1
|
Gull B, Ahmad W, Baby J, Panicker NG, Khader TA, Rizvi TA, Mustafa F. Identification and characterization of host miRNAs that target the mouse mammary tumour virus (MMTV) genome. Open Biol 2024; 14:240203. [PMID: 39657819 PMCID: PMC11631425 DOI: 10.1098/rsob.240203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024] Open
Abstract
The intricate interplay between viruses and hosts involves microRNAs (miRNAs) to regulate gene expression by targeting cellular/viral messenger RNAs (mRNAs). Mouse mammary tumour virus (MMTV), the aetiological agent of breast cancer and leukaemia/lymphomas in mice, provides an ideal model to explore how viral and host miRNAs interact to modulate virus replication and tumorigenesis. We previously reported dysregulation of host miRNAs in MMTV-infected mammary glands and MMTV-induced tumours, suggesting a direct interaction between MMTV and miRNAs. To explore this further, we systematically examined all potential interactions between host miRNAs and the MMTV genome using advanced prediction tools. Leveraging miRNA sequencing data from MMTV-expressing cells, we identified dysregulated miRNAs capable of targeting MMTV. Docking analysis validated the interaction of three dysregulated miRNAs with the MMTV genome, followed by confirmation with RNA immunoprecipitation assays. We further identified host targets of these miRNAs using mRNA sequencing data from MMTV-expressing cells. These findings should enhance our understanding of how MMTV replicates and interacts with the host to induce cancer in mice, a model important for cancer research. Given MMTV's potential zoonosis and association with human breast cancer/lymphomas, if confirmed, our work could further lead to novel miRNA-based antivirals/therapeutics to prevent possible MMTV transmission and associated cancers in humans.
Collapse
Affiliation(s)
- Bushra Gull
- Department of Biochemistry & Molecular Biology, College of Medicine & Health Sciences (CMHS), United Arab Emirates University, Al Ain, UAE
| | - Waqar Ahmad
- Department of Biochemistry & Molecular Biology, College of Medicine & Health Sciences (CMHS), United Arab Emirates University, Al Ain, UAE
| | - Jasmin Baby
- Department of Biochemistry & Molecular Biology, College of Medicine & Health Sciences (CMHS), United Arab Emirates University, Al Ain, UAE
| | - Neena G. Panicker
- Department of Biochemistry & Molecular Biology, College of Medicine & Health Sciences (CMHS), United Arab Emirates University, Al Ain, UAE
| | - Thanumol Abdul Khader
- Department of Biochemistry & Molecular Biology, College of Medicine & Health Sciences (CMHS), United Arab Emirates University, Al Ain, UAE
| | - Tahir A. Rizvi
- Department of Microbiology & Immunology, College of Medicine & Health Sciences (CMHS), United Arab Emirates University, Al Ain, UAE
- Zayed Center for Health Sciences (ZCHS), United Arab Emirates University, Al Ain, UAE
- ASPIRE Research Institute in Precision Medicine, Abu Dhabi, UAE
| | - Farah Mustafa
- Department of Biochemistry & Molecular Biology, College of Medicine & Health Sciences (CMHS), United Arab Emirates University, Al Ain, UAE
- Zayed Center for Health Sciences (ZCHS), United Arab Emirates University, Al Ain, UAE
- ASPIRE Research Institute in Precision Medicine, Abu Dhabi, UAE
| |
Collapse
|
2
|
Ziersch M, Harms D, Neumair L, Kurreck A, Johne R, Bock CT, Kurreck J. Combining RNA Interference and RIG-I Activation to Inhibit Hepatitis E Virus Replication. Viruses 2024; 16:1378. [PMID: 39339854 PMCID: PMC11435946 DOI: 10.3390/v16091378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Hepatitis E virus (HEV) poses a significant global health threat, with an estimated 20 million infections occurring annually. Despite being a self-limiting illness, in most cases, HEV infection can lead to severe outcomes, particularly in pregnant women and individuals with pre-existing liver disease. In the absence of specific antiviral treatments, the exploration of RNAi interference (RNAi) as a targeted strategy provides valuable insights for urgently needed therapeutic interventions against Hepatitis E. We designed small interfering RNAs (siRNAs) against HEV, which target the helicase domain and the open reading frame 3 (ORF3). These target regions will reduce the risk of viral escape through mutations, as they belong to the most conserved regions in the HEV genome. The siRNAs targeting the ORF3 efficiently inhibited viral replication in A549 cells after HEV infection. Importantly, the siRNA was also highly effective at inhibiting HEV in the persistently infected A549 cell line, which provides a suitable model for chronic infection in patients. Furthermore, we showed that a 5' triphosphate modification on the siRNA sense strand activates the RIG-I receptor, a cytoplasmic pattern recognition receptor that recognizes viral RNA. Upon activation, RIG-I triggers a signaling cascade, effectively suppressing HEV replication. This dual-action strategy, combining the activation of the adaptive immune response and the inherent RNAi pathway, inhibits HEV replication successfully and may lead to the development of new therapies.
Collapse
Affiliation(s)
- Mathias Ziersch
- Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Dominik Harms
- Department of Infectious Diseases, Division of Viral Gastroenteritis and Hepatitis Pathogens and Enterovirus, Robert Koch Institute, 13353 Berlin, Germany
| | - Lena Neumair
- Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Anke Kurreck
- Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
- BioNukleo GmbH, Ackerstrasse 76, 13355 Berlin, Germany
| | - Reimar Johne
- Department of Biological Safety, German Federal Institute for Risk Assessment, 12277 Berlin, Germany
| | - C-Thomas Bock
- Department of Infectious Diseases, Division of Viral Gastroenteritis and Hepatitis Pathogens and Enterovirus, Robert Koch Institute, 13353 Berlin, Germany
| | - Jens Kurreck
- Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| |
Collapse
|
3
|
Orosz L, Sárvári KP, Dernovics Á, Rosztóczy A, Megyeri K. Pathogenesis and clinical features of severe hepatitis E virus infection. World J Virol 2024; 13:91580. [PMID: 38984076 PMCID: PMC11229844 DOI: 10.5501/wjv.v13.i2.91580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/08/2024] [Accepted: 04/15/2024] [Indexed: 06/24/2024] Open
Abstract
The hepatitis E virus (HEV), a member of the Hepeviridae family, is a small, non-enveloped icosahedral virus divided into eight distinct genotypes (HEV-1 to HEV-8). Only genotypes 1 to 4 are known to cause diseases in humans. Genotypes 1 and 2 commonly spread via fecal-oral transmission, often through the consumption of contaminated water. Genotypes 3 and 4 are known to infect pigs, deer, and wild boars, often transferring to humans through inadequately cooked meat. Acute hepatitis caused by HEV in healthy individuals is mostly asymptomatic or associated with minor symptoms, such as jaundice. However, in immunosuppressed individuals, the disease can progress to chronic hepatitis and even escalate to cirrhosis. For pregnant women, an HEV infection can cause fulminant liver failure, with a potential mortality rate of 25%. Mortality rates also rise amongst cirrhotic patients when they contract an acute HEV infection, which can even trigger acute-on-chronic liver failure if layered onto pre-existing chronic liver disease. As the prevalence of HEV infection continues to rise worldwide, highlighting the particular risks associated with severe HEV infection is of major medical interest. This text offers a brief summary of the characteristics of hepatitis developed by patient groups at an elevated risk of severe HEV infection.
