1
|
Ulrich D, Hensel A, Classen N, Hafezi W, Sendker J, Kühn J. Aescin Inhibits Herpes simplex Virus Type 1 Induced Membrane Fusion. PLANTA MEDICA 2024; 90:1156-1166. [PMID: 39442532 DOI: 10.1055/a-2441-6570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Infections with Herpes simplex virus can cause severe ocular diseases and encephalitis. The present study aimed to investigate potential inhibitors of fusion between HSV-1 and the cellular membrane of the host cell. Fusion and entry of HSV-1 into the host cell is mimicked by a virus-free eukaryotic cell culture system by co-expression of the HSV-1 glycoproteins gD, gH, gL, and gB in presence of a gD receptor, resulting in excessive membrane fusion and polykaryocyte formation. A microscopic read-out was used for the screening of potential inhibitors, whereas luminometric quantification of cell-cell fusion was used in a reporter fusion assay. HSV-1 gB was tagged at its C-terminus with mCherry to express mCherry-gB in both assay systems for the visualization of the polykaryocyte formation. Reporter protein expression of SEAP was regulated by a Tet-On 3 G system. The saponin mixture aescin was identified as the specific inhibitor (IC50 7.4 µM, CC50 24.3 µM, SI 3.3) of membrane fusion. A plaque reduction assay on Vero cells reduced HSV-1 entry into cells and HSV-1 cell-to-cell spread significantly; 15 µM aescin decreased relative plaque counts to 41%, and 10 µM aescin resulted in a residual plaque size of 11% (HSV-1 17 syn+) and 2% (HSV-1 ANG path). Release of the HSV-1 progeny virus was reduced by one log step in the presence of 15 µM aescin. Virus particle integrity was mainly unaffected. Analytical investigation of aescin by UHPLC-MS revealed aescin IA and -IB and isoaescin IA and -IB as the main compounds with different functional activities. Aescin IA had the lowest IC50, the highest CC50, and an SI of > 4.6.
Collapse
Affiliation(s)
- Diana Ulrich
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Münster, Germany
| | - Andreas Hensel
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Münster, Germany
| | - Nica Classen
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Münster, Germany
| | - Wali Hafezi
- Institute of Virology Münster (IVM), University of Münster, Münster, Germany
| | - Jandirk Sendker
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Münster, Germany
| | - Joachim Kühn
- Institute of Virology Münster (IVM), University of Münster, Münster, Germany
| |
Collapse
|
2
|
Seyfizadeh N, Kalbermatter D, Imhof T, Ries M, Müller C, Jenner L, Blumenschein E, Yendrzheyevskiy A, Grün F, Moog K, Eckert D, Engel R, Diebolder P, Chami M, Krauss J, Schaller T, Arndt M. Development of a highly effective combination monoclonal antibody therapy against Herpes simplex virus. J Biomed Sci 2024; 31:56. [PMID: 38807208 PMCID: PMC11134845 DOI: 10.1186/s12929-024-01045-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Infections with Herpes simplex virus (HSV)-1 or -2 usually present as mild chronic recurrent disease, however in rare cases can result in life-threatening conditions with a large spectrum of pathology. Monoclonal antibody therapy has great potential especially to treat infections with virus resistant to standard therapies. HDIT101, a humanized IgG targeting HSV-1/2 gB was previously investigated in phase 2 clinical trials. The aim of this study was to develop a next-generation therapy by combining different antiviral monoclonal antibodies. METHODS A lymph-node derived phage display library (LYNDAL) was screened against recombinant gB from Herpes simplex virus (HSV) -1 and HDIT102 scFv was selected for its binding characteristics using bio-layer interferometry. HDIT102 was further developed as fully human IgG and tested alone or in combination with HDIT101, a clinically tested humanized anti-HSV IgG, in vitro and in vivo. T-cell stimulating activities by antigen-presenting cells treated with IgG-HSV immune complexes were analyzed using primary human cells. To determine the epitopes, the cryo-EM structures of HDIT101 or HDIT102 Fab bound to HSV-1F as well as HSV-2G gB protein were solved at resolutions < 3.5 Å. RESULTS HDIT102 Fab showed strong binding to HSV-1F gB with Kd of 8.95 × 10-11 M and to HSV-2G gB with Kd of 3.29 × 10-11 M. Neutralization of cell-free virus and inhibition of cell-to-cell spread were comparable between HDIT101 and HDIT102. Both antibodies induced internalization of gB from the cell surface into acidic endosomes by binding distinct epitopes in domain I of gB and compete for binding. CryoEM analyses revealed the ability to form heterogenic immune complexes consisting of two HDIT102 and one HDIT101 Fab bound to one gB trimeric molecule. Both antibodies mediated antibody-dependent phagocytosis by antigen presenting cells which stimulated autologous T-cell activation. In vivo, the combination of HDIT101 and HDIT102 demonstrated synergistic effects on survival and clinical outcome in immunocompetent BALB/cOlaHsd mice. CONCLUSION This biochemical and immunological study showcases the potential of an effective combination therapy with two monoclonal anti-gB IgGs for the treatment of HSV-1/2 induced disease conditions.
Collapse
Affiliation(s)
- Narges Seyfizadeh
- Heidelberg ImmunoTherapeutics GmbH, Max-Jarecki Str. 21, Heidelberg, 69115, Germany
| | - David Kalbermatter
- Biozentrum, University of Basel, Spitalstrasse 41, Basel, CH - 4056, Switzerland
- Present address: University of Bern, Institute of Anatomy, Balzerstrasse 2, Bern, 3012, Switzerland
| | - Thomas Imhof
- Heidelberg ImmunoTherapeutics GmbH, Max-Jarecki Str. 21, Heidelberg, 69115, Germany
| | - Moritz Ries
- Heidelberg ImmunoTherapeutics GmbH, Max-Jarecki Str. 21, Heidelberg, 69115, Germany
| | - Christian Müller
- Heidelberg ImmunoTherapeutics GmbH, Max-Jarecki Str. 21, Heidelberg, 69115, Germany
| | - Leonie Jenner
- Heidelberg ImmunoTherapeutics GmbH, Max-Jarecki Str. 21, Heidelberg, 69115, Germany
| | | | | | - Frank Grün
- Vanudis GmbH, Max-Jarecki Str. 21, Heidelberg, 69115, Germany
| | - Kevin Moog
- Heidelberg ImmunoTherapeutics GmbH, Max-Jarecki Str. 21, Heidelberg, 69115, Germany
| | - Daniel Eckert
- Heidelberg ImmunoTherapeutics GmbH, Max-Jarecki Str. 21, Heidelberg, 69115, Germany
| | - Ronja Engel
- Heidelberg ImmunoTherapeutics GmbH, Max-Jarecki Str. 21, Heidelberg, 69115, Germany
| | - Philipp Diebolder
- National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, Heidelberg, 69120, Germany
- Present address: Bio-Rad AbD Serotec GmbH, Anna-Sigmund-Str. 5, Neuried, 82061, Germany
| | - Mohamed Chami
- Biozentrum, University of Basel, Spitalstrasse 41, Basel, CH - 4056, Switzerland
| | - Jürgen Krauss
- Heidelberg ImmunoTherapeutics GmbH, Max-Jarecki Str. 21, Heidelberg, 69115, Germany
| | - Torsten Schaller
- Heidelberg ImmunoTherapeutics GmbH, Max-Jarecki Str. 21, Heidelberg, 69115, Germany
| | - Michaela Arndt
- Heidelberg ImmunoTherapeutics GmbH, Max-Jarecki Str. 21, Heidelberg, 69115, Germany.
| |
Collapse
|
3
|
Slein MD, Backes IM, Garland CR, Kelkar NS, Leib DA, Ackerman ME. Effector functions are required for broad and potent protection of neonatal mice with antibodies targeting HSV glycoprotein D. Cell Rep Med 2024; 5:101417. [PMID: 38350452 PMCID: PMC10897633 DOI: 10.1016/j.xcrm.2024.101417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/26/2023] [Accepted: 01/17/2024] [Indexed: 02/15/2024]
Abstract
Multiple failed herpes simplex virus (HSV) vaccine candidates induce robust neutralizing antibody (Ab) responses in clinical trials, raising the hypothesis that Fc-domain-dependent effector functions may be critical for protection. While neonatal HSV (nHSV) infection results in mortality and lifelong neurological morbidity in humans, it is uncommon among neonates with a seropositive birthing parent, supporting the hypothesis that Ab-based therapeutics could protect neonates from HSV. We therefore investigated the mechanisms of monoclonal Ab (mAb)-mediated protection in a mouse model of nHSV infection. For a panel of glycoprotein D (gD)-specific mAbs, neutralization and effector functions contributed to nHSV-1 protection. In contrast, effector functions alone were sufficient to protect against nHSV-2, exposing a functional dichotomy between virus types consistent with vaccine trial results. Effector functions are therefore crucial for protection by these gD-specific mAbs, informing effective Ab and vaccine design and demonstrating the potential of polyfunctional Abs as therapeutics for nHSV infections.
Collapse
Affiliation(s)
- Matthew D Slein
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Iara M Backes
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Callaghan R Garland
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Natasha S Kelkar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - David A Leib
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA.
| | - Margaret E Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
4
|
Slein MD, Backes IM, Garland CR, Kelkar NS, Leib DA, Ackerman ME. Antibody effector functions are required for broad and potent protection of neonates from herpes simplex virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555423. [PMID: 37693377 PMCID: PMC10491243 DOI: 10.1101/2023.08.29.555423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The failure of multiple herpes simplex virus (HSV) vaccine candidates that induce neutralizing antibody responses raises the hypothesis that other activities, such as Fc domain-dependent effector functions, may be critical for protection. While neonatal HSV (nHSV) infection result in mortality and lifelong neurological morbidity in humans, it is uncommon among neonates with a seropositive birthing parent, suggesting the potential efficacy of antibody-based therapeutics to protect neonates. We therefore investigated the mechanisms of monoclonal antibody (mAb)-mediated protection in a mouse model of nHSV infection. Both neutralization and effector functions contributed to robust protection against nHSV-1. In contrast, effector functions alone were sufficient to protect against nHSV-2, exposing a functional dichotomy between virus types that is consistent with vaccine trial results. Together, these results emphasize that effector functions are crucial for optimal mAb-mediated protection, informing effective Ab and vaccine design, and demonstrating the potential of polyfunctional Abs as potent therapeutics for nHSV infections.
