Obstetrics and Pediatrics, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| |
Collapse
|
4
|
Gornalusse GG, Zhang M, Wang R, Rwigamba E, Kirby AC, Fialkow M, Nance E, Hladik F, Vojtech L. HSV-2 Infection Enhances Zika Virus Infection of Primary Genital Epithelial Cells Independently of the Known Zika Virus Receptor AXL. Front Microbiol 2022; 12:825049. [PMID: 35126336 PMCID: PMC8811125 DOI: 10.3389/fmicb.2021.825049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/31/2021] [Indexed: 01/05/2023] Open
Abstract
Zika virus (ZIKV) is transmitted to people by bite of an infected mosquito and by sexual contact. ZIKV infects primary genital epithelial cells, the same cells targeted by herpes simplex virus 2 (HSV-2). HSV-2 seroprevalence is high in areas where ZIKV is endemic, but it is unknown whether HSV-2 increases the risk for ZIKV infection. Here, we found that pre-infecting female genital tract epithelial cells with HSV-2 leads to enhanced binding of ZIKV virions. This effect did not require active replication by HSV-2, implying that the effect results from the immune response to HSV-2 exposure or to viral genes expressed early in the HSV-2 lifecycle. Treating cells with toll-like receptor-3 ligand poly-I:C also lead to enhanced binding by ZIKV, which was inhibited by the JAK-STAT pathway inhibitor ruxolitinib. Blocking or knocking down the well-studied ZIKV receptor AXL did not prevent binding of ZIKV to epithelial cells, nor prevent enhanced binding in the presence of HSV-2 infection. Blocking the α5 integrin receptor did not prevent ZIKV binding to cells either. Overall, our results indicate that ZIKV binding to genital epithelial cells is not mediated entirely by a canonical receptor, but likely occurs through redundant pathways that may involve lectin receptors and glycosaminoglycans. Our studies may pave the way to new interventions that interrupt the synergism between herpes and Zika viruses.
Collapse
Affiliation(s)
- Germán G. Gornalusse
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
| | - Mengying Zhang
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, United States
| | - Ruofan Wang
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
| | - Emery Rwigamba
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
| | - Anna C. Kirby
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
| | - Michael Fialkow
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
| | - Elizabeth Nance
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, United States
- Department of Chemical Engineering, University of Washington, Seattle, WA, United States
| | - Florian Hladik
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Lucia Vojtech
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
- *Correspondence: Lucia Vojtech,
| |
Collapse
|
5
|
Frenkel LM, Morrison RL, Fuller TL, Gouvêa MI, Benamor Teixeira MDL, Coombs RW, Shapiro DE, Mirochnick M, Hennessey R, Whitson K, Chakhtoura N, João EC. Brief Report: Vaginal Viral Shedding With Undetectable Plasma HIV Viral Load in Pregnant Women Receiving 2 Different Antiretroviral Regimens: A Randomized Clinical Trial. J Acquir Immune Defic Syndr 2021; 88:361-365. [PMID: 34369908 PMCID: PMC8547747 DOI: 10.1097/qai.0000000000002771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/13/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Pregnant women using antiretrovirals (ARVs) may have persistent vaginal viral shedding, which could be associated with sexual and perinatal HIV transmission. However, there are scant data on vaginal viral load (VVL) in pregnant women with undetectable plasma viral load (PVL). METHODS This study was a post hoc analysis of an open-label randomized trial to evaluate the virologic response of 2 ART regimens. The participants were ART-naive women living with HIV initiating ART regimens between 20 and 36 weeks of pregnancy recruited at 19 clinical sites in 6 countries. Participants were randomized to receive 400 mg of raltegravir 2 times a day or 600 mg of efavirenz 4 times a day in addition to 150 mg of lamivudine and 300 mg of zidovudine 2 times a day. VVL and PVL tests were performed at every study visit. The primary outcome measures were HIV-1 PVL and VVL at maternal study week 4 and rates of perinatal HIV transmission. RESULTS A total of 408 were enrolled, of whom 323 had VVL samples 4 weeks after enrollment and were included in this analysis. Among women with undetectable/nonquantifiable PVL during ART, the overall rate of quantifiable VVL at week 4 was 2.54% (7/275). Of the 275 with nonquantifiable PVL, 99.1% (115/116) and 96.2% (153/159) had nonquantifiable VVL in the efavirenz and raltegravir arms, respectively. None of the 7 women with quantifiable VVL at the week 4 study visit transmitted HIV to their infants. CONCLUSIONS Detectable VVL in pregnant women with undetectable/nonquantifiable PVL while receiving ART was rare and not associated with perinatal HIV transmission.