Collapse
Affiliation(s)
- László Orosz
- Department of Medical Microbiology, University of Szeged, Szeged 6720, Csongrád-Csanád, Hungary
| | - Károly Péter Sárvári
- Department of Medical Microbiology, University of Szeged, Szeged 6720, Csongrád-Csanád, Hungary
| | - Áron Dernovics
- Department of Medical Microbiology, University of Szeged, Szeged 6720, Csongrád-Csanád, Hungary
| | - András Rosztóczy
- Department of Internal Medicine, Division of Gastroenterology, University of Szeged, Szeged 6725, Csongrád-Csanád, Hungary
| | - Klára Megyeri
- Department of Medical Microbiology, University of Szeged, Szeged 6720, Csongrád-Csanád, Hungary
| |
Collapse
|
4
|
Harlow J, Dallner M, Nasheri N. Optimization of the replication of hepatitis E virus genotype 3 in vitro. J Appl Microbiol 2024; 135:lxae137. [PMID: 38849307 DOI: 10.1093/jambio/lxae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/09/2024]
Abstract
AIMS Hepatitis E virus (HEV) is responsible for ∼20 million human infections worldwide every year. The genotypes HEV-3 and HEV-4 are zoonotic and are responsible for most of the autochthonous HEV cases in high-income countries. There are several cell culture systems that allow for propagation of different HEV genotypes in vitro. One of these systems uses human lung carcinoma cells (A549), and was further optimized for propagation of HEV-3 47832c strain. In this study, we investigated the effect of different media supplements as well as microRNA-122 (miR-122) on improving the replication of HEV-3 47832c in A549 cells. METHODS AND RESULTS We observed that supplementation of maintenance media with 5% fetal bovine serum was sufficient for efficient replication of HEV-3, and verified the positive effect of media supplementation with Amphotericin B, MgCl2, and dimethyl sulfoxide on replication of HEV-3. We have also demonstrated that adding miR-122 mimics to the culture media does not have any significant effect on the replication of HEV-3 47832c. CONCLUSIONS Herein, we detected over a 6-fold increase in HEV-3 replication in A549/D3 cells by adding all three supplements: Amphotericin B, MgCl2, and dimethyl sulfoxide to the culture media, while demonstrating that miR-122 might not play a key role in replication of HEV-3 47832c.
Collapse
Affiliation(s)
- Jennifer Harlow
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada
| | - Matthew Dallner
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada
| | - Neda Nasheri
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
5
|
Gupta S, Parveen S. Potential role of microRNAs in personalized medicine against hepatitis: a futuristic approach. Arch Virol 2024; 169:33. [PMID: 38245876 DOI: 10.1007/s00705-023-05955-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/21/2023] [Indexed: 01/23/2024]
Abstract
MicroRNAs (miRNAs) have been the subject of extensive research for many years, primarily in the context of diseases such as cancer. However, our appreciation of their significance in viral infections, particularly in hepatitis, has increased due to the discovery of their association with both the host and the virus. Hepatitis is a major global health concern and can be caused by various viruses, including hepatitis A to E. This review highlights the key factors associated with miRNAs and their involvement in infections with various viruses that cause hepatitis. The review not only emphasizes the expression profiles of miRNAs in hepatitis but also puts a spotlight on their potential for diagnostics and therapeutic interventions. Ongoing extensive studies are propelling the therapeutic application of miRNAs, addressing both current limitations and potential strategies for the future of miRNAs in personalized medicine. Here, we discuss the potential of miRNAs to influence future medical research and an attempt to provide a thorough understanding of their diverse roles in hepatitis and beyond.
Collapse
Affiliation(s)
- Sonam Gupta
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
6
|
Zhang J, Li C, Hou Y, Liu D, Li Q, Wang Z, Tang R, Zheng K, Guo H, Wang W. miR-26a exerts broad-spectrum antiviral effects via the enhancement of RIG-I-mediated type I interferon response by targeting USP15. Microbiol Spectr 2024; 12:e0312423. [PMID: 38019020 PMCID: PMC10783007 DOI: 10.1128/spectrum.03124-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/02/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE miR-26a serves as a potent positive regulator of type I interferon (IFN) responses. By inhibiting USP15 expression, miR-26a promotes RIG-I K63-ubiquitination to enhance type I IFN responses, resulting in an active antiviral state against viruses. Being an intricate regulatory network, the activation of type I IFN responses could in turn suppress miR-26a expression to avoid the disordered activation that might result in the so-called "type I interferonopathy." The knowledge gained would be essential for the development of novel antiviral strategies against viral infection.
Collapse
Affiliation(s)
- Jikai Zhang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Chunyang Li
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Yao Hou
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Dan Liu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Qiudi Li
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Zijie Wang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Renxian Tang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Kuiyang Zheng
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Hongbo Guo
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Wenshi Wang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
7
|
Mirzaei R, Karampoor S, Korotkova NL. The emerging role of miRNA-122 in infectious diseases: Mechanisms and potential biomarkers. Pathol Res Pract 2023; 249:154725. [PMID: 37544130 DOI: 10.1016/j.prp.2023.154725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
microRNAs (miRNAs) are small, non-coding RNA molecules that play crucial regulatory roles in numerous cellular processes. Recent investigations have highlighted the significant involvement of miRNA-122 (miR-122) in the pathogenesis of infectious diseases caused by diverse pathogens, encompassing viral, bacterial, and parasitic infections. In the context of viral infections, miR-122 exerts regulatory control over viral replication by binding to the viral genome and modulating the host's antiviral response. For instance, in hepatitis B virus (HBV) infection, miR-122 restricts viral replication, while HBV, in turn, suppresses miR-122 expression. Conversely, miR-122 interacts with the hepatitis C virus (HCV) genome, facilitating viral replication. Regarding bacterial infections, miR-122 has been found to regulate host immune responses by influencing inflammatory cytokine production and phagocytosis. In Vibrio anguillarum infections, there is a significant reduction in miR-122 expression, contributing to the pathophysiology of bacterial infections. Toll-like receptor 14 (TLR14) has been identified as a novel target gene of miR-122, affecting inflammatory and immune responses. In the context of parasitic infections, miR-122 plays a crucial role in regulating host lipid metabolism and immune responses. For example, during Leishmania infection, miR-122-containing extracellular vesicles from liver cells are unable to enter infected macrophages, leading to a suppression of the inflammatory response. Furthermore, miR-122 exhibits promise as a potential biomarker for various infectious diseases. Its expression level in body fluids, particularly in serum and plasma, correlates with disease severity and treatment response in patients affected by HCV, HBV, and tuberculosis. This paper also discusses the potential of miR-122 as a biomarker in infectious diseases. In summary, this review provides a comprehensive and insightful overview of the emerging role of miR-122 in infectious diseases, detailing its mechanism of action and potential implications for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Nadezhda Lenoktovna Korotkova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Russia; Federal State Budgetary Educational Institution of Higher Education "Privolzhsky Research Medical University" of the Ministry of Health of the Russian Federation (FSBEI HE PRMU MOH Russia), Russia
| |
Collapse
|
8
|
Ju X, Yu Y, Ren W, Dong L, Meng X, Deng H, Nan Y, Ding Q. The PRMT5/WDR77 complex restricts hepatitis E virus replication. PLoS Pathog 2023; 19:e1011434. [PMID: 37276230 PMCID: PMC10270597 DOI: 10.1371/journal.ppat.1011434] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/15/2023] [Accepted: 05/19/2023] [Indexed: 06/07/2023] Open
Abstract
Hepatitis E virus (HEV) is one of the main pathogenic agents of acute hepatitis in the world. The mechanism of HEV replication, especially host factors governing HEV replication is still not clear. Here, using HEV ORF1 trans-complementation cell culture system and HEV replicon system, combining with stable isotope labelling with amino acids in cell culture (SILAC) and mass spectrometry (MS), we aimed to identify the host factors regulating HEV replication. We identified a diversity of host factors associated with HEV ORF1 protein, which were putatively responsible for viral genomic RNA replication, in these two cell culture models. Of note, the protein arginine methyltransferase 5 (PRMT5)/WDR77 complex was identified in both cell culture models as the top hit. Furthermore, we demonstrated that PRMT5 and WDR77 can specifically inhibit HEV replication, but not other viruses such as HCV or SARS-CoV-2, and this inhibition is conserved among different HEV strains and genotypes. Mechanistically, PRMT5/WDR77 can catalyse methylation of ORF1 on its R458, impairing its replicase activity, and virus bearing R458K mutation in ORF1 relieves the restriction of PRMT5/WDR77 accordingly. Taken together, our study promotes more comprehensive understanding of viral infections but also provides therapeutic targets for intervention.