Collapse
Affiliation(s)
- Matthew D. Slein
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Iara M. Backes
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Callaghan R. Garland
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Natasha S. Kelkar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - David A. Leib
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Margaret E. Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
- Lead Contact
| |
Collapse
|
5
|
Alt M, Wolf S, van de Sand L, Dittrich R, Tertel T, Brochhagen L, Dirks M, Aufderhorst UW, Thümmler L, Otte M, Rainer K, Dittmer U, Giebel B, Trilling M, Silke Heilingloh C, Lotfi R, Roggendorf M, Witzke O, Krawczyk A. Cell-to-cell spread inhibiting antibodies constitute a correlate of protection against herpes simplex virus type 1 reactivations: A retrospective study. Front Immunol 2023; 14:1143870. [PMID: 37006290 PMCID: PMC10061111 DOI: 10.3389/fimmu.2023.1143870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
BackgroundHerpes simplex viruses (HSV) cause ubiquitous human infections. For vaccine development, knowledge concerning correlates of protection is essential. Therefore, we investigated (I) if humans are in principle capable producing cell-to-cell spread inhibiting antibodies against HSV and (II) whether this capacity is associated with a reduced HSV-1 reactivation risk.MethodsWe established a high-throughput HSV-1-ΔgE-GFP reporter virus-based assay and evaluated 2,496 human plasma samples for HSV-1 glycoprotein E (gE) independent cell-to-cell spread inhibiting antibodies. Subsequently, we conducted a retrospective survey among the blood donors to analyze the correlation between the presence of cell-to-cell spread inhibiting antibodies in plasma and the frequency of HSV reactivations.ResultsIn total, 128 of the 2,496 blood donors (5.1%) exhibited high levels of HSV-1 gE independent cell-to-cell spread inhibiting antibodies in the plasma. None of the 147 HSV-1 seronegative plasmas exhibited partial or complete cell-to-cell spread inhibition, demonstrating the specificity of our assay. Individuals with cell-to-cell spread inhibiting antibodies showed a significantly lower frequency of HSV reactivations compared to subjects without sufficient levels of such antibodies.ConclusionThis study contains two important findings: (I) upon natural HSV infection, some humans produce cell-to-cell spread inhibiting antibodies and (II) such antibodies correlate with protection against recurrent HSV-1. Moreover, these elite neutralizers may provide promising material for immunoglobulin therapy and information for the design of a protective vaccine against HSV-1.
Collapse
Affiliation(s)
- Mira Alt
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Susanne Wolf
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lukas van de Sand
- Department of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Robin Dittrich
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tobias Tertel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Leonie Brochhagen
- Department of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Miriam Dirks
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulrich Wilhelm Aufderhorst
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Laura Thümmler
- Department of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mona Otte
- Department of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kordula Rainer
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg - Hessen and University Hospital Ulm, Ulm, Germany
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bernd Giebel
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg - Hessen and University Hospital Ulm, Ulm, Germany
| | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Ramin Lotfi
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg - Hessen and University Hospital Ulm, Ulm, Germany
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Michael Roggendorf
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Adalbert Krawczyk
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Adalbert Krawczyk,
| |
Collapse
|
6
|
A neutralizing monoclonal antibody–based blocking ELISA to detect bovine herpesvirus 1 and vaccination efficacy. Appl Microbiol Biotechnol 2022; 107:379-390. [DOI: 10.1007/s00253-022-12308-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022]
|
7
|
Blank A, Hohmann N, Dettmer M, Manka‐Stuhlik A, Mikus G, Stoll F, Stützle‐Schnetz M, Thomas D, Exner E, Schmitt‐Bormann B, Schaller T, Laage R, Schönborn‐Kellenberger O, Arndt M, Haefeli WE, Krauss J. First-in-human, randomized, double-blind, placebo-controlled, dose escalation trial of the anti-herpes simplex virus monoclonal antibody HDIT101 in healthy volunteers. Clin Transl Sci 2022; 15:2366-2377. [PMID: 35869929 PMCID: PMC9579396 DOI: 10.1111/cts.13365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/21/2022] [Accepted: 06/26/2022] [Indexed: 01/25/2023] Open
Abstract
HDIT101 is a first-in-class humanized monoclonal antibody recognizing a conserved epitope in glycoprotein B, a target present on the surface of herpes simplex virus 1 (HSV-1) and HSV-2 particles as well as on virus-infected cells. This was a first-in-human, single-center, double-blind, placebo-controlled trial in 24 healthy volunteers, randomized 3:1 (placebo:active) in each of the six dose levels with escalating doses up to 12,150 mg HDIT101. HDIT101 was administered intravenously, to study safety, pharmacokinetics (PKs), and immunogenicity. HDIT101 was well-tolerated in all recipients and no serious or severe adverse events, no infusion-related reactions, and no events suggestive of dose limiting off-target toxicity occurred. The mean serum exposure (area under the curve from zero to infinity [AUC0-∞ ]) of HDIT101 showed a linear increase from 4340 h*μg/ml at a dose of 50 mg to 1,122,247 h*μg/ml at a dose of 12,150 mg. No immunogenic effects following HDIT101 exposure were observed at any of the applied doses. HDIT101 demonstrated the expected PK properties of a monoclonal antibody was well-tolerated, and could be safely administered even at excessively high doses that may be required for treatment of patients with septical HSV spread.
Collapse
Affiliation(s)
- Antje Blank
- Department of Clinical Pharmacology and PharmacoepidemiologyHeidelberg University HospitalHeidelbergGermany
| | - Nicolas Hohmann
- NCT, National Center for Tumor Diseases, Department of Medical OncologyHeidelberg University HospitalHeidelbergGermany
| | - Marlen Dettmer
- NCT, National Center for Tumor Diseases, Department of Medical OncologyHeidelberg University HospitalHeidelbergGermany
| | - Anette Manka‐Stuhlik
- NCT, National Center for Tumor Diseases, Department of Medical OncologyHeidelberg University HospitalHeidelbergGermany
| | - Gerd Mikus
- Department of Clinical Pharmacology and PharmacoepidemiologyHeidelberg University HospitalHeidelbergGermany
| | - Felicitas Stoll
- Department of Clinical Pharmacology and PharmacoepidemiologyHeidelberg University HospitalHeidelbergGermany
| | - Marlies Stützle‐Schnetz
- Department of Clinical Pharmacology and PharmacoepidemiologyHeidelberg University HospitalHeidelbergGermany
| | | | - Evelyn Exner
- Heidelberg ImmunoTherapeutics GmbHHeidelbergGermany
| | | | | | - Rico Laage
- Heidelberg ImmunoTherapeutics GmbHHeidelbergGermany
| | | | | | - Walter E. Haefeli
- Department of Clinical Pharmacology and PharmacoepidemiologyHeidelberg University HospitalHeidelbergGermany
| | - Jürgen Krauss
- NCT, National Center for Tumor Diseases, Department of Medical OncologyHeidelberg University HospitalHeidelbergGermany
| |
Collapse
|
8
|
Backes IM, Leib DA, Ackerman ME. Monoclonal antibody therapy of herpes simplex virus: An opportunity to decrease congenital and perinatal infections. Front Immunol 2022; 13:959603. [PMID: 36016956 PMCID: PMC9398215 DOI: 10.3389/fimmu.2022.959603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/20/2022] [Indexed: 11/25/2022] Open
Abstract
The fetal/neonatal period represents both a unique window of opportunity for interventions as well as vulnerability to a number of viral infections. While Herpesviruses such as herpes simplex virus (HSV) are highly prevalent and typically of little consequence among healthy adults, they are among the most consequential infections of early life. Despite treatment with antiviral drugs, neonatal HSV (nHSV) infections can still result in significant mortality and lifelong neurological morbidity. Fortunately, newborns in our pathogen-rich world inherit some of the protection provided by the maternal immune system in the form of transferred antibodies. Maternal seropositivity, resulting in placental transfer of antibodies capable of neutralizing virus and eliciting the diverse effector functions of the innate immune system are associated with dramatically decreased risk of nHSV. Given this clear epidemiological evidence of reduced risk of infection and its sequelae, we present what is known about the ability of monoclonal antibody therapies to treat or prevent HSV infection and explore how effective antibody-based interventions in conjunction with antiviral therapy might reduce early life mortality and long-term morbidity.
Collapse
Affiliation(s)
- Iara M Backes
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - David A Leib
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | | |
Collapse
|
9
|
Broadly Applicable, Virus-Free Dual Reporter Assay to Identify Compounds Interfering with Membrane Fusion: Performance for HSV-1 and SARS-CoV-2. Viruses 2022; 14:v14071354. [PMID: 35891336 PMCID: PMC9322530 DOI: 10.3390/v14071354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/13/2022] [Accepted: 06/19/2022] [Indexed: 02/04/2023] Open
Abstract
Membrane fusion constitutes an essential step in the replication cycle of numerous viral pathogens, hence it represents an important druggable target. In the present study, we established a virus-free, stable reporter fusion inhibition assay (SRFIA) specifically designed to identify compounds interfering with virus-induced membrane fusion. The dual reporter assay is based on two stable Vero cell lines harboring the third-generation tetracycline (Tet3G) transactivator and a bicistronic reporter gene cassette under the control of the tetracycline responsive element (TRE3G), respectively. Cell–cell fusion by the transient transfection of viral fusogens in the presence of doxycycline results in the expression of the reporter enzyme secreted alkaline phosphatase (SEAP) and the fluorescent nuclear localization marker EYFPNuc. A constitutively expressed, secreted form of nanoluciferase (secNLuc) functioned as the internal control. The performance of the SRFIA was tested for the quantification of SARS-CoV-2- and HSV-1-induced cell–cell fusion, respectively, showing high sensitivity and specificity, as well as the reliable identification of known fusion inhibitors. Parallel quantification of secNLuc enabled the detection of cytotoxic compounds or insufficient transfection efficacy. In conclusion, the SRFIA reported here is well suited for high-throughput screening for new antiviral agents and essentially will be applicable to all viral fusogens causing cell–cell fusion in Vero cells.
Collapse
|
10
|
Tian R, Ju F, Yu M, Liang Z, Xu Z, Zhao M, Qin Y, Lin Y, Huang X, Chang Y, Li S, Ren W, Lin C, Xia N, Huang C. A potent neutralizing and protective antibody against a conserved continuous epitope on HSV glycoprotein D. Antiviral Res 2022; 201:105298. [PMID: 35341808 DOI: 10.1016/j.antiviral.2022.105298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 11/25/2022]
Abstract
Infections caused by herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) remain a serious global health issue, and the medical countermeasures available thus far are limited. Virus-neutralizing monoclonal antibodies (NAbs) are crucial tools for studying host-virus interactions and designing effective vaccines, and the discovery and development of these NAbs could be one approach to treat or prevent HSV infection. Here, we report the isolation of five HSV NAbs from mice immunized with both HSV-1 and HSV-2. Among these were two antibodies that potently cross-neutralized both HSV-1 and HSV-2 with the 50% virus-inhibitory concentrations (IC50) below 200 ng/ml, one of which (4A3) exhibited high potency against HSV-2, with an IC50 of 59.88 ng/ml. 4A3 neutralized HSV at the prebinding stage and prevented HSV infection and cell-to-cell spread. Significantly, administration of 4A3 completely prevented weight loss and improved survival of mice challenged with a lethal dose of HSV-2. Using structure-guided molecular modeling combined with alanine-scanning mutagenesis, we observed that 4A3 bound to a highly conserved continuous epitope (residues 216 to 220) within the receptor-binding domain of glycoprotein D (gD) that is essential for viral infection and the triggering of membrane fusion. Our results provide guidance for developing NAb drugs and vaccines against HSV.