Collapse
Affiliation(s)
- Lisa M. Frenkel
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA
- Department of Pediatrics
- Laboratory Medicine and Pathology; and
- Global Health and Medicine, University of Washington, Seattle, WA
| | - R. Leavitt Morrison
- Center for Biostatistics in AIDS Research, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Trevon L. Fuller
- Infectious Diseases Department, Hospital Federal dos Servidores do Estado, Rio de Janeiro, Brazil
| | - Maria Isabel Gouvêa
- Infectious Diseases Department, Hospital Federal dos Servidores do Estado, Rio de Janeiro, Brazil
- Evandro Chagas National Institute of Infectious Diseases, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Maria de Lourdes Benamor Teixeira
- Infectious Diseases Department, Hospital Federal dos Servidores do Estado, Rio de Janeiro, Brazil
- Evandro Chagas National Institute of Infectious Diseases, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - David E. Shapiro
- Center for Biostatistics in AIDS Research, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Mark Mirochnick
- Department of Pediatrics, Boston University School of Medicine, Boston, MA
| | | | | | - Nahida Chakhtoura
- Maternal and Pediatric Infectious Diseases Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| | - Esaú C. João
- Infectious Diseases Department, Hospital Federal dos Servidores do Estado, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Mallet F, Diouf L, Meunier B, Perret M, Reynier F, Leissner P, Quemeneur L, Griffiths AD, Moucadel V, Pachot A, Venet F, Monneret G, Lepape A, Rimmelé T, Tan LK, Brengel-Pesce K, Textoris J. Herpes DNAemia and TTV Viraemia in Intensive Care Unit Critically Ill Patients: A Single-Centre Prospective Longitudinal Study. Front Immunol 2021; 12:698808. [PMID: 34795661 PMCID: PMC8593420 DOI: 10.3389/fimmu.2021.698808] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/12/2021] [Indexed: 11/21/2022] Open
Abstract
Introduction We analysed blood DNAemia of TTV and four herpesviruses (CMV, EBV, HHV6, and HSV-1) in the REAnimation Low Immune Status Marker (REALISM) cohort of critically ill patients who had presented with either sepsis, burns, severe trauma, or major surgery. The aim was to identify common features related to virus and injury-associated pathologies and specific features linking one or several viruses to a particular pathological context. Methods Overall and individual viral DNAemia were measured over a month using quantitative PCR assays from the 377 patients in the REALISM cohort. These patients were characterised by clinical outcomes [severity scores, mortality, Intensive Care Unit (ICU)-acquired infection (IAI)] and 48 parameters defining their host response after injury (cell populations, immune functional assays, and biomarkers). Association between viraemic event and clinical outcomes or immune markers was assessed using χ2-test or exact Fisher’s test for qualitative variables and Wilcoxon test for continuous variables. Results The cumulative incidence of viral DNAemia increased from below 4% at ICU admission to 35% for each herpesvirus during the first month. EBV, HSV1, HHV6, and CMV were detected in 18%, 12%, 10%, and 9% of patients, respectively. The incidence of high TTV viraemia (>10,000 copies/ml) increased from 11% to 15% during the same period. Herpesvirus viraemia was associated with severity at admission; CMV and HHV6 viraemia correlated with mortality during the first week and over the month. The presence of individual herpesvirus during the first month was significantly associated (p < 0.001) with the occurrence of IAI, whilst herpesvirus DNAemia coupled with high TTV viraemia during the very first week was associated with IAI. Herpesvirus viraemia was associated with a lasting exacerbated host immune response, with concurrent profound immune suppression and hyper inflammation, and delayed return to immune homeostasis. The percentage of patients presenting with herpesvirus DNAemia was significantly higher in sepsis than in all other groups. Primary infection in the hospital and high IL10 levels might favour EBV and CMV reactivation. Conclusion In this cohort of ICU patients, phenotypic differences were observed between TTV and herpesviruses DNAemia. The higher prevalence of herpesvirus DNAemia in sepsis hints at further studies that may enable a better in vivo understanding of host determinants of herpesvirus viral reactivation. Furthermore, our data suggest that EBV and TTV may be useful as additional markers to predict clinical deterioration in ICU patients.