Collapse
Affiliation(s)
- Xiaohui Ju
- School of Medicine, Tsinghua University, Beijing, China
| | - Yanying Yu
- School of Medicine, Tsinghua University, Beijing, China
| | - Wenlin Ren
- School of Medicine, Tsinghua University, Beijing, China
| | - Lin Dong
- School of Medicine, Tsinghua University, Beijing, China
| | - Xianbin Meng
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Haiteng Deng
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qiang Ding
- School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
9
|
Unravelling the tripartite interactions among Hepatitis E virus RNA, miR-140 and hnRNP K: Running title: Interactions between HEV-RNA, miR-140 and hnRNP K. J Mol Biol 2023; 435:168050. [PMID: 36933825 DOI: 10.1016/j.jmb.2023.168050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023]
Abstract
In the present investigation, we have identified the functional significance of the highly conserved miR-140 binding site on the Hepatitis E Virus (HEV) genome. Multiple sequence alignment of the viral genome sequences along with RNA folding prediction indicated that the putative miR-140 binding site has significant conservation for sequence and secondary RNA structure among HEV genotypes. Site-directed mutagenesis and reporter assays indicated that an intact sequence of the miR-140 binding site is essential for HEV translation. Provision of mutant miR-140 oligos carrying same mutation as on mutant HEV successfully rescued mutant HEV replication. In vitro cell-based assays with modified oligos proved that host factor-miR-140 is a critical requirement for HEV replication. Biotinylated RNA pulldown and RNA immunoprecipitation assays proved that the predicted secondary RNA structure of the miR-140 binding site allows the recruitment of hnRNP K, which is a key protein of the HEV replication complex. We predicted the model from the obtained results that the miR-140 binding site can serve as a platform for recruitment of hnRNP K and other proteins of HEV replication complex only in the presence of miR-140.
Collapse
|
10
|
Specific Plasma MicroRNA Signatures Underlying the Clinical Outcomes of Hepatitis E Virus Infection. Microbiol Spectr 2023; 11:e0466422. [PMID: 36695578 PMCID: PMC9927377 DOI: 10.1128/spectrum.04664-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The pathogenic mechanisms determining the diverse clinical outcomes of HEV infection (e.g., self-limiting versus chronic or symptomatic versus asymptomatic) are not yet understood. Because specific microRNA signatures during viral infection inform the cellular processes involved in virus replication and pathogenesis, we investigated plasma microRNA profiles in 44 subjects, including patients with symptomatic acute (AHE, n = 7) and chronic (CHE, n = 6) hepatitis E, blood donors with asymptomatic infection (HEV BDs, n = 9), and anti-HEV IgG+ IgM- (exposed BDs, n = 10) and anti-HEV IgG- IgM- (naive BDs, n = 12) healthy blood donors. By measuring the abundance of 179 microRNAs in AHE patients and naive BDs by reverse transcription-quantitative PCR (RT-qPCR), we identified 51 potential HEV-regulated microRNAs (P value adjusted for multiple testing by the Benjamini-Hochberg correction [PBH] < 0.05). Further analysis showed that HEV genotype 3 infection is associated with miR-122, miR-194, miR-885, and miR-30a upregulation and miR-221, miR-223, and miR-27a downregulation. AHE patients showed significantly higher levels of miR-122 and miR-194 and lower levels of miR-221, miR-27a, and miR-335 than HEV BDs. This specific microRNA signature in AHE could promote virus replication and reduce antiviral immune responses, contributing to the development of clinical symptoms. We found that miR-194, miR-335, and miR-221 can discriminate between asymptomatic HEV infections and those developing acute symptoms, whereas miR-335 correctly classifies AHE and CHE patients. Our data suggest that diverse outcomes of HEV infection result from different HEV-induced microRNA dysregulations. The specific microRNA signatures described offer novel information that may serve to develop biomarkers of HEV infection outcomes and improve our understanding of HEV pathogenesis, which may facilitate the identification of antiviral targets. IMPORTANCE There is increasing evidence that viruses dysregulate the expression and/or secretion of microRNAs to promote viral replication, immune evasion, and pathogenesis. In this study, we evaluated the change in microRNA abundance in patients with acute or chronic HEV infection and asymptomatic HEV-infected blood donors. Our results suggest that different HEV-induced microRNA dysregulations may contribute to the diverse clinical manifestations of HEV infection. The specific microRNA signatures identified in this study hold potential as predictive markers of HEV infection outcomes, which would improve the clinical management of hepatitis E patients, particularly of those developing severe symptoms or chronic infections. Furthermore, this study provides new insights into HEV pathogenesis that may serve to identify antiviral targets, which would have a major impact because no effective treatments are yet available.
Collapse
|
11
|
Ju X, Dong L, Ding Q. Hepatitis E Virus Life Cycle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:141-157. [PMID: 37223864 DOI: 10.1007/978-981-99-1304-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Hepatitis E virus (HEV) infects over 20 million people worldwide per year, leading to 30,000-40,000 deaths. In most cases HEV infection in a self-limited, acute illness. However, chronic infections could occur in immunocompromised individuals. Due to scarcity of robust cell culture models in vitro and genetic tractable animal models in vivo, the details of HEV life cycle, as well as its interaction with host cells still remain elusive, which dampens antivirals discovery. In this chapter, we present an update in the HEV infectious cycle steps: entry, genome replication/subgenomic RNA transcription, assembly, and release. Moreover, we discussed the future prospective on HEV research and illustrates important questions urgently to be addressed.
Collapse
Affiliation(s)
- Xiaohui Ju
- School of Medicine, Tsinghua University, Beijing, China
| | - Lin Dong
- School of Medicine, Tsinghua University, Beijing, China
| | - Qiang Ding
- School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
12
|
Gupta S, Singh P, Tasneem A, Almatroudi A, Rahmani AH, Dohare R, Parveen S. Integrative Multiomics and Regulatory Network Analyses Uncovers the Role of OAS3, TRAFD1, miR-222-3p, and miR-125b-5p in Hepatitis E Virus Infection. Genes (Basel) 2022; 14:42. [PMID: 36672782 PMCID: PMC9859139 DOI: 10.3390/genes14010042] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/08/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
The hepatitis E virus (HEV) is a long-ignored virus that has spread globally with time. It ranked 6th among the top risk-ranking viruses with high zoonotic spillover potential; thus, considering its viral threats is a pressing priority. The molecular pathophysiology of HEV infection or the underlying cause is limited. Therefore, we incorporated an unbiased, systematic methodology to get insights into the biological heterogeneity associated with the HEV. Our study fetched 93 and 2016 differentially expressed genes (DEGs) from chronic HEV (CHEV) infection in kidney-transplant patients, followed by hub module selection from a weighted gene co-expression network (WGCN). Most of the hub genes identified in this study were associated with interferon (IFN) signaling pathways. Amongst the genes induced by IFNs, the 2'-5'-oligoadenylate synthase 3 (OAS3) protein was upregulated. Protein-protein interaction (PPI) modular, functional enrichment, and feed-forward loop (FFL) analyses led to the identification of two key miRNAs, i.e., miR-222-3p and miR-125b-5p, which showed a strong association with the OAS3 gene and TRAF-type zinc finger domain containing 1 (TRAFD1) transcription factor (TF) based on essential centrality measures. Further experimental studies are required to substantiate the significance of these FFL-associated genes and miRNAs with their respective functions in CHEV. To our knowledge, it is the first time that miR-222-3p has been described as a reference miRNA for use in CHEV sample analyses. In conclusion, our study has enlightened a few budding targets of HEV, which might help us understand the cellular and molecular pathways dysregulated in HEV through various factors. Thus, providing a novel insight into its pathophysiology and progression dynamics.