Collapse
Affiliation(s)
- Rui Tian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Fei Ju
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Mengqin Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zhiqi Liang
- School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zilong Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Min Zhao
- School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yaning Qin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yanhua Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiaoxuan Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yating Chang
- School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Shaopeng Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Wenfeng Ren
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chaolong Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chenghao Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
11
|
Ahsendorf HP, Diesterbeck US, Hotop SK, Winkler M, Brönstrup M, Czerny CP. Characterisation of an Anti-Vaccinia Virus F13 Single Chain Fragment Variable from a Human Anti-Vaccinia Virus-Specific Recombinant Immunoglobulin Library. Viruses 2022; 14:v14020197. [PMID: 35215792 PMCID: PMC8879190 DOI: 10.3390/v14020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 11/30/2022] Open
Abstract
Vaccinia virus (VACV) belongs to the genus Orthopoxvirus of the family Poxviridae. There are four different forms of infectious virus particles: intracellular mature virus (IMV), intracellular en-veloped virus (IEV), cell-associated enveloped virus (CEV) and extracellular enveloped virus (EEV). The F13 protein occupies the inner side of the CEV- and EEV-membranes and the outer side of the IEV-membranes. It plays an important role in wrapping progress and EEV production. We constructed a human single-chain fragment variable (scFv) library with a diversity of ≥4 × 108 independent colonies using peripheral blood from four vaccinated donors. One anti-F13 scFv was isolated and characterised after three rounds of panning. In Western blotting assays, the scFv 3E2 reacted with the recombinant F13VACV protein with a reduction of binding under denatured and reduced conditions. Two antigenic binding sites (139-GSIHTIKTLGVYSDY-153 and 169-AFNSAKNSWLNL-188) of scFv 3E2 were mapped using a cellulose membrane encompassing 372 15-mere peptides with 12 overlaps covering the whole F13 protein. No neutralisation capa-bilities were observed either in the presence or absence of complement. In conclusion, the con-struction of recombinant immunoglobulin libraries is a promising strategy to isolate specific scFvs to enable the study of the host-pathogen interaction.
Collapse
Affiliation(s)
- Henrike P. Ahsendorf
- Division of Microbiology and Animal Hygiene, Department of Animal Sciences, University of Göttingen, Burckhardtweg 2, 37077 Göttingen, Germany; (H.P.A.); (C.-P.C.)
| | - Ulrike S. Diesterbeck
- Division of Microbiology and Animal Hygiene, Department of Animal Sciences, University of Göttingen, Burckhardtweg 2, 37077 Göttingen, Germany; (H.P.A.); (C.-P.C.)
- Correspondence:
| | - Sven-Kevin Hotop
- Helmholtz Centre for Infection Research, Inhoffenstraβe 7, 38124 Braunschweig, Germany; (S.-K.H.); (M.B.)
| | - Michael Winkler
- Infection Biology Unit, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany;
| | - Mark Brönstrup
- Helmholtz Centre for Infection Research, Inhoffenstraβe 7, 38124 Braunschweig, Germany; (S.-K.H.); (M.B.)
| | - Claus-Peter Czerny
- Division of Microbiology and Animal Hygiene, Department of Animal Sciences, University of Göttingen, Burckhardtweg 2, 37077 Göttingen, Germany; (H.P.A.); (C.-P.C.)
| |
Collapse
|
12
|
Brenner S, Braun B, Read C, Weil T, Walther P, Schrader T, Münch J, von Einem J. The Molecular Tweezer CLR01 Inhibits Antibody-Resistant Cell-to-Cell Spread of Human Cytomegalovirus. Viruses 2021; 13:v13091685. [PMID: 34578265 PMCID: PMC8472163 DOI: 10.3390/v13091685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Human cytomegalovirus (HCMV) uses two major ways for virus dissemination: infection by cell-free virus and direct cell-to-cell spread. Neutralizing antibodies can efficiently inhibit infection by cell-free virus but mostly fail to prevent cell-to-cell transmission. Here, we show that the ‘molecular tweezer’ CLR01, a broad-spectrum antiviral agent, is not only highly active against infection with cell-free virus but most remarkably inhibits antibody-resistant direct cell-to-cell spread of HCMV. The inhibition of cell-to-cell spread by CLR01 was not limited to HCMV but was also shown for the alphaherpesviruses herpes simplex viruses 1 and 2 (HSV-1, -2). CLR01 is a rapid acting small molecule that inhibits HCMV entry at the attachment and penetration steps. Electron microscopy of extracellular virus particles indicated damage of the viral envelope by CLR01, which likely impairs the infectivity of virus particles. The rapid inactivation of viral particles by CLR01, the viral envelope as the main target, and the inhibition of virus entry at different stages are presumably the key to inhibition of cell-free virus infection and cell-to-cell spread by CLR01. Importance: While cell-free spread enables the human cytomegalovirus (HCMV) and other herpesviruses to transmit between hosts, direct cell-to-cell spread is thought to be more relevant for in vivo dissemination within infected tissues. Cell-to-cell spread is resistant to neutralizing antibodies, thus contributing to the maintenance of virus infection and virus dissemination in the presence of an intact immune system. Therefore, it would be therapeutically interesting to target this mode of spread in order to treat severe HCMV infections and to prevent dissemination of virus within the infected host. The molecular tweezer CLR01 exhibits broad-spectrum antiviral activity against a number of enveloped viruses and efficiently blocks antibody-resistant cell-to-cell spread of HCMV, thus representing a novel class of small molecules with promising antiviral activity.
Collapse
Affiliation(s)
- Sina Brenner
- Institute of Virology, Ulm University Medical Center, 89081 Ulm, Germany; (S.B.); (B.B.); (C.R.)
| | - Berenike Braun
- Institute of Virology, Ulm University Medical Center, 89081 Ulm, Germany; (S.B.); (B.B.); (C.R.)
| | - Clarissa Read
- Institute of Virology, Ulm University Medical Center, 89081 Ulm, Germany; (S.B.); (B.B.); (C.R.)
- Central Facility for Electron Microscopy, Ulm University, 89081 Ulm, Germany;
| | - Tatjana Weil
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (T.W.); (J.M.)
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, 89081 Ulm, Germany;
| | - Thomas Schrader
- Faculty of Chemistry, University of Duisburg-Essen, 45117 Essen, Germany;
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (T.W.); (J.M.)
- Core Facility Functional Peptidomics, Ulm University Medical Center, 89081 Ulm, Germany
| | - Jens von Einem
- Institute of Virology, Ulm University Medical Center, 89081 Ulm, Germany; (S.B.); (B.B.); (C.R.)
- Correspondence: ; Tel.: +49-(0)731-500-65104; Fax: +49-(0)731-500-65102
| |
Collapse
|
13
|
Zhang T, Liu Y, Chen Y, Wang J, Feng H, Wei Q, Zhao S, Yang S, Liu D, Zhang G. A monoclonal antibody neutralizes pesudorabies virus by blocking gD binding to the receptor nectin-1. Int J Biol Macromol 2021; 188:359-368. [PMID: 34339791 DOI: 10.1016/j.ijbiomac.2021.07.170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 07/08/2021] [Accepted: 07/25/2021] [Indexed: 11/30/2022]
Abstract
Pseudorabies virus (PRV) was isolated from some human cases recently and the infected patients manifested respiratory dysfunction and acute neurological symptoms. However, no effective drug or vaccine, preventing the progression of PRV infection, is available. Nectin-1 was the only reported receptor for PRV cell entry both swine and human origin, representing an excellent target to block PRV infection, and especially its transmission from pigs to humans. A PRV-gD specific mAbs (10B6) was isolated from hybridomas and its neutralizing activities in vitro and in vivo were determined. 10B6 exhibited effective neutralizing activities in vitro with IC50 = 2.514 μg/ml and 4.297 μg/ml in the presence and absence of complement. And in vivo, 10B6 provided 100% protection against PRV lethal challenge with a dose of 15 mg/kg. Further, 10B6 could bind to a conserved epitope, 316QPAEPFP322, locating in gD pro-fusion domain, and finally blocks the binding of PRV-gD to nectin-1. Moreover, 10B6 showed an effective inhibition on PRV cell-attachment in a cell type-independent manner and could also block the virus spreading among cells. 10B6 exhibited effectively neutralizing activities to Chinese PRV variant strain in vitro and in vivo by blocking gD binding to nectin-1, implied both prophylactic and therapeutic interventions against PRV infections.
Collapse
Affiliation(s)
- Teng Zhang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China; College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yunchao Liu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jucai Wang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Hua Feng
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Qiang Wei
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Shuangshuang Zhao
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Suzhen Yang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Dongmin Liu
- Henan Zhongze Biological Engineering Co., Ltd, Zhengzhou, China
| | - Gaiping Zhang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China; School of Life Sciences, Zhengzhou University, Zhengzhou, China; College of Veterinary Medicine, Northwest A&F University, Yangling, China; Henan Zhongze Biological Engineering Co., Ltd, Zhengzhou, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China.
| |
Collapse
|
14
|
Ruzsics Z, Hoffmann K, Riedl A, Krawczyk A, Widera M, Sertznig H, Schipper L, Kapper-Falcone V, Debreczeny M, Ernst W, Grabherr R, Hengel H, Harant H. A Novel, Broad-Acting Peptide Inhibitor of Double-Stranded DNA Virus Gene Expression and Replication. Front Microbiol 2020; 11:601555. [PMID: 33281801 PMCID: PMC7705112 DOI: 10.3389/fmicb.2020.601555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/27/2020] [Indexed: 12/30/2022] Open
Abstract
Viral infections are a global disease burden with only a limited number of antiviral agents available. Due to newly emerging viral pathogens and increasing occurrence of drug resistance, there is a continuous need for additional therapeutic options, preferably with extended target range. In the present study, we describe a novel antiviral peptide with broad activity against several double-stranded DNA viruses. The 22-mer peptide TAT-I24 potently neutralized viruses such as herpes simplex viruses, adenovirus type 5, cytomegalovirus, vaccinia virus, and simian virus 40 in cell culture models, while being less active against RNA viruses. The peptide TAT-I24 therefore represents a novel and promising drug candidate for use against double-stranded DNA viruses.