Collapse
Affiliation(s)
- François Mallet
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory & Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Léa Diouf
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory & Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France.,IVIDATA, Levallois-Perret, France
| | - Boris Meunier
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory & Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France.,Soladis Inc., Cambridge, MA, United States
| | - Magali Perret
- BIOASTER Technology Research Institute, Lyon, France
| | | | | | | | - Andrew D Griffiths
- Laboratoire de Biochimie (LBC), École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI) Paris, Paris Sciences & Lettres (PSL) Université, Centre National de la Recherche Scientifique (CNRS) UMR8231, Paris, France
| | - Virginie Moucadel
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory & Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Alexandre Pachot
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory & Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Fabienne Venet
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory & Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Guillaume Monneret
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory & Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Alain Lepape
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory & Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Thomas Rimmelé
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory & Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | | | - Karen Brengel-Pesce
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory & Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Julien Textoris
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory & Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| |
Collapse
|
7
|
Gornalusse GG, Vojtech LN, Levy CN, Hughes SM, Kim Y, Valdez R, Pandey U, Ochsenbauer C, Astronomo R, McElrath J, Hladik F. Buprenorphine Increases HIV-1 Infection In Vitro but Does Not Reactivate HIV-1 from Latency. Viruses 2021; 13:1472. [PMID: 34452338 PMCID: PMC8402857 DOI: 10.3390/v13081472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/28/2021] [Accepted: 07/24/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND medication-assisted treatment (MAT) with buprenorphine is now widely prescribed to treat addiction to heroin and other illicit opioids. There is some evidence that illicit opioids enhance HIV-1 replication and accelerate AIDS pathogenesis, but the effect of buprenorphine is unknown. METHODS we obtained peripheral blood mononuclear cells (PBMCs) from healthy volunteers and cultured them in the presence of morphine, buprenorphine, or methadone. We infected the cells with a replication-competent CCR5-tropic HIV-1 reporter virus encoding a secreted nanoluciferase gene, and measured infection by luciferase activity in the supernatants over time. We also surveyed opioid receptor expression in PBMC, genital epithelial cells and other leukocytes by qPCR and western blotting. Reactivation from latency was assessed in J-Lat 11.1 and U1 cell lines. RESULTS we did not detect expression of classical opioid receptors in leukocytes, but did find nociception/orphanin FQ receptor (NOP) expression in blood and vaginal lymphocytes as well as genital epithelial cells. In PBMCs, we found that at physiological doses, morphine, and methadone had a variable or no effect on HIV infection, but buprenorphine treatment significantly increased HIV-1 infectivity (median: 8.797-fold increase with 20 nM buprenorphine, eight experiments, range: 3.570-691.9, p = 0.0078). Using latently infected cell lines, we did not detect reactivation of latent HIV following treatment with any of the opioid drugs. CONCLUSIONS our results suggest that buprenorphine, in contrast to morphine or methadone, increases the in vitro susceptibility of leukocytes to HIV-1 infection but has no effect on in vitro HIV reactivation. These findings contribute to our understanding how opioids, including those used for MAT, affect HIV infection and reactivation, and can help to inform the choice of MAT for people living with HIV or who are at risk of HIV infection.
Collapse
Affiliation(s)
- Germán Gustavo Gornalusse
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (G.G.G.); (L.N.V.); (C.N.L.); (S.M.H.); (Y.K.); (R.V.); (U.P.); (R.A.); (J.M.)
- Departments of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA
| | - Lucia N. Vojtech
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (G.G.G.); (L.N.V.); (C.N.L.); (S.M.H.); (Y.K.); (R.V.); (U.P.); (R.A.); (J.M.)
- Departments of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA
| | - Claire N. Levy
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (G.G.G.); (L.N.V.); (C.N.L.); (S.M.H.); (Y.K.); (R.V.); (U.P.); (R.A.); (J.M.)
- Departments of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA
| | - Sean M. Hughes
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (G.G.G.); (L.N.V.); (C.N.L.); (S.M.H.); (Y.K.); (R.V.); (U.P.); (R.A.); (J.M.)
- Departments of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA
| | - Yeseul Kim
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (G.G.G.); (L.N.V.); (C.N.L.); (S.M.H.); (Y.K.); (R.V.); (U.P.); (R.A.); (J.M.)
- Departments of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA
| | - Rogelio Valdez
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (G.G.G.); (L.N.V.); (C.N.L.); (S.M.H.); (Y.K.); (R.V.); (U.P.); (R.A.); (J.M.)
| | - Urvashi Pandey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (G.G.G.); (L.N.V.); (C.N.L.); (S.M.H.); (Y.K.); (R.V.); (U.P.); (R.A.); (J.M.)
- Departments of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA
| | - Christina Ochsenbauer
- School of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Rena Astronomo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (G.G.G.); (L.N.V.); (C.N.L.); (S.M.H.); (Y.K.); (R.V.); (U.P.); (R.A.); (J.M.)
| | - Julie McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (G.G.G.); (L.N.V.); (C.N.L.); (S.M.H.); (Y.K.); (R.V.); (U.P.); (R.A.); (J.M.)
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Pathobiology, Global Health and Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | - Florian Hladik
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (G.G.G.); (L.N.V.); (C.N.L.); (S.M.H.); (Y.K.); (R.V.); (U.P.); (R.A.); (J.M.)