Collapse
Affiliation(s)
- Sonam Gupta
- Molecular Virology Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Prithvi Singh
- Mathematical and Computational Biology Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Alvea Tasneem
- Mathematical and Computational Biology Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ravins Dohare
- Mathematical and Computational Biology Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Shama Parveen
- Molecular Virology Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
13
|
Micro RNAs—The Small Big Players in Hepatitis E Virus Infection: A Comprehensive Review. Biomolecules 2022; 12:biom12111543. [PMID: 36358893 PMCID: PMC9687951 DOI: 10.3390/biom12111543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 12/02/2022] Open
Abstract
The molecular mechanism of hepatitis E virus (HEV) pathology is still unclear. The micro RNAs (miRNAs), of host or viral origin, interfere with virus replication and host environment in order to create an appropriate condition for the production of mature HEV progeny. Understanding the biogenesis and the interference of miRNAs with HEV will help to revile the mechanism of viral pathogenesis.
Collapse
|
14
|
Schemmerer M, Erl M, Wenzel JJ. HuH-7-Lunet BLR Cells Propagate Rat Hepatitis E Virus (HEV) in a Cell Culture System Optimized for HEV. Viruses 2022; 14:v14051116. [PMID: 35632857 PMCID: PMC9147593 DOI: 10.3390/v14051116] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/19/2022] [Accepted: 05/21/2022] [Indexed: 02/05/2023] Open
Abstract
The family Hepeviridae comprises the species Orthohepevirus A–D (HEV-A to -D). HEV-C genotype 1 (HEV-C1, rat HEV) is able to infect humans. This study investigated whether an optimized HEV-A cell culture system is able to propagate the cell culture-derived rat HEV, and if de novo isolation of the virus from rat liver is possible. We tested the liver carcinoma cell lines PLC/PRF/5, HuH-7, and HuH-7-Lunet BLR for their susceptibility to HEV-C1 strains. Cells were infected with the cell culture-derived HEV-C1 strain R63 and rat liver-derived strain R68. Cells were maintained in MEMM medium, which was refreshed every 3–4 days. The viral load of HEV-C1 was determined by RT-qPCR in the supernatant and expressed as genome copies per mL (c/mL). Rat HEV replication was most efficient in the newly introduced HuH-7-Lunet BLR cell line. Even if the rat HEV isolate had been pre-adapted to PLC/PRF/5 by multiple passages, replication in HuH-7-Lunet BLR was still at least equally effective. Only HuH-7-Lunet BLR cells were susceptible to the isolation of HEV-C1 from the liver homogenate. These results suggest HuH-7-Lunet BLR as the most permissive cell line for rat HEV. Our HEV-C1 cell culture system may be useful for basic research, the animal-free generation of large amounts of the virus as well as for the testing of antiviral compounds and drugs.
Collapse
|
15
|
Cancela F, Noceti O, Arbiza J, Mirazo S. Structural aspects of hepatitis E virus. Arch Virol 2022; 167:2457-2481. [PMID: 36098802 PMCID: PMC9469829 DOI: 10.1007/s00705-022-05575-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/04/2022] [Indexed: 12/14/2022]
Abstract
Hepatitis E virus (HEV) is a leading cause of acute hepatitis worldwide. Hepatitis E is an enterically transmitted zoonotic disease that causes large waterborne epidemic outbreaks in developing countries and has become an increasing public-health concern in industrialized countries. In this setting, the infection is usually acute and self-limiting in immunocompetent individuals, although chronic cases in immunocompromised patients have been reported, frequently associated with several extrahepatic manifestations. Moreover, extrahepatic manifestations have also been reported in immunocompetent individuals with acute HEV infection. HEV belongs to the alphavirus-like supergroup III of single-stranded positive-sense RNA viruses, and its genome contains three partially overlapping open reading frames (ORFs). ORF1 encodes a nonstructural protein with eight domains, most of which have not been extensively characterized: methyltransferase, Y domain, papain-like cysteine protease, hypervariable region, proline-rich region, X domain, Hel domain, and RNA-dependent RNA polymerase. ORF2 and ORF3 encode the capsid protein and a multifunctional protein believed to be involved in virion release, respectively. The novel ORF4 is only expressed in HEV genotype 1 under endoplasmic reticulum stress conditions, and its exact function has not yet been elucidated. Despite important advances in recent years, the biological and molecular processes underlying HEV replication remain poorly understood, primarily due to a lack of detailed information about the functions of the viral proteins and the mechanisms involved in host-pathogen interactions. This review summarizes the current knowledge concerning HEV proteins and their biological properties, providing updated detailed data describing their function and focusing in detail on their structural characteristics. Furthermore, we review some unclear aspects of the four proteins encoded by the ORFs, highlighting the current key information gaps and discussing potential novel experimental strategies for shedding light on those issues.
Collapse
Affiliation(s)
- Florencia Cancela
- grid.11630.350000000121657640Sección Virología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Ofelia Noceti
- grid.414402.70000 0004 0469 0889Programa Nacional de Trasplante Hepático y Unidad Docente Asistencial Centro Nacional de Tratamiento Hepatobiliopancreatico. Hospital Central de las Fuerzas Armadas, Montevideo, Uruguay
| | - Juan Arbiza
- grid.11630.350000000121657640Sección Virología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Santiago Mirazo
- grid.11630.350000000121657640Sección Virología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay ,grid.11630.350000000121657640Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay ,Av. Alfredo Navarro 3051, PC 11600 Montevideo, Uruguay
| |
Collapse
|
16
|
Qian Z, Yang C, Xu L, Mickael HK, Chen S, Zhang Y, Xia Y, Li T, Yu W, Huang F. Hepatitis E virus-encoded microRNA promotes viral replication by inhibiting type I interferon. FASEB J 2021; 36:e22104. [PMID: 34918388 DOI: 10.1096/fj.202101042r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 02/05/2023]
Abstract
MicroRNAs (miRNAs), the non-coding RNAs of ~22 nucleotides (nt) in length, play a vital role in regulating viral replication. Hepatitis E virus (HEV), a single-stranded RNA virus, is a predominant pathogen of acute hepatitis worldwide. Virus-encoded miRNAs regulate the viral life cycle and escape from the host innate immune system. However, it is rarely known about HEV-encoded miRNA (HEV-miR-A6). In the present study, HEV-miR-A6 was screened by microarray, and further identified in vivo and in vitro. HEV-miR-A6 originated from the methylase (MeT) of HEV open reading frame 1 (ORF1) and was highly conserved in eight HEV genotypes. HEV-miR-A6 expression was growing during HEV replication, and significantly increased in acute hepatitis E patients than convalescence patients. Furthermore, HEV-miR-A6 was specifically detected in liver, spleen, kidney and colon by in situ hybridization. To identify the specificity of HEV-miR-A6, its mutants (HEV-miR-A6M1 and HEV-miR-A6M2) were constructed to change the stem-loop structure. Interestingly, over-expression of HEV-miR-A6 or HEV-miR-A6M1 significantly facilitated viral replication, while HEV-miR-A6M2, another mutant completely changed the stem-loop structure was invalid. SIRP-α, a candidate target gene of HEV-miR-A6, was activated when HEV-miR-A6 over-expressed to inhibit the phosphorylation of IRF3, and subsequently suppressed the expression of type I interferon β (IFN-β). The promotion of viral replication by HEV-miR-A6 further identified in vivo. Significant suppression of IFN-β production in the serum of HEV-infected mice pre-treated with HEV-miR-A6 was observed. In summary, HEV-miR-A6 activates SIRP-α to promote viral replication by inhibition of IFN-β expression.