Collapse
Affiliation(s)
- Zsolt Ruzsics
- Institute of Virology, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Consulting Laboratory for HSV and VZV, Medical Center-University of Freiburg, Freiburg, Germany
| | - Katja Hoffmann
- Institute of Virology, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - André Riedl
- Institute of Virology, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Adalbert Krawczyk
- Department of Infectious Diseases, West German Centre of Infectious Diseases, Universitätsmedizin Essen, University Duisburg-Essen, Essen, Germany.,Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Marek Widera
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Institute of Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Helene Sertznig
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Leonie Schipper
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Valeria Kapper-Falcone
- Institute of Virology, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Consulting Laboratory for HSV and VZV, Medical Center-University of Freiburg, Freiburg, Germany
| | - Monika Debreczeny
- VIBT Imaging Center, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Wolfgang Ernst
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Reingard Grabherr
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Hartmut Hengel
- Institute of Virology, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Consulting Laboratory for HSV and VZV, Medical Center-University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
15
|
Herpes Simplex Virus Type 2 Is More Difficult to Neutralize by Antibodies Than Herpes Simplex Virus Type 1. Vaccines (Basel) 2020; 8:vaccines8030478. [PMID: 32867086 PMCID: PMC7563860 DOI: 10.3390/vaccines8030478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/28/2022] Open
Abstract
Infections with herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) are a global health burden. Besides painful oral or genital lesions in otherwise healthy subjects, both viruses can cause devastating morbidity and mortality in immune-compromised and immune-immature individuals. The latter are particularly susceptible to a disseminated, life-threatening disease. Neutralizing antibodies (NAb) constitute a correlate of protection from disease, and are promising candidates for the prophylactic or therapeutic treatment of severe HSV infections. However, a clinical vaccine trial suggested that HSV-2 might be more resistant to NAbs than HSV-1. In the present study, we investigated the antiviral efficacy of the well-characterized humanized monoclonal antibody (mAb) hu2c against HSV-2, in a NOD/SCID immunodeficiency mouse model. Despite the fact that hu2c recognizes a fully conserved epitope and binds HSV-1 and HSV-2 glycoprotein B with equal affinity, it was much less effective against HSV-2 in vitro and in NOD/SCID mice. Although intravenous antibody treatment prolonged the survival of HSV-2-infected mice, complete protection from death was not achieved. Our data demonstrate that HSV-2 is more resistant to NAbs than HSV-1, even if the same antibody and antigen are concerned, making the development of a vaccine or therapeutic antibodies more challenging.
Collapse
|
16
|
Birzer A, Krawczyk A, Draßner C, Kuhnt C, Mühl-Zürbes P, Heilingloh CS, Steinkasserer A, Popella L. HSV-1 Modulates IL-6 Receptor Expression on Human Dendritic Cells. Front Immunol 2020; 11:1970. [PMID: 32983130 PMCID: PMC7479228 DOI: 10.3389/fimmu.2020.01970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Dendritic cells (DCs) are the guardians of the immune system since they are located in the majority of peripheral tissues. In addition, they are crucial for the induction of an effective immune response based on their unique capacity to stimulate naive T cells. During co-evolution, the human pathogen herpes simplex virus type 1 (HSV-1) has evolved several immune evasion mechanisms in order to subvert the host's immune system especially by targeting DC biology and function. Here we demonstrate that HSV-1 infection influences the IL-6 receptor (IL6R) expression both on protein and mRNA levels in/on human monocyte-derived mature DCs (mDCs). Surprisingly, reduced IL6R expression levels were also observed on uninfected bystander mDCs. Mechanistically, we clearly show that HSV-1-derived non-infectious light (L-) particles are sufficient to trigger IL6R regulation on uninfected bystander mDCs. These L-particles lack the viral DNA-loaded capsid and are predominantly produced during infection of mDCs. Our results show that the deletion of the HSV-1 tegument protein vhs partially rescued the reduced IL6R surface expression levels on/in bystander mDCs. Using a neutralizing antibody, which perturbs the transfer of L-particles to bystander mDCs, was sufficient to rescue the modulation of IL6R surface expression on uninfected bystander mDCs. This study provides evidence that L-particles transfer specific viral proteins to uninfected bystander mDCs, thereby negatively interfering with their IL6R expression levels, however, to a lesser extend compared to H-particles. Due to their immune-modulatory capacity, L-particles represent an elaborated approach of HSV-1-mediated immune evasion.
Collapse
Affiliation(s)
- Alexandra Birzer
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Adalbert Krawczyk
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christina Draßner
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christine Kuhnt
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Petra Mühl-Zürbes
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christiane Silke Heilingloh
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Linda Popella
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
17
|
Structural characterization and antiviral activity of two fucoidans from the brown algae Sargassum henslowianum. Carbohydr Polym 2020; 229:115487. [DOI: 10.1016/j.carbpol.2019.115487] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/25/2019] [Accepted: 10/15/2019] [Indexed: 12/22/2022]
|
18
|
The role of infections in autoimmune encephalitides. Rev Neurol (Paris) 2019; 175:420-426. [DOI: 10.1016/j.neurol.2019.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/06/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022]
|
19
|
Cell-to-Cell Spread Blocking Activity Is Extremely Limited in the Sera of Herpes Simplex Virus 1 (HSV-1)- and HSV-2-Infected Subjects. J Virol 2019; 93:JVI.00070-19. [PMID: 30867302 DOI: 10.1128/jvi.00070-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/01/2019] [Indexed: 02/06/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) and HSV-2 can evade serum antibody-mediated neutralization through cell-to-cell transmission mechanisms, which represent one of the central steps in disease reactivation. To address the role of humoral immunity in controlling HSV-1 and HSV-2 replication, we analyzed serum samples from 44 HSV-1 and HSV-2 seropositive subjects by evaluating (i) their efficiency in binding both the purified viral particles and recombinant gD and gB viral glycoproteins, (ii) their neutralizing activity, and (iii) their capacity to inhibit the cell-to-cell virus passage in vitro All of the sera were capable of binding gD, gB, and whole virions, and all sera significantly neutralized cell-free virus. However, neither whole sera nor purified serum IgG fraction was able to inhibit significantly cell-to-cell virus spreading in in vitro post-virus-entry infectious assays. Conversely, when spiked with an already described anti-gD human monoclonal neutralizing antibody capable of inhibiting HSV-1 and -2 cell-to-cell transmission, each serum boosted both its neutralizing and post-virus-entry inhibitory activity, with no interference exerted by serum antibody subpopulations.IMPORTANCE Despite its importance in the physiopathology of HSV-1 and -2 infections, the cell-to-cell spreading mechanism is still poorly understood. The data shown here suggest that infection-elicited neutralizing antibodies capable of inhibiting cell-to-cell virus spread can be underrepresented in most infected subjects. These observations can be of great help in better understanding the role of humoral immunity in controlling virus reactivation and in the perspective of developing novel therapeutic strategies, studying novel correlates of protection, and designing effective vaccines.
Collapse
|
20
|
Induction of herpes simplex virus type 1 cell-to-cell spread inhibiting antibodies by a calcium phosphate nanoparticle-based vaccine. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 16:138-148. [PMID: 30594660 DOI: 10.1016/j.nano.2018.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/23/2018] [Accepted: 12/10/2018] [Indexed: 11/20/2022]
Abstract
Herpes simplex viruses 1 and 2 are among the most ubiquitous human infections and persist lifelong in their host. Upon primary infection or reactivation from ganglia, the viruses spread by direct cell-cell contacts (cell-to-cell spread) and thus escape from the host immune response. We have developed a monoclonal antibody (mAb 2c), which inhibits the HSV cell-to-cell spread, thereby protecting from lethal genital infection and blindness in animal models. In the present study we have designed a nanoparticle-based vaccine to induce protective antibody responses exceeding the cell-to-cell spread inhibiting properties of mAb 2c. We used biodegradable calcium phosphate (CaP) nanoparticles coated with a synthetic peptide that represents the conformational epitope on HSV-1 gB recognized by mAb 2c. The CaP nanoparticles additionally contained a TLR-ligand CpGm and were formulated with adjuvants to facilitate the humoral immune response. This vaccine effectively protected mice from lethal HSV-1 infection by inducing cell-to-cell spread inhibiting antibodies.
Collapse
|
21
|
Alt M, Falk J, Eis-Hübinger AM, Kropff B, Sinzger C, Krawczyk A. Detection of antibody-secreting cells specific for the cytomegalovirus and herpes simplex virus surface antigens. J Immunol Methods 2018; 462:13-22. [PMID: 30056033 PMCID: PMC7094464 DOI: 10.1016/j.jim.2018.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/29/2018] [Accepted: 07/25/2018] [Indexed: 11/24/2022]
Abstract
Infections with the herpes simplex virus (HSV) and the human cytomegalovirus (HCMV) can lead to life-threatening diseases, particularly in immunosuppressed patients. Furthermore, HSV infections at birth (herpes neonatorum) can result in a disseminated disease associated with a fatal multiorgan failure. Congenital HCMV infections can result in miscarriage, serious birth defects or developmental disabilities. Antibody-based interventions with hyperimmunoglobulins showed encouraging results in clinical studies, but clearly need to be improved. The isolation of highly neutralizing monoclonal antibodies is a promising strategy to establish potent therapy options against HSV and HCMV infections. Monoclonal antibodies are commonly isolated from hybridomas or EBV-immortalized B-cell clones. The screening procedure to identify virus-specific cells from a cell mixture is a challenging step, since most of the highly neutralizing antibodies target complex conformational epitopes on the virus surface. Conventional assays such as ELISA are based on purified viral proteins and inappropriate to display complex epitopes. To overcome this obstacle, we have established two full-virus based methods that allow screening for cells and antibodies targeting complex conformational epitopes on viral surface antigens. The methods are suitable to detect surface antigen-specific cells from a cell mixture and may facilitate the isolation of highly neutralizing antibodies against HSV and HCMV.