- Departments of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
8
|
Levy CN, Hughes SM, Roychoudhury P, Reeves DB, Amstuz C, Zhu H, Huang ML, Wei Y, Bull ME, Cassidy NA, McClure J, Frenkel LM, Stone M, Bakkour S, Wonderlich ER, Busch MP, Deeks SG, Schiffer JT, Coombs RW, Lehman DA, Jerome KR, Hladik F. A highly multiplexed droplet digital PCR assay to measure the intact HIV-1 proviral reservoir. Cell Rep Med 2021; 2:100243. [PMID: 33948574 PMCID: PMC8080125 DOI: 10.1016/j.xcrm.2021.100243] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/05/2021] [Accepted: 03/16/2021] [Indexed: 01/16/2023]
Abstract
Quantifying the replication-competent HIV reservoir is essential for evaluating curative strategies. Viral outgrowth assays (VOAs) underestimate the reservoir because they fail to induce all replication-competent proviruses. Single- or double-region HIV DNA assays overestimate it because they fail to exclude many defective proviruses. We designed two triplex droplet digital PCR assays, each with 2 unique targets and 1 in common, and normalize the results to PCR-based T cell counts. Both HIV assays are specific, sensitive, and reproducible. Together, they estimate the number of proviruses containing all five primer-probe regions. Our 5-target results are on average 12.1-fold higher than and correlate with paired quantitative VOA (Spearman's ρ = 0.48) but estimate a markedly smaller reservoir than previous DNA assays. In patients on antiretroviral therapy, decay rates in blood CD4+ T cells are faster for intact than for defective proviruses, and intact provirus frequencies are similar in mucosal and circulating T cells.
Collapse
Affiliation(s)
- Claire N. Levy
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
| | - Sean M. Hughes
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
| | - Pavitra Roychoudhury
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Daniel B. Reeves
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Chelsea Amstuz
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Haiying Zhu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Meei-Li Huang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Yulun Wei
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Marta E. Bull
- Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Noah A.J. Cassidy
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jan McClure
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Lisa M. Frenkel
- Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Mars Stone
- Vitalent Research Institute, San Francisco, CA, USA
- Department of Laboratory Medicine, University of San Francisco, San Francisco, CA, USA
- School of Medicine, University of San Francisco, San Francisco, CA, USA
| | - Sonia Bakkour
- Vitalent Research Institute, San Francisco, CA, USA
- Department of Laboratory Medicine, University of San Francisco, San Francisco, CA, USA
- School of Medicine, University of San Francisco, San Francisco, CA, USA
| | - Elizabeth R. Wonderlich
- Department of Infectious Disease Research, Southern Research, 431 Aviation Way, Frederick, MD, USA
| | - Michael P. Busch
- Vitalent Research Institute, San Francisco, CA, USA
- Department of Laboratory Medicine, University of San Francisco, San Francisco, CA, USA
| | - Steven G. Deeks
- School of Medicine, University of San Francisco, San Francisco, CA, USA
- Division of HIV, Infectious Diseases and Global Medicine, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA
| | - Joshua T. Schiffer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Robert W. Coombs
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Dara A. Lehman
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Keith R. Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Florian Hladik
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
9
|
Rodriguez-Garcia M, Connors K, Ghosh M. HIV Pathogenesis in the Human Female Reproductive Tract. Curr HIV/AIDS Rep 2021; 18:139-156. [PMID: 33721260 PMCID: PMC9273024 DOI: 10.1007/s11904-021-00546-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2021] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW Women remain disproportionately affected by the HIV/AIDS pandemic. The primary mechanism for HIV acquisition in women is sexual transmission, yet the immunobiological factors that contribute to HIV susceptibility remain poorly characterized. Here, we review current knowledge on HIV pathogenesis in women, focusing on infection and immune responses in the female reproductive tract (FRT). RECENT FINDINGS We describe recent findings on innate immune protection and HIV target cell distribution in the FRT. We also review multiple factors that modify susceptibility to infection, including sex hormones, microbiome, trauma, and how HIV risk changes during women's life cycle. Finally, we review current strategies for HIV prevention and identify barriers for research in HIV infection and pathogenesis in women. A complex network of interrelated biological and sociocultural factors contributes to HIV risk in women and impairs prevention and cure strategies. Understanding how HIV establishes infection in the FRT can provide clues to develop novel interventions to prevent HIV acquisition in women.
Collapse
Affiliation(s)
- Marta Rodriguez-Garcia
- Department of Immunology, Tufts University School of Medicine, 150 Harrison Ave, Boston, MA, 02111, USA
| | - Kaleigh Connors
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA, 15261, USA
| | - Mimi Ghosh
- Department of Epidemiology, Milken Institute School of Public Health and Health Services, The George Washington University, 800 22nd St NW, Washington, DC, 20052, USA.
| |
Collapse
|