Collapse
Affiliation(s)
- Zhongyao Qian
- Medical School, Kunming University of Science and Technology, Kunming, PR China
| | - Chenchen Yang
- Medical School, Kunming University of Science and Technology, Kunming, PR China
| | - Liangheng Xu
- Medical School, Kunming University of Science and Technology, Kunming, PR China
| | - Houfack K Mickael
- Medical School, Kunming University of Science and Technology, Kunming, PR China
| | - Shuangfeng Chen
- Medical School, Kunming University of Science and Technology, Kunming, PR China
| | - Yike Zhang
- Medical School, Kunming University of Science and Technology, Kunming, PR China
| | - Yueping Xia
- Medical School, Kunming University of Science and Technology, Kunming, PR China
| | - Tengyuan Li
- Medical School, Kunming University of Science and Technology, Kunming, PR China
| | - Wenhai Yu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China
| | - Fen Huang
- Medical School, Kunming University of Science and Technology, Kunming, PR China
| |
Collapse
|
17
|
Capozza P, Pratelli A, Camero M, Lanave G, Greco G, Pellegrini F, Tempesta M. Feline Coronavirus and Alpha-Herpesvirus Infections: Innate Immune Response and Immune Escape Mechanisms. Animals (Basel) 2021; 11:3548. [PMID: 34944324 PMCID: PMC8698202 DOI: 10.3390/ani11123548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/11/2021] [Accepted: 12/12/2021] [Indexed: 12/14/2022] Open
Abstract
Over time, feline viruses have acquired elaborateopportunistic properties, making their infections particularly difficult to prevent and treat. Feline coronavirus (FCoV) and feline herpesvirus-1 (FeHV-1), due to the involvement of host genetic factors and immune mechanisms in the development of the disease and more severe forms, are important examples of immune evasion of the host's innate immune response by feline viruses.It is widely accepted that the innate immune system, which providesan initial universal form of the mammalian host protection from infectious diseases without pre-exposure, plays an essential role in determining the outcome of viral infection.The main components of this immune systembranchare represented by the internal sensors of the host cells that are able to perceive the presence of viral component, including nucleic acids, to start and trigger the production of first type interferon and to activate the cytotoxicity by Natural Killercells, often exploited by viruses for immune evasion.In this brief review, we providea general overview of the principal tools of innate immunity, focusing on the immunologic escape implemented byFCoVand FeHV-1 duringinfection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Maria Tempesta
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy; (P.C.); (A.P.); (M.C.); (G.L.); (G.G.); (F.P.)
| |
Collapse
|
18
|
Klöhn M, Schrader JA, Brüggemann Y, Todt D, Steinmann E. Beyond the Usual Suspects: Hepatitis E Virus and Its Implications in Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:5867. [PMID: 34831021 PMCID: PMC8616277 DOI: 10.3390/cancers13225867] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis E virus infections are the leading cause of viral hepatitis in humans, contributing to an estimated 3.3 million symptomatic cases and almost 44,000 deaths annually. Recently, HEV infections have been found to result in chronic liver infection and cirrhosis in severely immunocompromised patients, suggesting the possibility of HEV-induced hepatocarcinogenesis. While HEV-associated formation of HCC has rarely been reported, the expansion of HEV's clinical spectrum and the increasing evidence of chronic HEV infections raise questions about the connection between HEV and HCC. The present review summarizes current clinical evidence of the relationship between HEV and HCC and discusses mechanisms of virus-induced HCC development with regard to HEV pathogenesis. We further elucidate why the development of HEV-induced hepatocellular carcinoma has so rarely been observed and provide an outlook on possible experimental set-ups to study the relationship between HEV and HCC formation.
Collapse
Affiliation(s)
- Mara Klöhn
- Department of Molecular and Medical Virology, Ruhr-Universität Bochum, 44801 Bochum, Germany; (M.K.); (J.A.S.); (Y.B.); (D.T.)
| | - Jil Alexandra Schrader
- Department of Molecular and Medical Virology, Ruhr-Universität Bochum, 44801 Bochum, Germany; (M.K.); (J.A.S.); (Y.B.); (D.T.)
| | - Yannick Brüggemann
- Department of Molecular and Medical Virology, Ruhr-Universität Bochum, 44801 Bochum, Germany; (M.K.); (J.A.S.); (Y.B.); (D.T.)
| | - Daniel Todt
- Department of Molecular and Medical Virology, Ruhr-Universität Bochum, 44801 Bochum, Germany; (M.K.); (J.A.S.); (Y.B.); (D.T.)
- European Virus Bioinformatics Center (EVBC), 07743 Jena, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr-Universität Bochum, 44801 Bochum, Germany; (M.K.); (J.A.S.); (Y.B.); (D.T.)
- German Centre for Infection Research (DZIF), External Partner Site, 44801 Bochum, Germany
| |
Collapse
|
19
|
Yadav KK, Kenney SP. Hepatitis E Virus Immunopathogenesis. Pathogens 2021; 10:pathogens10091180. [PMID: 34578211 PMCID: PMC8465319 DOI: 10.3390/pathogens10091180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 12/22/2022] Open
Abstract
Hepatitis E virus is an important emerging pathogen producing a lethal impact on the pregnant population and immunocompromised patients. Starting in 1983, it has been described as the cause for acute hepatitis transmitted via the fecal–oral route. However, zoonotic and blood transfusion transmission of HEV have been reported in the past few decades, leading to the detailed research of HEV pathogenesis. The reason behind HEV being highly virulent to the pregnant population particularly during the third trimester, leading to maternal and fetal death, remains unknown. Various host factors (immunological, nutritional, hormonal) and viral factors have been studied to define the key determinants assisting HEV to be virulent in pregnant and immunocompromised patients. Similarly, chronic hepatitis is seen particularly in solid organ transplant patients, resulting in fatal conditions. This review describes recent advances in the immunopathophysiology of HEV infections in general, pregnant, and immunocompromised populations, and further elucidates the in vitro and in vivo models utilized to understand HEV pathogenesis.
Collapse
|
20
|
Interplay between Hepatitis E Virus and Host Cell Pattern Recognition Receptors. Int J Mol Sci 2021; 22:ijms22179259. [PMID: 34502167 PMCID: PMC8431321 DOI: 10.3390/ijms22179259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 11/23/2022] Open
Abstract
Hepatitis E virus (HEV) usually causes self-limiting acute hepatitis, but the disease can become chronic in immunocompromised individuals. HEV infection in pregnant women is reported to cause up to 30% mortality, especially in the third trimester. Additionally, extrahepatic manifestations like neuronal and renal diseases and pancreatitis are also reported during the course of HEV infection. The mechanism of HEV pathogenesis remains poorly understood. Innate immunity is the first line of defense triggered within minutes to hours after the first pathogenic insult. Growing evidence based on reverse genetics systems, in vitro cell culture models, and representative studies in animal models including non-human primates, has implicated the role of the host’s innate immune response during HEV infection. HEV persists in presence of interferons (IFNs) plausibly by evading cellular antiviral defense. This review summarizes our current understanding of recognizing HEV-associated molecular patterns by host cell Pattern Recognition Receptors (PRRs) in eliciting innate immune response during HEV infection as well as mechanisms of virus-mediated immune evasion.
Collapse
|
21
|
Sun HY, Su YL, Li PH, He JY, Chen HJ, Wang G, Wang SW, Huang XH, Huang YH, Qin QW. The Roles of Epinephelus coioides miR-122 in SGIV Infection and Replication. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:294-307. [PMID: 33570690 PMCID: PMC8032594 DOI: 10.1007/s10126-021-10023-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
In mammals, mature miR-122 is 22 nucleotides long and can be involved in regulating a variety of physiological and biological pathways. In this study, the expression profile and effects of grouper Epinephelus coioides miR-122 response to Singapore grouper iridovirus (SGIV) infection were investigated. The sequences of mature microRNAs (miRNAs) from different organisms are highly conserved, and miR-122 from E. coioides exhibits high similarity to that from mammals and other fish. The expression of miR-122 was up-regulated during SGIV infection. Up-regulation of miR-122 could significantly enhance the cytopathic effects (CPE) induced by SGIV, the transcription levels of viral genes (MCP, VP19, LITAF and ICP18), and viral replication; reduce the expression of inflammatory factors (TNF-a, IL-6, and IL-8), and the activity of AP-1 and NF-κB, and miR-122 can bind the target gene p38α MAPK to regulate the SGIV-induced cell apoptosis and the protease activity of caspase-3. The results indicated that SGIV infection can up-regulate the expression of E. coioides miR-122, and up-regulation of miR-122 can affect the activation of inflammatory factors, the activity of AP-1 and NF-κB, and cell apoptosis to regulate viral replication and proliferation.