Collapse
Affiliation(s)
- Mira Alt
- Institute for Virology, University Hospital of Essen, 45147 Essen, Germany
| | - Jessica Falk
- Institute for Virology, University Hospital of Ulm, 89081 Ulm, Germany
| | | | - Barbara Kropff
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Christian Sinzger
- Institute for Virology, University Hospital of Ulm, 89081 Ulm, Germany
| | - Adalbert Krawczyk
- Institute for Virology, University Hospital of Essen, 45147 Essen, Germany.
| |
Collapse
|
22
|
Bauer D, Keller J, Alt M, Schubert A, Aufderhorst UW, Palapys V, Kasper M, Heilingloh CS, Dittmer U, Laffer B, Eis-Hübinger AM, Verjans GM, Heiligenhaus A, Roggendorf M, Krawczyk A. Antibody-based immunotherapy of aciclovir resistant ocular herpes simplex virus infections. Virology 2017; 512:194-200. [DOI: 10.1016/j.virol.2017.09.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/20/2017] [Accepted: 09/22/2017] [Indexed: 11/29/2022]
|
23
|
Zinser E, Krawczyk A, Mühl-Zürbes P, Aufderhorst U, Draßner C, Stich L, Zaja M, Strobl S, Steinkasserer A, Heilingloh CS. A new promising candidate to overcome drug resistant herpes simplex virus infections. Antiviral Res 2017; 149:202-210. [PMID: 29155164 DOI: 10.1016/j.antiviral.2017.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 01/08/2023]
Abstract
Infections with Herpes simplex viruses (HSV) belong to the most common human diseases worldwide, resulting in symptoms ranging from painful, but commonly self-limiting lesions of the orofacial or genital tract to severe infections of the eye or life-threatening generalized infections. Frequent HSV-reactivations at the eye may lead to the development of herpetic stromal keratitis, which is one of the major causes of infectious blindness in developed countries. The vast majority of life-threatening generalized infections occur in immunocompromised individuals, such as transplant recipients or patients suffering from advanced human immunodeficiency virus (HIV) infection with concurrent HSV-reactivation. Over the past decades, Acyclovir (ACV) became the golden standard for the treatment of HSV infections. However, long-term antiviral treatment, as it is required mainly in immunocompromised patients, led to the emergence of resistances towards ACV and other antivirals. Therefore, there is a clear need for the development of new potent antivirals which combine good oral bioavailability and tolerability with low side effects. In the current study we present SC93305 as a novel potent antiviral substance that proved to be highly effective not only against different HSV-1 and HSV-2 strains but also towards ACV- and multi-resistant HSV-1 and HSV-2 isolates. SC93305 shows comparable antiviral activity as reported for ACV and very importantly it does not interfere with the activation of specific immune cells. Here we report that SC93305 does not affect the biological function of dendritic cells (DC), the most potent antigen presenting cells of the immune system to induce antiviral immune responses, nor T cell stimulation or the release of inflammatory cytokines. Thus, SC93305 is a new and promising candidate for the treatment of HSV-1 and HSV-2 infections and in particular also for the inhibition of drug-resistant HSV-1/2 strains.
Collapse
Affiliation(s)
- Elisabeth Zinser
- Department of Immune Modulation, University Hospital Erlangen, Erlangen, Germany
| | - Adalbert Krawczyk
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Petra Mühl-Zürbes
- Department of Immune Modulation, University Hospital Erlangen, Erlangen, Germany
| | - Ulrich Aufderhorst
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christina Draßner
- Department of Immune Modulation, University Hospital Erlangen, Erlangen, Germany
| | - Lena Stich
- Department of Immune Modulation, University Hospital Erlangen, Erlangen, Germany
| | - Mirko Zaja
- 4SC Discovery GmbH, Martinsried, Germany
| | | | | | | |
Collapse
|
24
|
Bauer D, Alt M, Dirks M, Buch A, Heilingloh CS, Dittmer U, Giebel B, Görgens A, Palapys V, Kasper M, Eis-Hübinger AM, Sodeik B, Heiligenhaus A, Roggendorf M, Krawczyk A. A Therapeutic Antiviral Antibody Inhibits the Anterograde Directed Neuron-to-Cell Spread of Herpes Simplex Virus and Protects against Ocular Disease. Front Microbiol 2017; 8:2115. [PMID: 29163407 PMCID: PMC5671610 DOI: 10.3389/fmicb.2017.02115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/17/2017] [Indexed: 12/17/2022] Open
Abstract
Herpes simplex virus (HSV) is a leading cause of blindness and viral encephalitis in the developed world. Upon reactivation from sensory neurons, HSV returns via axonal transport to peripheral tissues where it causes, e.g., severe, potentially blinding ocular diseases. In the present study we investigated whether the HSV-1/2 glycoprotein B-specific antibody mAb 2c or its humanized counterpart mAb hu2c can protect from ocular disease in a mouse model of HSV-1-induced acute retinal necrosis (ARN). In this model the viral spread from the initially infected to the contralateral eye resembles the routes taken in humans upon HSV reactivation. Systemic antibody treatment prior or early after infection effectively protected the mice from the development of ARN. These observations suggest that the antibody potently neutralized the infection and inhibited the viral transmission, since there was almost no virus detectable in the contralateral eyes and trigeminal ganglia of antibody treated mice. Besides of neutralizing free virus or limiting the infection via activating the complement or cellular effector functions, blocking of the anterograde directed neuron-to-cell spread of HSV represents a viable mode of action how mAb 2c protected the mice from ARN. We proved this hypothesis using a microfluidic chamber system. Neurons and epithelial cells were cultured in two separate compartments where the neurons sent axons via connecting microgrooves to the epithelial cells. Neurons were infected with a reporter HSV-1 strain expressing mCherry, and the co-culture was treated with neutralizing antibodies. In contrast to commercial polyclonal human HSV-neutralizing immunoglobulins, mAb 2c effectively blocked the anterograde directed neuron-to-cell transmission of the virus. Our data suggest that the humanized HSV-1/2-gB antibody protects mice from ocular disease by blocking the neuronal spread of HSV. Therefore, mAb hu2c may become a potent novel therapeutic option for severe ocular HSV infections.
Collapse
Affiliation(s)
- Dirk Bauer
- Department of Ophthalmology, Ophtha Lab, St. Franziskus-Hospital, Münster, Germany
| | - Mira Alt
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Miriam Dirks
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Anna Buch
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | - Ulf Dittmer
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - André Görgens
- Institute for Transfusion Medicine, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Vivien Palapys
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Maren Kasper
- Department of Ophthalmology, Ophtha Lab, St. Franziskus-Hospital, Münster, Germany
| | | | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Arnd Heiligenhaus
- Department of Ophthalmology, Ophtha Lab, St. Franziskus-Hospital, Münster, Germany.,Department of Ophthalmology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Michael Roggendorf
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Adalbert Krawczyk
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
25
|
A novel glycoprotein D-specific monoclonal antibody neutralizes herpes simplex virus. Antiviral Res 2017; 147:131-141. [PMID: 29061442 PMCID: PMC7113901 DOI: 10.1016/j.antiviral.2017.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/08/2017] [Accepted: 10/13/2017] [Indexed: 11/21/2022]
Abstract
The worldwide prevalence of herpes simplex virus (HSV) and the shortage of efficient vaccines and novel therapeutic strategies against HSV are widely global concerns. The abundance on the virion and the major stimulus for the virus-neutralizing antibodies makes gD a predominant candidate for cure of HSV infection. In this study, we generated a monoclonal antibody (mAb), termed m27f, targeting to glycoprotein D (gD) of HSV-2, which also has cross-reactivity against HSV-1 gD. It has a high level of neutralizing activity against both HSV-1 and HSV-2, and binds to a highly conserved region (residues 292-297) within the pro-fusion domain of gD. It can effectively block HSV cell-to-cell spread in vitro. The pre- or post-attachment neutralization assay and syncytium formation inhibition assay revealed that m27f neutralizes HSV at the post-binding stage. Moreover, therapeutic administration of m27f completely prevented infection-related mortality of mice challenged with a lethal dose of HSV-2. Our newly identified epitope for the neutralizing antibody would facilitate studies of gD-based HSV entry or vaccine design, and m27f itself demonstrated a high potential for adaptation as a protective or therapeutic drug against HSV.
Collapse
|
26
|
Bagheri V, Nejatollahi F, Esmaeili SA, Momtazi AA, Motamedifar M, Sahebkar A. Neutralizing human recombinant antibodies against herpes simplex virus type 1 glycoproteins B from a phage-displayed scFv antibody library. Life Sci 2016; 169:1-5. [PMID: 27888111 PMCID: PMC7094719 DOI: 10.1016/j.lfs.2016.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/14/2016] [Accepted: 11/21/2016] [Indexed: 12/27/2022]
Abstract
The HSV-1 envelope glycoprotein B (gB) plays a critical role in virus entry into host cells. Neutralizing antibodies can therefore potentially prevent virus entry into target cells and cell-to-cell spread of infection. Our present study focused on the selection of neutralizing single-chain Fv (scFv) antibodies of a phage-displayed nonimmune human scFv antibody library against gB of HSV-1. To enrich specific scFvs, two phage antibodies were isolated against amino acid residues 31–43 derived from the N-terminal part of gB using panning technique. Two scFvs, scFv-gB1 and scFv-gB2, with frequencies of 45% and 20% were obtained from scFv clones after performing PCR and MvaI fingerprinting. In phage ELISA analysis, both gB1 and gB2 scFvs demonstrated high reactivity with the gB peptide. In the neutralization assay, scFv-gB1 and scFv-gB2 represented neutralizing effects of 55% and 59%, respectively. Upon further enhancement of the neutralizing effects of these antibodies, they can be considered as new potential alternatives in the treatment and prophylaxis of HSV-1 infections.
Collapse
Affiliation(s)
- Vahid Bagheri
- Recombinant Antibody Laboratory, Department of Immunology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Student research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Foroogh Nejatollahi
- Recombinant Antibody Laboratory, Department of Immunology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Shiraz HIV/AIDS Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Seyed Alireza Esmaeili
- Student Research Committee, Immunology Research Center, Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Momtazi
- Student Research Committee, Nanotechnology Research Center, Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohamad Motamedifar
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran; Shiraz HIV/AIDS Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
Clementi N, Criscuolo E, Cappelletti F, Burioni R, Clementi M, Mancini N. Novel therapeutic investigational strategies to treat severe and disseminated HSV infections suggested by a deeper understanding of in vitro virus entry processes. Drug Discov Today 2016; 21:682-91. [PMID: 26976690 DOI: 10.1016/j.drudis.2016.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/11/2016] [Accepted: 03/04/2016] [Indexed: 01/28/2023]
Abstract
The global burden of herpes simplex virus (HSV) legitimates the critical need to develop new prevention strategies, such as drugs and vaccines that are able to fight either primary HSV infections or reactivations. Moreover, the ever-growing number of patients receiving transplants increases the number of severe HSV infections that are unresponsive to current therapies. Finally, the high global incidence of genital HSV-2 infection increases the risk of perinatal transmission to newborns, in which disseminated infection or central nervous system (CNS) involvement is frequent, with associated high morbidity and mortality rates. There are several key features shared by novel anti-HSV drugs, from currently available optimized drugs to small molecules able to interfere with various virus replication steps. However, several virological aspects of the disease and associated clinical needs highlight why an ideal anti-HSV drug has yet to be developed.
Collapse
Affiliation(s)
- Nicola Clementi
- Microbiology and Virology Unit, 'Vita-Salute San Raffaele' University, 20132 Milan, Italy.
| | - Elena Criscuolo
- Microbiology and Virology Unit, 'Vita-Salute San Raffaele' University, 20132 Milan, Italy
| | - Francesca Cappelletti
- Microbiology and Virology Unit, 'Vita-Salute San Raffaele' University, 20132 Milan, Italy
| | - Roberto Burioni
- Microbiology and Virology Unit, 'Vita-Salute San Raffaele' University, 20132 Milan, Italy
| | - Massimo Clementi
- Microbiology and Virology Unit, 'Vita-Salute San Raffaele' University, 20132 Milan, Italy
| | - Nicasio Mancini
- Microbiology and Virology Unit, 'Vita-Salute San Raffaele' University, 20132 Milan, Italy
| |
Collapse
|
28
|
Yan Y, Hu K, Deng X, Guan X, Luo S, Tong L, Du T, Fu M, Zhang M, Liu Y, Hu Q. Immunization with HSV-2 gB-CCL19 Fusion Constructs Protects Mice against Lethal Vaginal Challenge. THE JOURNAL OF IMMUNOLOGY 2015; 195:329-38. [PMID: 25994965 DOI: 10.4049/jimmunol.1500198] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/20/2015] [Indexed: 12/31/2022]
Abstract
There is a lack of an HSV-2 vaccine, in part as the result of various factors that limit robust and long-term memory immune responses at the mucosal portals of viral entry. We previously demonstrated that chemokine CCL19 augmented mucosal and systemic immune responses to HIV-1 envelope glycoprotein. Whether such enhanced immunity can protect animals against virus infection remains to be addressed. We hypothesized that using CCL19 in a fusion form to direct an immunogen to responsive immunocytes might have an advantage over CCL19 being used in combination with an immunogen. We designed two fusion constructs, plasmid (p)gBIZCCL19 and pCCL19IZgB, by fusing CCL19 to the C- or N-terminal end of the extracellular HSV-2 glycoprotein B (gB) with a linker containing two (Gly4Ser)2 repeats and a GCN4-based isoleucine zipper motif for self-oligomerization. Following immunization in mice, pgBIZCCL19 and pCCL19IZgB induced strong gB-specific IgG and IgA in sera and vaginal fluids. The enhanced systemic and mucosal Abs showed increased neutralizing activity against HSV-2 in vitro. Measurement of gB-specific cytokines demonstrated that gB-CCL19 fusion constructs induced balanced Th1 and Th2 cellular immune responses. Moreover, mice vaccinated with fusion constructs were well protected from intravaginal lethal challenge with HSV-2. Compared with pgB and pCCL19 coimmunization, fusion constructs increased mucosal surface IgA(+) cells, as well as CCL19-responsive immunocytes in spleen and mesenteric lymph nodes. Our findings indicate that enhanced humoral and cellular immune responses can be achieved by immunization with an immunogen fused to a chemokine, providing information for the design of vaccines against mucosal infection by HSV-2 and other sexually transmitted viruses.
Collapse
Affiliation(s)
- Yan Yan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; and
| | - Kai Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xu Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; and
| | - Xinmeng Guan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; and
| | - Sukun Luo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; and
| | - Lina Tong
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Tao Du
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ming Fu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; and
| | - Mudan Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; and
| | - Yalan Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; Institute for Infection and Immunity, St. George's University of London, London SW17 0RE, United Kingdom
| |
Collapse
|
29
|
Royer DJ, Cohen A, Carr D. The Current State of Vaccine Development for Ocular HSV-1 Infection. EXPERT REVIEW OF OPHTHALMOLOGY 2015; 10:113-126. [PMID: 25983856 DOI: 10.1586/17469899.2015.1004315] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
HSV-1 continues to be the leading cause of infectious corneal blindness. Clinical trials for vaccines against genital HSV infection have been ongoing for more than three decades. Despite this, no approved vaccine exists, and no formal clinical trials have evaluated the impact of HSV vaccines on eye health. We review here the current state of development for an efficacious HSV-1 vaccine and call for involvement of ophthalmologists and vision researchers.
Collapse
Affiliation(s)
- D J Royer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center
| | - A Cohen
- Ophthalmology, University of Oklahoma Health Sciences Center
| | - Djj Carr
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center ; Ophthalmology, University of Oklahoma Health Sciences Center
| |
Collapse
|
30
|
Krawczyk A, Dirks M, Kasper M, Buch A, Dittmer U, Giebel B, Wildschütz L, Busch M, Goergens A, Schneweis KE, Eis-Hübinger AM, Sodeik B, Heiligenhaus A, Roggendorf M, Bauer D. Prevention of herpes simplex virus induced stromal keratitis by a glycoprotein B-specific monoclonal antibody. PLoS One 2015; 10:e0116800. [PMID: 25587898 PMCID: PMC4294644 DOI: 10.1371/journal.pone.0116800] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 12/15/2014] [Indexed: 10/24/2022] Open
Abstract
The increasing incidence of acyclovir (ACV) and multidrug-resistant strains in patients with corneal HSV-1 infections leading to Herpetic Stromal Keratitis (HSK) is a major health problem in industrialized countries and often results in blindness. To overcome this obstacle, we have previously developed an HSV-gB-specific monoclonal antibody (mAb 2c) that proved to be highly protective in immunodeficient NOD/SCID-mice towards genital infections. In the present study, we examined the effectivity of mAb 2c in preventing the immunopathological disease HSK in the HSK BALB/c mouse model. Therefore, mice were inoculated with HSV-1 strain KOS on the scarified cornea to induce HSK and subsequently either systemically or topically treated with mAb 2c. Systemic treatment was performed by intravenous administration of mAb 2c 24 h prior to infection (pre-exposure prophylaxis) or 24, 40, and 56 hours after infection (post-exposure immunotherapy). Topical treatment was performed by periodical inoculations (5 times per day) of antibody-containing eye drops as control, starting at 24 h post infection. Systemic antibody treatment markedly reduced viral loads at the site of infection and completely protected mice from developing HSK. The administration of the antiviral antibody prior or post infection was equally effective. Topical treatment had no improving effect on the severity of HSK. In conclusion, our data demonstrate that mAb 2c proved to be an excellent drug for the treatment of corneal HSV-infections and for prevention of HSK and blindness. Moreover, the humanized counterpart (mAb hu2c) was equally effective in protecting mice from HSV-induced HSK when compared to the parental mouse antibody. These results warrant the future development of this antibody as a novel approach for the treatment of corneal HSV-infections in humans.
Collapse
Affiliation(s)
- Adalbert Krawczyk
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- * E-mail:
| | - Miriam Dirks
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Maren Kasper
- Ophtha-Lab, Department of Ophthalmology at St. Franziskus Hospital, Muenster, Germany
| | - Anna Buch
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Ulf Dittmer
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Lena Wildschütz
- Ophtha-Lab, Department of Ophthalmology at St. Franziskus Hospital, Muenster, Germany
| | - Martin Busch
- Ophtha-Lab, Department of Ophthalmology at St. Franziskus Hospital, Muenster, Germany
| | - Andre Goergens
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Karl E. Schneweis
- Institute of Virology, University Medical Center Bonn, Bonn, Germany
| | | | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Arnd Heiligenhaus
- Ophtha-Lab, Department of Ophthalmology at St. Franziskus Hospital, Muenster, Germany
| | - Michael Roggendorf
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Dirk Bauer
- Ophtha-Lab, Department of Ophthalmology at St. Franziskus Hospital, Muenster, Germany
| |
Collapse
|
31
|
Görander S, Ekblad M, Bergström T, Liljeqvist JÅ. Anti-glycoprotein g antibodies of herpes simplex virus 2 contribute to complete protection after vaccination in mice and induce antibody-dependent cellular cytotoxicity and complement-mediated cytolysis. Viruses 2014; 6:4358-72. [PMID: 25398047 PMCID: PMC4246227 DOI: 10.3390/v6114358] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 10/31/2014] [Accepted: 11/04/2014] [Indexed: 11/16/2022] Open
Abstract
We investigated the role of antibodies against the mature portion of glycoprotein G (mgG-2) of herpes simplex virus 2 (HSV-2) in protective immunity after vaccination. Mice were immunized intramuscularly with mgG-2 and oligodeoxynucleotides containing two CpG motifs plus alum as adjuvant. All C57BL/6 mice survived and presented no genital or systemic disease. High levels of immunoglobulin G subclass 1 (IgG1) and IgG2 antibodies were detected and re-stimulated splenic CD4+ T cells proliferated and produced IFN-γ. None of the sera from immunized mice exhibited neutralization, while all sera exerted antibody-dependent cellular cytotoxicity (ADCC) and complement-mediated cytolysis (ACMC) activity. Passive transfer of anti-mgG-2 monoclonal antibodies, or immune serum, to naive C57BL/6 mice did not limit disease progression. Immunized B‑cell KO mice presented lower survival rate and higher vaginal viral titers, as compared with vaccinated B-cell KO mice after passive transfer of immune serum and vaccinated C57BL/6 mice. Sera from mice that were vaccinated subcutaneously and intranasally with mgG-2 presented significantly lower titers of IgG antibodies and lower ADCC and ACMC activity. We conclude that anti-mgG-2 antibodies were of importance to limit genital HSV‑2 infection. ADCC and ACMC activity are potentially important mechanisms in protective immunity, and could tentatively be evaluated in future animal vaccine studies and in clinical trials.