Collapse
Affiliation(s)
- Hong-Yan Sun
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangdong Province, 510642, Guangzhou, People's Republic of China
| | - Yu-Ling Su
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangdong Province, 510642, Guangzhou, People's Republic of China
| | - Pin-Hong Li
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangdong Province, 510642, Guangzhou, People's Republic of China
| | - Jia-Yang He
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangdong Province, 510642, Guangzhou, People's Republic of China
| | - He-Jia Chen
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangdong Province, 510642, Guangzhou, People's Republic of China
| | - Gang Wang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangdong Province, 510642, Guangzhou, People's Republic of China
| | - Shao-Wen Wang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangdong Province, 510642, Guangzhou, People's Republic of China
| | - Xiao-Hong Huang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangdong Province, 510642, Guangzhou, People's Republic of China
| | - You-Hua Huang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangdong Province, 510642, Guangzhou, People's Republic of China.
| | - Qi-Wei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangdong Province, 510642, Guangzhou, People's Republic of China.
| |
Collapse
|
22
|
Uncovering the Roles of miR-214 in Hepatitis E Virus Replication. J Mol Biol 2020; 432:5322-5342. [PMID: 32735806 DOI: 10.1016/j.jmb.2020.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022]
Abstract
Viral pathogenesis is a complex event and its regulation involve dynamic interactions with various host factors, of which microRNAs are the key players. In the current study, we have identified the functional importance of an interplay between hepatitis E virus (HEV) and miR-214. Computational analysis indicated that miR-214 binding site is significantly conserved among HEV and related RNA viruses. Intact miR-214 binding site is imperative for HEV replication. miR-214 is an essential host factor for HEV replication. Herein, we demonstrate that miR-214 interacts directly with HEV RNA to enhance HEV replication and HEV genome translation. Augmented translation results in increased levels of HEV ORF2, which is a factor responsible for upregulation of miR-214. HEV usurps host cellular machinery for improving viral fitness and elevates miR-214 expression for amplifying the expression of proviral host factor intracellular active thrombin. This is because miR-214 represses the expression of the negative regulator of thrombin, i.e., protein C. Another viral factor, HEV ORF3, also contributes to the enhancement of intracellular active thrombin. Furthermore, miR-214 directly targets antiviral host factor 2'-5'-oligoadenylate synthetase. Conclusively, we identified a novel mechanism of positive regulation of HEV replication. miR-214 interacts directly with HEV genome and fine-tunes host factors expression. This results in outweighing the proviral factors on the proviral-antiviral axis probably for generating virus supportive environment.
Collapse
|
23
|
Scholz J, Falkenhagen A, Bock CT, Johne R. Reverse genetics approaches for hepatitis E virus and related viruses. Curr Opin Virol 2020; 44:121-128. [PMID: 32818718 DOI: 10.1016/j.coviro.2020.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/05/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022]
Abstract
The hepatitis E virus (HEV) is the causative agent of acute and chronic hepatitis in humans. Related viruses have been found in several animal species. Reverse genetics systems (RGSs), which enable the generation of infectious virus from cloned cDNA by transfection of cultured cells or intrahepatic injection into laboratory animals, have been developed for HEV genotypes 1, 3, 4, 5 and 7 as well as for avian HEV and rat HEV. However, low virus recovery rates and slow replication in cell cultures are observed for most of the HEV types. Nevertheless, the RGSs enabled the site-directed mutagenesis of single nucleotides, deletion of genome fragments, insertion of sequence tags and a marker gene as well as the generation of chimeric viruses.
Collapse
Affiliation(s)
- Johannes Scholz
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Alexander Falkenhagen
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Claus-Thomas Bock
- Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Reimar Johne
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany.
| |
Collapse
|
24
|
Expression Profiles of Exosomal MicroRNAs from HEV- and HCV-Infected Blood Donors and Patients: A Pilot Study. Viruses 2020; 12:v12080833. [PMID: 32751663 PMCID: PMC7472156 DOI: 10.3390/v12080833] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
Exosomes seem to play an important role in hepatits C virus (HCV) and hepatitis E virus (HEV) infection by shielding their cargo from the host immune responses, with microRNAs being key exosomal components. Little is known about their involvement in a mixed HCV/HEV infection or at the early stages of infection, such as in asymptomatic blood donors (BDs). To obtain preliminary data, we have compared the exosomal microRNA expression profiles in four each of HCV RNA-positive, HEV RNA-positive and negative blood donors and four patients, one of whom was a rare patient with HCV/HEV co-infection. Exosomes were purified from sera by a combination of a precipitation and density gradient centrifugation and exosomal microRNA was analysed using Taqman array cards. Out of 33 deregulated miRNAs, miR-885-5p and miR-365 were upregulated in HCV BDs, miR-627-5p was downregulated in HCV BD and miR-221 was downregulated in HCV patients and BDs. In HEV infection, miR-526b appeared specifically downregulated. Six miRNAs (miR-628-3p, miR-194, miR-151-3p, miR-512-3p, miR-335 and miR-590) indicated a potential involvement in both infections. First time preliminary data on pre- and post-antiviral treatment exosomal microRNA profiles of the HEV/HCV co-infected patient revealed a pool of 77 upregulated and 43 downregulated miRNAs to be further investigated for their potential roles in these viral infections.
Collapse
|
25
|
Zhang J, Li Z, Huang J, Chen S, Yin H, Tian J, Qu L. miR-101 inhibits feline herpesvirus 1 replication by targeting cellular suppressor of cytokine signaling 5 (SOCS5). Vet Microbiol 2020; 245:108707. [PMID: 32456815 DOI: 10.1016/j.vetmic.2020.108707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/19/2020] [Accepted: 04/25/2020] [Indexed: 12/15/2022]
Abstract
Feline viral rhinotracheitis is a prevalent disease among cats caused by feline herpesvirus 1 (FHV-1). microRNAs (miRNAs), which serve as important regulatory factors in the host, participate in the regulation of the host innate immune response to virus infection. However, the roles of miRNAs in the FHV-1 life cycle remain unclear. In this study, we found that a new miRNA, miR-101, could suppress FHV-1 replication. FHV-1 infection upregulated the expression level of miR-101 in a cGAS-dependent manner. Furthermore, miR-101 could significantly enhance type I interferon antiviral signaling by targeting suppressor of cytokine signaling 5 (SOCS5), a negative regulator of the JAK-STAT pathway. Likewise, knockdown of cellular SOCS5 also suppressed FHV-1 replication due to the enhancement of IFN-I-induced signaling cascades. Taken together, our data demonstrated a new strategy for miR-101-mediated defense against FHV-1 infection by enhancing IFN-I antiviral signaling and increased the knowledge of miRNAs regulating innate immune signaling pathways.
Collapse
Affiliation(s)
- Jikai Zhang
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Zhijie Li
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Jiapei Huang
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Si Chen
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Hang Yin
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Jin Tian
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China.
| | - Liandong Qu
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China.
| |
Collapse
|
26
|
Wenquan L, Hongqing X, Yuhua L, Lili W, Wang Z, Ziwei Z, Chuang W, Aizhen C, Xiaosong W, Bo W, Lin C. MiR-139-5p inhibits the proliferation of gastric cancer cells by targeting Regulation of Nuclear Pre-mRNA Domain Containing 1B. Biochem Biophys Res Commun 2020; 527:393-400. [PMID: 32327260 DOI: 10.1016/j.bbrc.2020.04.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022]
Abstract
Regulation of Nuclear Pre-mRNA Domain Containing 1B (RPRD1B) has been of great interest in the field of oncology in recent years. The relationship between miRNAs and RPRD1B in gastric cancer (GC) has not been adequately reported. This study was designed to screen RPRD1B-targeted miRNAs and investigate its regulatory mechanism in GC cells. Quantitative RT-PCR and in situ hybridization were used to detect miRNA expression in GC tissues. Colony formation, EdU cell proliferation assay, and flow cytometry were used to analyze the cell cycle. Database-assisted gene expression analysis revealed that RPRD1B was targeted and regulated by miRNA-139-5p in GC. miRNA-139-5p expression was higher in GC tissue than in normal tissues and significantly correlated with tumor size, pathological stage, and disease-free survival of GC (p < 0.05). MiRNA-139-5p regulates GC cell proliferation and affects the transition from G1 to S phase. It binds explicitly to the 2013-2019 sites of the 3'UTR of RPRD1B and negatively regulates RPRD1B expression. We demonstrated that the ability of miR-139-5p to regulate GC cell proliferation depends on RPRD1B. This process is accompanied by changes in Cyclin D1 protein expression. We established a miR-139-5p/RPRD1B/tumor proliferation axis in GC, which may serve as novel biomarkers and drug targets for GC.
Collapse
Affiliation(s)
- Liang Wenquan
- Department of General Surgery & Institute of General Surgery, Chinese PLA General Hospital, Beijing, China; Medical School of Chinese PLA, Beijing, China
| | - Xi Hongqing
- Department of General Surgery & Institute of General Surgery, Chinese PLA General Hospital, Beijing, China
| | - Liu Yuhua
- Institute of Army Hospital Management, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Wang Lili
- Department of General Surgery & Institute of General Surgery, Chinese PLA General Hospital, Beijing, China
| | - Zhang Wang
- Department of General Surgery & Institute of General Surgery, Chinese PLA General Hospital, Beijing, China; Medical School of Chinese PLA, Beijing, China
| | - Zhuang Ziwei
- Department of General Surgery & Institute of General Surgery, Chinese PLA General Hospital, Beijing, China; Medical School of Chinese PLA, Beijing, China
| | - Wang Chuang
- Department of General Surgery & Institute of General Surgery, Chinese PLA General Hospital, Beijing, China; Medical School of Chinese PLA, Beijing, China
| | - Cai Aizhen
- Department of General Surgery & Institute of General Surgery, Chinese PLA General Hospital, Beijing, China
| | - Wu Xiaosong
- Medical Management Office, Chinese PLA General Hospital, Beijing, China.
| | - Wei Bo
- Department of General Surgery & Institute of General Surgery, Chinese PLA General Hospital, Beijing, China.
| | - Chen Lin
- Department of General Surgery & Institute of General Surgery, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
27
|
Specific circulating microRNAs during hepatitis E infection can serve as indicator for chronic hepatitis E. Sci Rep 2020; 10:5337. [PMID: 32210284 PMCID: PMC7093451 DOI: 10.1038/s41598-020-62159-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/10/2020] [Indexed: 12/20/2022] Open
Abstract
Hepatitis E virus (HEV) genotypes 3 and 4 (HEV-3, HEV-4) infections are an emerging public health issue in industrialized countries. HEV-3 and −4 are usually self-limiting but can progress to chronic hepatitis E in immunocompromised individuals. The molecular mechanisms involved in persistent infections are poorly understood. Micro RNAs (miRNAs) can regulate viral pathogenesis and can serve as novel disease biomarkers. We aimed to explore the modulation of serum miRNAs in patients with acute (AHE) and chronic (CHE) hepatitis E. Both AHE- and CHE-patients exhibited high viral loads (median 3.23E + 05 IU/mL and 2.11E + 06 IU/mL, respectively) with HEV-3c being the predominant HEV-genotype. Expression analysis of liver-specific serum miRNAs was performed using real-time PCR. miR-99a-5p, miR-122-5p, and miR-125b-5p were upregulated in AHE (4.70–5.28 fold) and CHE patients (2.28–6.34 fold), compared to HEV-negative controls. Notably, miR-192-5p was increased 2.57 fold while miR-125b-5p was decreased 0.35 fold in CHE but not in AHE patients. Furthermore, decreased miR-122-5p expression significantly correlates with reduced liver transaminases in CHE patients. To our knowledge, this marks the first investigation concerning the regulation of circulating liver-specific miRNAs in acute and chronic HEV infections. We found that miR-125b-5p, miR-192-5p, and miR-99a-5p may prove useful in the diagnosis of chronic hepatitis E.
Collapse
|
28
|
Zhang J, Li Z, Huang J, Yin H, Tian J, Qu L. miR-26a Inhibits Feline Herpesvirus 1 Replication by Targeting SOCS5 and Promoting Type I Interferon Signaling. Viruses 2019; 12:v12010002. [PMID: 31861450 PMCID: PMC7020096 DOI: 10.3390/v12010002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/11/2019] [Accepted: 12/15/2019] [Indexed: 12/14/2022] Open
Abstract
In response to viral infection, host cells activate various antiviral responses to inhibit virus replication. While feline herpesvirus 1 (FHV-1) manipulates the host early innate immune response in many different ways, the host could activate the antiviral response to counteract it through some unknown mechanisms. MicroRNAs (miRNAs) which serve as a class of regulatory factors in the host, participate in the regulation of the host innate immune response against virus infection. In this study, we found that the expression levels of miR-26a were significantly upregulated upon FHV-1 infection. Furthermore, FHV-1 infection induced the expression of miR-26a via a cGAS-dependent pathway, and knockdown of cellular cGAS significantly blocked the expression of miR-26a induced by poly (dA:dT) or FHV-1 infection. Next, we investigated the biological function of miR-26a during viral infection. miR-26a was able to increase the phosphorylation of STAT1 and promote type I IFN signaling, thus inhibiting viral replication. The mechanism study showed that miR-26a directly targeted host SOCS5. Knockdown of SOCS5 increased the phosphorylation of STAT1 and enhanced the type I IFN-mediated antiviral response, and overexpression of suppressor of the cytokine signalling 5 (SOCS5) decreased the phosphorylation of STAT1 and inhibited the type I IFN-mediated antiviral response. Meanwhile, with the knockdown of SOCS5, the upregulated expression of phosphorylated STAT1 and the anti-virus effect induced by miR-26a were significantly inhibited. Taken together, our data demonstrated a new strategy of host miRNAs against FHV-1 infection by enhancing IFN antiviral signaling.
Collapse
|
29
|
LeDesma R, Nimgaonkar I, Ploss A. Hepatitis E Virus Replication. Viruses 2019; 11:E719. [PMID: 31390784 PMCID: PMC6723718 DOI: 10.3390/v11080719] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 12/19/2022] Open
Abstract
Hepatitis E virus (HEV) is a small quasi-enveloped, (+)-sense, single-stranded RNA virus belonging to the Hepeviridae family. There are at least 20 million HEV infections annually and 60,000 HEV-related deaths worldwide. HEV can cause up to 30% mortality in pregnant women and progress to liver cirrhosis in immunocompromised individuals and is, therefore, a greatly underestimated public health concern. Although a prophylactic vaccine for HEV has been developed, it is only licensed in China, and there is currently no effective, non-teratogenic treatment. HEV encodes three open reading frames (ORFs). ORF1 is the largest viral gene product, encoding the replicative machinery of the virus including a methyltransferase, RNA helicase, and an RNA-dependent RNA polymerase. ORF1 additionally contains a number of poorly understood domains including a hypervariable region, a putative protease, and the so-called 'X' and 'Y' domains. ORF2 is the viral capsid essential for formation of infectious particles and ORF3 is a small protein essential for viral release. In this review, we focus on the domains encoded by ORF1, which collectively mediate the virus' asymmetric genome replication strategy. We summarize what is known, unknown, and hotly debated regarding the coding and non-coding regions of HEV ORF1, and present a model of how HEV replicates its genome.