Collapse
Affiliation(s)
- Staffan Görander
- Department of Infectious Diseases, Section of Virology, Guldhedsgatan 10 B, S-413 46 Gothenburg, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Box 100, 405 30 Göteborg, Sweden.
| | - Maria Ekblad
- Department of Infectious Diseases, Section of Virology, Guldhedsgatan 10 B, S-413 46 Gothenburg, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Box 100, 405 30 Göteborg, Sweden.
| | - Tomas Bergström
- Department of Infectious Diseases, Section of Virology, Guldhedsgatan 10 B, S-413 46 Gothenburg, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Box 100, 405 30 Göteborg, Sweden.
| | - Jan-Åke Liljeqvist
- Department of Infectious Diseases, Section of Virology, Guldhedsgatan 10 B, S-413 46 Gothenburg, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Box 100, 405 30 Göteborg, Sweden.
| |
Collapse
|
32
|
Diebolder P, Keller A, Haase S, Schlegelmilch A, Kiefer JD, Karimi T, Weber T, Moldenhauer G, Kehm R, Eis-Hübinger AM, Jäger D, Federspil PA, Herold-Mende C, Dyckhoff G, Kontermann RE, Arndt MAE, Krauss J. Generation of “LYmph Node Derived Antibody Libraries” (LYNDAL) for selecting fully human antibody fragments with therapeutic potential. MAbs 2014; 6:130-42. [PMID: 24256717 PMCID: PMC3929437 DOI: 10.4161/mabs.27236] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The development of efficient strategies for generating fully human monoclonal antibodies with unique functional properties that are exploitable for tailored therapeutic interventions remains a major challenge in the antibody technology field. Here, we present a methodology for recovering such antibodies from antigen-encountered human B cell repertoires. As the source for variable antibody genes, we cloned immunoglobulin G (IgG)-derived B cell repertoires from lymph nodes of 20 individuals undergoing surgery for head and neck cancer. Sequence analysis of unselected “LYmph Node Derived Antibody Libraries” (LYNDAL) revealed a naturally occurring distribution pattern of rearranged antibody sequences, representing all known variable gene families and most functional germline sequences. To demonstrate the feasibility for selecting antibodies with therapeutic potential from these repertoires, seven LYNDAL from donors with high serum titers against herpes simplex virus (HSV) were panned on recombinant glycoprotein B of HSV-1. Screening for specific binders delivered 34 single-chain variable fragments (scFvs) with unique sequences. Sequence analysis revealed extensive somatic hypermutation of enriched clones as a result of affinity maturation. Binding of scFvs to common glycoprotein B variants from HSV-1 and HSV-2 strains was highly specific, and the majority of analyzed antibody fragments bound to the target antigen with nanomolar affinity. From eight scFvs with HSV-neutralizing capacity in vitro,the most potent antibody neutralized 50% HSV-2 at 4.5 nM as a dimeric (scFv)2. We anticipate our approach to be useful for recovering fully human antibodies with therapeutic potential.
Collapse
|
33
|
Singh H, Nero TL, Wang Y, Parker MW, Nie G. Activity-modulating monoclonal antibodies to the human serine protease HtrA3 provide novel insights into regulating HtrA proteolytic activities. PLoS One 2014; 9:e108235. [PMID: 25248123 PMCID: PMC4172569 DOI: 10.1371/journal.pone.0108235] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 08/27/2014] [Indexed: 11/18/2022] Open
Abstract
Mammalian HtrA (high temperature requirement factor A) proteases, comprising 4 multi-domain members HtrA1-4, play important roles in a number of normal cellular processes as well as pathological conditions such as cancer, arthritis, neurodegenerative diseases and pregnancy disorders. However, how HtrA activities are regulated is not well understood, and to date no inhibitors specific to individual HtrA proteins have been identified. Here we investigated five HtrA3 monoclonal antibodies (mAbs) that we have previously produced, and demonstrated that two of them regulated HtrA3 activity in an opposing fashion: one inhibited while the other stimulated. The inhibitory mAb also blocked HtrA3 activity in trophoblast cells and enhanced migration and invasion, confirming its potential in vivo utility. To understand how the binding of these mAbs modulated HtrA3 protease activity, their epitopes were visualized in relation to a 3-dimensional HtrA3 homology model. This model suggests that the inhibitory HtrA3 mAb blocks substrate access to the protease catalytic site, whereas the stimulatory mAb may bind to the PDZ domain alone or in combination with the N-terminal and protease domains. Since HtrA1, HtrA3 and HtrA4 share identical domain organization, our results establish important foundations for developing potential therapeutics to target these HtrA proteins specifically for the treatment of a number of diseases, including cancer and pregnancy disorders.
Collapse
Affiliation(s)
- Harmeet Singh
- MIMR-PHI Institute of Medical Research, Clayton, Victoria, Australia
- Monash University, Clayton, Victoria, Australia
- * E-mail: (GN); (HS)
| | - Tracy L. Nero
- ACRF Rational Drug Discovery Centre, St Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Yao Wang
- MIMR-PHI Institute of Medical Research, Clayton, Victoria, Australia
- Monash University, Clayton, Victoria, Australia
| | - Michael W. Parker
- ACRF Rational Drug Discovery Centre, St Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, the University of Melbourne, Parkville, Victoria, Australia
| | - Guiying Nie
- MIMR-PHI Institute of Medical Research, Clayton, Victoria, Australia
- Monash University, Clayton, Victoria, Australia
- * E-mail: (GN); (HS)
| |
Collapse
|
34
|
Shankar GN, Alt C. Prophylactic treatment with a novel bioadhesive gel formulation containing aciclovir and tenofovir protects from HSV-2 infection. J Antimicrob Chemother 2014; 69:3282-93. [PMID: 25139839 DOI: 10.1093/jac/dku318] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVES Over-the-counter access to an inexpensive, effective topical microbicide could reduce the transmission of HIV and would increase women's control over their health and eliminate the need to obtain their partners' consent for prophylaxis. Chronic infection with herpes simplex virus 2 (HSV-2), also known as human herpes virus 2, has been shown to facilitate HIV infection and speed the progression to immunodeficiency disease. Our objective is to develop a drug formulation that protects against both HSV-2 and HIV infection and adheres to the vaginal surface with extended residence time. METHODS We developed a formulation using two approved antiviral active pharmaceutical ingredients, aciclovir and tenofovir, in a novel bioadhesive vaginal delivery platform (designated SR-2P) composed of two polymers, poloxamer 407 NF (Pluronic(®) F-127) and polycarbophil USP (Noveon(®) AA-1). The efficacy of the formulation to protect from HSV-2 infection was tested in vitro and in vivo. In addition to its efficacy, it is essential for a successful microbicide to be non-irritating to the vaginal mucosa. We therefore tested our SR-2P platform gel in the FDA gold-standard microbicide safety model in rabbits and also in a rat vaginal irritation model. RESULTS Our studies indicated that SR-2P containing 1% aciclovir and 5% tenofovir protects (i) Vero cells from HSV-2 infection in vitro and (ii) mice from HSV-2 infection in vivo. Our results further demonstrated that SR-2P was not irritating in either vaginal irritation model. CONCLUSIONS We conclude that SR-2P containing aciclovir and tenofovir may be a suitable candidate microbicide to protect humans from vaginal HSV-2 infection.
Collapse
Affiliation(s)
- Gita N Shankar
- Pharmaceutical Development, Biosciences Division, SRI International, Menlo Park, CA, USA
| | - Carsten Alt
- Palo Alto Veterans Institute for Research (PAVIR), VA Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
35
|
Mechanism of neutralization of herpes simplex virus by antibodies directed at the fusion domain of glycoprotein B. J Virol 2013; 88:2677-89. [PMID: 24352457 DOI: 10.1128/jvi.03200-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
UNLABELLED Glycoprotein B (gB), the fusogen of herpes simplex virus (HSV), is a class III fusion protein with a trimeric ectodomain of known structure for the postfusion state. Seen by negative-staining electron microscopy, it presents as a rod with three lobes (base, middle, and crown). gB has four functional regions (FR), defined by the physical location of epitopes recognized by anti-gB neutralizing monoclonal antibodies (MAbs). Located in the base, FR1 contains two internal fusion loops (FLs) and is the site of gB-lipid interaction (the fusion domain). Many of the MAbs to FR1 are neutralizing, block cell-cell fusion, and prevent the association of gB with lipid, suggesting that these MAbs affect FL function. Here we characterize FR1 epitopes by using electron microscopy to visualize purified Fab-gB ectodomain complexes, thus confirming the locations of several epitopes and localizing those of MAbs DL16 and SS63. We also generated MAb-resistant viruses in order to localize the SS55 epitope precisely. Because none of the epitopes of our anti-FR1 MAbs mapped to the FLs, we hyperimmunized rabbits with FL1 or FL2 peptides to generate polyclonal antibodies (PAbs). While the anti-FL1 PAb failed to bind gB, the anti-FL2 PAb had neutralizing activity, implying that the FLs become exposed during virus entry. Unexpectedly, the anti-FL2 PAb (and the anti-FR1 MAbs) bound to liposome-associated gB, suggesting that their epitopes are accessible even when the FLs engage lipid. These studies provide possible mechanisms of action for HSV neutralization and insight into how gB FR1 contributes to viral fusion. IMPORTANCE For herpesviruses, such as HSV, entry into a target cell involves transfer of the capsid-encased genome of the virus to the target cell after fusion of the lipid envelope of the virus with a lipid membrane of the host. Virus-encoded glycoproteins in the envelope are responsible for fusion. Antibodies to these glycoproteins are important biological tools, providing a way of examining how fusion works. Here we used electron microscopy and other techniques to study a panel of anti-gB antibodies. Some, with virus-neutralizing activity, impair gB-lipid association. We also generated a peptide antibody against one of the gB fusion loops; its properties provide insight into the way the fusion loops function as gB transits from its prefusion form to an active fusogen.
Collapse
|
36
|
Whaley KJ, Zeitlin L. Antibody-based concepts for multipurpose prevention technologies. Antiviral Res 2013; 100 Suppl:S48-53. [PMID: 24188703 PMCID: PMC3933545 DOI: 10.1016/j.antiviral.2013.09.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 09/03/2013] [Accepted: 09/26/2013] [Indexed: 02/04/2023]
Abstract
Because of the versatility and specificity of monoclonal antibodies, they are candidates for multipurpose prevention technologies when formulated as topical (gels, films, rings) or injectable drugs and as vaccines. This review focuses on antibody-based proof of concept studies for the human immunodeficiency virus, herpes simplex virus and sperm. Opportunities and challenges in antibody evasion/resistance, manufacturing, regulatory, and pharmacoeconomics are discussed. This article is based on a presentation at the "Product Development Workshop 2013: HIV and Multipurpose Prevention Technologies," held in Arlington, Virginia on February 21-22, 2013. It forms part of a special supplement to Antiviral Research.
Collapse
|
37
|
Monoclonal antibodies for prophylactic and therapeutic use against viral infections. ACTA ACUST UNITED AC 2013; 88:T15-T23. [PMID: 32287402 PMCID: PMC7111719 DOI: 10.1016/j.pepo.2013.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 01/15/2013] [Indexed: 11/21/2022]
Abstract
Neutralizing antibodies play an essential part in antiviral immunity and are instrumental in preventing or modulating viral diseases. Polyclonal antibody preparations are increasingly being replaced by highly potent monoclonal antibodies (mAbs). Cocktails of mAbs and bispecific constructs can be used to simultaneously target multiple viral epitopes and to overcome issues of neutralization escape. Advances in antibody engineering have led to a large array of novel mAb formats, while deeper insight into the biology of several viruses and increasing knowledge of their neutralizing epitopes has extended the list of potential targets. In addition, progress in developing inexpensive production platforms will make antiviral mAbs more widely available and affordable.
Collapse
|
38
|
Overcoming drug-resistant herpes simplex virus (HSV) infection by a humanized antibody. Proc Natl Acad Sci U S A 2013; 110:6760-5. [PMID: 23569258 DOI: 10.1073/pnas.1220019110] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite the availability of antiviral chemotherapy, herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) infections remain a severe global health problem. Of particular concern is the growing incidence of drug resistance in immunocompromised patients, which stresses the urgency to develop new effective treatment alternatives. We have developed a humanized monoclonal antibody (mAb hu2c) that completely abrogates viral cell-to-cell spread, a key mechanism by which HSV-1/2 escapes humoral immune surveillance. Moreover, mAb hu2c neutralized HSV fully independent of complement and/or immune effector cell recruitment in a highly efficient manner. Prophylactic and therapeutic administration of mAb hu2c completely prevented infection-related mortality of severely immunodeficient mice being challenged with a lethal dose of HSV-1. The high neutralization capacity of mAb hu2c was fully maintained toward clinical HSV isolates being multiresistant to standard antiviral drugs, and infection was fully resolved in 7/8 nonobese diabetic/SCID mice being infected with a multidrug resistant HSV-1 patient isolate. Immunohistochemical studies revealed no significant cross-reactivity of the antibody toward human tissues. These features warrant further clinical development of mAb hu2c as an immunotherapeutic compound for the management of severe and particularly drug-resistant HSV infections.
Collapse
|
39
|
Antoine TE, Park PJ, Shukla D. Glycoprotein targeted therapeutics: a new era of anti-herpes simplex virus-1 therapeutics. Rev Med Virol 2013; 23:194-208. [PMID: 23440920 DOI: 10.1002/rmv.1740] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 12/14/2012] [Accepted: 12/17/2012] [Indexed: 01/02/2023]
Abstract
Herpes simplex virus type-1 (HSV-1) is among the most common human pathogens worldwide. Its entry into host cells is an intricate process that relies heavily on the ability of the viral glycoproteins to bind host cellular proteins and to efficiently mediate fusion of the virus envelope with the cell membrane. Acquisition of HSV-1 results in a lifelong latent infection. Because of the cycles of reactivation from a latent state, much emphasis has been placed on the management of infection through the use of DNA synthesis inhibitors. However, new methods are needed to provide more effective treatment at earlier phases of the viral infection and to prevent the development of drug resistance by the virus. This review outlines the infection process and the common therapeutics currently used against the fundamental stages of HSV-1 replication and fusion. The remainder of this article will focus on a new approach for HSV-1 infection control and management, the concept of glycoprotein-receptor targeting.
Collapse
Affiliation(s)
- Thessicar E Antoine
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | | | | |
Collapse
|
40
|
Both L, Banyard AC, van Dolleweerd C, Wright E, Ma JKC, Fooks AR. Monoclonal antibodies for prophylactic and therapeutic use against viral infections. Vaccine 2013; 31:1553-9. [PMID: 23370150 PMCID: PMC7115371 DOI: 10.1016/j.vaccine.2013.01.025] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 01/01/2013] [Accepted: 01/15/2013] [Indexed: 12/27/2022]
Abstract
Neutralizing antibodies play an essential part in antiviral immunity and are instrumental in preventing or modulating viral diseases. Polyclonal antibody preparations are increasingly being replaced by highly potent monoclonal antibodies (mAbs). Cocktails of mAbs and bispecific constructs can be used to simultaneously target multiple viral epitopes and to overcome issues of neutralization escape. Advances in antibody engineering have led to a large array of novel mAb formats, while deeper insight into the biology of several viruses and increasing knowledge of their neutralizing epitopes has extended the list of potential targets. In addition, progress in developing inexpensive production platforms will make antiviral mAbs more widely available and affordable.
Collapse
Affiliation(s)
- Leonard Both
- The Hotung Molecular Immunology Unit, Division of Clinical Sciences, St George's, University of London, London, UK
- Animal Health and Veterinary Laboratories Agency (AHVLA), Wildlife Zoonoses and Vector-borne Diseases Research Group, Department of Virology, Weybridge, Surrey, UK
| | - Ashley C. Banyard
- Animal Health and Veterinary Laboratories Agency (AHVLA), Wildlife Zoonoses and Vector-borne Diseases Research Group, Department of Virology, Weybridge, Surrey, UK
| | - Craig van Dolleweerd
- The Hotung Molecular Immunology Unit, Division of Clinical Sciences, St George's, University of London, London, UK
| | - Edward Wright
- School of Life Sciences, University of Westminster, London, UK
| | - Julian K.-C. Ma
- The Hotung Molecular Immunology Unit, Division of Clinical Sciences, St George's, University of London, London, UK
| | - Anthony R. Fooks
- Animal Health and Veterinary Laboratories Agency (AHVLA), Wildlife Zoonoses and Vector-borne Diseases Research Group, Department of Virology, Weybridge, Surrey, UK
- National Consortium for Zoonosis Research, University of Liverpool, Leahurst, Neston, South Wirral CH64 7TE, UK
- Corresponding author at: Animal Health and Veterinary Laboratories Agency (AHVLA), Wildlife Zoonoses and Vector-borne Diseases Research Group, Department of Virology, Weybridge, Surrey KT15 3NB, UK. Tel.: +44 01932 357840; fax: +44 01932 357239.
| |
Collapse
|
41
|
Zhong MG, Xiang YF, Qiu XX, Liu Z, Kitazato K, Wang YF. Natural products as a source of anti-herpes simplex virus agents. RSC Adv 2013. [DOI: 10.1039/c2ra21464d] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
42
|
A lentiviral vector-based, herpes simplex virus 1 (HSV-1) glycoprotein B vaccine affords cross-protection against HSV-1 and HSV-2 genital infections. J Virol 2012; 86:6563-74. [PMID: 22491465 DOI: 10.1128/jvi.00302-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genital herpes is caused by herpes simplex virus 1 (HSV-1) and HSV-2, and its incidence is constantly increasing in the human population. Regardless of the clinical manifestation, HSV-1 and HSV-2 infections are highly transmissible to sexual partners and enhance susceptibility to other sexually transmitted infections. An effective vaccine is not yet available. Here, HSV-1 glycoprotein B (gB1) was delivered by a feline immunodeficiency virus (FIV) vector and tested against HSV-1 and HSV-2 vaginal challenges in C57BL/6 mice. The gB1 vaccine elicited cross-neutralizing antibodies and cell-mediated responses that protected 100 and 75% animals from HSV-1- and HSV-2-associated severe disease, respectively. Two of the eight fully protected vaccinees underwent subclinical HSV-2 infection, as demonstrated by deep immunosuppression and other analyses. Finally, vaccination prevented death in 83% of the animals challenged with a HSV-2 dose that killed 78 and 100% naive and mock-vaccinated controls, respectively. Since this FIV vector can accommodate two or more HSV immunogens, this vaccine has ample potential for improvement and may become a candidate for the development of a truly effective vaccine against genital herpes.
Collapse
|
43
|
Frenzel K, Ganepola S, Michel D, Thiel E, Krüger DH, Uharek L, Hofmann J. Antiviral function and efficacy of polyvalent immunoglobulin products against CMV isolates in different human cell lines. Med Microbiol Immunol 2012; 201:277-86. [DOI: 10.1007/s00430-012-0229-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 01/19/2012] [Indexed: 11/28/2022]
|
44
|
Carlsson F, Trilling M, Perez F, Ohlin M. A dimerized single-chain variable fragment system for the assessment of neutralizing activity of phage display-selected antibody fragments specific for cytomegalovirus. J Immunol Methods 2011; 376:69-78. [PMID: 22154743 DOI: 10.1016/j.jim.2011.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/23/2011] [Accepted: 11/23/2011] [Indexed: 11/18/2022]
Abstract
Cytomegalovirus (CMV) causes severe sequelae in congenitally infected newborns and may cause life-threatening disease in immuno-deficient patients. Recent findings demonstrate the possibility to alleviate the disease by infusing intravenous immunoglobulin G (IgG) preparations, indicating that antibodies are an effective therapeutic option. Modern molecular methodologies, like phage display, allow for the development of specific antibodies targeting virtually any antigen, including those of CMV. However, such methodologies do not in general result in products that by themselves mediate biological activity. To facilitate a semi-high-throughput approach for functional screening in future efforts to develop efficacious antibodies against CMV, we have integrated two different approaches to circumvent potential bottlenecks in such efforts. Firstly, we explored an approach that permits easy transfer of antibody fragment encoding genes from commonly used phage display vectors into vectors for the production of divalent immunoglobulins. Secondly, we demonstrate that such proteins can be applied in a novel reporter-based neutralization assay to establish a proof-of-concept workflow for the generation of neutralizing antibodies against CMV. We validated our approach by showing that divalent antibodies raised against the antigenic domain (AD)-2 region of gB effectively neutralized three different CMV strains (AD169, Towne and TB40/E), whereas two antibodies against the AD-1 region of gB displayed minor neutralizing capabilities. In conclusion, the methods investigated in this proof-of-concept study enables for a semi-high-throughput workflow in the screening and investigation of biological active antibodies.
Collapse
Affiliation(s)
- Fredrika Carlsson
- Department of Immunotechnology, Lund University, BMC D13, SE-221 84 Lund, Sweden.
| | | | | | | |
Collapse
|
45
|
Conrady CD, Jones H, Zheng M, Carr DJJ. A Functional Type I Interferon Pathway Drives Resistance to Cornea Herpes Simplex Virus Type 1 Infection by Recruitment of Leukocytes. J Biomed Res 2011; 25:111-119. [PMID: 21709805 PMCID: PMC3119485 DOI: 10.1016/s1674-8301(11)60014-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Type I interferons are critical antiviral cytokines produced following herpes simplex virus type-1 (HSV-1) infection that act to inhibit viral spread. In the present study, we identify HSV-infected and adjacent uninfected corneal epithelial cells as the source of interferon-α. We also report mice deficient in the A1 chain of the type I IFN receptor (CD118(-/-)) are extremely sensitive to ocular infection with low doses (100 PFU) of HSV-1 as seen by significantly elevated viral titers in the cornea compared to wild type (WT) controls. The enhanced susceptibility correlated with a loss of CD4(+) and CD8(+) T cell recruitment and aberrant chemokine production in the cornea despite mounting an adaptive immune response in the draining mandibular lymph node of CD118(-/-) mice. Taken together, these results highlight the importance of IFN production in both the innate immune response as well as eliciting chemokine production required to facilitate adaptive immune cell trafficking.
Collapse
Affiliation(s)
- Christopher D Conrady
- Departments of Microbiology, Immunology, The University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, 73104, USA
| | | | | | | |
Collapse
|