Collapse
Affiliation(s)
- Robert LeDesma
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08544, USA
| | - Ila Nimgaonkar
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08544, USA
| | - Alexander Ploss
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
30
|
The Interplay between Host Innate Immunity and Hepatitis E Virus. Viruses 2019; 11:v11060541. [PMID: 31212582 PMCID: PMC6630959 DOI: 10.3390/v11060541] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/24/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022] Open
Abstract
Hepatitis E virus (HEV) infection represents an emerging global health issue, whereas the clinical outcomes vary dramatically among different populations. The host innate immune system provides a first-line defense against the infection, but dysregulation may partially contribute to severe pathogenesis. A growing body of evidence has indicated the active response of the host innate immunity to HEV infection both in experimental models and in patients. In turn, HEV has developed sophisticated strategies to counteract the host immune system. In this review, we aim to comprehensively decipher the processes of pathogen recognition, interferon, and inflammatory responses, and the involvement of innate immune cells in HEV infection. We further discuss their implications in understanding the pathogenic mechanisms and developing antiviral therapies.
Collapse
|
31
|
Zhao Y, Lin Q, Li N, Babu VS, Fu X, Liu L, Liang H, Liu X, Lin L. MicroRNAs profiles of Chinese Perch Brain (CPB) cells infected with Siniperca chuatsi rhabdovirus (SCRV). FISH & SHELLFISH IMMUNOLOGY 2019; 84:1075-1082. [PMID: 30423456 DOI: 10.1016/j.fsi.2018.11.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/03/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
MicroRNAs are non-coding RNAs, which widely participate in biological processes. In recent years, Siniperca chuatsi rhabdovirus (SCRV) has caused mass mortality in Chinese perch (Siniperca chuatsi). To identify specific miRNAs involved in SCRV infection, deep sequencing of microRNA on Chinese perch brain cell line (CPB) with or without SCRV infection were performed at 6 and 12 h post of infection (hpi). Totally 382 miRNAs were identified, including 217 known miRNA aligned with zebrafish miRNAs and 165 novel miRNAs by MiRDeep2 program. Of which 15 and 35 differentially-expressed miRNAs were determined respectively to 6 and 12 hpi. Nine miRNAs were selected randomly from the differentially-expressed miRNAs and validated by quantitative real-time PCR (qRT-PCR). These results were consistent with the microRNA sequencing results. Besides, target genes of 98 differentially-expressed miRNAs were predicted. Three of miRNAs (miR-122, miR-214, miR-135a) were selected, and its effects were analyzed in CPC cells transfected with appropriate miRNA mimics/inhibitors to evaluate its regulation effects by qRT-PCR and western blot. The results demonstrated that miR-214 inhibited the replication of SCRV, while miR-122 promoted the replication of SCRV and there was no correlation between the miR-135a and SCRV replication. These results will pave a new way for the development of effective strategies against the SCRV infection.
Collapse
Affiliation(s)
- Yongliang Zhao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, Guangdong, 510380, China; Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Qiang Lin
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, Guangdong, 510380, China.
| | - Ningqiu Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, Guangdong, 510380, China
| | - V Sarath Babu
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Xiaozhe Fu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, Guangdong, 510380, China
| | - Lihui Liu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, Guangdong, 510380, China
| | - Hongru Liang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, Guangdong, 510380, China
| | - Xiaoling Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Li Lin
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| |
Collapse
|
32
|
Song J, Liu G, Wang R, Sun L, Zhang P. A novel method for predicting RNA-interacting residues in proteins using a combination of feature-based and sequence template-based methods. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1612275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Jiazhi Song
- Department of Computational intelligence College of Computer Science and Technology, Jilin University, Changchun, PR China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, PR China
| | - Guixia Liu
- Department of Computational intelligence College of Computer Science and Technology, Jilin University, Changchun, PR China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, PR China
| | - Rongquan Wang
- Department of Computational intelligence College of Computer Science and Technology, Jilin University, Changchun, PR China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, PR China
| | - Liyan Sun
- Department of Computational intelligence College of Computer Science and Technology, Jilin University, Changchun, PR China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, PR China
| | - Ping Zhang
- Department of Computational intelligence College of Computer Science and Technology, Jilin University, Changchun, PR China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, PR China
| |
Collapse
|
33
|
Life cycle and morphogenesis of the hepatitis E virus. Emerg Microbes Infect 2018; 7:196. [PMID: 30498191 PMCID: PMC6265337 DOI: 10.1038/s41426-018-0198-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 12/19/2022]
Abstract
Hepatitis E virus (HEV) is transmitted primarily via contaminated water and food by the fecal oral route and causes epidemics in developing countries. In industrialized countries, zoonotic transmission of HEV is prevalent. In addition, HEV is the major cause of acute hepatitis in healthy adults and can cause chronic hepatitis in immunocompromised patients, with pregnant HEV-infected women having increased mortality rates of approximately 25%. HEV was once an understudied and neglected virus. However, in recent years, the safety of blood products with respect to HEV has increasingly been considered to be a public health problem. The establishment of HEV infection models has enabled significant progress to be made in understanding its life cycle. HEV infects cells via a receptor (complex) that has yet to be identified. The HEV replication cycle is initiated immediately after the (+) stranded RNA genome is released into the cell cytosol. Subsequently, infectious viral particles are released by the ESCRT complex as quasi-enveloped viruses (eHEVs) into the serum, whereas feces and urine contain only nonenveloped infectious viral progeny. The uncoating of the viral envelope takes place in the biliary tract, resulting in the generation of a nonenveloped virus that is more resistant to environmental stress and possesses a higher infectivity than that of eHEV. This review summarizes the current knowledge regarding the HEV life cycle, viral morphogenesis, established model systems and vaccine development.
Collapse
|
34
|
Cao Y, Wang D, Li S, Xu L, Zhao J, Liu H, Lu T, Zhang Q. Identification and analysis of differentially expressed microRNAs in rainbow trout (Oncorhynchus mykiss) responding to infectious hematopoietic necrosis virus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 88:28-36. [PMID: 29990507 DOI: 10.1016/j.dci.2018.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/06/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
MicroRNAs (miRNAs) are a class of regulators essential for numerous biological processes. Infectious hematopoietic necrosis virus (IHNV) is one of the most important viral pathogens in salmon and trout. In this study, the miRNA expression profiles of rainbow trout upon IHNV infection were explored. In total, 392 known miRNAs and 936 novel miRNAs were identified. Twelve known and 13 novel miRNAs were differentially expressed between infected and uninfected fish. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that certain miRNA target genes were associated with biological regulation, the immune system, and signal transduction. In addition, over- and suppressed expression of miR-146a-3p, miR-155-5p, miR-216a-5p, and miR-499b-5p could respectively increase and decrease viral gene expression in cells and viral titers. MiR-146a-3p and miR-216a-5p inhibited the expression of type-I IFN and the Mx1 gene induced by IHNV. These results provide preliminary insights into the IHNV-host interactions mediated by miRNAs.
Collapse
Affiliation(s)
- Yongsheng Cao
- Laboratory of Fish Diseases, Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Songfa Street No. 43, Daoli District, Harbin, 150070, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Di Wang
- Laboratory of Fish Diseases, Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Songfa Street No. 43, Daoli District, Harbin, 150070, China.
| | - Shaowu Li
- Laboratory of Fish Diseases, Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Songfa Street No. 43, Daoli District, Harbin, 150070, China.
| | - Liming Xu
- Laboratory of Fish Diseases, Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Songfa Street No. 43, Daoli District, Harbin, 150070, China.
| | - Jingzhuang Zhao
- Laboratory of Fish Diseases, Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Songfa Street No. 43, Daoli District, Harbin, 150070, China.
| | - Hongbai Liu
- Laboratory of Fish Diseases, Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Songfa Street No. 43, Daoli District, Harbin, 150070, China.
| | - Tongyan Lu
- Laboratory of Fish Diseases, Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Songfa Street No. 43, Daoli District, Harbin, 150070, China.
| | - Qiya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|